WorldWideScience

Sample records for radio-resistant protein promotes

  1. Activation of mitochondrial promoter PH-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    International Nuclear Information System (INIS)

    Roychoudhury, Paromita; Ghosh, Utpal; Bhattacharyya, Nitai P.; Chaudhuri, Keya

    2006-01-01

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P H ) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P L ) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P H promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P H and mediated by the expression of Bcl2

  2. High levels of X-linked Inhibitor-of-Apoptosis Protein (XIAP) are indicative of radio chemotherapy resistance in rectal cancer

    International Nuclear Information System (INIS)

    Flanagan, L.; Kehoe, J.; Fay, J.; Bacon, O.; Lindner, A.U.; Kay, E.W.; Deasy, J.; McNamara, D.A.; Prehn, J.H.M.

    2015-01-01

    The mainstay of treatment in rectal cancer is neoadjuvant radio chemotherapy prior to surgery, in an attempt to downstage the tumour, allowing for more complete removal during surgery. In 40 % of cases however, this neoadjuvant radio chemotherapy fails to achieve tumour regression, partly due insufficient apoptosis signaling. X-linked Inhibitor of Apoptosis Protein (XIAP) is an anti-apoptotic protein that has been reported to contribute to disease progression and chemotherapy resistance. We obtained rectal biopsy normal and matched tumour tissue from 29 rectal cancer patients with varying degrees of tumour regression, and using Western blot, examined anti-apoptotic XIAP and pro-apoptotic Smac protein levels in these tissues, with the aim to examine whether disturbed XIAP/Smac levels may be an indicator of neoadjuvant radio chemotherapy resistance. Expression of inhibitor of apoptosis proteins cIAP-1 and cIAP-2 was also examined. We found that levels of XIAP increased in accordance with the degree of radio chemotherapy resistance of the tissue. Levels of this protein were also significantly higher in tumour tissue, compared to matched normal tissue in highly resistant tissue. In contrast, Smac protein levels did not increase with radio chemotherapy resistance, and the protein was similarly expressed in normal and tumour tissue, indicating a shift in the balance of these proteins. Post treatment surgical resection tissue was available for 8 patients. When we compared matched tissue pre- and post- radio chemotherapy we found that XIAP levels increased significantly during treatment in both normal and tumour tissue, while Smac levels did not change. cIAP-1 and cIAP-2 levels were not differentially expressed in varying degrees of radio chemotherapy resistance, and neoadjuvant therapy did not alter expression of these proteins. These data indicate that disturbance of the XIAP/Smac balance may be a driver of radio chemotherapy resistance, and hence high levels of XIAP may

  3. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  4. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  5. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili

    2017-12-01

    Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.

  6. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  7. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  8. Treatment of Resistant Idiopathic Hiccups with Pulse Radio ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... Our case suggests that administration of gabapentin after pulsed radiofrequency might be effective for the treatment of persistent hiccups. KEYWORDS: Hiccups, persistent, pulse radio frequency. Treatment of Resistant Idiopathic Hiccups with Pulse Radio Frequency on Phrenic Nerve and Gabapentin: A ...

  9. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    Xue Gang; Ren Zhenxin; Chen Yaxiong; Zhu Jiayun; Du Yarong; Pan Dong; Li Xiaoman; Hu Burong; Grabham, Peter W.

    2015-01-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  10. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  11. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  12. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  13. No impact on P-gp level in radio-resistant Mcf-7 cells

    International Nuclear Information System (INIS)

    Madhu, L.N.; Rao, Shama; Sarojini, B.K.

    2016-01-01

    Cancer has become the leading cause of human death worldwide. One possible cause for therapeutic failure is that residual tumor cells are reminiscent of stem cells, which ultimately give rise to secondary tumors or distant metastasis. The property of resistance to radiation therapy or chemotherapy might be the major clinical criterion to characterize 'cancer stem cells (CSCs)'. In the process of radiotherapy, the radiosensitive cancer will become a radioresistant one. Such radio-resistance cells might also show the characters of multi drug resistance (MRD) properties which may affect the chemotherapy process. The present study was carried out to know the expression level of P-gp, a MRD protein in radioresistance breast cancer cells. The study conducted by exposing the MCF-7 cells to 4Gy of gamma radiation

  14. Role of certain cellular composition in radio-resistant fungi

    International Nuclear Information System (INIS)

    Shahin, A.A.M.; Hammad, A.A.I.; Hazaa, M.M.; Swelim, M.A.; Mohamed, Y.A.

    2007-01-01

    Fifty three fungal isolates of genera Curvularia, Alternaria and Fusarium were isolated from different sources included crops, vegetables, fruits in addition to bread, chicken feed soil and air. Five isolates were selected from each genus according to the difference in the morphological characters and its source. The fifteen isolates were exposed to increasing doses of gamma rays from 0.5 to 10.0 I 10 values when irradiated in saline solution were found to be 1.92,1.25, 1.47,0.47,1.31 and 0.70 respectively while their D 10 values were 2.25, 1.56, 1.70, 1.30, 1.83 and 1.23 as the irradiation process was done in their natural sources. The values of total protein, total lipids and total nucleic acids either RNA or DNA were relatively higher in radio-resistant strains than sensitive ones. Amino acids containing sulfur (cysteine, methionine) or double bonds (histidine) and the percentage of unsaturated fatty acids were also higher in resistant strains than the sensitive ones. Exposing the six selected strains to dose level 4 kGy obviously decreased each of total protein, total amino acids and total nucleic acids especially DNA and the values of decreases were found to be higher in sensitive than the resistant strains. Dose level 12.5 kGy was quiet enough to eliminate the radioresistant fungi from the contaminated food whatever the level of contamination is

  15. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P Pea, Whey and Placebo, respectively; P Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  16. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  17. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.

    Science.gov (United States)

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna

    2017-03-24

    Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has

  18. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco

    Science.gov (United States)

    Deb, Debasish; Shrestha, Ankita; Maiti, Indu B.; Dey, Nrisingha

    2018-01-01

    Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter ‘MUASCsV8CP’ through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral ‘Killer protein KP4’ (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering “in-built” fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach. PMID:29556246

  19. Phosphorylation of stress protein pp80 is related to promotion of transformation

    International Nuclear Information System (INIS)

    Smith, B.M.; Gindhart, T.D.; Hirano, K.; Colburn, N.H.

    1986-01-01

    The JB6 mouse epidermal cell system is an in vitro model of late stage promotion, and includes cell lines sensitive (P+) or resistant (P-) to phorbol ester-induced anchorage independent transformation, and transformed (T/sub x/) lines. Certain promoter-induced changes in phosphoproteins, identified by gel electrophoresis, are unique to cells of one phenotype, and occur only with specific promoters. An 80Kd protein is inversely correlated with phenotype: P- cells have a constitutively higher level (p 35 S-methionine. pp80 shares properties with the 80Kd heat stress protein: molecular weight relative abundance, and isoelectric point (4.5). Pharmacological analogs of calcium, the lanthanides, promote transformation of JB6 cells, but have no effect on phosphorylation of the 80Kd protein. If pp80 is on the promotion pathway, it is limited to a specific subset of transformation promoters

  20. Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance.

    Science.gov (United States)

    Abou-Antoun, Tamara J; Nazarian, Javad; Ghanem, Anthony; Vukmanovic, Stanislav; Sandler, Anthony D

    2018-01-01

    Despite significant advances in cancer treatment and management, more than 60% of patients with neuroblastoma present with very poor prognosis in the form of metastatic and aggressive disease. Solid tumors including neuroblastoma are thought to be heterogeneous with a sub-population of stem-like cells that are treatment-evasive with highly malignant characteristics. We previously identified a phenomenon of reversible adaptive plasticity (RAP) between anchorage dependent (AD) cells and anchorage independent (AI) tumorspheres in neuroblastoma cell cultures. To expand our molecular characterization of the AI tumorspheres, we sought to define the comprehensive proteomic profile of murine AD and AI neuroblastoma cells. The proteomic profiles of the two phenotypic cell populations were compared to each other to determine the differential protein expression and molecular pathways of interest. We report exclusive or significant up-regulation of tumorigenic pathways expressed by the AI tumorspheres compared to the AD cancer cells. These pathways govern metastatic potential, enhanced malignancy and epithelial to mesenchymal transition. Furthermore, radio-therapy induced significant up-regulation of specific tumorigenic and proliferative proteins, namely survivin, CDC2 and the enzyme Poly [ADP-ribose] polymerase 1. Bio-functional characteristics of the AI tumorspheres were resistant to sutent inhibition of receptor tyrosine kinases (RTKs) as well as to 2.5 Gy radio-therapy as assessed by cell survival, proliferation, apoptosis and migration. Interestingly, PDGF-BB stimulation of the PDGFRβ led to transactivation of EGFR and VEGFR in AI tumorspheres more potently than in AD cells. Sutent inhibition of PDGFRβ abrogated this transactivation in both cell types. In addition, 48 h sutent treatment significantly down-regulated the protein expression of PDGFRβ, MYCN, SOX2 and Survivin in the AI tumorspheres and inhibited tumorsphere self-renewal. Radio-sensitivity in AI

  1. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  2. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaobing; Wu, Yaxun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Wang, Yuchan [Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Zhu, Xinghua; Yin, Haibing [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Yunhua [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Xu, Xiaohong, E-mail: xuxiaohongnantong@126.com [Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China)

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1{sup S102} were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1{sup S102} nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. - Highlights: • The expression statuses of YB-1 and pYB-1{sup S102} are reversely correlated with outcomes of DLBCL patients. • YB-1 promotes cell proliferation by accelerating G1/S transition in DLBCL. • YB-1 confers drug resistance to mitoxantrone in DLBCL.

  3. Microbial radio-resistance of Salmonella Typhimurium in egg increases due to repetitive irradiation with electron beam

    International Nuclear Information System (INIS)

    Tesfai, Adiam T.; Beamer, Sarah K.; Matak, Kristen E.; Jaczynski, Jacek

    2011-01-01

    Ionizing radiation improves food safety. However, foodborne pathogens develop increased resistance in response to sub-lethal stresses such as heat, pH, antibiotics, etc. Therefore, it is hypothesized that foodborne pathogens may develop increased radio-resistance to electron beam (e-beam) radiation. The objective was to determine if D 10 -value for Salmonella Typhimurium in de-shelled raw egg (egg white and yolk mixed together) increases due to repetitive processing with e-beam at sub-lethal doses. Survivors were enumerated on non-selective (TSA) and selective (XLD) media. Survivors from the highest dose were isolated and used in subsequent e-beam cycle. This process was repeated four times for a total of five e-beam cycles. D 10 -values for S. Typhimurium enumerated on TSA and XLD following each e-beam cycle were calculated as inverse reciprocal of the slope of survivor curves. D 10 -values for the ATCC strain were 0.59±0.031 and 0.46±0.022 kGy on TSA and XLD, respectively. However, following the fifth e-beam cycle, the respective D 10 -values increased (P 0.05) to develop radio-resistance faster on selective media, likely due to facilitated selection of radio-resistant cells within microbial population following each e-beam cycle. For all five e-beam cycles, S. Typhimurium had higher (P 10 -values on non-selective media, indicating that sub-lethal injury followed by cellular repair and recovery are important for radio-resistance and inactivation of this microorganism. This study demonstrated that e-beam efficiently inactivates S. Typhimurium in raw egg; however, similar to other inactivation techniques and factors affecting microbial growth, S. Typhimurium develops increased radio-resistance if repetitively processed with e-beam at sub-lethal doses.

  4. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein

    OpenAIRE

    Babault, Nicolas; Pa?zis, Christos; Deley, Ga?lle; Gu?rin-Deremaux, Laetitia; Saniez, Marie-H?l?ne; Lefranc-Millot, Catherine; Allaert, Fran?ois A

    2015-01-01

    Background The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS?) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. Methods One hundred and sixty one males, aged 18 to 35?years were enrolled in the study and underwent 12?weeks of resistance training o...

  5. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    International Nuclear Information System (INIS)

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-01-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  6. Microbial radio-resistance of Salmonella Typhimurium in egg increases due to repetitive irradiation with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tesfai, Adiam T.; Beamer, Sarah K.; Matak, Kristen E. [West Virginia University, Division of Animal and Nutritional Sciences, PO Box 6108, Morgantown, WV 26508 (United States); Jaczynski, Jacek, E-mail: Jacek.Jaczynski@mail.wvu.ed [West Virginia University, Division of Animal and Nutritional Sciences, PO Box 6108, Morgantown, WV 26508 (United States)

    2011-04-15

    Ionizing radiation improves food safety. However, foodborne pathogens develop increased resistance in response to sub-lethal stresses such as heat, pH, antibiotics, etc. Therefore, it is hypothesized that foodborne pathogens may develop increased radio-resistance to electron beam (e-beam) radiation. The objective was to determine if D{sub 10}-value for Salmonella Typhimurium in de-shelled raw egg (egg white and yolk mixed together) increases due to repetitive processing with e-beam at sub-lethal doses. Survivors were enumerated on non-selective (TSA) and selective (XLD) media. Survivors from the highest dose were isolated and used in subsequent e-beam cycle. This process was repeated four times for a total of five e-beam cycles. D{sub 10}-values for S. Typhimurium enumerated on TSA and XLD following each e-beam cycle were calculated as inverse reciprocal of the slope of survivor curves. D{sub 10}-values for the ATCC strain were 0.59{+-}0.031 and 0.46{+-}0.022 kGy on TSA and XLD, respectively. However, following the fifth e-beam cycle, the respective D{sub 10}-values increased (P<0.05) to 0.69{+-}0.026 and 0.61{+-}0.029 kGy, respectively. S. Typhimurium showed a trend (P>0.05) to develop radio-resistance faster on selective media, likely due to facilitated selection of radio-resistant cells within microbial population following each e-beam cycle. For all five e-beam cycles, S. Typhimurium had higher (P<0.05) D{sub 10}-values on non-selective media, indicating that sub-lethal injury followed by cellular repair and recovery are important for radio-resistance and inactivation of this microorganism. This study demonstrated that e-beam efficiently inactivates S. Typhimurium in raw egg; however, similar to other inactivation techniques and factors affecting microbial growth, S. Typhimurium develops increased radio-resistance if repetitively processed with e-beam at sub-lethal doses.

  7. In vitro stemness characterization of radio-resistant clones isolated from a medulloblastoma cell line ONS-76

    International Nuclear Information System (INIS)

    Sun, Lue; Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Moritake, Takashi; Zenkoh, Junko; Tsuboi, Koji; Zheng, Yun-Wen; Taniguchi, Hideki

    2013-01-01

    One-third of patients with medulloblastoma die due to recurrence after various treatments including radiotherapy. Although it has been postulated that cancer stem-like cells are radio-resistant and play an important role in tumor recurrence, the 'stemness' of medulloblastoma cells surviving irradiation has not yet been elucidated. Using a medulloblastoma cell line ONS-76, cells that survived gamma irradiation were investigated on their 'stemness' in vitro. From 10 500 cells, 20 radio-resistant clones were selected after gamma ray irradiation (5 Gy x two fractions) using the replica micro-well technique. These 20 resistant clones were screened for CD133 positivity by flow cytometry followed by side population assay, tumor sphere formation assay and clonogenic survival assay. Results revealed CD133 fractions were significantly elevated in three clones, which also exhibited significantly increased levels of tumor sphere formation ability and side population fraction. Clonogenic survival assay demonstrated that their radio-resistance was significantly higher than the parental ONS-76. This may support the hypothesis that a small number of cancer stem-like cells (CSCs) are the main culprits in local recurrence after radiotherapy, and disruption of the resistance mechanism of these CSCs is a critical future issue in improving the outcome of patients with medulloblastoma. (author)

  8. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  9. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  10. Bcl-w, a Radio-resistant Protein, Promotes the Gastric Cancer Cell Migration by inducing the phosphorylation of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Bae, In Hwa; Yoon, Sung Hwan; Um, Hong Duck

    2008-01-01

    Gastric cancer is one of the leading malignancies in many countries and lethal for the high incidence of recurrence even after drastic surgical resection. Because local invasion and subsequent metastasis contributes to the failure of anticancer treatments of gastric cancer, a better understanding of the mechanisms involved in tumor invasiveness within the stomach seems to be essential for the control of this disease. Bcl-w is a prosurvival member of the Bcl-2 protein family, and thus protects cells from γ-irradiation. Recent reports suggest that Bcl-w can be upregulated in gastric cancer cells in a manner associated with the infiltrative (diffuse) types of the tumor. An analysis of Bcl-w function consistently revealed that Bcl-w can also promote the migratory and invasive potentials of gastric cancer cells. While it was shown that Bcl-w increases the invasiveness of cancer cells by sequentially inducing PI3K, Akt, SP1, and MMP-2, cellular components involved in Bcl-w-induced cell migration remain to be determined. This was the reason why we undertook the present study, which shows that FAK is a critical mediator of the cell migration induced by Bcl-w

  11. CREB mediates ICAM-3: inducing radio-resistance, cell growth and migration/invasion of the human nonsmall cell lung cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; So, Kwang Sup; Bae, In Hwa; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The ICAM family proteins comprises cell surface molecules that are homologous to NCAM and are members of the single passed type 1 immunoglobulin superfamily (IgSF) that are anchored at the cellular membrane. The ICAM family consists of five subfamilies (ICAM-1 to ICAM-5) of heavily glycosylated cell surface receptors with common functional or structural homology. The extracellular domains of ICAM protein have roles in immune response and inflammation through various cell-cell interactions. The cytoplasmic tail residues of ICAM-3 participate in intracellular signaling such as calcium mobilization and tyrosine phosphorylation. Interestingly, the ICAM proteins appear to have a dual role in cancer. ICAM molecules may target and block tumor progression by stimulation of an immune response such as leukocyte activation. Conversely, other investigations have shown that ICAM molecules are involved in cancer malignancy because their increased expressions are associated with a poor diagnosis, lower survival rates and invasion in several cancers including melanoma, breast cancer and leukemia. We have also reported that an increase of ICAM-3 expression in several cancer cells and specimens of cervical cancer patient induce enhanced radio-resistance by the activation of focal adhesion kinase (FAK) and promote cancer cell proliferation by the activation of Akt and p44/42 MAPK. Therefore, these previous reports imply that ICAM-3 has various undefined roles in cancer. In this study, we investigated whether ICAM-3 increase cell migration and invasion through CREB activation and CREB has a role of increase of radioresistance and cell growth.

  12. A low dose pre-irradiation induces radio- and heat-resistance via HDM2 and NO radicals, and is associated with p53 functioning

    Science.gov (United States)

    Takahashi, A.; Ohnishi, T.

    2009-04-01

    The aim of this work was to clarify the effect of low dose pre-irradiation on radio- and heat-sensitivity. Wild-type (wt) p53 and mutated (m) p53 cells derived from the human lung cancer H1299 cell line were used. The parental H1299 cell line is p53-null. Cellular sensitivities were determined with a colony-forming assay. When wtp53 cells were exposed to a low dose X-irradiation, induction of radio- and heat-resistance was observed only in the absence of RITA (an inhibitor of p53-HDM2 interactions), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). In contrast, the induced radio- and heat-resistance was not observed under similar conditions in mp53 cells. Moreover, heat-resistance as well as radio-resistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of radio- and heat-resistance, and function through the activation of HDM2 and the depression of p53 accumulation.

  13. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  14. Recovery and radio-resistance in mice after external irradiation

    International Nuclear Information System (INIS)

    Le Guillou, S.

    1965-01-01

    The author presents a literature study concerning recovery from external irradiation and an analysis of experimental data (which appear to suggest the idea of a radio-resistance in animals), as well as the hypotheses put forward for explaining this phenomenon. The author then describes an experiment carried out on mice whose LD 50/30 days increased from 1005 to 1380 rads and for which it was shown that an increase occurs in the number of certain anti-bodies circulating after a low dose of γ irradiation. (author) [fr

  15. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Keshet, Alex; Mertenskötter, Ansgar; Winter, Sarah A; Brinkmann, Vanessa; Dölling, Ramona; Paul, Rüdiger J

    2017-12-01

    The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.

  16. Isolation and identification of a novel radio-resistant strain

    International Nuclear Information System (INIS)

    Zhang Zhidong; Mao Jun; Wang Wei; Tang Qiyong; Shi Yuhu

    2008-01-01

    A novel radio-resistant strain named RL2 was studied polyphasically, which was isolated from the soils in the Gurban-Tunggut Desert, Xinjiang. The strain is Gam-positive, sphere-shaped and pink pigmented; The DNA (G+C) contents of RL2 is 71.62mo1%; The 16S rDNA genes of RL2 and D. radiodurans type strain DSM20539 shows a high level of similarity (97.2%). According to phenotypic characteristics and phylogenetic analysis, it can be suggested that the strain RL2 has been identified as Deinococcus. sp and it may be a novel species. (authors)

  17. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    Science.gov (United States)

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  18. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  19. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  20. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  1. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  2. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  3. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  4. Promoters and proteins from Clostridium thermocellum and uses thereof

    Science.gov (United States)

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  5. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    Science.gov (United States)

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  6. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    Directory of Open Access Journals (Sweden)

    Mattias C U Gustafsson

    Full Text Available Many pathogens express a surface protein that binds the human complement regulator factor H (FH, as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  7. Radio-synthesized protein-based nanoparticles for biomedical purposes

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Ferraz, Caroline C.; Lopes, Patricia S.; Mathor, Monica beatriz; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Protein-crosslinking whether done by enzymatic or chemically induced pathways increases the overall stability of proteins. In the continuous search for alternative routes for protein stabilization we report a novel technique – radio-induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity. Papain was used as model enzyme and the samples were irradiated at 10 kGy in a gammacell irradiator in phosphate buffer (pH=7.0) and additives such as ethanol (0–40%) and sodium chloride (0–25%). The structural rearrangement caused by irradiation under defined conditions led to an increase in papain particle size as a function of the additive and its concentration. These changes occur due to intermolecular bindings, of covalent nature, possibly involving the aromatic amino acids. Ethanol held major effects over papain particle size and particle size distribution if compared to sodium chloride. The particles presented relative retained bioactivity and the physic-chemical characterization revealed similar fluorescence spectra indicating preserved conformation. Differences in fluorescence units were observed according to the additive and its concentration, as a result of protein content changes. Therefore, under optimized conditions, the developed technique may be applied for enzyme nanoparticles formation of controllable size and preserved bioactivity. Highlights: • Novel technique for the development of protein nanoparticles using γ-irradiation. • Size control of papain particles with preserved conformation and bioactivity. • Alternative method for controlled protein crosslinking. • Bioactive protein nanoparticles of biotechnological and clinical interest. • Protein-based drug carrier potential of biotechnological and clinical interest

  8. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  9. Recovery and radio-resistance in mice after external irradiation; Restauration et radio-resistance chez la souris apres irradiation externe

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, S [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    The author presents a literature study concerning recovery from external irradiation and an analysis of experimental data (which appear to suggest the idea of a radio-resistance in animals), as well as the hypotheses put forward for explaining this phenomenon. The author then describes an experiment carried out on mice whose LD 50/30 days increased from 1005 to 1380 rads and for which it was shown that an increase occurs in the number of certain anti-bodies circulating after a low dose of {gamma} irradiation. (author) [French] L'auteur presente une etude bibliographique de la restauration apres irradiation externe et une analyse des donnees experimentales qui paraissent suggerer la notion de radioresistance chez les animaux ainsi que les hypotheses cherchant a expliquer ce phenomene. Il relate ensuite une experience realisee sur des souris dont la DL 50/30 jours est passee de 1005 a 1380 rads et dans laquelle est montree l'augmentation de certains anticorps circulant apres une faible dose d'irradiation gamma. (auteur)

  10. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  11. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  12. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  14. Effectiveness and cost effectiveness of television, radio and print advertisements in promoting the New York smokers' quitline.

    Science.gov (United States)

    Farrelly, Matthew C; Hussin, Altijani; Bauer, Ursula E

    2007-12-01

    This study assessed the relative effectiveness and cost effectiveness of television, radio and print advertisements to generate calls to the New York smokers' quitline. Regression analysis was used to link total county level monthly quitline calls to television, radio and print advertising expenditures. Based on regression results, standardised measures of the relative effectiveness and cost effectiveness of expenditures were computed. There was a positive and statistically significant relation between call volume and expenditures for television (padvertisements and a marginally significant effect for expenditures on newspaper advertisements (peffect was for television advertising. However, because of differences in advertising costs, for every $1000 increase in television, radio and newspaper expenditures, call volume increased by 0.1%, 5.7% and 2.8%, respectively. Television, radio and print media all effectively increased calls to the New York smokers' quitline. Although increases in expenditures for television were the most effective, their relatively high costs suggest they are not currently the most cost effective means to promote a quitline. This implies that a more efficient mix of media would place greater emphasis on radio than television. However, because the current study does not adequately assess the extent to which radio expenditures would sustain their effectiveness with substantial expenditure increases, it is not feasible to determine a more optimal mix of expenditures.

  15. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Han, Yong-Seok; Yun, Chul Won; Lee, Sang Hun

    2018-04-01

    Drug resistance restricts the efficacy of chemotherapy in colorectal cancer. However, the detailed molecular mechanism of drug resistance in colorectal cancer cells remains unclear. The level of cellular prion protein (PrP C ) in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) cells was assessed. PrP C level in SNU-C5/Oxal-R cells was significantly increased compared to that in wild-type (SNU-C5) cells. Superoxide dismutase and catalase activities were higher in SNU-C5/Oxal-R cells than in SNU-C5 cells. Treatment of SNU-C5/Oxal-R cells with oxaliplatin and melatonin reduced PrP C expression, while suppressing antioxidant enzyme activity and increasing superoxide anion generation. In SNU-C5/Oxal-R cells, endoplasmic reticulum stress and apoptosis were significantly increased following co-treatment with oxaliplatin and melatonin compared to treatment with oxaliplatin alone. Co-treatment with oxaliplatin and melatonin increased endoplasmic reticulum stress in and apoptosis of SNU-C5/Oxal-R cells through inhibition of PrP C , suggesting that PrP C could be a key molecule in oxaliplatin resistance of colorectal cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP and lung resistance protein (LRP gene expression in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Elvis Terci Valera

    Full Text Available CONTEXT: Despite the advances in the cure rate for acute lymphoblastic leukemia, approximately 25% of affected children suffer relapses. Expression of genes for the multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP, and lung resistance protein (LRP may confer the phenotype of resistance to the treatment of neoplasias. OBJECTIVE: To analyze the expression of the MDR-1, MRP and LRP genes in children with a diagnosis of acute lymphoblastic leukemia via the semiquantitative reverse transcription polymerase chain reaction (RT-PCR, and to determine the correlation between expression and event-free survival and clinical and laboratory variables. DESIGN: A retrospective clinical study. SETTING: Laboratory of Pediatric Oncology, Department of Pediatrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil. METHODS: Bone marrow aspirates from 30 children with a diagnosis of acute lymphoblastic leukemia were assessed for the expression of messenger RNA for the MDR-1, MRP and LRP genes by semi-quantitative RT-PCR. RESULTS: In the three groups studied, only the increased expression of LRP was related to worsened event-free survival (p = 0.005. The presence of the common acute lymphoblastic leukemia antigen (CALLA was correlated with increased LRP expression (p = 0.009 and increased risk of relapse or death (p = 0.05. The relative risk of relapse or death was six times higher among children with high LRP expression upon diagnosis (p = 0.05, as confirmed by multivariate analysis of the three genes studied (p = 0.035. DISCUSSION: Cell resistance to drugs is a determinant of the response to chemotherapy and its detection via RT-PCR may be of clinical importance. CONCLUSIONS: Evaluation of the expression of genes for resistance to antineoplastic drugs in childhood acute lymphoblastic leukemia upon diagnosis, and particularly the expression of the LRP gene, may be of clinical relevance, and should be the

  17. Recovery and radio-resistance in mice after external irradiation; Restauration et radio-resistance chez la souris apres irradiation externe

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, S. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    The author presents a literature study concerning recovery from external irradiation and an analysis of experimental data (which appear to suggest the idea of a radio-resistance in animals), as well as the hypotheses put forward for explaining this phenomenon. The author then describes an experiment carried out on mice whose LD 50/30 days increased from 1005 to 1380 rads and for which it was shown that an increase occurs in the number of certain anti-bodies circulating after a low dose of {gamma} irradiation. (author) [French] L'auteur presente une etude bibliographique de la restauration apres irradiation externe et une analyse des donnees experimentales qui paraissent suggerer la notion de radioresistance chez les animaux ainsi que les hypotheses cherchant a expliquer ce phenomene. Il relate ensuite une experience realisee sur des souris dont la DL 50/30 jours est passee de 1005 a 1380 rads et dans laquelle est montree l'augmentation de certains anticorps circulant apres une faible dose d'irradiation gamma. (auteur)

  18. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  19. Role of thermal resistance on the performance of superconducting radio frequency cavities

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2017-03-01

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. These results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp) .

  20. Role of thermal resistance on the performance of superconducting radio frequency cavities

    Directory of Open Access Journals (Sweden)

    Pashupati Dhakal

    2017-03-01

    Full Text Available Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q_{0}(B_{p} curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. These results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q_{0}(B_{p}.

  1. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  2. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  3. Combination of heavy-ion radiotherapy and p53-gene therapy by radio- and hypoxia-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2006-01-01

    In this study we have started to investigate the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing E 9ns-2 /cytomegalovirus (CMV) chimeric promoter (Scott et al: 2003) in p53-gene therapy. Our study in the first year, however, suggested the uselessness of E 9ns-2 /CMV chimeric promoter. Then we applied E 9ns-2 /Epo5/CMV-radio and hypoxia-sensitizing chimeric promoter to amplify p53 gene exopression. P53 gene with E 9ns2 /Epo5/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 1 Gy of high linear energy transfer (LET)-carbon ion beam or low-LET X-ray under various hypoxic conditions. The result suggested the possible role of 1 Gy of high LET-carbon ion beam as a ''useful trigger'' to enhance a selective anti-tumor effect toward glioma under hypoxic condition through amplification of p53 gene expression. (author)

  4. Receptor-like proteins involved in plant disease resistance

    NARCIS (Netherlands)

    Kruijt, M.; Kock, de M.J.D.; Wit, de P.J.G.M.

    2005-01-01

    Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated

  5. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  6. Effects of resistance training and protein supplementation on bone turnover in young adult women

    Directory of Open Access Journals (Sweden)

    Sinning Wayne E

    2005-08-01

    Full Text Available Abstract Background The strength of aging bone depends on the balance between the resorption and formation phases of the remodeling process. The purpose of this study was to examine the interaction of two factors with the potential to exert opposing influences on bone turnover, resistance exercise training and high dietary protein intake. It was hypothesized that resistance training by young, healthy, untrained women with protein intakes near recommended levels (0.8 g·kg-1·d-1 would promote bone formation and/or inhibit bone resorption, and that subsequent supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects. Methods Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP and osteocalcin (OC, and bone resorption with urinary calcium and deoxypyridinoline (DPD. Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24 healthy, untrained, eumenorrheic women (18–29y at baseline, after eight weeks of resistance training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary contraction, and after 12 weeks of resistance training and 10 days of protein/placebo supplementation. Subjects were randomized (double-blind to either a high protein (HP or training control (TC group and, during the final 10 days, consumed either enough purified whey protein to bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate placebo. Results Strength, lean tissue mass, and DPD increased significantly in both groups over time, while percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni correction. No significant changes were observed for serum OC or urinary calcium, and no significant group (TC, HP × time (baseline, week 8, week 12 interactions emerged for any of the biochemical measures. Conclusion (1 Twelve weeks of high-intensity resistance training did not appear to

  7. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short...

  8. Radio Show on Books and Libraries as a Means of Promoting the Public Library: Marking the 200th Edition of the Show Tvoja,

    Directory of Open Access Journals (Sweden)

    Peter Pavletič

    2014-04-01

    Full Text Available ABSTRACTSince 2004, the Ciril Kosmač Library of Tolmin has been continuously preparing a radio show on books and libraries on the local radio station Alpski val. The show has been used as an advertising platform or as a means of primary library promotion. The radio show is regarded as one of the tools of what is termed market communication, and it is intended to provide broad public information on the services of a public library, to promote the library’s activities and holdings and to foster a reading culture. The aim of the show is to stimulate the potential user interest in visiting and using the services of a public library, to expand the circle of users and consequently raise the number of visits and library loans. The title of the show, its audio image, target audience, metapromotion and substantive concept are all key to planning the radio show on books and libraries. The radio show is an example of an effective tool that helps to establish the library’s ties with the local community. This example of best practices shows that it is worth pursuing this activity in Slovenia’s public libraries and highlighting it on their websites.

  9. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines

    NARCIS (Netherlands)

    Scheffer, GL; Maliepaard, M; Pijnenborg, ACLM; van Gastelen, MA; Schroeijers, AB; Allen, JD; Ross, DD; van der Valk, P; Dalton, WS; Schellens, JHM; Scheper, RJ; de Jong, MC

    2000-01-01

    Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (,MDR1) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported

  10. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  11. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  12. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Vind, Birgitte

    2010-01-01

    /cytosolic compartment in the patients with the type 2 diabetes. Expression of the SNARE-interacting protein Munc18c was higher in skeletal muscle from patients with type 2 diabetes. Studies in L6 cells showed that Munc18c promoted the expression of SNAP23. CONCLUSIONS: We have translated our previous in vitro results......OBJECTIVE: Our previous studies suggest that the SNARE protein synaptosomal-associated protein of 23 kDa (SNAP23) is involved in the link between increased lipid levels and insulin resistance in cardiomyocytes. The objective was to determine whether SNAP23 may also be involved in the known...... association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control...

  13. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  14. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  15. Resistance training reduces whole-body protein turnover and improves net protein retention in untrained young males.

    Science.gov (United States)

    Hartman, Joseph W; Moore, Daniel R; Phillips, Stuart M

    2006-10-01

    It is thought that resistance exercise results in an increased need for dietary protein; however, data also exists to support the opposite conclusion. The purpose of this study was to determine the impact of resistance exercise training on protein metabolism in novices with the hypothesis that resistance training would reduce protein turnover and improve whole-body protein retention. Healthy males (n = 8, 22 +/- 1 y, BMI = 25.3 +/- 1.8 kg.m(-2)) participated in a progressive whole-body split routine resistance-training program 5d/week for 12 weeks. Before (PRE) and after (POST) the training, oral [15N]-glycine ingestion was used to assess nitrogen flux (Q), protein synthesis (PS), protein breakdown (PB), and net protein balance (NPB = PS-PB). Macronutrient intake was controlled over a 5d period PRE and POST, while estimates of protein turnover and urinary nitrogen balance (N(bal) = N(in) - urine N(out)) were conducted. Bench press and leg press increased 40% and 50%, respectively (p training-induced increases in both NPB (PRE = 0.22 +/- 0.13 g.kg(-1).d(-1); POST = 0.54 +/- 0.08 g.kg(-1).d(-1)) and urinary nitrogen balance (PRE = 2.8 +/- 1.7 g N.d(-1); POST = 6.5 +/- 0.9 g N.d(-1)) were observed. A program of resistance training that induced significant muscle hypertrophy resulted in reductions of both whole-body PS and PB, but an improved NPB, which favoured the accretion of skeletal muscle protein. Urinary nitrogen balance increased after training. The reduction in PS and PB and a higher NPB in combination with an increased nitrogen balance after training suggest that dietary requirements for protein in novice resistance-trained athletes are not higher, but lower, after resistance training.

  16. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  17. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men

    Directory of Open Access Journals (Sweden)

    Mathias T. Vangsoe

    2018-03-01

    Full Text Available During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM improved significantly in both groups (Mean (95% confidence interval (CI, control group (Con: (2.5 kg (1.5, 3.5 p < 0.01, protein group (Pro: (2.7 kg (1.6, 3.8 p < 0.01 from pre- to post-. Leg and bench press one repetition maximum (1 RM improved by Con: (42.0 kg (32.0, 52.0 p < 0.01 and (13.8 kg (10.3, 17.2 p < 0.01, Pro: (36.6 kg (27.3, 45.8 p < 0.01 and (8.1 kg (4.5, 11.8 p < 0.01, respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

  18. Health issues of whey proteins: 3. gut health promotion

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protein, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  19. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  1. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    OpenAIRE

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2016-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation ...

  2. The Miners' Radio Stations in Bolivia: A Culture of Resistance.

    Science.gov (United States)

    O'Connor, Alan

    1990-01-01

    Examines local community radio stations in rural regions of Bolivia. Finds that active miners' radio has flourished as an entertainment and political medium and that, through their radio stations, miners' organizations have played an important role in shaping the political position of the Bolivian union movement. (KEH)

  3. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  4. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  5. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  6. Effects of aging and insulin resistant states on protein anabolic responses in older adults.

    Science.gov (United States)

    Morais, Jose A; Jacob, Kathryn Wright; Chevalier, Stéphanie

    2018-07-15

    levels during an intravenous fed state supplying a generous amount of protein, in active healthy elderly women. Obese elderly women with and without type 2 diabetes have insulin resistance of protein anabolism at the whole-body level, but this resistance is worsened with diabetes when glucose metabolism is further impaired. More investigation is needed to determine the exact role of insulin in promoting anabolism with aging. The findings from our group are relevant for the field of sarcopenia research as they provide a rationale to offer low cost nutritional interventions for overcoming this detrimental condition associated with aging and diabetes. Copyright © 2018. Published by Elsevier Inc.

  7. Health issues of whey proteins: 3. Gut health promotion

    NARCIS (Netherlands)

    Schaafsma, G.

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protei, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  8. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  10. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  11. Prevalence of Resistence to Activated Protein C (Apc-Resistance in Blood Donors in Kosovo

    Directory of Open Access Journals (Sweden)

    Ymer Mekaj

    2009-11-01

    Full Text Available AbstractOne of the most frequent hereditary causes of thrombophilia is, without a doubt, resistance to Activated Protein C (APC-resistance, which is a consequence of point mutation in gene coding for coagulation Factor V (Factor V Leiden in 90-95% of cases.The aim of this paper was to determine prevalence of APC-resistance in a group of healthy blood donors. The size of the group is quite representative of Kosovo Albanians.A total of 944 blood donors were examined (537 males and 407 females, for whom APC-resistance was determined by functional methods of coagulation using the kit ACTICLOT® Protein C Resistance. Method is based on the test of APTT determined twice: first in the presence and second in the absence of activated Protein C (APC. The ratio of these two values constitutes is called Activated Protein C - Sensitivity Ratio (APC-SR.From 944 examined donors, pathologic values of APC-SR (1,3-1,9 were found in 32 persons (3,4% of the total number. The distribution among sexes was 3,35% (18/537 in male and 3,43% (14/407 in female subjects. The mean values of APC-SR (1,64 in male and 1,71 in female subjects were not significantly different (P = 0,22.Based on these results, we conclude that the prevalence of APC resistance in Albanian population of Kosovo is within the lower limit of prevalence in general population in different countries of European countries, which, according to some authors ranges is from 3 to 7%.

  12. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories.

    Science.gov (United States)

    Bosse, John D; Dixon, Brian M

    2012-09-08

    An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.

  13. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  14. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  15. Identification of proteins similar to AvrE type III effector proteins from ...

    African Journals Online (AJOL)

    Type III effector proteins are injected into host cells through type III secretion systems. Some effectors are similar to host proteins to promote pathogenicity, while others lead to the activation of disease resistance. We used partial least squares alignment-free bioinformatics methods to identify proteins similar to AvrE proteins ...

  16. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  17. Resisting "Reason": A Comparative Anthropological Study of Social Differences and Resistance toward Health Promotion and Illness Prevention in Denmark.

    Science.gov (United States)

    Merrild, Camilla Hoffmann; Andersen, Rikke Sand; Risør, Mette Bech; Vedsted, Peter

    2017-06-01

    Social differences in health and illness are well documented in Denmark. However, little is known about how health practices are manifested in the everyday lives of different social classes. We propose acts of resistance and formation of health subjectivities as helpful concepts to develop our understanding of how dominant health discourses are appropriated by different social classes and transformed into different practices promoting health and preventing illness. Based on fieldwork in two different social classes, we discuss how these practices both overtly and subtly challenge the normative power of the health promotion discourse. These diverse and ambiguous forms of everyday resistance illustrate how and when situated concerns move social actors to subjectively appropriate health promotion messages. Overall, the different forms of resistance elucidate how the standardized awareness and education campaigns may perpetuate the very inequalities they try to diminish. © 2016 by the American Anthropological Association.

  18. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.

    Science.gov (United States)

    Mansilla, Sylvia; Rojas, Marta; Bataller, Marc; Priebe, Waldemar; Portugal, José

    2007-04-01

    Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.

  19. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  20. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs

    DEFF Research Database (Denmark)

    Boerlin, P.; Wissing, A.; Aarestrup, Frank Møller

    2001-01-01

    Ninety-six enterococcus isolates from fecal samples of pigs receiving tylosin as an antimicrobial growth promoter and 59 isolates obtained in the same farms 5 to 6 months after the ban of antimicrobial growth promoters in Switzerland were tested for susceptibility to nine antimicrobial agents....... A clear decrease in resistance to macrolides, lincosamides, and tetracycline was visible after the ban. Vancomycin-resistant Enterococcus faecium belonged to the same clonal lineage as vancomycin-resistant isolates previously isolated from Danish pigs....

  1. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  2. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    Science.gov (United States)

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  3. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  5. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  6. Genes that cooperate with tumor promoters in transformation

    International Nuclear Information System (INIS)

    Colburn, N.H.; Smith, B.M.

    1988-01-01

    Tumor-promoting phorbol esters, like growth factors, elicit pleiotropic responses involving biochemical pathways that lead to different biological responses. Genetic variant cell lines that are resistant to mitogenic, differentiation, or transformation responses to tumor promoters have been valuable tools for understanding the molecular bases of these responses. Studies using the mouse epidermal JB6 cell lines that are sensitive or resistant to tumor promoter-induced transformation have yielded new understanding of genetic and signal transduction events involved in neoplastic transformation. The isolation and characterization of cloned mouse promotion sensitivity genes pro-1 and pro-2 is reviewed. A new activity of pro-1 has been identified: when transfected into human cancer prone basal cell nevus syndrome fibroblasts but not normal fibroblasts mouse pro-1 confers lifespan extension of these cells. Recently, we have found tat a pro-1 homolog from a library of nasopharyngeal carcinoma, but not the homolog from a normal human library, is activated for transferring promotion sensitivity. The many genetic variants for responses to tumor promoters have also proved valuable for signal transduction studies. JPB P- cells fail to show the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced syntheses of two proteins of 15 and 16 kD seen in P+ cells. P-, P+, and TPA transformed cells show a progressive decrease in both basal and TPA-inducible levels of a protein kinase C substrate of 80 kD. P- cells are relatively resistant both to anchorage-independent transformation and to a protein band shift induced by the calcium analog lanthanum. It appears that one or more calcium-binding proteins and one or more pro genes may be critical determinants of tumor promoter-induced neoplastic transformation

  7. Coexpression of multidrug resistance involve proteins: a flow cytometric analysis.

    Science.gov (United States)

    Boutonnat, J; Bonnefoix, T; Mousseau, M; Seigneurin, D; Ronot, X

    1998-01-01

    Cross resistance to multiple natural cytotoxic products represents a major obstacle in myeloblastic acute leukaemia (AML). Multidrug resistance (MDR) often involves overexpression of plasma membrane drug transporter P-glycoprotein (PGP) or the resistance associated protein (MRP). Recently, a protein overexpressed in a non-PGP MDR lung cancer cell line and termed lung resistance related protein (LRP) was identified. These proteins are known to be associated with a bad prognosis in AML. We have developed a triple indirect labelling analysed by flow cytometry to detect the coexpression of these proteins. Since no cell line expressing all three antigens is known, we mixed K562 cells (resistant to Adriblastine, PGP+, MRP-, LRP-) with GLC4 cells (resistant to Adriblastine, PGP-, MRP+, LRP+) to create a model system to test the method. The antibodies used were UIC2 for PGP, MRPm6 for MRP and LRP56 for LRP. They were revealed by Fab'2 coupled with Fluoresceine-isothiocyanate, Phycoerythrin or Tricolor with isotype specificity. Cells were fixed and permeabilized after PGP labelling because MRPm6 and LRP56 recognize intracellular epitopes. PGP and LRP were easily detected. MRP is expressed at relatively low levels and was more difficult to detect because in the triple labelling the non specific staining was higher than in a single labelling. Despite the increased background in the triple labelling we were able to detect coexpression of PGP, MRP, LRP by flow cytometry. This method appears to be very useful to detect coexpression of markers in AML. Such coexpression could modify the therapeutic approach with revertants.

  8. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  9. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    Science.gov (United States)

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2014-11-09

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE) associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from the wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113-amino acid protein that shares 50% identity to the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23, but differs in promoter region by lacking the TALE binding-element (EBE) for AvrXa23. XA23 can trigger strong hypersensitive response in rice, tobacco and tomato. Our results provide the first evidence that plant genomes have an executor R gene family in which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in pathogen. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  10. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  11. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Altmeyer, Anais

    2010-01-01

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers [fr

  12. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  13. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  14. Macrolide Resistance Mediated by a Bifidobacterium breve Membrane Protein

    OpenAIRE

    Margolles, Abelardo; Moreno, José Antonio; van Sinderen, Douwe; de los Reyes-Gavilán, Clara G.

    2005-01-01

    A gene coding for a hypothetical membrane protein from Bifidobacterium breve was expressed in Lactococcus lactis. Immunoblotting demonstrated that this protein is located in the membrane. Phenotypical changes in sensitivity towards 21 antibiotics were determined. The membrane protein-expressing cells showed higher levels of resistance to several macrolides.

  15. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  16. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    Science.gov (United States)

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  17. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    Science.gov (United States)

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  19. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  20. Radio-peptides targeting g-protein coupled receptors in cancer: from bench to bed

    International Nuclear Information System (INIS)

    Maecke, H.R.

    2015-01-01

    Full text of publication follows. In the development of targeted imaging and therapy agents the most important challenge and prerequisite is to identify and validate the molecular targets of any disease. The targets should be specific, relevant, easily accessible and highly expressed. In addition they should have no or at least very low expression in normal tissue. Among the many drug targets is the large family of G-protein coupled receptors (GPCRs). It is the most important family of marketed drugs and the basic accomplishments in the field were recognised by the award of the recent Nobel price in chemistry. GPCRs also play a role in cancer. Several of these receptors are massively over-expressed in different human tumors such as neuroendocrine tumors (over-expression of the somatostatin receptor family), prostate and breast tumors (bombesin receptor family), brain tumors (NK1 receptor) etc.. This allows to develop (nuclear, MRI, optical) probes for imaging and potentially targeted therapy (theragnostics). Natural ligands targeting GPCRs are often peptides. They need to be modified for metabolic stability, modified for labeling with radio-metals (conjugation of bifunctional chelators) or radio-halogens (prosthetic groups). Preserved biological integrity after modification and labeling needs to be assured, long retention times in the tumor is important, conferred by internalisation. Radio-metal labeling in particular needs to be reasonably fast and the radio metal complexes have to show high stability with regard to radio-metal release. These prerequisites will be discussed for somatostatin receptor based radio-peptides in particular. For a successful clinical application preclinical imaging and biodistribution in adequate animal models are mandatory. New tracers for positron emission tomography (PET) and single photon emission computed tomography (SPECT) will be presented for neuroendocrine tumors and prostate cancer. In particular radiolabeled antagonists will

  1. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  2. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of protein supplements consumed with meals, versus between meals, on resistance training-induced body composition changes in adults: a systematic review.

    Science.gov (United States)

    Hudson, Joshua L; Bergia, Robert E; Campbell, Wayne W

    2018-06-01

    The impact of timing the consumption of protein supplements in relation to meals on resistance training-induced changes in body composition has not been evaluated systematically. The aim of this systematic review was to assess the effect of consuming protein supplements with meals, vs between meals, on resistance training-induced body composition changes in adults. Studies published up to 2017 were identified with the PubMed, Scopus, Cochrane, and CINAHL databases. Two researchers independently screened 2077 abstracts for eligible randomized controlled trials of parallel design that prescribed a protein supplement and measured changes in body composition for a period of 6 weeks or more. In total, 34 randomized controlled trials with 59 intervention groups were included and qualitatively assessed. Of the intervention groups designated as consuming protein supplements with meals (n = 16) vs between meals (n = 43), 56% vs 72% showed an increase in body mass, 94% vs 90% showed an increase in lean mass, 87% vs 59% showed a reduction in fat mass, and 100% vs 84% showed an increase in the ratio of lean mass to fat mass over time, respectively. Concurrently with resistance training, consuming protein supplements with meals, rather than between meals, may more effectively promote weight control and reduce fat mass without influencing improvements in lean mass.

  4. Expression of the breast cancer resistance protein in breast cancer

    NARCIS (Netherlands)

    Faneyte, Ian F.; Kristel, Petra M. P.; Maliepaard, Marc; Scheffer, George L.; Scheper, Rik J.; Schellens, Jan H. M.; van de Vijver, Marc J.

    2002-01-01

    PURPOSE: The breast cancer resistance protein (BCRP) is involved in in vitro multidrug resistance and was first identified in the breast cancer cell line MCF7/AdrVp. The aim of this study was to investigate the role of BCRP in resistance of breast cancer to anthracycline treatment. EXPERIMENTAL

  5. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  6. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Expression of Genes Involved in Bacteriocin Production and Self-Resistance in Lactobacillus brevis 174A Is Mediated by Two Regulatory Proteins.

    Science.gov (United States)

    Noda, Masafumi; Miyauchi, Rumi; Danshiitsoodol, Narandalai; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2018-04-01

    We have previously shown that the lactic acid bacterium Lactobacillus brevis 174A, isolated from Citrus iyo fruit, produces a bacteriocin designated brevicin 174A, which is comprised of two antibacterial polypeptides (designated brevicins 174A-β and 174A-γ). We have also found a gene cluster, composed of eight open reading frames (ORFs), that contains genes for the biosynthesis of brevicin 174A, self-resistance to its own bacteriocin, and two transcriptional regulatory proteins. Some lactic acid bacterial strains have a system to start the production of bacteriocin at an adequate stage of growth. Generally, the system consists of a membrane-bound histidine protein kinase (HPK) that senses a specific environmental stimulus and a corresponding response regulator (RR) that mediates the cellular response. We have previously shown that although the HPK- and RR-encoding genes are not found on the brevicin 174A biosynthetic gene cluster in the 174A strain, two putative regulatory genes, designated breD and breG , are in the gene cluster. In the present study, we demonstrate that the expression of brevicin 174A production and self-resistance is positively controlled by two transcriptional regulatory proteins, designated BreD and BreG. BreD is expressed together with BreE as the self-resistance determinant of L. brevis 174A. DNase I footprinting analysis and a promoter assay demonstrated that BreD binds to the breED promoter as a positive autoregulator. The present study also demonstrates that BreG, carrying a transmembrane domain, binds to the common promoter of breB and breC , encoding brevicins 174A-β and 174A-γ, respectively, for positive regulation. IMPORTANCE The problem of the appearance of bacteria that are resistant to practical antibiotics and the increasing demand for safe foods have increased interest in replacing conventional antibiotics with bacteriocin produced by the lactic acid bacteria. This antibacterial substance can inhibit the growth of pathogenic

  8. PENERAPAN INTEGRATED MARKETING COMMUNICATION (IMC DI MEDIA RADIO SEGARA FM BANGKALAN

    Directory of Open Access Journals (Sweden)

    Ipin Rahmadi

    2016-03-01

    Full Text Available This study intends to reveal the facts of the application of the concept of IMCwas done by radio Segara Bangkalan.Study used the concept theory of IMCwas applied of direct marketing, sales promotion, public relations, personalselling, advertising, and media interaction, marketing which relativelyapplied to the public audience of Segara radio.This of study used a qualitative descriptive method which intends to findout the phenomenon of concerns about the research subject. In holistic anddescriptive manner in the form of words and language, the data collectionmethods in this used study documentation, techniques, observation anddirectly interviews to the field.The application of IMC was good to increase the number of radio audience inSegara, from the six concepts of IMC, advertising, public relations, personalselling, sales promotion, direct marketing, and interactive ware marketing,applied directly by radio to the public, so that produce good results againstthe Segara radio.Keywords: IMC (Integrated Marketing Communication, Media Radio,Audience

  9. Let's talk sex on the air: ReachOut launches radio campaign.

    Science.gov (United States)

    This article reports on the launching of the National Radio and Public Relations Campaign to Promote Modern Methods of Contraception by the ReachOut AIDS Foundation Incorporated in the Philippines. ReachOut has tapped radio veteran Tiya Dely Magpayo as the official campaign spokesperson, thus, putting a mother's touch to a serious promotional drive to reach the far-flung areas of the country. It is noted that the project promotes the wider use of modern methods of contraception as its contribution to the Philippines Population Program goals of controlling the population rate. Since radio is the most patronized media in the country, ReachOut hopes that the radio soap opera format will attract the listeners to use contraceptives. The campaign encourages men and women of reproductive age to seek information and services regarding modern methods of contraception from health service providers in their respective areas. The Department of Health will provide the technical support to ensure that the campaign is keeping with the government's programs.

  10. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    Science.gov (United States)

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  11. The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices

    Science.gov (United States)

    Rezvanian, O.; Brown, C.; Zikry, M. A.; Kingon, A. I.; Krim, J.; Irving, D. L.; Brenner, D. W.

    2008-07-01

    It is shown that measured and calculated time-dependent electrical resistances of closed gold Ohmic switches in radio frequency microelectromechanical system (rf-MEMS) devices are well described by a power law that can be derived from a single asperity creep model. The analysis reveals that the exponent and prefactor in the power law arise, respectively, from the coefficient relating creep rate to applied stress and the initial surface roughness. The analysis also shows that resistance plateaus are not, in fact, limiting resistances but rather result from the small coefficient in the power law. The model predicts that it will take a longer time for the contact resistance to attain a power law relation with each successive closing of the switch due to asperity blunting. Analysis of the first few seconds of the measured resistance for three successive openings and closings of one of the MEMS devices supports this prediction. This work thus provides guidance toward the rational design of Ohmic contacts with enhanced reliabilities by better defining variables that can be controlled through material selection, interface processing, and switch operation.

  12. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan

    NARCIS (Netherlands)

    Jonker, JW; Smit, JW; Brinkhuis, RF; Maliepaard, M; Beijnen, JH; Schellens, JHM; Schinkel, AH

    2000-01-01

    Background and Methods: Breast cancer resistance protein (BCRP/MXR/ABCP) is a multidrug-resistance protein that is a member of the adenosine triphosphate-binding cassette family of drug transporters. BCRP can render tumor cells resistant to the anticancer drugs topotecan, mitoxantrone, doxorubicin,

  13. Analysis of MVP and VPARP promoters indicates a role for chromatin remodeling in the regulation of MVP.

    Science.gov (United States)

    Emre, Nil; Raval-Fernandes, Sujna; Kickhoefer, Valerie A; Rome, Leonard H

    2004-04-16

    Multi-drug-resistant cancer cells frequently express elevated levels of ribonucleoprotein complexes termed vaults. The increased expression of vault proteins and their mRNAs has led to the suggestion that vaults may play a direct role in preventing drug toxicity. To further understand vault component up-regulation, the three proteins that comprise the vault, the major vault protein (MVP), vault poly(ADP-ribose) polymerase (VPARP), and telomerase-associated protein-1 (TEP1), were examined with respect to gene amplification and drug-induced chromatin remodeling. Gene amplification was not responsible for increased vault component levels in multi-drug-resistant cancer cell lines. The TATA-less murine MVP and human VPARP promoters were identified and functionally characterized. There was no significant activation of either the MVP or VPARP promoters in drug-resistant cell lines in comparison to their parental, drug-sensitive counterparts. Treatment of various cell lines with sodium butyrate, an inhibitor of histone deacetylase (HDAC), led to an increase in vault component protein levels. Furthermore, treatment with trichostatin A (TSA), a more specific inhibitor of HDAC, caused an increase in MVP protein, mRNA, and promoter activity. These results suggest that up-regulation of MVP in multi-drug resistance (MDR) may involve chromatin remodeling.

  14. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α

    International Nuclear Information System (INIS)

    Kita, Atsushi; Yamasaki, Hironori; Kuwahara, Hironaga; Moriuchi, Akie; Fukushima, Keiko; Kobayashi, Masakazu; Fukushima, Tetsuya; Takahashi, Ryoko; Abiru, Norio; Uotani, Shigeo; Kawasaki, Eiji; Eguchi, Katsumi

    2005-01-01

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-β. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-α treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-α may, at least in part, be associated with inactivation of C/EBP-β

  15. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    Science.gov (United States)

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  16. Contemporary Issues in Protein Requirements and Consumption for Resistance Trained Athletes

    Directory of Open Access Journals (Sweden)

    Wilson Jacob

    2006-06-01

    Full Text Available Abstract In recent years an explosion of research papers concerning protein consumption has been published. The need to consolidate this information has become critical from both practical and future research standpoints. For this reason, the following paper presents an in depth analysis of contemporary issues in protein requirements and consumption for resistance trained athletes. Specifically, the paper covers: 1. protein requirements for resistance trained athletes; 2. the effect of the digestion rate of protein on muscular protein balance; 3. the optimal timing of protein intake relative to exercise; 4. the optimal pattern of protein ingestion, relative to how an individual should consume their protein throughout a 24 hour period, and what sources are utilized during this time frame; 5. protein composition and its interaction with measures of protein balance and strength performance; 6. the combination of protein and carbohydrates on plasma insulin levels and protein balance; 7. the efficacy of protein supplements and whole food protein sources. Our goal is to provide the reader with practical information in optimizing protein intake as well as for provision of sound advice to their clients. Finally, special care was taken to provide future research implications.

  17. Identification of protein expression alterations in gefitinib-resistant human lung adenocarcinoma: PCNT and mPR play key roles in the development of gefitinib-associated resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Chen [Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan (China); Institute of Biomedical Science, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taiwan (China); Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan (China); Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan (China); Chen, Jing-Ting [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Lin, Meng-Wei [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); Chan, Chia-Hao [Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan (China); Wen, Yueh-Feng [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan (China); Wu, Shin-Bei [Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); Chung, Ting-Wen [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Lyu, Kevin W. [Lutheran Medical Center, Brooklyn, NY (United States); Global Scholars Program, St. George' s University/Northumbria University, Newcastle upon Tyne (United Kingdom); Chou, Hsiu-Chuan, E-mail: chouhc@mail.nhcue.edu.tw [Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); and others

    2015-11-01

    Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12–18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated with the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC. - Highlights: • 164 proteins associated with gefitinib resistance were identified through proteomic analysis. • In this study, a lung adenocarcinoma and its gefitinib resistant partner were established. • mPR and PCNT proteins have evidenced to play important roles in gefitinib resistance.

  18. Identification of protein expression alterations in gefitinib-resistant human lung adenocarcinoma: PCNT and mPR play key roles in the development of gefitinib-associated resistance

    International Nuclear Information System (INIS)

    Lin, Chi-Chen; Chen, Jing-Ting; Lin, Meng-Wei; Chan, Chia-Hao; Wen, Yueh-Feng; Wu, Shin-Bei; Chung, Ting-Wen; Lyu, Kevin W.; Chou, Hsiu-Chuan

    2015-01-01

    Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12–18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated with the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC. - Highlights: • 164 proteins associated with gefitinib resistance were identified through proteomic analysis. • In this study, a lung adenocarcinoma and its gefitinib resistant partner were established. • mPR and PCNT proteins have evidenced to play important roles in gefitinib resistance.

  19. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-01-01

    Full Text Available Purpose. Signal transducer and activator of transcription factor 3 (STAT3 is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3 on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.

  20. Increased Prevalence of Activated Protein C Resistance During ...

    African Journals Online (AJOL)

    Background: Acquired resistance to protein C in pregnancy has been established as one of the factors associated with ..... diabetes, sickle cell disease, smoking, anti-phospholipid syndrome inherited thrombophilia, and previous history of.

  1. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    OpenAIRE

    Rodr?guez-Rojas, Alexandro; Rodr?guez-Beltr?n, Jer?nimo; Valverde, Jos? Ram?n; Bl?zquez, Jes?s

    2015-01-01

    The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promot...

  2. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  3. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  4. Study of cancer-specific chimeric promoters induced by irradiation

    International Nuclear Information System (INIS)

    Xiong Jie; Zhou Yunfeng; Sun Wenjie; Wang Weifeng; Liao Zhengkai; Zhou Fuxiang; Xie Conghua

    2010-01-01

    Objective: To combine the radio-inducible CArG element with cancer-specific human telomerase reverse transcriptase (hTERT) gene promoter, and to construct the novel chimeric promoters. Methods: The synthetic hTERT promoters containing different number of radio-inducible CArG elements were constructed, and the activities of the promoters in the cancer cells (HeLa, A549, and MHCC97 cells) and nomal cells (hEL cells) were detected by using luciferase-reporter assays after the treatment of irradiation (a single or fractionated irradiation dose). Results: Synthetic promoter containing 6 repeated CArG units was better in radio-inducibility than any other promoters containing different number of CArG units, and nearly maximum levels obtained at 4-6 Gy. The very low activities of the chimeric promoters could be detected in normal hEL cells. A similar level of reporter gene expression was observed after 3 fractionated doses of 2 Gy compared with a single dose of 6 Gy in cancer cells. Conclusions: The cancer-specific chimeric promoter containing 6 CArG elements showes the best radio-response, and the chimeric promoter system has the potential in cancer gene therapy. (authors)

  5. Interaction of an IHF-like protein with the Rhizobium etli nifA promoter.

    Science.gov (United States)

    Benhassine, Traki; Fauvart, Maarten; Vanderleyden, Jos; Michiels, Jan

    2007-06-01

    The nifA gene fulfills an essential role in the regulation of nitrogen fixation genes in Rhizobium etli. Transcription analysis of the nifA gene, assessed using promoter deletions, indicated an oxygen-independent expression, threefold higher during symbiosis as compared with free-living conditions. Electrophoretic mobility shift assays using those nifA promoter deletion fragments, which were actively transcribed, demonstrated the specific interaction with R. etli cellular protein(s) resulting in the formation of two DNA-protein complexes. An interacting protein was purified by liquid chromatography on Heparin Sepharose and Mono S columns. The purified 12 kDa R. etli protein cross-reacted with antibodies directed against Escherichia coli integration host factor (IHF). Furthermore, purified E. coli IHF was able to specifically bind to the R. etli nifA promoter region. These results point to an as yet undisclosed function of IHF in the regulation of R. etli nifA expression.

  6. High dietary protein intake, reducing or eliciting insulin resistance?

    NARCIS (Netherlands)

    Rietman, A.; Schwarz, J.; Tome, D.; Kok, F.J.; Mensink, M.R.

    2014-01-01

    Dietary proteins have an insulinotropic effect and thus promote insulin secretion, which indeed leads to enhanced glucose clearance from the blood. In the long term, however, a high dietary protein intake is associated with an increased risk of type 2 diabetes. Moreover, branched-chain amino acids

  7. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  8. Membrane protein resistance of oligo(ethylene oxide) self-assembled monolayers.

    Science.gov (United States)

    Vaish, Amit; Vanderah, David J; Vierling, Ryan; Crawshaw, Fay; Gallagher, D Travis; Walker, Marlon L

    2014-10-01

    As part of an effort to develop biointerfaces for structure-function studies of integral membrane proteins (IMPs) a series of oligo(ethylene oxide) self-assembled monolayers (OEO-SAMs) were evaluated for their resistance to protein adsorption (RPA) of IMPs on Au and Pt. Spectroscopic ellipsometry (SE) was used to determine SAM thicknesses and compare the RPA of HS(CH2)3O(CH2CH2O)6CH3 (1), HS(CH2)3O(CH2CH2O)6H (2), [HS(CH2)3]2CHO(CH2CH2O)6CH3 (3) and [HS(CH2)3]2CHO(CH2CH2O)6H (4), assembled from water. For both substrates, SAM thicknesses for 1 to 4 were found to be comparable indicating SAMs with similar surface coverages and OEO chain order and packing densities. Fibrinogen (Fb), a soluble plasma protein, and rhodopsin (Rd), an integral membrane G-protein coupled receptor, adsorbed to the SAMs of 1, as expected from previous reports, but not to the hydroxy-terminated SAMs of 2 and 4. The methoxy-terminated SAMs of 3 were resistant to Fb but, surprisingly, not to Rd. The stark difference between the adsorption of Rd to the SAMs of 3 and 4 clearly indicate that a hydroxy-terminus of the OEO chain is essential for high RPA of IMPs. The similar thicknesses and high RPA of the SAMs of 2 and 4 show the conditions of protein resistance (screening the underlying substrate, packing densities, SAM order, and conformational mobility of the OEO chains) defined from previous studies on Au are applicable to Pt. In addition, the SAMs of 4, exhibiting the highest resistance to Fb and Rd, were placed in contact with undiluted fetal bovine serum for 2h. Low protein adsorption (≈12.4ng/cm(2)), obtained under these more challenging conditions, denote a high potential of the SAMs of 4 for various applications requiring the suppression of non-specific protein adsorption. Published by Elsevier B.V.

  9. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...... is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2......-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion...

  10. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  11. γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells.

    Science.gov (United States)

    Lin, Li-Ching; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2018-04-01

    This study uncovered that the genetically endowed intracellular glutathione contents (iGSH) regulated by the catalytic subunit of γ‑glutamylcysteine synthetase heavy chain (γ‑GCSh) as a prime target for overcoming both the inherited and stimuli-activated chemo- and radio-resistance of hepatocellular carcinoma (HCC) cells. Reactive oxygen species (ROS) production and mitochondrial membrane potential (Δψm) were determined by the probe-based flow cytometry. The TUNEL assay was used as an index of radio-sensitivity and the MTT assay was used as an index of chemo-sensitivity against various anti-cancer agents. iGSH and γ‑GCSh activity were measured by HPLC methods. γ‑GCSh-overexpressing GCS30 cell line was established by tetracycline-controlled Tet-OFF gene expression system in SK-Hep-1 cells. The relative radio-sensitivities of a panel of five HCC cells were found to be correlated negatively with both the contents of iGSH and their corresponding γ‑GCSh activities with an order of abundance being Hep G2 > Hep 3B > J5 > Mahlavu > SK-Hep-1, respectively. Similarly, the cytotoxicity response patterns of these HCC cells against arsenic trioxide (ATO), a ROS-producing anti-cancer drug, were exactly identical to the order of ranking instigated by the radiotherapy (RT) treatment. Next, γ‑GCSh-overexpressing GCS30 cells were found to possess excellent ability to profoundly mitigate both the drop of Δψm and apoptotic TUNEL-positive cell population engendered by ATO, cisplatin, doxorubicin, and RT treatments. Our data unequivocally demonstrate that γ‑GCSh may represent a prime target for overcoming anti-cancer drugs and RT resistance for HCC cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Retinol-Binding Protein 4 and Insulin Resistance in Polycystic Ovary Syndrome

    OpenAIRE

    Hutchison, Samantha K.; Harrison, Cheryce; Stepto, Nigel; Meyer, Caroline; Teede, Helena J.

    2008-01-01

    OBJECTIVE?Polycystic ovary syndrome (PCOS) is an insulin-resistant state with insulin resistance being an established therapeutic target; however, measurement of insulin resistance remains challenging. We aimed to 1) determine serum retinol-binding protein 4 (RBP4) levels (purported to reflect insulin resistance) in women with PCOS and control subjects, 2) examine the relationship of RBP4 to conventional markers of insulin resistance, and 3) examine RBP4 changes with interventions modulating ...

  13. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors

    Directory of Open Access Journals (Sweden)

    Kawe Martin

    2009-01-01

    Full Text Available Abstract Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.

  14. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  15. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs).

    Science.gov (United States)

    Rathore, Rama; McCallum, Jennifer E; Varghese, Elizabeth; Florea, Ana-Maria; Büsselberg, Dietrich

    2017-07-01

    Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.

  16. Stress proteins and phytohormones: their role in formation of plant resistance

    International Nuclear Information System (INIS)

    Kosakivska, I.V.

    2005-01-01

    Full text: Using the disc-electrophoresis methods, we have studied protein biosynthesis of different plants, including 11 species of Orchidaceae, some other tropical and subtropical plants, 9 different fruit plants, and 4 cultivars of Triticum aestivum L. under stresses factors such as high and low temperature, clinostating, radioactive irradiation and osmotic shock. Specific and unspecific reactions of plants protein system on stresses were found. De novo synthesis of 35 and 45 kD polypeptides were observed in total and mitochondrial proteins fractions after heat-shock and radioactive irradiation. This suggests that mitochondries participate in formation of plant resistance. Intensive synthesis of ABA revealed as the universal reaction of all studied plants on action of different kinds of stresses. Specific changes in balance of phytohormones were found under different stresses. We observed the correlation between endogenous ABA, IAA and cytokinin level and plant resistance. We also found the interaction between the process of biosynthesis of proteins and phytohormone balance, as well as their direct participation in formation of plant resistance. (author)

  17. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L

    Directory of Open Access Journals (Sweden)

    Li Ling

    2010-11-01

    Full Text Available Abstract Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. Results The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1 and a susceptible cultivar (Yueyou 7 under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant

  18. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. Copyright © 2016 Elsevier B.V. All

  19. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  20. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  1. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    Science.gov (United States)

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  2. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling

    International Nuclear Information System (INIS)

    Sá, Felipe Gonçalves dos Santos de; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller; Campos, Dijon Henrique Salomé; Castardeli, Edson; Cunha, Márcia Regina Holanda da; Cicogna, Antonio Carlos; Leopoldo, André Soares

    2015-01-01

    Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling

  3. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study.

    Science.gov (United States)

    West, Daniel W D; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R

    2017-07-11

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [ 15 N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO ( P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO ( P = 0.036) but not in CHO ( P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.

  4. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  5. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  6. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Haifeng; Meng, Hengkai; Zhu, Yan; Bao, Guanhui; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2014-03-28

    Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter P(cpc560), which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using P(cpc560), functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in P(cpc560) is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, P(cpc560) opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.

  7. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.; Hari, P.S.; Remacle, Jose; Sridhar, T.S., E-mail: tssridhar@sjri.res.in

    2016-08-01

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helps inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.

  8. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    Science.gov (United States)

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  9. Leucine supplementation improves acquired growth hormone resistance in rats with protein-energy malnutrition.

    Science.gov (United States)

    Gao, Xuejin; Tian, Feng; Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    -CON group. Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.

  10. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.

    OpenAIRE

    Neyfakh, A A; Borsch, C M; Kaatz, G W

    1993-01-01

    The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

  11. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  12. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  13. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease.

    Science.gov (United States)

    Siew, Edward D; Ikizler, Talat Alp

    2010-01-01

    Insulin resistance (IR), the reciprocal of insulin sensitivity is a known complication of advanced chronic kidney disease (CKD) and is associated with a number of metabolic derangements. The complex metabolic abnormalities observed in CKD such as vitamin D deficiency, obesity, metabolic acidosis, inflammation, and accumulation of "uremic toxins" are believed to contribute to the etiology of IR and acquired defects in the insulin-receptor signaling pathway in this patient population. Only a few investigations have explored the validity of commonly used assessment methods in comparison to gold standard hyperinsulinemic hyperglycemic clamp technique in CKD patients. An important consequence of insulin resistance is its role in the pathogenesis of protein energy wasting, a state of metabolic derangement characterized by loss of somatic and visceral protein stores not entirely accounted for by inadequate nutrient intake. In the general population, insulin resistance has been associated with accelerated protein catabolism. Among end-stage renal disease (ESRD) patients, enhanced muscle protein breakdown has been observed in patients with Type II diabetes compared to ESRD patients without diabetes. In the absence of diabetes mellitus (DM) or severe obesity, insulin resistance is detectable in dialysis patients and strongly associated with increased muscle protein breakdown, primarily mediated by the ubiquitin-proteasome pathway. Recent epidemiological data indicate a survival advantage and better nutritional status in insulin-free Type II DM patients treated with insulin sensitizer thiazolidinediones. Given the high prevalence of protein energy wasting in ESRD and its unequivocal association with adverse clinical outcomes, insulin resistance may represent an important modifiable target for intervention in the ESRD population.

  14. Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight.

    Science.gov (United States)

    Hudson, Joshua L; Kim, Jung Eun; Paddon-Jones, Douglas; Campbell, Wayne W

    2017-11-01

    Background: Emerging research suggests that redistributing total protein intake from 1 high-protein meal/d to multiple moderately high-protein meals improves 24-h muscle protein synthesis. Over time, this may promote positive changes in body composition. Objective: We sought to assess the effects of within-day protein intake distribution on changes in body composition during dietary energy restriction and resistance training. Design: In a randomized parallel-design study, 41 men and women [mean ± SEM age: 35 ± 2 y; body mass index (in kg/m 2 ): 31.5 ± 0.5] consumed an energy-restricted diet (750 kcal/d below the requirement) for 16 wk while performing resistance training 3 d/wk. Subjects consumed 90 g protein/d (1.0 ± 0.03 g · kg -1 · d -1 , 125% of the Recommended Dietary Allowance, at intervention week 1) in either a skewed (10 g at breakfast, 20 g at lunch, and 60 g at dinner; n = 20) or even (30 g each at breakfast, lunch, and dinner; n = 21) distribution pattern. Body composition was measured pre- and postintervention. Results: Over time, whole-body mass (least-squares mean ± SE: -7.9 ± 0.6 kg), whole-body lean mass (-1.0 ± 0.2 kg), whole-body fat mass (-6.9 ± 0.5 kg), appendicular lean mass (-0.7 ± 0.1 kg), and appendicular fat mass (-2.6 ± 0.2 kg) each decreased. The midthigh muscle area (0 ± 1 cm 2 ) did not change over time, whereas the midcalf muscle area decreased (-3 ± 1 cm 2 ). Within-day protein distribution did not differentially affect these body-composition responses. Conclusion: The effectiveness of dietary energy restriction combined with resistance training to improve body composition is not influenced by the within-day distribution of protein when adequate total protein is consumed. This trial was registered at clinicaltrials.gov as NCT02066948. © 2017 American Society for Nutrition.

  15. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  16. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells.

    Science.gov (United States)

    Armstrong, Cameron M; Liu, Chengfei; Lou, Wei; Lombard, Alan P; Evans, Christopher P; Gao, Allen C

    2017-06-01

    Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response

  17. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  19. Characterization of a Staphylococcus aureus surface virulence factor that promotes resistance to oxidative killing and infectious endocarditis.

    Science.gov (United States)

    Malachowa, Natalia; Kohler, Petra L; Schlievert, Patrick M; Chuang, Olivia N; Dunny, Gary M; Kobayashi, Scott D; Miedzobrodzki, Jacek; Bohach, Gregory A; Seo, Keun Seok

    2011-01-01

    Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.

  20. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    Directory of Open Access Journals (Sweden)

    Thiruvengadam Raguchander

    2009-12-01

    Full Text Available Abstract Background Plant Growth Promoting Rhizobacteria (PGPR, Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  1. Radio frequency-assisted fast superconducting switch

    Science.gov (United States)

    Solovyov, Vyacheslav; Li, Qiang

    2017-12-05

    A radio frequency-assisted fast superconducting switch is described. A superconductor is closely coupled to a radio frequency (RF) coil. To turn the switch "off," i.e., to induce a transition to the normal, resistive state in the superconductor, a voltage burst is applied to the RF coil. This voltage burst is sufficient to induce a current in the coupled superconductor. The combination of the induced current with any other direct current flowing through the superconductor is sufficient to exceed the critical current of the superconductor at the operating temperature, inducing a transition to the normal, resistive state. A by-pass MOSFET may be configured in parallel with the superconductor to act as a current shunt, allowing the voltage across the superconductor to drop below a certain value, at which time the superconductor undergoes a transition to the superconducting state and the switch is reset.

  2. Knotted vs. unknotted proteins: evidence of knot-promoting loops.

    Directory of Open Access Journals (Sweden)

    Raffaello Potestio

    Full Text Available Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.

  3. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    Science.gov (United States)

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    International Nuclear Information System (INIS)

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank

    2006-01-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology

  5. Protein resistance of dextran and dextran-PEG copolymer films

    Science.gov (United States)

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  6. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  7. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis.

    Science.gov (United States)

    Zhang, Qiong; Berkey, Robert; Pan, Zhiyong; Wang, Wenming; Zhang, Yi; Ma, Xianfeng; King, Harlan; Xiao, Shunyuan

    2015-01-01

    Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.

  8. Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice.

    Science.gov (United States)

    Takakura, Yoshimitsu; Oka, Naomi; Suzuki, Junko; Tsukamoto, Hiroshi; Ishida, Yuji

    2012-05-01

    The blast fungus Magnaporthe oryzae, one of the most devastating rice pathogens in the world, shows biotin-dependent growth. We have developed a strategy for creating disease resistance to M. oryzae whereby intercellular production of tamavidin 1, a biotin-binding protein from Pleurotus cornucopiae occurs in transgenic rice plants. The gene that encodes tamavidin 1, fused to the sequence for a secretion signal peptide derived from rice chitinase gene, was connected to the Cauliflower mosaic virus 35S promoter, and the resultant construct was introduced into rice. The tamavidin 1 was accumulated at levels of 0.1-0.2% of total soluble leaf proteins in the transgenic rice and it was localized in the intercellular space of rice leaves. The tamavidin 1 purified from the transgenic rice was active, it bound to biotin and inhibited in vitro growth of M. oryzae by causing biotin deficiency. The transgenic rice plants showed a significant resistance to M. oryzae. This study shows the possibility of a new strategy to engineer disease resistance in higher plants by taking advantage of a pathogen's auxotrophy.

  9. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.

    Science.gov (United States)

    Moll, Lorna; Ben-Gedalya, Tziona; Reuveni, Hadas; Cohen, Ehud

    2016-04-01

    The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. © FASEB.

  10. Immobilization of small molecules and proteins by radio-derivatized polystyrene

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1990-01-01

    When molded polystyrene (PS) products (e.g., microtiter plates) or latex particles are irradiated with high-energy (1-10 Mrads) gamma rays in the presence of nonpolymerizable small molecules such as aromatic amines, some of these molecules incorporate into PS, which leads to the formation of radio-derivatized PS (RDPS). Two classes of RDPS can be identified regarding their ability for immobilization of biologically important molecules: (1) reactive RDPS that are able to form covalent bonds with molecules such as proteins without the help of cross-linkers, and (2) functionalized RDPS that can be used for the immobilization of molecules with activators (e.g., carbodiimides) or cross-linkers. The method can be used for the production of low-noise supports for binding assays. Most of the RDPS can be produced without impairment of the optical quality of PS, making derivatized microtiter plates suitable for colorimetric assays. The principle can be applied for the preparation of affinity sorbents, e.g., for high-performance affinity chromatography and for the immobilization of enzymes using latex PS particles

  11. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    Science.gov (United States)

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  12. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  13. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca{sup 2+} Handling

    Energy Technology Data Exchange (ETDEWEB)

    Sá, Felipe Gonçalves dos Santos de; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Campos, Dijon Henrique Salomé [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Castardeli, Edson; Cunha, Márcia Regina Holanda da [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Cicogna, Antonio Carlos [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Leopoldo, André Soares, E-mail: andresoaresleopoldo@gmail.com [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2015-12-15

    Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.

  14. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  15. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  16. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    Science.gov (United States)

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Chen, Mao; Gowda, Anilkumar; Kerns, David L; Huang, Fangneng

    2018-04-01

    The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long-term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet-incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F 1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun; Tan, Wenhua

    2015-01-01

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  20. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  1. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  2. Effect of administration of high-protein diet in rats submitted to resistance training.

    Science.gov (United States)

    da Rosa Lima, Thiago; Ávila, Eudes Thiago Pereira; Fraga, Géssica Alves; de Souza Sena, Mariana; de Souza Dias, Arlyson Batista; de Almeida, Paula Caroline; Dos Santos Trombeta, Joice Cristina; Junior, Roberto Carlos Vieira; Damazo, Amílcar Sabino; Navalta, James Wilfred; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-04-01

    Although there is limited evidence regarding the pathophysiological effects of a high-protein diet (HD), it is believed that this type of diet could overload the body and cause damage to the organs directly involved with protein metabolism and excretion. The aim of this study was to verify the effects of HD on biochemical and morphological parameters of rats that completed a resistance training protocol (RT; aquatic jump) for 8 weeks. Thirty-two adult male Wistar rats were divided into four groups (n = 8 for each group): sedentary normal protein diet (SN-14%), sedentary high-protein diet (SH-35%), trained normal protein diet (TN-14%), and trained high-protein diet (TH-35%). Biochemical, tissue, and morphological measurements were made. Kidney (1.91 ± 0.34) and liver weights (12.88 ± 1.42) were higher in the SH. Soleus muscle weight was higher in the SH (0.22 ± 0.03) when compared to all groups. Blood glucose (123.2 ± 1.8), triglycerides (128.5 ± 44.0), and HDL cholesterol levels (65.7 ± 20.9) were also higher in the SH compared with the other experimental groups. Exercise reduced urea levels in the trained groups TN and TH (31.0 ± 4.1 and 36.8 ± 6.6), respectively. Creatinine levels were lower in TH and SH groups (0.68 ± 0.12; 0.54 ± 0.19), respectively. HD negatively altered renal morphology in SH, but when associated with RT, the apparent damage was partially reversed. In addition, the aquatic jump protocol reversed the damage to the gastrocnemius muscle caused by the HD. A high-protein diet promoted negative metabolic and morphological changes, while RT was effective in reversing these deleterious effects.

  3. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  4. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  5. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    Science.gov (United States)

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Directory of Open Access Journals (Sweden)

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  7. Riding the rural radio wave: The impact of a community-led drug and alcohol radio advertising campaign in a remote Australian Aboriginal community.

    Science.gov (United States)

    Munro, Alice; Allan, Julaine; Shakeshaft, Anthony; Snijder, Mieke

    2017-10-01

    Aboriginal people experience a higher burden of disease as a consequence of drug and alcohol (D&A) abuse. Although media campaigns can be a popular tool for disseminating health promotion messages, evidence of the extent to which they reduce the impact of substance abuse is limited, especially for rural Aboriginal communities. This paper is the first to examine the impact a locally designed D&A radio advertising campaign for Aboriginal people in a remote community in Western NSW. A post-intervention evaluation. The radio campaign was implemented in Bourke, (population 2465, 30% Aboriginal). Fifty-three community surveys were completed. The self-reported level of awareness of the campaign and the number of self-referrals to local D&A workers in the intervention period. Most respondents (79%) reported they listen to radio on a daily basis, with 75% reporting that they had heard one or more of the advertisements. The advertisement that was remembered best contained the voice of a respected, local person. There was one self-referral to local health services during the intervention timeframe. The community-led radio advertising campaign increased community awareness of substance abuse harms, but had limited impact on formal help-seeking. This paper highlights the value of radio as a commonly used, trusted and culturally relevant health promotion medium for rural communities, especially when engaging local respected Aboriginal presenters. © 2017 National Rural Health Alliance Inc.

  8. Major vault protein/lung resistance-related protein (MVP/LRP) expression in nervous system tumors.

    Science.gov (United States)

    Sasaki, Tsutomu; Hankins, Gerald R; Helm, Gregory A

    2002-01-01

    Lung resistance-related protein (LRP) was identified as the major vault protein (MVP), the main component of multimeric vault particles. It functions as a transport-associated protein that can be associated with multidrug resistance. In previous studies, expression of MVP/LRP has been documented in tumors of various types. In general, good correlations have been reported for expression of MVP/LRP and decreased sensitivity to chemotherapy and poor prognosis. MVP/LRP expression has been documented in glioblastomas, but its expression in nervous system tumors in general has not been well characterized. Immunohistochemistry using anti-human MVP/LRP antibody (LRP-56) was performed on formalin-fixed, paraffin-embedded archival tissue from 69 primary central nervous system tumors. Expression of MVP/LRP was observed in 81.2% (56/69) of primary nervous system tumors, including astrocytomas (11/13), oligodendrogliomas (1/2), oligoastrocytomas (5/5), ependymoma (1/1), meningiomas (35/45), schwannomas (2/2), and neurofibroma (1/1). Various degrees and distributions of immunoreactivity to MVP/ LRP were observed. Neither the presence nor the degree of immunoreactivity to MVP/LRP showed any correlation with either tumor grade or the presence of brain invasion.

  9. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  10. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  11. Structure, function and subcellular localization of the potato Resistance protein Rx1

    NARCIS (Netherlands)

    Slootweg, E.J.

    2009-01-01

    Resistance proteins are part of the plant’s immune system and mediate a defence response upon recognizing their cognate pathogens. They are thought to be present in the cell as part of a larger protein complex. The modular architecture of R proteins suggests that they form a scaffold for various

  12. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice.

    Science.gov (United States)

    Wang, Jun; Zeng, Xuan; Tian, Dongsheng; Yang, Xiaobei; Wang, Lanlan; Yin, Zhongchao

    2018-03-30

    Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99 A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. © 2018 TEMASEK LIFE SCIENCES LABORATORY. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  13. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  14. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study

    Directory of Open Access Journals (Sweden)

    Daniel W. D. West

    2017-07-01

    Full Text Available No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey or an energy-matched placebo (CHO immediately post-exercise (0 h, and again the following morning (~10 h of recovery. A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest. Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES = 0.61, PRO vs. CHO during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036 but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO, which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP, maximal strength (MVC, peak and mean power, and countermovement jump performance (CMJ at 0 h (all P < 0.05 vs. Pre. At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56, mean power (ES = 0.49, and CMJ variables (ES: 0.27–0.49 in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76, REP (ES = 0.44, and peak power (ES = 0.55. In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of

  15. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Directory of Open Access Journals (Sweden)

    Juliana Ide Aoki

    2016-09-01

    Full Text Available Tubercidin (TUB is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis.After transfection of a cosmid genomic library into L. major Friedlin (LmjF parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2 containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP. Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER, a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway.This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine

  16. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Science.gov (United States)

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-09-01

    Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine metabolism is affected

  17. Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells.

    Science.gov (United States)

    Chen, Huang-Hui; Chang, Hsin-Huei; Chang, Jang-Yang; Tang, Ya-Chu; Cheng, Yung-Chi; Lin, Li-Mei; Cheng, Shu-Ying; Huang, Chih-Hsiang; Sun, Man-Wu; Chen, Chiung-Tong; Kuo, Ching-Chuan

    2017-12-01

    Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Minimal dose of milk protein concentrate to enhance the anabolic signalling response to a single bout of resistance exercise; a randomised controlled trial.

    Science.gov (United States)

    Mitchell, Cameron J; Zeng, Nina; D'Souza, Randall F; Mitchell, Sarah M; Aasen, Kirsten; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2017-01-01

    Resistance training is a potent stimulus to induce muscle hypertrophy. Supplemental protein intake is known to enhance gains in muscle mass through activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, which initiates protein translation. While the optimal dose of high quality protein to promote post exercise anabolism in young or older men has been investigated, little is known about the minimum doses of protein required to potentiate the resistance exercise activation of anabolic signalling in middle aged men. Twenty healthy men (46.3 ± 5.7 years, BMI: 23.9 ± 6.6 kg/m 2 ) completed a single bout of unilateral resistance exercise consisting of 4 sets of leg extension and press at 80% of 1 repetition maximum. Participants were randomised to consume either formulated milk product containing 9 g milk protein (FMP) or an isoenergetic carbohydrate placebo (CHO) immediately post exercise, in a double blind fashion. A single muscle biopsy was collected at pre-exercise baseline and then bilateral biopsies were collected 90 and 240 min after beverage consumption. P70S6K Thr389 phosphorylation was increased with exercise irrespective of group, P70S6K Thr421/Ser424 was increased with exercise only in the FMP group at 240 min. Likewise, rpS6 Ser235/236 phosphorylation was increased with exercise irrespective of group, rpS6 Ser240/244 increased to a greater extent following exercise in the FMP group. mRNA expression of the amino acid transporter, LAT1/ SLC7A5 increased with both exercise and beverage consumption irrespective of group. PAT1/ SLC36A1 , CAT1/ SLC7A1 and SNAT2/ SLC38A2 mRNA increased only after exercise regardless of group. Nine grams of milk protein is sufficient to augment some measures of downstream mTORC1 signalling after resistance exercise but does not potentiate exercise induced increases in amino acid transporter expression. Formulated products containing nine grams of milk protein would be expected stimulate muscle

  19. Growth-promoting effect on iron-sulfur proteins on axenic cultures of Entamoeba dispar

    Directory of Open Access Journals (Sweden)

    Khalifa S.A.M.

    2006-03-01

    Full Text Available A growth-promoting factor (GPF that promotes the growth of Entamoeba dispar under axenic culture conditions was found in fractions of mitochondria (Mt, hydrogenosomes (Hg and chloroplasts (Cp obtained from cells of six different protozoan, mammalian and plant species. We were able to extract the GPF from the Cp-rich leaf cells of a plant (spiderwort: Commelina communis L. in an acetone-soluble fraction as a complex of chlorophyll with low molecular weight proteins (molecular weight [MW] approximately 4,600. We also found that on treatment with 0.6 % complexes of 2-mercapthoethanol (2ME, complexes of chlorophyll-a with iron-sulphur (Fe-S proteins (e.g., ferredoxins [Fd] from spinach and Clostridium pasteurianum and noncomplex rubredoxin (Rd from C. pasteurianum have a growth-promoting effect on E. dispar. These findings suggest that E. dispar may lack a sufficient quantity of some essential components of Fe-S proteins, such as Fe-S center.

  20. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  1. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins.

    Science.gov (United States)

    Singh, Pawan; Patil, K Neelakanteshwar; Khanduja, Jasbeer Singh; Kumar, P Sanjay; Williams, Alan; Rossi, Franca; Rizzi, Menico; Davis, Elaine O; Muniyappa, K

    2010-06-15

    DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coli RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

  2. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty.

    Science.gov (United States)

    Collins, J; Longhurst, G; Roschel, H; Gualano, B

    2016-01-01

    Studies assessing the effects co-supplementation with creatine and protein, along with resistance training, in older individuals with frailty are lacking. This is an exploratory trial from the Pro-Elderly study ("Protein Intake and Resistance Training in Aging") aimed at gathering knowledge on the feasibility, safety, and efficacy of co-supplementation with creatine and protein supplementation, combined with resistance training, in older individuals with frailty. A 14-week, double-blind, randomized, parallel-group, placebo controlled exploratory trial. The subjects were randomly assigned to whey protein and creatine co-supplementation (WHEY+CR) or whey protein supplementation (WHEY) group. All subjects undertook a supervised exercise training program and were assessed at baseline and after 14 weeks. Muscle function, body composition, blood parameters, and self-reported adverse events were assessed. No interaction effects (between-group differences) were observed for any dependent variables (p > 0.05 for all). However, there were main time-effects in handgrip (WHEY+CR = 26.65 ± 31.29; WHEY = 13.84 ± 14.93 Kg; p = 0.0005), timed-up-and-go (WHEY+CR = -11.20 ± 9.37; WHEY = -17.76 ± 21.74 sec; p = 0.006), and timed-stands test (WHEY+CR = 47.50 ± 35.54; WHEY = 46.87 ± 24.23 reps; p = 0.0001), suggesting that WHEY+CR and WHEY were similarly effective in improving muscle function. All of the subjects showed improvements in at least two of the three functional tests, regardless of their treatments. Body composition and blood parameters were not changed (p > 0.05). No severe adverse effects were observed. Co-supplementation with creatine and whey protein was well-tolerable and free of adverse events in older subjects with frailty undertaking resistance training. Creatine supplementation did not augment the adaptive effects of resistance training along with whey protein on body composition or muscle function in this population. Clinicaltrials.gov: NCT01890382.

  3. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  4. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  5. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  6. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Stephanie Jemielity

    2013-03-01

    Full Text Available Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4 specifically bind phosphatidylserine (PS. TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  7. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  8. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  9. Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Directory of Open Access Journals (Sweden)

    Leddy John J

    2009-03-01

    Full Text Available Abstract Background Most individuals at risk for developing cardiovascular disease (CVD can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy versus animal-based (whey protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men. Methods Twenty-eight overweight, male subjects (BMI 25–30 with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9, and soy (n = 9 or whey (n = 10 supplementation and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion. Results All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%, with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups. Conclusion Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.

  10. Highly active promoters and native secretion signals for protein production during extremely low growth rates in Aspergillus niger.

    Science.gov (United States)

    Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera

    2016-08-20

    The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.

  11. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  12. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  13. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-07-01

    Full Text Available The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.

  14. Species distribution and resistance patterns to growth-promoting antimicrobials of enterococci isolated from pigs and chickens in Korea.

    Science.gov (United States)

    Hwang, In Yeong; Ku, Hyun Ok; Lim, Suk Kyung; Park, Choi Kyu; Jung, Gab Su; Jung, Suk Chan; Nam, Hyang Mi

    2009-11-01

    A total of 147 Enterococcus faecium and 165 Enterococcus faecalis isolates from fecal samples of chickens and pigs at slaughterhouses in Korea were tested for their resistance to 8 growth-promoting antimicrobials commonly used in animals and quinupristin and dalfopristin. Resistance to most antimicrobials was very common among both E. faecalis and E. faecium. In particular, E. faecalis showed almost no susceptibility to all the antimicrobials tested except penicillin and flavomycin, to which 1.4% and less than 24% showed resistance, respectively. Although the prevalence of resistance was lower than in E. faecalis, E. faecium showed relatively uniform resistance to all the agents tested. Among the antimicrobials tested, virginiamycin and penicillin were the most effective against E. faecium isolates: less than 31% and 41% showed resistance to those 2 antimicrobials, respectively. Penicillin was the only agent that showed relatively strong activity against both E. faecalis and E. faecium. Resistance observed in E. faecalis and E. faecium against most antimicrobials used for growth promotion was more prevalent in Korea than in European countries. The current study is the first report of resistance against feed additive antimicrobials in enterococcal isolates from livestock in Korea.

  15. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  16. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans.

    Science.gov (United States)

    VanDuyn, Natalia; Nass, Richard

    2014-03-01

    Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.

  17. Dietary protein safety and resistance exercise: what do we really know?

    Directory of Open Access Journals (Sweden)

    Lowery Lonnie M

    2009-01-01

    Full Text Available Abstract Resistance trainers continue to receive mixed messages about the safety of purposely seeking ample dietary protein in their quest for stimulating protein synthesis, improving performance, or maintaining health. Despite protein's lay popularity and the routinely high intakes exhibited by strength athletes, liberal and purposeful protein consumption is often maligned by "experts". University textbooks, instructors, and various forms of literature from personal training groups and athletic organizations continue to use dissuasive language surrounding dietary protein. Due to the widely known health benefits of dietary protein and a growing body of evidence on its safety profile, this is unfortunate. In response, researchers have critiqued unfounded educational messages. As a recent summarizing example, the International Society of Sports Nutrition (ISSN Position Stand: Protein and Exercise reviewed general literature on renal and bone health. The concluding remark that "Concerns that protein intake within this range [1.4 – 2.0 g/kg body weight per day] is unhealthy are unfounded in healthy, exercising individuals." was based largely upon data from non-athletes due to "a lack of scientific evidence". Future studies were deemed necessary. This assessment is not unique in the scientific literature. Investigators continue to cite controversy, debate, and the lack of direct evidence that allows it. This review discusses the few existing safety studies done specific to athletes and calls for protein research specific to resistance trainers. Population-specific, long term data will be necessary for effective education in dietetics textbooks and from sports governing bodies.

  18. The role of organic proteins on the crack growth resistance of human enamel.

    Science.gov (United States)

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-06-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

    Science.gov (United States)

    Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.

    2013-01-01

    Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489

  20. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  1. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut.

    Science.gov (United States)

    Ciesinski, Lisa; Guenther, Sebastian; Pieper, Robert; Kalisch, Martin; Bednorz, Carmen; Wieler, Lothar H

    2018-01-01

    High levels of zinc oxide are used frequently as feed additive in pigs to improve gut health and growth performance and are still suggested as an alternative to antimicrobial growth promoters. However, we have recently described an increase of multi-resistant E. coli in association to zinc feeding in piglets. This previous study focused on clonal diversity of E. coli, observing the effect on multi-resistant strains by chance. To shed further light into this highly important topic and falsify our previous findings, we performed a zinc pig feeding trial where we specifically focused on in-depth analysis of antimicrobial resistant E. coli. Under controlled experimental conditions, piglets were randomly allocated to a high dietary zinc (zinc group) and a background zinc feeding group (control group). At different ages samples were taken from feces, digesta, and mucosa and absolute E. coli numbers were determined. A total of 2665 E. coli isolates were than phenotypically tested for antimicrobial resistance and results were confirmed by minimum inhibitory concentration testing for random samples. In piglets fed with high dietary zinc, we detected a substantial increase of multi-resistant E. coli in all gut habitats tested, ranging from 28.9-30.2% multi-resistant E. coli compared to 5.8-14.0% in the control group. This increase was independent of the total number of E. coli. Interestingly, the total amount of the E. coli population decreased over time. Thus, the increase of the multi-resistant E. coli populations seems to be linked with persistence of the resistant population, caused by the influence of high dietary zinc feeding. In conclusion, these findings corroborate our previous report linking high dietary zinc feeding of piglets with the occurrence of antimicrobial resistant E. coli and therefore question the feeding of high dietary zinc oxide as alternative to antimicrobial growth promoters.

  2. Whey protein consumption after resistance exercise reduces energy intake at a post-exercise meal.

    Science.gov (United States)

    Monteyne, Alistair; Martin, Alex; Jackson, Liam; Corrigan, Nick; Stringer, Ellen; Newey, Jack; Rumbold, Penny L S; Stevenson, Emma J; James, Lewis J

    2018-03-01

    Protein consumption after resistance exercise potentiates muscle protein synthesis, but its effects on subsequent appetite in this context are unknown. This study examined appetite and energy intake following consumption of protein- and carbohydrate-containing drinks after resistance exercise. After familiarisation, 15 resistance training males (age 21 ± 1 years, body mass 78.0 ± 11.9 kg, stature 1.78 ± 0.07 m) completed two randomised, double-blind trials, consisting of lower-body resistance exercise, followed by consumption of a whey protein (PRO 23.9 ± 3.6 g protein) or dextrose (CHO 26.5 ± 3.8 g carbohydrate) drink in the 5 min post-exercise. An ad libitum meal was served 60 min later, with subjective appetite measured throughout. Drinks were flavoured and matched for energy content and volume. The PRO drink provided 0.3 g/kg body mass protein. Ad libitum energy intake (PRO 3742 ± 994 kJ; CHO 4172 ± 1132 kJ; P = 0.007) and mean eating rate (PRO 339 ± 102 kJ/min; CHO 405 ± 154 kJ/min; P = 0.009) were lower during PRO. The change in eating rate was associated with the change in energy intake (R = 0.661, P = 0.007). No interaction effects were observed for subjective measures of appetite. The PRO drink was perceived as creamier and thicker, and less pleasant, sweet and refreshing (P consumption after resistance exercise reduces subsequent energy intake, and this might be partially mediated by a reduced eating rate. Whilst this reduced energy intake is unlikely to impair hypertrophy, it may be of value in supporting an energy deficit for weight loss.

  3. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  4. Co-induction of glucose regulated proteins and adriamycin resistance in Chinese hamster cells

    International Nuclear Information System (INIS)

    Shen, J.; Hughes, C.; Cai, J.; Bartels, C.; Gessner, T.; Subjeck, J.

    1987-01-01

    Glucose deprivation, anoxia, calcium ionophore A23187 or 2-deoxyglucose all inducers of glucose regulated proteins (grps), also lead to a significant induction of resistance to the drug adriamycin. In the case of anoxia, A23187 and 2-deoxyglucose, the induction of resistance correlates with both the application of the inducing stress and the induction of grps. In the case of glucose deprivation, the onset of resistance correlates with the onset of glucose deprivation and precedes grp induction. Removal of each grp including condition results in the rapid disappearance of this resistance in a manner which correlates with the repression of the grps. This drug resistance can be induced in confluent cells or in actively proliferating cells, although the effect is greater in the more sensitive proliferating cells. Induction of heat shock proteins (hsps) does not appear to lead to any major change in adriamycin resistance. Grp induced cells retain less adriamycin than do controls with the greatest reduction occurring during anoxia, which is also the strongest inducer of grps and resistance. The authors propose that the application of a grp inducing stress leads to a concurrent induction in drug resistance, possibly via the translocation of grps in the cell. Finally, they also observed that adriamycin itself can induce both hsps and grps. It is possible that adriamycin exposure may correspondingly induce auto-resistance

  5. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  6. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    International Nuclear Information System (INIS)

    Vetting, Matthew W.; Hegde, Subray S.; Zhang, Yong; Blanchard, John S.

    2011-01-01

    The pentapeptide repeat protein AlbG, provides self-resistance to the nonribosomally encoded hybrid polyketide-peptide termed albicidin. Analysis of the AlbG three-dimensional structure and the sequences of other pentapeptide repeat proteins that confer resistance to topiosomerase poisons suggests they have a similar dimer interface which may be critical to their interaction with topoisomerases. The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric

  7. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    Science.gov (United States)

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  8. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    OpenAIRE

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the...

  9. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda.

    Science.gov (United States)

    Bernardi, Oderlei; Bernardi, Daniel; Horikoshi, Renato J; Okuma, Daniela M; Miraldo, Leonardo L; Fatoretto, Julio; Medeiros, Fernanda Cl; Burd, Tony; Omoto, Celso

    2016-09-01

    Spodoptera frugiperda is one the main target pests of maize events expressing Vip3Aa20 protein from Bacillus thuringiensis (Bt) in Brazil. In this study, we selected a resistant strain of S. frugiperda on Bt maize expressing Vip3Aa20 protein and characterized the inheritance and fitness costs of the resistance. The resistance ratio of the Vip3Aa20-resistant strain of S. frugiperda was >3200-fold. Neonates of the Vip3Aa20-resistant strain were able to survive and emerge as fertile adults on Vip3Aa20 maize, while larvae from susceptible and heterozygous strains did not survive. The inheritance of Vip3Aa20 resistance was autosomal recessive and monogenic. Life history studies to investigate fitness cost revealed an 11% reduction in the survival rate until adult stage and a ∼50% lower reproductive rate of the Vip3Aa20-resistant strain compared with susceptible and heterozygous strains. This is the first characterization of S. frugiperda resistance to Vip3Aa protein. Our results provide useful information for resistance management programs designed to prevent or delay resistance evolution to Vip3Aa proteins in S. frugiperda. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  11. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  12. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  14. Resistance to Inhibitors of Cholinesterase 3 (Ric-3 Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome.

    Directory of Open Access Journals (Sweden)

    Matthew J Mulcahy

    Full Text Available The α7-nicotinic acetylcholine receptor (α7-nAChR is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3 has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx, we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as

  15. The Role of ABC Proteins in Drug Resistant Breast Cancer Cells

    Science.gov (United States)

    2008-04-01

    called the Plasmodium falciparum Chloroquine Transporter (PfCRT). While PfCRT is known to be the main molecular determinant of chloroquine resistance...proteins (such as human P-glycoprotein) and labeled PfCRT with a photoaffinity drug analogue . A manuscript is currently in preparation detailing my results...directly responsible for drug response, the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) (Fidock et al 2000). While not a member of

  16. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  17. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    Science.gov (United States)

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  18. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  19. Public commitment, resistance to advertising, and leisure promotion in a school-based drug abuse prevention program: a component dismantling study.

    Science.gov (United States)

    Hernández-Serrano, Olga; Griffin, Kenneth W; García-Fernández, José Manuel; Orgilés, Mireia; Espada, José P

    2013-01-01

    The objective of the present study was to examine the contribution of three intervention components (public commitment, resistance to advertising, and leisure promotion) on alcohol and protective variables in a school-based substance use prevention program. Participants included 480 Spanish students aged from 14 to 16 who received the Saluda prevention program in one of the following five experimental conditions: complete program, program minus public commitment, program minus resistance to advertising, program minus leisure promotion, and a waiting-list control. The students completed self-report surveys at pretest, posttest, and 6-month follow-up assessments. When excluding the healthy leisure promotion component, the Saluda program showed no loss of efficacy neither on alcohol use nor on other substance-related variables, while public commitment and resistance to advertising improved the aforementioned program's efficacy.

  20. Sensitive measurement of endotoxin by radio-rocket immunoelectrophoresis using [125I]Staphylococcus aureus protein A

    International Nuclear Information System (INIS)

    Stevens, P.; Alam, S.; Young, L.S.; Chesebro, K.

    1981-01-01

    Antibody directed against the core glycolipid antigen (CGL) of the mutant Salmonella minnesota Re 595 has been shown to cross-react with endotoxin from bacteria within the group Enterobacteriaceae. Using this cross-reactive CGL antibody the authors have developed a sensitive (250 pg) radio-rocket immunoelectrophoretic technique to measure endotoxin. They used the principles of rocket immunoelectrophoresis and increased the sensitivity by using 125 I-labelled staphylococcal protein A which serves as a sensitive probe to bind to the Fc portion of the IgG complexed with antigen. The rocket-shaped [ 125 I]protein A labelled immune complexes were detected by radioautography. The sensitivity is 100-fold greater than conventional Coomassie brilliant blue staining. Measurement of CGL was inhibited by normal human serum. However, the assay had the capacity to quantitate endotoxin in buffer extracts of clinically isolated Escherichia coli, Serratia marcescens, Klebsiella pneumoniae but not Pseudomonas aeruginosa. Analysis of various preparations of CGL obtained from different investigators demonstrated wide variation in their immunoreactivity. Because of the significant cross-reaction to detect various endotoxins this method has the potential to measure endotoxemia and assess the immunochemical quality of various endotoxin preparations. Additionally, the techniques of using [ 125 I]protein A has wide applicability for the sensitive measurement of other antigens. (Auth.)

  1. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  2. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    Science.gov (United States)

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  3. Analysis of the role of the gene coding the Amyloid-Precursor Protein Binding Protein 1 (APP-BP1) in the radio-sensitivity of epidermoid carcinomas of the upper aero-digestive tract infected by the human papillomavirus

    International Nuclear Information System (INIS)

    Guihard, S.; Altmeyer, A.; Ramolu, L.; Macabre, C.; Abecassis, J.; Noel, G.; Jung, A.C.

    2010-01-01

    As the human papillomavirus (HPV) is at the origin of 25% of upper aero-digestive tract cancers, and as these tumours present an increased radio-sensitivity compared to other tumours, probably due to a greater transcriptional activity of p53, the authors report the study on the influence of a decrease of the expression of the APP-BP1 in these tumours which could favour a radio-induced apoptosis. By using a reverse transcriptase polymerase chain reaction (RT-PCR), they assessed the APP-BP1 expression levels as well as expression levels of transcriptions coding onco-proteins known to be over-expressed in HPV+ tumours. They compared the radio-sensitivities of HPV+ and HPV- cells, the first one appearing to be greater than the second one. Short communication

  4. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene.

    Science.gov (United States)

    Stein, Ulrike; Bergmann, Stephan; Scheffer, George L; Scheper, Rik J; Royer, Hans-Dieter; Schlag, Peter M; Walther, Wolfgang

    2005-05-19

    Vaults have been suggested to play a direct role in multidrug resistance (MDR) to anticancer drugs. The human major vault protein (MVP) also known as lung resistance-related protein (LRP) represents the predominant component of vaults that may be involved in the defense against xenobiotics. Here, we demonstrate that besides MDR-related cytostatics, also the non-MDR-related drug 5-fluorouracil (5-FU) was able to induce MVP mRNA and protein expression. Treatment with 5-FU amplified the binding activity and interaction of the transcription factor Y-box binding protein-1 (YB-1) with the Y-box of the human MVP gene promoter in a time-dependent manner. 5-FU also induced reporter expressions driven by a panel of newly generated MVP promoter deletion mutants. Interestingly, stably YB-1 overexpressing cell clones showed enhanced binding of YB-1 to the Y-box motif, associated with enhanced basal as well as 5-FU-inducible MVP promoter-driven reporter expressions. Moreover, transduction of YB-1 cDNA led to increased expression of endogenous MVP protein. Under physiological conditions, we observed a strong coexpression of MVP and YB-1 in human colon carcinoma specimen. In summary, our data demonstrate a direct involvement of YB-1 in controlling basal and 5-FU-induced MVP promoter activity. Therefore, YB-1 is directly linked to MVP-mediated drug resistance.

  6. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells.

    Science.gov (United States)

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E

    1997-09-01

    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  7. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  8. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  9. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    Science.gov (United States)

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  10. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  11. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis.

    Science.gov (United States)

    Hasan, Md Anayet; Khan, Md Arif; Sharmin, Tahmina; Hasan Mazumder, Md Habibul; Chowdhury, Afrin Sultana

    2016-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is a Gram-positive, facultative aerobic bacterium which is evolved from the extensive exposure of Vancomycin to Methicillin resistant S. aureus (MRSA) that had become the most common cause of hospital and community-acquired infections. Due to the emergence of different antibiotic resistance strains, there is an exigency to develop novel drug targets to address the provocation of multidrug-resistant bacteria. In this study, in-silico genome subtraction methodology was used to design potential and pathogen specific drug targets against VRSA. Our study divulged 1987 proteins from the proteome of 34,549 proteins, which have no homologues in human genome after sequential analysis through CD-HIT and BLASTp. The high stringency analysis of the remaining proteins against database of essential genes (DEG) resulted in 169 proteins which are essential for S. aureus. Metabolic pathway analysis of human host and pathogen by KAAS at the KEGG server sorted out 19 proteins involved in unique metabolic pathways. 26 human non-homologous membrane-bound essential proteins including 4 which were also involved in unique metabolic pathway were deduced through PSORTb, CELLO v.2.5, ngLOC. Functional classification of uncharacterized proteins through SVMprot derived 7 human non-homologous membrane-bound hypothetical essential proteins. Study of potential drug target against Drug Bank revealed pbpA-penicillin-binding protein 1 and hypothetical protein MQW_01796 as the best drug target candidate. 2D structure was predicted by PRED-TMBB, 3D structure and functional analysis was also performed. Protein-protein interaction network of potential drug target proteins was analyzed by using STRING. The identified drug targets are expected to have great potential for designing novel drugs against VRSA infections and further screening of the compounds against these new targets may result in the discovery of novel therapeutic compounds that can be

  12. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  13. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  14. Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae.

    OpenAIRE

    Dowson, C G; Hutchison, A; Woodford, N; Johnson, A P; George, R C; Spratt, B G

    1990-01-01

    Penicillin-resistant strains of Streptococcus pneumoniae possess altered forms of penicillin-binding proteins (PBPs) with decreased affinity for penicillin. The PBP2B genes of these strains have a mosaic structure, consisting of regions that are very similar to those in penicillin-sensitive strains, alternating with regions that are highly diverged. Penicillin-resistant strains of viridans groups streptococci (e.g., S. sanguis and S. oralis) that produce altered PBPs have also been reported. ...

  15. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    Science.gov (United States)

    2013-01-01

    Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early

  16. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots.

    Science.gov (United States)

    Stergiopoulos, Ioannis; van den Burg, Harrold A; Okmen, Bilal; Beenen, Henriek G; van Liere, Sabine; Kema, Gert H J; de Wit, Pierre J G M

    2010-04-20

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis, one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.

  17. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hekmat, Omid; Munk, Stephanie; Fogh, Louise

    2013-01-01

    may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated......Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass...... spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A and 2B, which...

  18. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  19. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  20. Comparison of SDR presumed by AAMI and the radio-resistance distribution of the microbiological populations exist on the Turkish made single use syringes

    International Nuclear Information System (INIS)

    Konac, T.; Siyakus, G.; Basguel, M.; Uenal, Z.

    2001-01-01

    The concept of radiation sterilization of medical devices was introduced in Turkey 10 years ago through the irradiation facilities in Ankara and Istanbul. It has been preferred by international community due to technological advantages,such as freedom from chemical residues, safer sterility assurance, etc.. This technology is regulated by ISO 11137 (1), EN 552 (2) standards and their references. The scope of this study was to compare the radio-resistance distribution of the microbial population on the Turkish single use syringes and SDR

  1. TV white space opportunity for cognitive radio networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available to benefit from the digital dividend brought about by the DSO, regulators from the developed countries are promoting license-exempt cognitive radio (CR) access to TVWS. However, there is a need to understand how much TVWS is available in South Africa...

  2. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  3. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  4. International Society of Sports Nutrition Position Stand: protein and exercise.

    Science.gov (United States)

    Jäger, Ralf; Kerksick, Chad M; Campbell, Bill I; Cribb, Paul J; Wells, Shawn D; Skwiat, Tim M; Purpura, Martin; Ziegenfuss, Tim N; Ferrando, Arny A; Arent, Shawn M; Smith-Ryan, Abbie E; Stout, Jeffrey R; Arciero, Paul J; Ormsbee, Michael J; Taylor, Lem W; Wilborn, Colin D; Kalman, Doug S; Kreider, Richard B; Willoughby, Darryn S; Hoffman, Jay R; Krzykowski, Jamie L; Antonio, Jose

    2017-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely

  5. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  6. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  7. Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2

    DEFF Research Database (Denmark)

    VanderKuur, J; Allevato, G; Billestrup, Nils

    1995-01-01

    . To gain insight into pathways coupling GH receptor (GHR) to MAP kinase activation and signaling molecules that might interact with GHR and its associated tyrosine kinase JAK2, we examined whether SHC and Grb2 proteins serve as signaling molecules for GH. Human GH was shown to promote the rapid tyrosyl...... phosphorylation of 66-, 52-, and 46-kDa SHC proteins in 3T3-F442A fibroblasts. GH also promoted binding of GHR and JAK2 to the SH2 domain of 46/52-kDa SHC protein fused to glutathione S-transferase (GST). Constitutively phosphorylated JAK2, from COS-7 cells transiently transfected with murine JAK2 cDNA, bound......-638 and GHR1-638(Y333,338F), GH stimulated phosphorylation of all 3 SHC proteins whereas GH stimulated phosphorylation of only the 66- and 52-kDa SHC proteins in cells expressing GHR1-454. GH had no effect on SHC phosphorylation in cells expressing GHR1-294 or GHR delta P, the latter lacking amino acids 297...

  8. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

    NARCIS (Netherlands)

    Lukasik-Shreepaathy, E.; Vossen, J.H.; Tameling, W.I.L.; de Vroomen, M.J.; Cornelissen, B.J.C.; Takken, F.L.W.

    2012-01-01

    Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum

  9. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  10. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  11. vPARP Adjusts MVP Expression in Drug-resistant Cell Lines in Conjunction with MDR Proteins.

    Science.gov (United States)

    Wojtowicz, Karolina; Januchowski, Radoslaw; Nowicki, Michal; Zabel, Maciej

    2017-06-01

    The definition of vault (ribonucleoprotein particles) function remains highly complex. Vaults may cooperate with multidrug resistance (MDR) proteins, supporting their role in drug resistance. This topic is the main theme of this publication. The cell viability was determined by an MTT assay. The protein expression was detected by western blot analysis. The proteins were knocked-down using siRNA. No major vault protein (MVP) in the LoVo/Dx and W1PR cell lines after tunicamycin treatment was shown. In W1PR cells with knocked-down MVP, a statistically significant decrease in cell viability was noted. In LoVo/Dx, W1TR and A2780TR cells were vault poly-ADP-ribose polymerase (vPARP) was knockdown, a decrease in cell viability was shown. Also, MVP silencing induced an increase in glycoprotein P (Pgp) expression in LoVo/Dx cells. MVP is important for the drug resistance of cancer cells, but it probably requires the presence of vPARP for full activation. Some correlations between MDR proteins and vaults exist. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sylvie Cornelie

    Full Text Available Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  13. Identification of a putative protein-profile associating with tamoxifen therapy-resistance in breast cancer

    NARCIS (Netherlands)

    A. Umar (Arzu); J.W.M. Martens (John); J.A. Foekens (John); L. Paša-Tolić (Ljiljana); H. Kang; A.M. Timmermans (Mieke); M.P. Look (Maxime); M.E. Meijer van Gelder (Marion); N. Jaitly (Navdeep); M.A. den Bakker (Michael)

    2009-01-01

    textabstractTamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical parameters can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards

  14. Epithelial membrane protein-1 is a biomarker of gefitinib resistance.

    Science.gov (United States)

    Jain, Anjali; Tindell, Charles A; Laux, Isett; Hunter, Jacob B; Curran, John; Galkin, Anna; Afar, Daniel E; Aronson, Nina; Shak, Steven; Natale, Ronald B; Agus, David B

    2005-08-16

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway.

  15. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

    Directory of Open Access Journals (Sweden)

    Yang Yifan

    2012-06-01

    Full Text Available Abstract Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g, or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively. We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40. A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003. Rates of MPS for S20 were less than W20 (P = 0.02 and not different from 0 g (P = 0.41 in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P P = 0.04. Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein.

  16. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    International Nuclear Information System (INIS)

    Qadri, Ishtiaq; Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-01-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1α. HNF4α induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1α while HNF4α induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1α and HNF4α playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes

  17. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-01

    Highlights: ► Stress granules (SGs) as a mechanism of doxorubicin tolerance. ► We characterize the role of stress granules in doxorubicin tolerance. ► Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. ► Doxorubicin promotes SG formation when combined with heat shock. ► Doxorubicin regulates stress granule assembly independent of eIF2α phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1 + , which encodes a multi-KH type RNA-binding protein, and pab1 + , which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1 + and pab1 + genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2α, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2α phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  18. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  19. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Simbaqueba, Jaime; Cotes, Alba Marina; Barrero, Luz Stella

    2011-01-01

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  20. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo.

    Science.gov (United States)

    Pang, Bing; Hong, Wenzhou; Kock, Nancy D; Swords, W Edward

    2012-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps) was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media (OM). Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  1. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo

    Directory of Open Access Journals (Sweden)

    Bing ePang

    2012-05-01

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media. Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  2. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  3. Sounds energetic: the radio producer's energy minibook

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Minibook will be expanded into the final Radio Producer's Energy Sourcebook. Radio producers and broadcasters are asked to contribute ideas for presenting energy knowledge to the public and to be included in the Sourcebook. Chapter One presents a case study suggesting programming and promotion ideas and sample scripts for a radio campaign that revolves around no-cost or low-cost steps listeners can take to increase their home energy efficiency and save money. A variety of other energy topics and suggestions on ways to approach them are addressed in Chapter Two. Chapter Three contains energy directories for Baltimore, Philadelphia, Pittsburg, and Washington, DC. The directories will be expanded in the Sourcebook and will consist of a selection of local public and private sector energy-related organizations and list local experts and organizations and the best Federal, state, and local government programs that can provide consumers and citizens groups with information, technical assistance, and financial support. (MCW)

  4. C-reactive protein levels and treatment resistance in schizophrenia - A Danish population-based cohort study

    DEFF Research Database (Denmark)

    Horsdal, Henriette Thisted; Wimberley, Theresa; Benros, Michael Eriksen

    2017-01-01

    -time schizophrenia diagnosis and a baseline C-reactive protein measurement (a commonly available marker of systemic inflammation) from 2000 to 2012. We defined treatment resistance as the earliest observed instance of either clozapine initiation or hospital admission due to schizophrenia after having received......OBJECTIVE: Schizophrenia is associated with increased levels of inflammatory markers. However, it remains unclear whether inflammatory markers are associated with treatment-resistant schizophrenia. METHODS: We conducted a population-based follow-up study among individuals with a first...... (4.0 vs. 3.1 mg/L, p = .13) was observed among the 52 (13.3%) treatment-resistant individuals. Increased levels of C-reactive protein (above 3 mg/L) at baseline were not associated with treatment resistance (adjusted hazard ratio = 0.99, 95% confidence interval [0.56, 1.73]). CONCLUSIONS: C...

  5. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  6. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Song, Min; Tang, Min; Ding, Yinghuan; Wu, Zecai; Xiang, Chengyu; Yang, Kui; Zhang, Zhang; Li, Baolin; Deng, Zhenghua; Liu, Jinbo

    2017-12-16

    Pseudomonas aeruginosan has emerged as an important pathogen elated to serious infections and nosocomial outbreaks worldwide. This study was conducted to understand the prevalence of aminoglycoside (AMG)-resistant P. aeruginosa in our hospital and to provide a scientific basis for control measures against nosocomial infections. Eighty-two strains of P. aeruginosa were isolated from clinical departments and divided into AMG-resistant strains and AMG-sensitive strains based on susceptibility test results. AMG-resistant strains were typed by drug resistance gene typing (DRGT) and protein typing. Five kinds of aminoglycoside-modifying enzyme (AME) genes were detected in the AMG-resistant group. AMG-resistant P. aeruginosa strains were classified into three types and six subtypes by DRGT. Four protein peaks, namely, 9900.02, 7600.04, 9101.25 and 10,372.87 Da, were significantly and differentially expressed between the two groups. AMG-resistant P. aeruginosa strains were also categorised into three types and six subtypes at the distance level of 10 by protein typing. AMG-resistant P. aeruginosa was cloned spread in our hospital; the timely implementation of nosocomial infection prevention and control strategies were needed in preventing outbreaks and epidemic of AMG-resistant P. aeruginosa. SELDI-TOF MS technology can be used for bacterial typing, which provides a new method of clinical epidemiological survey and nosocomial infection control.

  7. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  8. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  9. Sensitive measurement of endotoxin by radio-rocket immunoelectrophoresis using (/sup 125/I)Staphylococcus aureus protein A

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, P; Alam, S; Young, L S; Chesebro, K [California Univ., Los Angeles (USA). Center for the Health Sciences

    1981-06-16

    Antibody directed against the core glycolipid antigen (CGL) of the mutant Salmonella minnesota Re 595 has been shown to cross-react with endotoxin from bacteria within the group Enterobacteriaceae. Using this cross-reactive CGL antibody the authors have developed a sensitive (250 pg) radio-rocket immunoelectrophoretic technique to measure endotoxin. They used the principles of rocket immunoelectrophoresis and increased the sensitivity by using /sup 125/I-labelled staphylococcal protein A which serves as a sensitive probe to bind to the Fc portion of the IgG complexed with antigen. The rocket-shaped (/sup 125/I)protein A labelled immune complexes were detected by radioautography. The sensitivity is 100-fold greater than conventional Coomassie brilliant blue staining. Measurement of CGL was inhibited by normal human serum. However, the assay had the capacity to quantitate endotoxin in buffer extracts of clinically isolated Escherichia coli, Serratia marcescens, Klebsiella pneumoniae but not Pseudomonas aeruginosa. Analysis of various preparations of CGL obtained from different investigators demonstrated wide variation in their immunoreactivity. Because of the significant cross-reaction to detect various endotoxins this method has the potential to measure endotoxemia and assess the immunochemical quality of various endotoxin preparations. Additionally, the techniques of using (/sup 125/I)protein A has wide applicability for the sensitive measurement of other antigens.

  10. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    NARCIS (Netherlands)

    Nalcacioglu, R.; Marks, H.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an

  11. Analysis of the protein profiles of the antibiotic-resistant Salmonella ...

    African Journals Online (AJOL)

    The emergent Salmonella typhimurium definitive phage type (DT) 104 is of particular global concern due to its frequent isolation and multiple antibiotic resistances. There is thus a need to know the kind of proteins expressed by S. typhimurium DT104 so as to provide a basis for developing an intervention. This study ...

  12. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1991-01-01

    An adaptive response to radiation stress was found in cultured Chinese hamster V79 cells, as a suppressed induction of micronuclei (MNs) and sister chromatid exchanges (SCEs) in the cells conditioned by very low doses. The important characteristics of the novel chromosomal response, called radio-adaptive response (RAR), that have newly emerged in this study are: 1) Low doses of beta-rays from tritiated water (HTO) as well as tritiated thymidine can cause the RAR. 2) Thermal neutrons, a high LET radiation, can not act as tritium beta-rays or gamma-rays. 3) The RAR expression is suppressed by an inhibition of protein synthesis. 4) Several proteins are newly synthesized concurrently with the RAR expression after adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggest that the RAR is an adaptive chromosomal DNA repair induced by very low doses of low LET radiations under restricted conditions, accompanying the inducible specific gene expression. (author)

  13. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    the effect of contraction mode specific resistance training and protein supplementation on whole muscle and tendon hypertrophy. Quadriceps muscle and patellar tendon cross-sectional area (CSA) was quantified using magnetic resonance imaging pre and post 12 weeks of eccentric (Ecc) or concentric (Conc...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...... recovery from eccentric exercise In paper I, we evaluated the effect of a single bout of unaccustomed eccentric exercise on fiber type specific SC content by immunohistochemistry. Subjects received either hydrolysed whey protein (Whey) or iso-caloric carbohydrate (Placebo) in the days post eccentric...

  14. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Science.gov (United States)

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  15. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  16. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  17. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer

    International Nuclear Information System (INIS)

    Fox, Emily M.; Arteaga, Carlos L.; Miller, Todd W.

    2012-01-01

    Antiestrogen therapies targeting estrogen receptor α (ER) signaling are a mainstay for patients with ER+ breast cancer. While many cancers exhibit resistance to antiestrogen therapies, a large body of clinical and experimental evidence indicates that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway promotes antiestrogen resistance. In addition, continued ligand-independent ER signaling in the setting of estrogen deprivation may contribute to resistance to endocrine therapy. PI3K activates several proteins which promote cell cycle progression and survival. In ER+ breast cancer cells, PI3K promotes ligand-dependent and -independent ER transcriptional activity. Models of antiestrogen-resistant breast cancer often remain sensitive to estrogen stimulation and PI3K inhibition, suggesting that clinical trials with combinations of drugs targeting both the PI3K and ER pathways are warranted. Herein, we review recent findings on the roles of PI3K and ER in antiestrogen resistance, and clinical trials testing drug combinations which target both pathways. We also discuss the need for clinical investigation of ER downregulators in combination with PI3K inhibitors.

  18. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  19. Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices

    KAUST Repository

    Wang, Hong; Du, Yuanmin; Li, Yingtao; Zhu, Bowen; Leow, Wan Ru; Li, Yuangang; Pan, Jisheng; Wu, Tao; Chen, Xiaodong

    2015-01-01

    The employ of natural biomaterials as the basic building blocks of electronic devices is of growing interest for biocompatible and green electronics. Here, resistive switching (RS) devices based on naturally silk protein with configurable

  20. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.

    Science.gov (United States)

    Shamim, Baubak; Hawley, John A; Camera, Donny M

    2018-06-01

    Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.

  1. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests. © 2014 The Royal Entomological Society.

  2. Expression of multidrug resistance-related protein (MRP-1), lung resistance-related protein (LRP) and topoisomerase-II (TOPO-II) in Wilms' tumor: immunohistochemical study using TMA methodology.

    Science.gov (United States)

    Fridman, Eduard; Skarda, Jozef; Pinthus, Jonatan H; Ramon, Jonathan; Mor, Yoran

    2008-06-01

    MRP-1, LRP and TOPO-II are all associated with protection of the cells from the adverse effects of various chemotherapeutics. The aim of this study was to measure the expression of these proteins in Wilms' tumor (WT). TMA block was constructed from 14 samples of WT's and from xenografts derived from them. Sections of the TMA were used for immunostaining against MRP-1, LRP and TOPO-IIa. All normal kidneys expressed MRP-1 but were either weakly or negatively stained for LRP and TOPO-IIa. In WT samples, MRP-1 was universally expressed, exclusively in the tubular component, while there was no expression of LRP and TOPO-IIa showed heterogeneous distribution. The xenografts varied in their MRP-1 and TOPO-IIa expression and exhibited weak/negative staining of LRP. This study shows that although all the proteins evaluated, had different expression patterns in the tumor samples, the most prominent changes in expression were found for MRP-1. The exact clinical implications of these changes in expression and their relevance to the resistance of these tumors to chemotherapy requires further investigation. The finding of different expression profiles for the multidrug resistance proteins in the original WT's and their xenografts suggests that the results of animal cancer models may be difficult to interpret.

  3. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  4. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  5. Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices

    KAUST Repository

    Wang, Hong

    2015-05-01

    The employ of natural biomaterials as the basic building blocks of electronic devices is of growing interest for biocompatible and green electronics. Here, resistive switching (RS) devices based on naturally silk protein with configurable functionality are demonstrated. The RS type of the devices can be effectively and exactly controlled by controlling the compliance current in the set process. Memory RS can be triggered by a higher compliance current, while threshold RS can be triggered by a lower compliance current. Furthermore, two types of memory devices, working in random access and WORM modes, can be achieved with the RS effect. The results suggest that silk protein possesses the potential for sustainable electronics and data storage. In addition, this finding would provide important guidelines for the performance optimization of biomaterials based memory devices and the study of the underlying mechanism behind the RS effect arising from biomaterials. Resistive switching (RS) devices with configurable functionality based on protein are successfully achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Do cupins have a function beyond being seed storage proteins? An updated working model for the growth and reproductive success of flax (Linum usitatissimum in a radio-contaminated environment

    Directory of Open Access Journals (Sweden)

    Daša eGábrišová

    2016-01-01

    Full Text Available Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L. during seed filling by plants grown for a third generation near Chernobyl. For this purpose, seeds were harvested at 2, 4, and 6 weeks after flowering and at maturity, from plants grown in either non-radioactive or radio-contaminated experimental fields. Total proteins were extracted and the two-dimensional gel electrophoresis (2-DE patterns analyzed. This approach established paired abundance profiles for 130 2-DE spots, e.g., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields. Based on Analysis of Variance (ANOVA followed by sequential Bonferroni correction, eight of the paired abundance profiles were discordant. Results from tandem mass spectrometry show that four 2-DE spots are discordant because they contain fragments of the cupin superfamily-proteins. Most of the fragments were derived from the N-terminal half of native cupins. Revisiting previously published data, it was found that cupin-fragments were also involved with discordance in paired abundance profiles of second generation flax seeds. Based on these observations we present an updated working model for the growth and reproductive success of flax in a radio-contaminated Chernobyl environment. This model suggests that the increased abundance of cupin fragments or isoforms and monomers contributes to the successful growth and reproduction of flax in a radio-contaminated environment.

  7. Chautauqua notebook: appropriate technology on radio

    Energy Technology Data Exchange (ETDEWEB)

    Renz, B.

    1981-01-01

    Experiences in establishing and maintaining a regional call-in information-exchange radio show (Chautauqua) on energy conservation, appropriate technology, renewable energy sources, and self-reliance are discussed. Information is presented on: appropriate technology; the Chautauquaa concept; topics discussed; research performed; guests; interviewing tips; types of listeners; program features; where to find help; promotion and publicity; the technical and engineering aspects; the budget and funding; and station policies. (MCW)

  8. Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion

    Directory of Open Access Journals (Sweden)

    Emil Rindom

    2016-11-01

    Full Text Available Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS, may contribute to understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1, to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ-phosphatidic acid (PA axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK-Tuberous Sclerosis Complex 2TSC2-Ras homolog enriched in brain (Rheb axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA-striated muscle activator of Rho signaling (STARS axis or how it may implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP signaling through a small mother of decapentaplegic (Smad axis.

  9. Galectin-7 as a potential predictive marker of chemo-and/or radio-therapy resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Matsukawa, Sho; Morita, Kei-ichi; Negishi, Ayako; Harada, Hiroyuki; Nakajima, Yusuke; Shimamoto, Hiroaki; Tomioka, Hirofumi; Tanaka, Kae; Ono, Masaya; Yamada, Tesshi; Omura, Ken

    2014-01-01

    Treatment of advanced oral squamous cell carcinoma (OSCC) requires the integration of multimodal approaches. The aim of this study was to identify predictors of tumor sensitivity to preoperative radiotherapy/chemotherapy for OSCC in order to allow oncologists to determine optimum therapeutic strategies without the associated adverse effects. Here, the protein expression profiles of formalin-fixed paraffin-embedded (FFPE) tissue samples from 18 OSCC patients, termed learning cases, who received preoperative chemotherapy and/or radiotherapy followed by surgery were analyzed by quantitative proteomics and validated by immunohistochemistry in 68 test cases as well as in the 18 learning cases. We identified galectin-7 as a potential predictive marker of chemotherapy and/or radiotherapy resistance, and the sensitivity and specificity of the galectin-7 prediction score (G7PS) in predicting this resistance was of 96.0% and 39.5%, respectively, in the 68 test cases. The cumulative 5-year disease-specific survival rate was 75.2% in patients with resistant prediction using G7PS and 100% in patients with sensitive prediction. In vitro overexpression of galectin-7 significantly decreased cell viability in OSCC cell line. Therefore, our findings suggest that galectin-7 is a potential predictive marker of chemotherapy and/or radiotherapy resistance in patients with OSCC. Identification of proteins differentially expressed in OSSC samples from patients sensitive or resistant. The samples were processed by LC-MS and analyzed with 2DICAL

  10. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon

    NARCIS (Netherlands)

    Schmidt, S.M.; Lukasiewicz, J.; Farrer, R.; van Dam, P.; Bertoldo, C.; Rep, M.

    Development of resistant crops is the most effective way to control plant diseases to safeguard food and feed production. Disease resistance is commonly based on resistance genes, which generally mediate the recognition of small proteins secreted by invading pathogens. These proteins secreted by

  11. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans

    DEFF Research Database (Denmark)

    Esmarck, B.; Andersen, J.L.; Olsen, S.

    2001-01-01

    1. Age-associated loss of skeletal muscle mass and strength can partly be counteracted by resistance training, causing a net synthesis of muscular proteins. Protein synthesis is influenced synergistically by postexercise amino acid supplementation, but the importance of the timing of protein intake...

  12. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    Science.gov (United States)

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  13. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  14. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  15. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takahiro [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Umeda, Nanae; Kita, Ayako [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  16. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Murakami, K; Nomura, K; Doi, M; Yoshida, T

    1987-01-01

    Methicillin- and cephem-resistant Staphylococcus aureus (137 strains) for which the cefazolin MICs are at least 25 micrograms/ml could be classified into low-resistance (83% of strains) and high-resistance (the remaining 17%) groups by the MIC of flomoxef (6315-S), a 1-oxacephalosporin. The MICs were less than 6.3 micrograms/ml and more than 12.5 micrograms/ml in the low- and high-resistance groups, respectively. All strains produced penicillin-binding protein 2' (PBP 2'), which has been associated with methicillin resistance and which has very low affinity for beta-lactam antibiotics. Production of PBP 2' was regulated differently in low- and high-resistance strains. With penicillinase-producing strains of the low-resistance group, cefazolin, cefamandole, and cefmetazole induced PBP 2' production about 5-fold, while flomoxef induced production 2.4-fold or less. In contrast, penicillinase-negative variants of low-resistance strains produced PBP 2' constitutively in large amounts and induction did not occur. With high-resistance strains, flomoxef induced PBP 2' to an extent similar to that of cefazolin in both penicillinase-producing and -negative strains, except for one strain in which the induction did not occur. The amount of PBP 2' induced by beta-lactam antibiotics in penicillinase-producing strains of the low-resistance group correlated well with resistance to each antibiotic. Large amounts of PBP 2' in penicillinase-negative variants of the low-resistance group did not raise the MICs of beta-lactam compounds, although these strains were more resistant when challenged with flomoxef for 2 h. Different regulation of PBP 2' production was demonstrated in the high- and low-resistance groups, and factor(s) other than PBP 2' were suggested to be involved in the methicillin resistance of high-resistance strains. Images PMID:3499861

  17. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  18. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  19. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hjerrild, L.; Gjermansen, Morten

    2004-01-01

    Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Expression of Ag43 confers aggregation and fluffing of cells, promotes biofilm formation and is associated with enhanced resistance to antimicrobial agents. Ag43 is an autotransporter protein and consi......Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Expression of Ag43 confers aggregation and fluffing of cells, promotes biofilm formation and is associated with enhanced resistance to antimicrobial agents. Ag43 is an autotransporter protein......-clumping variants, we have pinpointed the region of the protein responsible for autoaggregation to be located within the N-terminal one-third of the passenger domain. Our data suggest that ionic interactions between charged residues residing in interacting pairs of Ag43(alpha) domains may be important for the self...

  20. Damage-recognition proteins as a potential indicator of DNA-damage-mediated sensitivity or resistance of human cells to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1992-01-01

    The authors compared damage-recognition proteins in cells expressing different sensitivities to DNA damage. An increase in damage-recognition proteins and an enhancement of plasmid re-activation were detected in HeLa cells resistant to cisplatin and u.v. However, repair-defective cells derived from xeroderma-pigmentosum (a rare skin disease) patients did not express less cisplatin damage-recognition proteins than repair-competent cells, suggesting that damage-recognition-protein expression may not be related to DNA repair. By contrast, cells resistant to DNA damage consistently expressed high levels of u.v.-modified-DNA damage-recognition proteins. The results support the notion that u.v. damage-recognition proteins are different from those that bind to cisplatin. Findings also suggest that the damage-recognition proteins identified could be used as potential indicators of the sensitivity or resistance of cells to u.v. (author)

  1. Lee de Forest King of Radio, Television, and Film

    CERN Document Server

    Adams, Mike

    2012-01-01

    Lee de Forest, Yale doctorate and Oscar winner, gave voice to the radio and the motion picture. Yet by the 1930s, after the radio and the Talkies were regular features of American life, Lee de Forest had seemingly lost everything. Why? Why didn’t he receive the recognition and acclaim he sought his entire life until years later in 1959, when he was awarded an Oscar? A lifelong innovator, Lee de Forest invented the three-element vacuum tube which he developed between 1906 and 1916 as a detector, amplifier, and oscillator of radio waves. As early as 1907, he was broadcasting music programming. In 1918, he began to develop a system for recording and playing back sound by using light patterns on motion picture film. In order to promote and demonstrate his process he made hundreds of short sound films, found theatres for their showing, and issued publicity to gain audiences for his invention. While he received many patents for this technology, he was ignored by the film industry. Lee de Forest, King of Radio, Te...

  2. Improving protein resistance of {alpha}-Al{sub 2}O{sub 3} membranes by modification with POEGMA brushes

    Energy Technology Data Exchange (ETDEWEB)

    He Huating [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Jing Wenheng, E-mail: jingwenheng@yahoo.com.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Xing Weihong; Fan Yiqun [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2011-11-15

    A kind of protein-resistant ceramic membrane is prepared by grafting poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes onto the surfaces and pore walls of {alpha}-Al{sub 2}O{sub 3} membrane (AM) by surface-initiated atom-transfer radical polymerization (SI-ATRP). Contact-angle, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FESEM) were measured to confirm that the surfaces and pore walls of the ceramic porous membranes have been modified by the brushes with this method successfully. The protein interaction behavior with the POEGMA modified membranes (AM-POEGMA) was studied by the model protein of bovine serum albumin (BSA). A protein-resistant mechanism of AM-POEGMA was proposed to describe an interesting phenomenon discovered in the filtration experiment, in which the initial flux filtrating BSA solution is higher than the pure water flux. The fouling of AM-POEGMA was easier to remove than AM for the action of POEGMA brushes, indicated that the ceramic porous membranes modified with POEGMA brushes exhibit excellent protein resistance.

  3. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise.

    Science.gov (United States)

    Hector, Amy J; McGlory, Chris; Damas, Felipe; Mazara, Nicole; Baker, Steven K; Phillips, Stuart M

    2018-01-01

    Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit. Adult men (body mass index, 28.6 ± 0.6 kg/m 2 ; age 22 ± 1 yr) underwent 10 d of 40%-reduced energy intake while performing unilateral resistance exercise and consuming lower protein (1.2 g/kg/d, n = 12) or higher protein (2.4 g/kg/d, n = 12). Pre- and postintervention testing included dual-energy X-ray absorptiometry, primed constant infusion of ring -[ 13 C 6 ]phenylalanine, and 15 [N]phenylalanine to measure acute postabsorptive MPS and MPB; D 2 O to measure integrated MPS; and gene and protein expression. There was a decrease in acute MPS after ER (higher protein, 0.059 ± 0.006 to 0.051 ± 0.009%/h; lower protein, 0.061 ± 0.005 to 0.045 ± 0.006%/h; P resistance exercise (higher protein, 0.067 ± 0.01%/h; lower protein, 0.061 ± 0.006%/h), and integrated MPS followed a similar pattern. There was no change in MPB (energy balance, 0.080 ± 0.01%/hr; ER rested legs, 0.078 ± 0.008%/hr; ER exercised legs, 0.079 ± 0.006%/hr). We conclude that a reduction in MPS is the main mechanism that underpins LBM loss early in ER in adult men.-Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., Phillips, S. M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. © FASEB.

  4. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Science.gov (United States)

    Warnhoff, Kurt; Murphy, John T; Kumar, Sandeep; Schneider, Daniel L; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J David; Kornfeld, Kerry

    2014-10-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  5. The role of aluminum sensing and signaling in plant aluminum resistance.

    Science.gov (United States)

    Liu, Jiping; Piñeros, Miguel A; Kochian, Leon V

    2014-03-01

    As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  7. Analysis of the individual radio sensitivity of breast cancer patients

    International Nuclear Information System (INIS)

    Auer, Judith

    2013-01-01

    Individual radiosensitivity has a crucial impact on radiotherapy related side effects. A prediction of individual radiosensitivity could avoid these side effects. Our aim was to study a breast cancer collective for its variation of individual radiosensitivity. Peripheral blood samples were obtained from 129 individuals. 67 breast cancer patients and 62 healthy and age matched individuals were looked at and their individual radiosensitivity was estimated by a 3-color Fluorescence in situ hybridization approach. Blood samples were obtained (i) before starting adjuvant radiotherapy and were in vitro irradiated by 2 Gy; (ii) after 5 single doses of 1.8 Gy and after 72 h had elapsed. DNA of lymphocytes was probed with whole chromosome painting for chromosomes 1, 2 and 4. The rate of breaks per metaphase was analyzed and used as a predictor of individual radiosensitivity. Breast cancer patients were distinctly more radio-sensitive compared to healthy controls. Additionally the distribution of the cancer patients' radiosensitivity was broader. A subgroup of 9 rather radio-sensitive and 9 rather radio-resistant patients was identified. A subgroup of patients aged between 40 and 50 was distinctly more radio-sensitive than younger or older patients. The in vivo irradiation approach was not applicable to detect individual radiosensitivity. In the breast cancer collective a distinctly resistant and sensitive subgroup is identified, which could be subject for treatment adjustment. Especially in the range of age 40 to 50 patients have an increased radiosensitivity. An in vivo irradiation in a breast cancer collective is not suitable to estimate individual radiosensitivity due to a low deposed dose.

  8. Centrosomal protein 55 activates NF-?B signalling and promotes pancreatic cancer cells aggressiveness

    OpenAIRE

    Peng, Tao; Zhou, Wei; Guo, Feng; Wu, He-shui; Wang, Chun-you; Wang, Li; Yang, Zhi-yong

    2017-01-01

    Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation...

  9. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  10. Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: D.C. Circuits.

    Science.gov (United States)

    Hoggatt, P.; And Others

    One of four individualized courses included in a radio and television repair curriculum, this course deals with the basic electrical properties of current, voltage, resistance, magnetism, mutual induction, and capacitance. The course is comprised of ten units: (1) Current, (2) Voltage, (3) Resistance, (4) Measuring Voltage and Current in Series…

  11. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    Science.gov (United States)

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P carbohydrate group independent of the type of RT (P carbohydrate group (P carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  12. The effects of whey protein with or without carbohydrates on resistance training adaptations

    OpenAIRE

    Hulmi, Juha; Laakso, Mia; Mero, Antti; Häkkinen, Keijo; Ahtiainen, Juha; Peltonen, Heikki

    2015-01-01

    Background: Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. Methods: A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of...

  13. p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma.

    Science.gov (United States)

    Di Vinci, Angela; Perdelli, Luisa; Banelli, Barbara; Salvi, Sandra; Casciano, Ida; Gelvi, Ilaria; Allemanni, Giorgio; Margallo, Edoardo; Gatteschi, Beatrice; Romani, Massimo

    2005-04-10

    The potential role of p16(INK4a) methylation in breast cancer is controversial whereas there are no data on fibroadenoma. To assess if inactivation of p16(INK4a) by promoter hypermethylation occurs in this hyperproliferative benign breast lesion or, on the contrary, it is strictly related to the carcinogenic process, we have tested the different histological components of 15 cases of fibroadenoma and the intraductal and infiltrating components of 15 cases of carcinoma and their adjacent non-tumoral epithelium. All samples were obtained by laser-assisted microdissection. The relationship between promoter methylation status, immunohistochemical protein expression and ki67 proliferative activity was evaluated for each lesion. Our data demonstrate that hypermethylation of p16(INK4a) promoter is a common event occurring at similar frequency in all the different histological areas of the benign and malignant breast lesions taken into exam. Conversely, protein p16 expression, although heterogeneously distributed within the section, is considerably higher in breast carcinoma as compared to fibroadenoma in both tumoral and non-tumoral epithelia and stroma. The protein localization was almost exclusively nuclear in fibroadenoma and non-tumoral epithelia whereas, in carcinoma, the staining was both nuclear and cytoplasmic or cytoplasmic alone. Furthermore, in a subset of fibroadenoma with higher proliferative activity, p16 protein expression was substantially decreased as compared to those showing lower proliferation. We did not observe this association in carcinomas. Our data demonstrate that the hypermethylation of the p16(INK4a) promoter is not specifically associated with malignancy and that, on the contrary, the overexpression of p16 and its cytoplasmic sequestration is a feature of breast carcinoma. (c) 2004 Wiley-Liss, Inc.

  14. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    Science.gov (United States)

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  15. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  16. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  17. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  18. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco, horseradish peroxidase (HRP, hemoglobin (Hb], and two pepsin resistant proteins [lipid transfer protein (LTP and soybean trypsin inhibitor (STI]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to

  20. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    Science.gov (United States)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.

  1. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    NARCIS (Netherlands)

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  2. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis

    OpenAIRE

    SPRATT, BG; ZHANG, QY; JONES, DM; HUTCHISON, A; BRANNIGAN, JA; DOWSON, CG

    1989-01-01

    Non-beta-lactamase-producing, penicillin-resistant strains of Neisseria meningitidis produce altered forms of penicillin-binding protein 2 that have decreased affinity for penicillin. The sequence of the penicillin-binding protein 2 gene (penA) from a penicillin-resistant strain of N. meningitidis was compared to the sequence of the same gene from penicillin-sensitive strains and from penicillin-sensitive and penicillin-resistant strains of Neisseria gonorrhoeae. The penA genes from penicilli...

  3. Ursodeoxycholic acid reduces protein levels and nucleation-promoting activity in human gallbladder bile

    NARCIS (Netherlands)

    van Erpecum, K. J.; Portincasa, P.; Eckhardt, E.; Go, P. M.; vanBerge-Henegouwen, G. P.; Groen, A. K.

    1996-01-01

    Background & Aims: Ursodeoxycholic acid prevents gallstone formation in selected patients. The aim of this study was to examine whether decreased concentration and nucleation-promoting activity of various proteins contribute to this beneficial effect. Methods: Gallbladder bile of 13 patients with

  4. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mukhametkaliyev, T.M.; Surmeneva, M.A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Vladescu, A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Cotrut, C.M. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Braic, M.; Dinu, M. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Vranceanu, M.D. [Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Pana, I. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Faculty of Physics, Bucharest University, 405 Atomistilor St., RO77125 Magurele (Romania); Mueller, M. [Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmenev, R.A., E-mail: rsurmenev@gmail.com [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation)

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  5. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    International Nuclear Information System (INIS)

    Mukhametkaliyev, T.M.; Surmeneva, M.A.; Vladescu, A.; Cotrut, C.M.; Braic, M.; Dinu, M.; Vranceanu, M.D.; Pana, I.; Mueller, M.; Surmenev, R.A.

    2017-01-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  6. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.

    1992-01-01

    An adaptive response to radiation stress was found as a suppressed induction of chromosomal damage including micronuclei and sister chromatid exchanges in cultured Chinese hamster V79 cells pre-exposed to very low doses of ionizing radiations. The mechanism underlying this novel chromosomal response, called 'radio-adaptive response (RAR)' has been studied progressively. The following results were obtained in recent experiments. 1. Low doses of β-rays from tritiated water (HTO) as well as tritium-thymidine can cause RAR. 2. Thermal neutrons, a high LET radiation, can not act as tritium β-rays or γ-rays. 3. The RAR expression is suppressed not only by the treatment with an inhibitor of protein synthesis but also by RNA synthesis inhibition. 4. Several proteins are newly synthesized concurrently with the RAR expression after the adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggests that the RAR might be a cellular stress response to a signal produced preferentially by very low doses of low LET radiation under restricted conditions, accompany the inducible specific gene expression. (author)

  7. Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance

    Directory of Open Access Journals (Sweden)

    Rong Di

    2015-03-01

    Full Text Available Pokeweed antiviral protein (PAP is a 29 kDa type I ribosome inactivating protein (RIP found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.

  8. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  9. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  10. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    International Nuclear Information System (INIS)

    Jung, Myung Hwan; Kim, Kye Ryung

    2013-01-01

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio-resistance

  12. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio-resistance

  13. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans.

    Science.gov (United States)

    Shirayama, Masaki; Stanney, William; Gu, Weifeng; Seth, Meetu; Mello, Craig C

    2014-04-14

    Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Charlene Desbonnet

    2016-04-01

    Full Text Available The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins” is reliant on the presence of class A penicillin-binding proteins (Pbps PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2 of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP. Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system.

  15. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D. [Scripps Research Inst., Jupiter, FL (United States); Bigelow, Lance [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Changsoo [Argonne National Lab. (ANL), Argonne, IL (United States); Cuff, Marianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Lohman, Jeremy R. [Scripps Research Inst., Jupiter, FL (United States); Chang, Chin-Yuan [Scripps Research Inst., Jupiter, FL (United States); Ma, Ming [Scripps Research Inst., Jupiter, FL (United States); Yang, Dong [Scripps Research Inst., Jupiter, FL (United States); Clancy, Shonda [Argonne National Lab. (ANL), Argonne, IL (United States); Babnigg, Gyorgy [Argonne National Lab. (ANL), Argonne, IL (United States); Joachimiak, Andrzej [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, George N. [Rice Univ., Houston, TX (United States); Shen, Ben [Scripps Research Inst., Jupiter, FL (United States)

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  16. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    International Nuclear Information System (INIS)

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-01-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription

  17. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  18. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players.

    Science.gov (United States)

    Rivière, Maxence; Louit, Loic; Strokosch, Alasdair; Seitz, Laurent B

    2017-04-01

    Rivière, M, Louit, L, Strokosch, A, and Seitz, LB. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4): 947-955, 2017-The purpose of this study was to examine the strength, velocity, and power adaptations in youth rugby league players in response to a variable resistance training (VRT) or traditional free-weight resistance training (TRAD) intervention. Sixteen elite youth players were assigned to a VRT or TRAD group and completed 2 weekly upper- and lower-body strength and power sessions for 6 weeks. Training programs were identical except that the VRT group trained the bench press exercise with 20% of the prescribed load coming from elastic bands. Bench press 1 repetition maximum (1RM) and bench press mean velocity and power at 35, 45, 65, 75, and 85% of 1RM were measured before and after the training intervention, and the magnitude of the changes was determined using effect sizes (ESs). The VRT group experienced larger increases in both absolute (ES = 0.46 vs. 0.20) and relative (ES = 0.41 vs. 0.19) bench press 1RM. Similar results were observed for mean velocity as well as both absolute and relative mean power at 35, 45, 65, 75, and 85% of 1RM. Furthermore, both groups experienced large gains in both velocity and power in the heavier loads but small improvements in the lighter loads. The improvements in both velocity and power against the heavier loads were larger for the VRT group, whereas smaller differences existed between the 2 groups in the lighter loads. Variable resistance training using elastic bands may offer a greater training stimulus than traditional free-weight resistance training to improve upper-body strength, velocity, and power in elite youth rugby league players.

  19. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  20. Bioinformatics and structural characterization of a hypothetical protein from Streptococcus mutans: implication of antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Jie Nan

    2009-10-01

    Full Text Available As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.

  1. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ.

    Science.gov (United States)

    Li, Y; Chen, J; Zhao, M; Yang, Z; Yue, L; Zhang, X

    2017-02-01

    To demonstrate the resuscitation-promoting activities of recombinant YeaZ from Vibrio harveyi SF-1. The gene of resuscitation-promoting factor YeaZ was cloned from genomic DNA of V. harveyi SF-1. The gene was expressed in Escherichia coli, and the expressed protein was purified by Ni 2+ -affinity chromatography. A yeaZ mutant was constructed by using the suicide plasmid pNQ705 with homologous recombination. Disruption of yeaZ did not affect cell growth significantly in 2216 E broth at 28°C. The wild-type and mutant viable but nonculturable (VBNC) cells could be resuscitated by temperature upshift method. In addition, the recombinant YeaZ increased the culturable counts from 1·27 × 10 4  CFU per ml and 1·99 × 10 4 CFU per ml to 2·88 × 10 5  CFU per ml and 4·59 × 10 5 CFU per ml, respectively. After the VBNC cells of wild-type and mutant cells were maintained at 4°C for 120 days, no resuscitation was obtained by temperature upshift method, but addition of the recombinant YeaZ promoted the resuscitation of the wild-type and mutant cells, with the culturable cell counts of 1·13 × 10 3 and 1·44 × 10 3 CFU per ml, respectively. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. The lethal dose 50% of the yeaZ null mutant was more than 10-fold higher than that of the wild-type cells. The recombinant YeaZ could efficiently promote resuscitation of the wild-type and mutant cells of V. harveyi from VBNC to culturable state. The protein also promoted resuscitation of the VBNC wild-type and mutant cells, which were maintained at 4°C for 120 days and not recovered by temperature upshift method. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. Here, we show clear evidence of a resuscitation-promoting factor YeaZ of V. harveyi and the roles in resuscitation of the VBNC cells and its pathogenicity. © 2016 The Society for Applied Microbiology.

  2. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.

    Science.gov (United States)

    Tanimoto, Ryuta; Morcavallo, Alaide; Terracciano, Mario; Xu, Shi-Qiong; Stefanello, Manuela; Buraschi, Simone; Lu, Kuojung G; Bagley, Demetrius H; Gomella, Leonard G; Scotlandi, Katia; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-01-01

    The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.

  3. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  4. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    International Nuclear Information System (INIS)

    Janaki Ramaiah, M.; Parnaik, Veena K.

    2006-01-01

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif

  5. Ectopic expression of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to antitumor immunity.

    Science.gov (United States)

    Kang, Tae Heung; Noh, Kyung Hee; Kim, Jin Hee; Bae, Hyun Cheol; Lin, Ken Y; Monie, Archana; Pai, Sara I; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2010-04-15

    Tumor immune escape is a major obstacle in cancer immunotherapy, but the mechanisms involved remain poorly understood. We have previously developed an immune evasion tumor model using an in vivo immune selection strategy and revealed Akt-mediated immune resistance to antitumor immunity induced by various cancer immunotherapeutic agents. In the current study, we used microarray gene analysis to identify an Akt-activating candidate molecule overexpressed in immune-resistant tumors compared with parental tumors. X-linked lymphocyte-regulated protein pM1 (XLR) gene was the most upregulated in immune-resistant tumors compared with parental tumor cells. Furthermore, the retroviral transduction of XLR in parental tumor cells led to activation of Akt, resulting in upregulation of antiapoptotic proteins and the induction of immune resistance phenotype in parental tumor cells. In addition, we found that transduction of parental tumor cells with other homologous genes from the mouse XLR family, such as synaptonemal complex protein 3 (SCP3) and XLR-related, meiosis-regulated protein (XMR) and its human counterpart of SCP3 (hSCP3), also led to activation of Akt, resulting in the upregulation of antiapoptotic proteins and induction of immune resistance phenotype. Importantly, characterization of a panel of human cervical cancers revealed relatively higher expression levels of hSCP3 in human cervical cancer tissue compared with normal cervical tissue. Thus, our data indicate that ectopic expression of XLR and its homologues in tumor cells represents a potentially important mechanism for tumor immune evasion and serves as a promising molecular target for cancer immunotherapy. (c) 2010 AACR.

  6. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  7. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    Science.gov (United States)

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion.

    Directory of Open Access Journals (Sweden)

    Christoph M Ernst

    2009-11-01

    Full Text Available Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs by the multiple peptide resistance factor (MprF protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help

  9. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Science.gov (United States)

    2012-01-01

    Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available

  10. Transcriptional profiling of rice treated with MoHrip1 reveal the function of protein elicitor in enhancement of disease resistance and plant growth

    Directory of Open Access Journals (Sweden)

    Shun Lv

    2016-12-01

    Full Text Available MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS-based digital gene expression (DGE profiling was performed to collect the transcriptional data of differentially expressed genes induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA pathway, phytoalexin, transcription factors and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA pathway were activated, while the jasmonic acid (JA signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  11. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth.

    Science.gov (United States)

    Lv, Shun; Wang, Zhenzhen; Yang, Xiufen; Guo, Lihua; Qiu, Dewen; Zeng, Hongmei

    2016-01-01

    MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  12. NSs Protein of Rift Valley Fever Virus Promotes Posttranslational Downregulation of the TFIIH Subunit p62▿

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-01-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus. PMID:21543505

  13. Early Involvement of Death-Associated Protein Kinase Promoter Hypermethylation in the Carcinogenesis of Barrett's Esophageal Adenocarcinoma and Its Association with Clinical Progression

    Directory of Open Access Journals (Sweden)

    Doerthe Kuester

    2007-03-01

    Full Text Available Esophageal Barrett's adenocarcinoma (BA develops through a multistage process, which is associated with the transcriptional silencing of tumor-suppressor genes by promoter CpG island hypermethylation. In this study, we explored the promoter hypermethylation and protein expression of proapoptotic deathassociated protein kinase (DAPK during the multistep Barrett's carcinogenesis cascade. Early BA and paired samples of premalignant lesions of 61 patients were analyzed by methylation-specific polymerase chain reaction and immunohistochemistry. For the association of clinicopathological markers and protein expression, an immunohistochemical tissue microarray analysis of 66 additional BAs of advanced tumor stages was performed. Hypermethylation of DAPK promoter was detected in 20% of normal mucosa, 50% of Barrett's metaplasia, 53% of dysplasia, and 60% of adenocarcinomas, and resulted in a marked decrease in DAPK protein expression (P < .01. The loss of DAPK protein was significantly associated with advanced depth of tumor invasion and advanced tumor stages (P < .001. Moreover, the severity of reflux esophagitis correlated significantly with the hypermethylation rate of the DAPK promoter (P < .003. Thus, we consider DAPK inactivation by promoter hypermethylation as an early event in Barrett's carcinogenesis and suggest that a decreased protein expression of DAPK likely plays a role in the development and progression of BA.

  14. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling.

    Science.gov (United States)

    van Westen, Gerard J P; Bender, Andreas; Overington, John P

    2014-10-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of 'orthogonally resistant' agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed 'proteochemometric modelling' (PCM), from the field of chemoinformatics, could aid in the quantification and prediction of resistance that acts via point mutations in the target proteins of an agent. The technique combines information from both the chemical and biological domain to generate bioactivity models across large numbers of ligands as well as protein targets. PCM has previously been validated in prospective, experimental work in the medicinal chemistry area, and it draws on the growing amount of bioactivity information available in the public domain. Here, two potential applications of proteochemometric modelling to agrochemical data are described, based on previously published examples from the medicinal chemistry literature.

  15. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity

    NARCIS (Netherlands)

    Nielen, van M.; Feskens, E.J.M.; Rietman, A.; Siebelink, E.; Mensink, M.R.

    2014-01-01

    Increasing protein intake and soy consumption appear to be promising approaches to prevent metabolic syndrome (MetS). However, the effect of soy consumption on insulin resistance, glucose homeostasis, and other characteristics of MetS is not frequently studied in humans. We aimed to investigate the

  16. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  17. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    Directory of Open Access Journals (Sweden)

    Catarina Moreirinha

    2018-03-01

    Full Text Available The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.

  18. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  19. In silico analysis, mapping of regulatory elements and corresponding dna-protein interaction in polyphenol oxidase gene promoter from different rice varieties

    International Nuclear Information System (INIS)

    Mahmood, T.; Rehman, M.; Aziz, E.

    2015-01-01

    Polyphenol oxidase (PPO) is an important enzyme that has positive impact regarding plant resistance against different biotic and abiotic stresses. In the present study PPO promoter from six different rice varieties was amplified and then analyzed for cis- and trans-acting elements. The study revealed a total of 79 different cis-acting regulatory elements including 11 elements restricted to only one or other variety. Among six varieties Pakhal-Basmati had highest number (5) of these elements, whereas C-622 and Rachna-Basmati have no such sequences. Rachna-Basmati, IR-36-Basmati and Kashmir- Basmati had 1, 2 and 3 unique elements, respectively. Different elementsrelated to pathogen, salt and water stresses were found, which may be helpful in controlling PPO activity according to changing environment. Moreover, HADDOCK was used to understand molecular mechanism of PPO regulation and it was found that DNA-protein interactions are stabilized by many potential hydrogen bonds. Adenine and arginine were the most reactive residues in DNA and proteins respectively.Structural comparison of different protein-DNA complexes show that even a highly conserved transcriptional factor can adopt different conformations when they contact a different DNA binding sequence, however their stable interactions depend on the number of hydrogen bonds formed and distance. (author)

  20. Cross layer optimization for cloud-based radio over optical fiber networks

    Science.gov (United States)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  1. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland.

    Science.gov (United States)

    Qamar, N; Rehman, Y; Hasnain, S

    2017-09-01

    The aim of the study was to explore irrigation water polluted with industrial waste and corresponding cropland to screen bacteria for As detoxification and plant growth promotion. Plant growth-promoting (PGP) As-resistant cropland bacteria were isolated from contaminated irrigation water and corresponding agricultural soil. Phylogenetic analysis revealed that the isolates belonged to two distinct bacterial lineages; Firmicutes and γ-Proteobacteria. Maximum As(V) resistance was exhibited by Klebsiella pneumoniae T22 and Klebsiella oxytoca N53 (550 mmol l -1 ), whereas maximum resistance against As(III) was exhibited by K. oxytoca N53 (200 mmol l -1 ). Maximum As(V) reduction was shown by K. pneumoniae T22 (6·7 mmol l -1 ), whereas maximum As(III) oxidation was exhibited by Bacillus subtilis T23 (4·8 mmol l -1 ). As resistance genes arsB and ACR3 were detected in many of the isolates through polymerase chain reaction. Many of these isolates exhibited PGP traits such as hydrogen cyanide and auxin production as well as phosphate solubilization. The bacterial strains were able to enhance Triticum aestivum growth both in the absence and presence of As, and statistically significant increase in shoot and root lengths was observed especially in case of Acinetobacter lwoffii T24 and Citrobacter freundii N52-treated plants. Cropland bacteria have the ability to support plant growth. Bacteria of croplands irrigated with industrially polluted water develop resistance against toxicants. These bacteria are helpful for the plant growth in such contaminated lands. The bacteria capable of both As detoxification and plant growth promotion, such as A. lwoffii T24 and C. freundii N52, are ideal for remediation and reclamation of polluted lands for agriculture purposes. © 2017 The Society for Applied Microbiology.

  2. Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter.

    Science.gov (United States)

    Lilley, Catherine J; Wang, Dong; Atkinson, Howard J; Urwin, Peter E

    2011-02-01

    The potential of the MDK4-20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode-repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root-specific β-glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED-E5 established that the MDK4-20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode-repellent peptide under the control of either AtMDK4-20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4-20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4-20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4-20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst-nematode defence. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  4. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  5. Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.

    Science.gov (United States)

    Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M

    2002-07-02

    Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.

  6. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Radio-sensitizing effect of ethyl caffeate on nasopharyngeal ...

    African Journals Online (AJOL)

    3Department of Clinical Laboratory, The 5th People's Hospital of Ji'nan, Ji'nan ... Purpose: To investigate the radio-sensitizing effect of ethyl caffeate (ETF) on naso-pharyngeal ... malignant solid tumors of head and neck which ... Excess irradiation could result in severe side .... protein bands were probed with corresponding.

  8. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  9. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  10. Association of ERCC1 protein expression to platinum resistance in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    was to investigate if immunohistochemical expression of ERCC1 protein was associated with resistance to standard combination carboplatin and paclitaxel chemotherapy in newly diagnosed ovarian cancer patients. Methods: Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian...

  11. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  12. Molecular Mechanisms of Mouse Skin Tumor Promotion

    International Nuclear Information System (INIS)

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion

  13. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism.

    Science.gov (United States)

    Chen, Jiansong; Hu, Lili; Sun, Longhua; Lin, Borong; Huang, Kun; Zhuo, Kan; Liao, Jinling

    2018-02-27

    Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  14. Autophagy is induced by resistance exercise in young men but unfolded protein response is induced regardless of age.

    Science.gov (United States)

    Hentilä, Jaakko; Ahtiainen, Juha P; Paulsen, Gøran; Raastad, Truls; Häkkinen, Keijo; Mero, Antti A; Hulmi, Juha J

    2018-04-02

    Autophagy and unfolded protein response (UPR) appear to be important for skeletal muscle homeostasis and may be altered by exercise. Our aim was to investigate the effects of resistance exercise and training on indicators of UPR and autophagy in healthy untrained young men (n = 12, 27 ± 4 years) and older men (n = 8, 61 ± 6 years) as well as in resistance-trained individuals (n = 15, 25 ± 5 years). Indicators of autophagy and UPR were investigated from the muscle biopsies after a single resistance exercise bout and after 21 weeks of resistance training. Lipidated LC3II as an indicator of autophagosome content increased at 48 hours post resistance exercise (P resistance-training period (P resistance exercise in untrained young and older men (P resistance-training period regardless of age. UPR was unchanged within the first few hours after the resistance exercise bout regardless of the training status. Changes in autophagy and UPR ER indicators did not correlate with a resistance-training-induced increase in muscle strength and size. Autophagosome content is increased by resistance training in young previously untrained men, but this response may be blunted by aging. However, unfolded protein response is induced by an unaccustomed resistance exercise bout in a delayed manner regardless of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  16. The importance of the electron mean free path for superconducting radio-frequency cavities

    Science.gov (United States)

    Maniscalco, J. T.; Gonnella, D.; Liepe, M.

    2017-01-01

    Impurity-doping of niobium is an exciting new technology in the field of superconducting radio-frequency accelerators, producing cavities with record-high quality factor Q0 and Bardeen-Cooper-Schrieffer surface resistance that decreases with increasing radio-frequency field. Recent theoretical work has offered a promising explanation for this so-called "anti-Q-slope," but the link between the decreasing surface resistance and the shortened electron mean free path of doped cavities has remained elusive. In this work, we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond to stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property that is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux.

  17. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Kurt Warnhoff

    2014-10-01

    Full Text Available The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  18. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  19. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  20. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  1. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  2. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  3. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  4. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    Science.gov (United States)

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  5. Natural coagulation inhibitors and active protein c resistance in preeclampsia

    Directory of Open Access Journals (Sweden)

    Cengiz Demir

    2010-01-01

    Full Text Available INTRODUCTION: The etiology of preeclampsia is not fully established. A few studies have shown a relationship between natural coagulation inhibitors and preeclampsia. OBJECTIVES: The purpose of this study was to investigate the status of natural coagulation inhibitors and active protein C resistance (APC-R in preeclampsia. PATIENTS AND METHODS: We studied 70 women with preeclampsia recruited consecutively and 70 healthy pregnant and 70 nonpregnant women as controls. Plasma protein C (PC, free protein S (fPS, antithrombin III (ATIII and APC-R were evaluated. RESULTS: ATIII values were found to be significantly lower in preeclamptic patients than in the control groups (p< 0.001. Nevertheless, there was no significant difference between the healthy pregnant and nonpregnant women groups (p=0.141. The fPS values of the preeclamptic and healthy pregnant groups were lower than that of the nonpregnant group (p< 0.001, and the fPS value of the preeclamptic pregnant women was lower than that of healthy pregnant women (p<0.001. The PC value of the preeclamptic pregnant women was lower than that of the control groups (p< 0.001. The PC value of the healthy pregnant women was lower than that of the nonpregnant women (p< 0.001. The mean APC activity values were lower in the preeclamptic patients than that of the control groups (p< 0.001, p< 0.001. The APC-R positivity rates of the preeclamptic groups were higher than that of the control groups (p<0.001. CONCLUSIONS: This study demonstrated that ATIII, fPS, PC values and APC resistance were lower and APC-R positivity was higher in preeclamptic women than in normal pregnant and nonpregnant women.

  6. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  7. Detection of the Mr 110,000 lung resistance-related protein LRP/MVP with monoclonal antibodies.

    Science.gov (United States)

    Schroeijers, A B; Scheffer, G L; Reurs, A W; Pijnenborg, A C; Abbondanza, C; Wiemer, E A; Scheper, R J

    2001-11-01

    The Mr 110,000 lung resistance-related protein (LRP), also termed the major vault protein (MVP), constitutes >70% of subcellular ribonucleoprotein particles called vaults. Overexpression of LRP/MVP and vaults has been linked directly to MDR in cancer cells. Clinically, LRP/MVP expression can be of value to predict response to chemotherapy and prognosis. Monoclonal antibodies (MAbs) against LRP/MVP have played a critical role in determining the relevance of this protein in clinical drug resistance. We compared the applicability of the previously described MAbs LRP-56, LMR-5, LRP, 1027, 1032, and newly isolated MAbs MVP-9, MVP-16, MVP-18, and MVP-37 for the immunodetection of LRP/MVP by immunoblotting analysis and by immunocyto- and histochemistry. The availability of a broader panel of reagents for the specific and sensitive immunodetection of LRP/MVP should greatly facilitate biological and clinical studies of vault-related MDR.

  8. [The role of Cd-binding proteins and phytochelatins in the formation of cadmium resistance in Nicotiana plumbaginifolia cell lines].

    Science.gov (United States)

    Fenik, S I; Solodushko, V G; Kaliniak, T B; Blium, Ia B

    2007-01-01

    Nicotiana plumbaginifolia callus lines with the equal resistance to cadmium have been produced under different selective conditions--either without inhibition of the phytochelatin synthesis (line Cd-R) or in the presence of the inhibitor butionine sulfoximine (line Cd-Ri). The level of phytochelatin synthesis in the line Cd-R five-fold exceeded the control value and in the line Cd-Ri it was twice as much as in the control. It was shown that in the control line mainly three cadmium-binding proteins are expressed of the molecular weihgts 41, 34 and 19 kD. The common feature of the both resistant lines is the expression of the cadmium-binding proteins of 40, 37 and 19 kD. The resistant lines differ with respect to the synthesis of relatively low-molecular cadmium-binding proteins. The proteins of the molecular weights 12.5, 11.5 and 9 kD are expressed in the line Cd-R, while the proteins of 13 and 10 kD are expressed in the line Cd-Ri. It was supposed that both the phytochelatins and the Cd-binding proteins contribute to the resisitance of N. plumbaginifolia callus lines to cadmium and the lack of the phytochelatins can be equilibrated by the changes in the low-molecular Cd-binding protein synthesis.

  9. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  10. Radio and the Art of Resistance: A Public Pedagogy of the Airwaves

    Science.gov (United States)

    Darder, Antonia

    2011-01-01

    The politics of the airwaves should be of vital concern to critical democracy, given the expanding realm of neoliberalism and its deeply homogenizing impact on social, political and economic relations everywhere. In light of the privatizing forces that control the media today, the article considers the manner in which community radio can provide…

  11. La radio en África. Una radio para el desarrollo

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lafrance

    2015-01-01

    Full Text Available La radio de tipo comunitario, tal como la conocemos en Norteamérica y Europa (no-comercial, no-estatal y particípatíva, no existe en Africa. Sin embargo, la situación histórica y el contexto socio-político particulares de Africa han precedido la instauración de una radio que, dentro del marco del presente estudio, nos ha resultado interesante. Se trata de la radio educativa rural. Aunque enmarcada dentro del molde estatal de regímenes que en su mayoría son dictaduras, la radio rural africana, al igual que las radios de tipo comunitario, utiliza la radio con otros fines además de los convencionales. En este caso, la radio es un instrumento al servicio del desarrollo, por no decir al servicio del campesino, en una relación con éste último que probablemente dejará cada vez más de ser uni-direccional. La experiencia africana nos proporcionará en esta perspectiva nuevos elementos de reflexión en lo que respecta al rol de la radio dentro de la comunidad y sobre las condiciones incluso del éxito o no-éxito de la participación popular.

  12. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  13. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance

  14. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in [National Center for Radio Astrophysics—Tata Institute of Fundamental Research Post Box 3, Ganeshkhind P.O., Pune 41007 (India)

    2017-10-01

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.

  15. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  16. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  17. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an

  18. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata.

    Science.gov (United States)

    Pérez-de-Luque, Alejandro; González-Verdejo, Clara I; Lozano, M Dolores; Dita, Miguel A; Cubero, José I; González-Melendi, Pablo; Risueño, María C; Rubiales, Diego

    2006-01-01

    Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.

  19. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training

    Directory of Open Access Journals (Sweden)

    Stark Matthew

    2012-12-01

    Full Text Available Abstract The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and ≥44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks

  20. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training

    Science.gov (United States)

    2012-01-01

    The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and ≥44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for

  1. Effect of -55CT Polymorphism of UCP3 on Insulin Resistance and Cardiovascular Risk Factors after a High Protein/Low Carbohydrate versus a Standard Hypocaloric Diet.

    Science.gov (United States)

    de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Romero, Enrique

    2016-01-01

    The C/C genotype of a polymorphism in the uncoupling protein3 (UCP3) promoter (-55C->T) (rs1800849) is associated with an increased body mass index. The aim of our study was to investigate the effect of polymorphism on the UCP3 promoter (-55C->T) on insulin resistance and cardiovascular risk factors secondary to a high protein/low carbohydrate vs. a standard hypocaloric diets (1,000 kcal/day). A population of 283 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high protein/low carbohydrate vs. diet S: standard diet). Weight improvement was higher in non-T carriers. With both diets and only in wild genotype (diet HP vs. diet S), total cholesterol (-9.7 ± 4.0 vs. -11.1 ± 2.0 mg/dl; p > 0.05) and low density lipoprotein (LDL) cholesterol (-8.3 ± 3.0 vs. -5.5 ± 2.7 mg/dl; p > 0.05) decreased. The improvement in these parameters was similar in subjects with diet HP than HS. With diet HP and only in wild genotype, glucose (-5.2 ± 2.2 mg/dl; p diet showed a better metabolic response than S diet in 55CC homozygous. © 2016 S. Karger AG, Basel.

  2. High-resolution structure of the antibiotic resistance protein NimA from Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Leiros, Hanna-Kirsti S.; Tedesco, Consiglia; McSweeney, Seán M.

    2008-01-01

    In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. Many anaerobic human pathogenic bacteria are treated using 5-nitroimidazole-based (5-Ni) antibiotics, a class of inactive prodrugs that contain a nitro group. The nitro group must be activated in an anaerobic one-electron reduction and is therefore dependent on the redox system in the target cells. Antibiotic resistance towards 5-Ni drugs is found to be related to the nim genes (nimA, nimB, nimC, nimD, nimE and nimF), which are proposed to encode a reductase that is responsible for converting the nitro group of the antibiotic into a nonbactericidal amine. A mechanism for the Nim enzyme has been proposed in which two-electron reduction of the nitro group leads to the generation of nontoxic derivatives and confers resistance against these antibiotics. The cofactor was found to be important in the mechanism and was found to be covalently linked to the reactive His71. In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. A planar cofactor is clearly visible and well defined in the electron-density map adjacent to His71, the identification of the cofactor and its properties are discussed

  3. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  4. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  5. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  6. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  7. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.

    2015-01-01

    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  8. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  9. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1999-01-01

    on the Tn1546 transposon. Furthermore, glycopeptide-resistant strains, as well as resistance determinants, can be transmitted from animals to humans. Two antimicrobial classes expected to provide the future therapeutic options for treatment of infections with vancomycin-resistant enterococci have analogues......Supplementing animal feed with antimicrobial agents to enhance growth has been common practice for more than 30 years and is estimated to constitute more than half the total antimicrobial use worldwide. The potential public health consequences of this use have been debated; however, until recently......, clear evidence of a health risk was not available. Accumulating evidence now indicates that the use of the glycopeptide avoparcin as a growth promoter has created in food animals a major reservoir of Enterococcus faecium, which contains the high level glycopeptide resistance determinant vanA, located...

  10. Ghrelin- and GH-induced insulin resistance: no association with retinol-binding protein-4

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  11. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  12. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  13. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  14. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.

    1992-01-01

    Knowledge about cellular events in mammalian cells exposed to low doses of ionizing radiation is meager. Recent works showed that human lymphocytes become resistant to radiation-induced chromosomal damage after exposure to low doses of ionizing radiation. Experimental evidence for radio-adaptive response (RAR) in cultured mammalian cells was obtained. Exposure to very low doses of gamma-rays or tritium beta-rays make cells less susceptible to the induction of micronuclei and sister chromatid exchanges by subsequent higher doses. Many important characteristics of the novel response suggest that RAR is a stress response resulting in the enhanced repair of chromosomal DNA damage in cell under restricted conditions. Experiments are still in progress in order to elucidate the molecular basis for RAR processes. (author). 13 refs.; 2 figs., 1 tab

  15. Comparison of protein profiles of beech bark disease-resistant or beech bark disease-susceptible American beech

    Science.gov (United States)

    Mary E. Mason; Marek Krasowski; Judy Loo; Jennifer. Koch

    2011-01-01

    Proteomic analysis of beech bark proteins from trees resistant and susceptible to beech bark disease (BBD) was conducted. Sixteen trees from eight geographically isolated stands, 10 resistant (healthy) and 6 susceptible (diseased/infested) trees, were studied. The genetic complexity of the sample unit, the sampling across a wide geographic area, and the complexity of...

  16. Anti-protein C antibodies are associated with resistance to endogenous protein C activation and a severe thrombotic phenotype in antiphospholipid syndrome.

    Science.gov (United States)

    Arachchillage, D R J; Efthymiou, M; Mackie, I J; Lawrie, A S; Machin, S J; Cohen, H

    2014-11-01

    Antiphospholipid antibodies may interfere with the anticoagulant activity of activated protein C (APC) to induce acquired APC resistance (APCr). To investigate the frequency and characteristics of APCr by using recombinant human APC (rhAPC) and endogenous protein C activation in antiphospholipid syndrome (APS). APCr was assessed in APS and non-APS venous thromboembolism (VTE) patients on warfarin and normal controls with rhAPC or Protac by thrombin generation. IgG anti-protein C and anti-protein S antibodies and avidity were assessed by ELISA. APS patients showed greater resistance to both rhAPC and Protac than non-APS patients and normal controls (median normalized endogenous thrombin potential inhibition): APS patients with rhAPC, 81.3% (95% confidence interval [CI] 75.2-88.3%; non-APS patients with rhAPC, 97.7% (95% CI 93.6-101.8%; APS patients with Protac, 66.0% (95% CI 59.5-72.6%); and non-APS patients with Protac, 80.7 (95% CI 74.2-87.2%). APS patients also had a higher frequency and higher levels of anti-protein C antibodies, with 60% (15/25) high-avidity antibodies. High-avidity anti-protein C antibodies were associated with greater APCr and with a severe thrombotic phenotype (defined as the development of recurrent VTE while patients were receiving therapeutic anticoagulation or both venous and arterial thrombosis). Twelve of 15 (80%) patients with high-avidity anti-protein C antibodies were classified as APS category I. Thrombotic APS patients showed greater APCr to both rhAPC and activation of endogenous protein C by Protac. High-avidity anti-protein C antibodies, associated with greater APCr, may provide a marker for a severe thrombotic phenotype in APS. However, in patients with category I APS, it remains to be established whether anti-protein C or anti-β2 -glycoprotein I antibodies are responsible for APCr. © 2014 International Society on Thrombosis and Haemostasis.

  17. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    Science.gov (United States)

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  18. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  19. Reduced expression of bax in small cell lung cancer cells is not sufficient to induce cisplatin-resistance

    Directory of Open Access Journals (Sweden)

    Biagosch J

    2010-10-01

    Full Text Available Abstract Resistance to cisplatin in the course of chemotherapy contributes to the poor prognosis of small cell lung cancer (SCLC. B cell lymphoma-2 is the founding member of a large family of proteins that either promote or inhibit apoptosis. We aimed at investigating if the pro-apoptotic members Bad, Bax, Bim and Bid are involved in cisplatin-resistance. Cisplatin-resistance in the SCLC cell line H1339 was induced by repetitive exposure to cisplatin. Protein expression was quantified by Western Blot and immuno-fluorescence analysis. Protein expression was altered using siRNA interference. Four "cycles" of 0.5 μg/ml cisplatin led to partial cisplatin-resistance in H1339 cells. The expression of Bad, Bim and Bid was comparable in naïve and resistant cells while the expression of Bax was reduced in the resistant clone. But, reducing Bax expression in naïve cells did not lead to altered cisplatin sensitivity neither in H1339 nor in H187 SCLC cells. We conclude that the reduced Bax expression after exposure to cisplatin is not sufficient to induce cis-platin-resistance in SCLC cells.

  20. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  1. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dual regulatory roles of the extended N terminus for activation of the tomato MI-1.2 resistance protein

    NARCIS (Netherlands)

    Lukasik-Shreepaathy, E.; Slootweg, E.; Richter, H.; Goverse, A.; Cornelissen, B.J.C.; Takken, F.L.W.

    2012-01-01

    Plant resistance (R) proteins mediate race-specific immunity and initiate host defenses that are often accompanied by a localized cell-death response. Most R proteins belong to the nucleotide binding-leucine-rich repeat (NB-LRR) protein family, as they carry a central NB-ARC domain fused to an LRR

  3. Recovery of endo-CFU-S in radio-adaptive survival response in mice

    International Nuclear Information System (INIS)

    Yonezawa, Morio; Horie, Kiyohito; Kubo, Kihei

    2003-01-01

    A priming irradiation with 0.45 Gy of X-rays, given 2 weeks prior to the challenging exposures, induces radio-resistance (decrease in bone marrow death rate after mid-lethal irradiations) in mice of C57BL/6 mice. This acquired radio-resistance appeared on day 9 and continued till day 17 after the priming irradiation, with a maximal on days 12-14 and diminished on day 21. The priming irradiation, given 14 days prior to the challenging exposure, increased endogenous spleen colonies on days 12-13 after exposure to 5.0 Gy. Effect of interval time between the priming and the challenging irradiations on the increase in endogenous spleen colonies was also examined. Significant increase of the colonies by the priming irradiation was observed when the interval time was 12-17 and 21 days. The results correspond to the increase of the survival rates on days 12-17 after the challenging irradiations. (author)

  4. Methods for promoting wound healing and muscle regeneration with the cell signaling protein nell1

    Energy Technology Data Exchange (ETDEWEB)

    Culiat, Cymbeline T.

    2018-03-20

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  5. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    Science.gov (United States)

    Culiat, Cymbeline T [Oak Ridge, TN

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  6. Current status of radio-isotopes utilization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M [Banaras Hindu Univ. (India)

    1974-08-01

    Utilization of radioisotopes were reviewed briefly in a categorized manner. In plant biochemistry, long lived radioactive carbon ,/sup 14/C, was applied to clarify such metabolic processes as photosynthesis, respiration and protein synthesis, etc., while radioactive oxygen ,/sup 18/O, was used to study the O/sub 2/ generation mechanism. Radioactive phosphorus ,/sup 32/P, was used to detect the amount, grain size of phosphatic fertilizer as well as the time and depth for better utilization. Radioactive sulphur ,/sup 35/S, and nitrogen ,/sup 15/N, could be of use in studies of protein metabolism in plants. Radioactive tracers of other minerals such as N, P, K, Ca, Mg, Zn, Mo, B, and Co were also used to detect their specific role in plants. Use of radioactive isotopes in protein synthesis and transfer of genetic information was described. Radioactive iodine ,/sup 131/I, binding capacity of milk proteins, and radio trace studies in the iodine turn over in the use of radioactive iodine were summarized.

  7. Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor; Williams, W Paul; Luthe, Dawn S

    2011-01-01

    Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear that delivers essential nutrients to the developing kernels and A. flavus spreads through the rachis to infect kernels within the ear. Therefore, rachis plays an important role in fungal proliferation and subsequent kernel contamination. We used proteomic approaches and investigated the rachis tissue from aflatoxin accumulation resistant (Mp313E and Mp420) and susceptible (B73 and SC212m) maize inbred lines. First, we compared rachis proteins from resistant and susceptible inbred lines, which revealed that the young resistant rachis contains higher levels of abiotic stress-related proteins and proteins from phenylpropanoid metabolism, whereas susceptible young rachis contains pathogenesis-related proteins, which are generally inducible upon biotic stress. Second, we identified A. flavus-responsive proteins in rachis of both resistant and susceptible genotypes after 10- and 35-day infection. Differential expression of many stress/defense proteins during rachis juvenility, maturation and after A. flavus challenge demonstrates that resistant rachis relies on constitutive defenses, while susceptible rachis is more dependent on inducible defenses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms

    NARCIS (Netherlands)

    Bossers, A.; Belt, P.B.G.M.; Raymond, G.J.; Caughey, B.; Vries, de R.; Smits, M.

    1997-01-01

    Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system.

  9. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  10. Screening a yeast promoter library leads to the isolation of the RP29/L32 and SNR17B/RPL37A divergent promoters and the discovery of a gene encoding ribosomal protein L37.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1991-08-30

    Two promoters (A7 and A23), isolated at random from the Saccharomyces cerevisiae genome by virtue of their capacity to activate transcription, are identical to known intergenic bidirectional promoters. Sequence analysis of the genomic DNA adjacent to the A7 promoter identified a split gene encoding ribosomal (r) protein L37, which is homologous to the tRNA-binding r-proteins, L35a (from human and rat) and L32 (from frogs).

  11. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    OpenAIRE

    Kim, Hyerang; Lee, Saningun; Choue, Ryowon

    2011-01-01

    Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collec...

  12. Printed silver nanowire antennas with low signal loss at high-frequency radio

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  13. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  14. Cranberry interacts with dietary macronutrients to promote healthy aging in Drosophila.

    Science.gov (United States)

    Wang, Cecilia; Yolitz, Jason; Alberico, Thomas; Laslo, Mara; Sun, Yaning; Wheeler, Charles T; Sun, Xiaoping; Zou, Sige

    2014-08-01

    Botanicals possess numerous bioactivities, and some promote healthy aging. Dietary macronutrients are major determinants of life span. The interaction between botanicals and macronutrients that modulates life span is not well understood. Here, we investigated the effect of a cranberry-containing botanical on life span and the influence of macronutrients on the longevity-related effect of cranberry in Drosophila. Flies were supplemented with cranberry on three dietary conditions: standard, high sugar-low protein, and low sugar-high protein diets. We found that cranberry slightly extended life span in males fed with the low sugar-high protein diet but not with other diets. Cranberry extended life span in females fed with the standard diet and more prominently the high sugar-low protein diet but not with the low sugar-high protein diet. Life-span extension was associated with increased reproduction and higher expression of oxidative stress and heat shock response genes. Moreover, cranberry improved survival of sod1 knockdown and dfoxo mutant flies but did not increase wild-type fly's resistance to acute oxidative stress. Cranberry slightly extended life span in flies fed with a high-fat diet. These findings suggest that cranberry promotes healthy aging by increasing stress responsiveness. Our study reveals an interaction of cranberry with dietary macronutrients and stresses the importance of considering diet composition in designing interventions for promoting healthy aging. Published by Oxford University Press on behalf of the Gerontological Society of America 2013.

  15. Overexpression of protein kinase A - RIalpha reduces lipofection efficiency of cisplatin-resistant human tumor cells.

    Science.gov (United States)

    Son, K K; Rosenblatt, J

    2001-04-10

    Cisplatin-resistant variant A2780CP/vector cells were 4.0-5.3-fold more transfectable and 7.6-fold more resistant to cisplatin than their parent cisplatin-sensitive human ovarian carcinoma A2780/vector cells. Overexpression of cAMP-dependent protein kinase Type I regulatory alpha subunit (PKA-RIalpha) gene in A2780CP cells significantly reduced (maximum 47.0%) the transfection activity, with a slight reduction (maximum 27.3%) of cisplatin resistance, of A2780CP cells. However, RIalpha-overexpressing A2780CP (A2780CP/RIalpha) cells were still 2.5-to 3.0-fold more transfectable and 5.5-fold more resistant to cisplatin than A2780 cells. This results suggest that gene transfer efficiency is associated with cisplatin resistance, in part, through the PKA-mediated cAMP signal transduction pathway.

  16. Relations between the occurrence of resistance to antimicrobial growth promoters among Enterococcus faecium isolated from broilers and broiler meat

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Andersen, J. S.; Seyfarth, Anne Mette

    2003-01-01

    and streptogramin. By February 1998, all antimicrobial growth promoters (AGPs) were withdrawn from the Danish broiler production. The present study investigates, by logistic regression analyses, the (1) changes in the occurrence of AGP resistance among E. faecium from broilers and broiler meat from the fourth...... quarter of 1995 to the fourth quarter of 2001 and (2) relations between the occurrence of AGP resistance among E. faecium isolates from Danish broilers and AGP resistance among E. faecium isolates from the broiler meat of Danish and unknown origin collected in the same quarter within the year....... In the present study, we showed that after the AGP withdrawal, a significant decline in resistance to avilamycin, erythromycin, vancomycin and virginiamycin was observed among E. faecium from broilers and broiler meat. In addition, a decline in the occurrence of AGP resistance among E. faecium from Danish...

  17. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... and solemn radio voices to lightharted, laughing and chatting speakers. Senior radio listerners have experienced the development and refinements of technique, content and genres. It is now expected of all media users that they are capable of crossing media, combining, juggling and jumping between various...... media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers...

  18. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  19. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas.

    Science.gov (United States)

    Gao, Ke; Li, Gang; Qu, Yiping; Wang, Maode; Cui, Bo; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2016-02-23

    Increasing evidences have implicated somatic gain-of-function mutations at the telomerase reverse transcriptase (TERT) promoter as one of the major mechanisms that promote transcriptional activation of TERT and subsequently maintain telomere length in human cancers including glioma. To investigate the prognostic value of these mutations and telomere length, individually and their coexistence, in gliomas, we analyzed two somatic mutations C228T and C250T in the TERT promoter, relative telomere length (RTL), IDH1 mutation and MGMT methylation in 389 glioma patients, and explored their associations with patient characteristics and clinical outcomes. Our data showed that C228T and C250T mutations were found in 17.0% (66 of 389) and 11.8% (46 of 389) of gliomas, respectively, and these two mutations were mutually exclusive in this cancer. Moreover, they were significantly associated with WHO grade. We also found that the RTL was significant longer in gliomas than in meningiomas and normal brain tissues (Median, 0.89 vs. 0.44 and 0.50; P radiotherapy. Collectively, TERT promoter mutations and long RTL are not only prognostic factors for poor clinical outcomes, but also the predictors of radiotherapy resistance in gliomas.

  20. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  1. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  2. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-12-01

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  3. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody; Coll, Francesc; McNerney, Ruth; Ascher, David; Pires, Douglas; Furnham, Nick; Coeck, Nele; Hill-Cawthorne, Grant; Nair, Mridul; Mallard, Kim; Ramsay, Andrew; Campino, Susana; Hibberd, Martin; Pain, Arnab; Rigouts, Leen; Clark, Taane

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure

  4. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  5. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

    Science.gov (United States)

    Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin

    2016-04-22

    Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.

  6. Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake.

    Science.gov (United States)

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; McFarlane, Craig; Patnam, Sreekanth; Sharma, Mridula; Kambadur, Ravi

    2014-03-14

    To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.

  7. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  8. Characterization of tumorigenicity and radio-sensitivity markers by an ex vivo approach. In vivo identification of p53 dependent radio-sensitivity markers

    International Nuclear Information System (INIS)

    Alvarez, S.

    2003-12-01

    After a detailed discussion of the relationship between cancer and genetic instability, of the structure, activation mechanisms, activity and biological functions of the p53 protein, a presentation of p53 mutants, and a recall of the effects of ionizing radiations, the author reports a biology research during which he investigated a cell model established from rat embryo lungs treated with Benzo[a]pyrene and made of tumoral lines muted by the p53 gene. He tried to identify markers which could report differences of tumorigenicity and radio-sensitivity observed in these different lines. He also tried to characterize radio-sensitivity molecular markers dependent on the p53 gene in a context of normal cells

  9. Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

    Directory of Open Access Journals (Sweden)

    Isabella Massimi

    2015-01-01

    Full Text Available Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα. In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293 to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.

  10. Association between the use of avilamycin for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers: Epidemiological study and changes over time

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Andersen, J. S.

    2000-01-01

    This study describes the changes in the occurrence of resistance to avilamycin among Enterococcus faecium from broilers in Denmark and the epidemiological association between usage of avilamycin for growth promotion and the occurrence of avilamycin-resistant E, faecium on broiler farms....... The consumption of avilamycin for growth promotion increased from 10 kg in 1990 to 2,740 kg 1996 and decreased in the following years to only 7 kg in 1998, Most of this has been used for broilers. As part of the nationwide monitoring program for antimicrobial resistance, a total of 473 E, faecium isolates from...... broilers and 290 isolates from pigs have been tested for their susceptibility to avilamycin from 1995 to 1998, A very limited number of isolates from pigs were resistant to avilamycin, whereas the occurrence of resistance among isolates from broilers increased from 63.6% at the end of 1995 to a maximum...

  11. The effects of a high protein diet on indices of health and body composition--a crossover trial in resistance-trained men.

    Science.gov (United States)

    Antonio, Jose; Ellerbroek, Anya; Silver, Tobin; Vargas, Leonel; Peacock, Corey

    2016-01-01

    Eight weeks of a high protein diet (>3 g/kg/day) coupled with a periodized heavy resistance training program has been shown to positively affect body composition with no deleterious effects on health. Using a randomized, crossover design, resistance-trained male subjects underwent a 16-week intervention (i.e., two 8-week periods) in which they consumed either their normal (i.e., habitual) or a higher protein diet (>3 g/kg/day). Thus, the purpose of this study was to ascertain if significantly increasing protein intake would affect clinical markers of health (i.e., lipids, kidney function, etc.) as well as performance and body composition in young males with extensive resistance training experience. Twelve healthy resistance-trained men volunteered for this study (mean ± SD: age 25.9 ± 3.7 years; height 178.0 ± 8.5 cm; years of resistance training experience 7.6 ± 3.6) with 11 subjects completing most of the assessments. In a randomized crossover trial, subjects were tested at baseline and after two 8-week treatment periods (i.e., habitual [normal] diet and high protein diet) for body composition, measures of health (i.e., blood lipids, comprehensive metabolic panel) and performance. Each subject maintained a food diary for the 16-week treatment period (i.e., 8 weeks on their normal or habitual diet and 8 weeks on a high protein diet). Each subject provided a food diary of two weekdays and one weekend day per week. In addition, subjects kept a diary of their training regimen that was used to calculate total work performed. During the normal and high protein phase of the treatment period, subjects consumed 2.6 ± 0.8 and 3.3 ± 0.8 g/kg/day of dietary protein, respectively. The mean protein intake over the 4-month period was 2.9 ± 0.9 g/kg/day. The high protein group consumed significantly more calories and protein (p protein group. There were no differences in dietary intake between the groups for any other measure

  12. C-reactive protein, insulin resistance and risk of cardiovascular disease: a population-based study

    DEFF Research Database (Denmark)

    Hansen, T.W.; Olsen, M.H.; Rasmussen, S.

    2008-01-01

    BACKGROUND: C-reactive protein (CRP), a marker of inflammation, and insulin resistance (IR), a metabolic disorder, are closely related. CRP and IR have both been identified as significant risk factors of cardiovascular disease (CVD) after adjustment for conventional CVD risk factors...

  13. Resistance to apoptosis should not be taken as a hallmark of cancer.

    Science.gov (United States)

    Wang, Rui-An; Li, Zeng-Shan; Yan, Qing-Guo; Bian, Xiu-Wu; Ding, Yan-Qing; Du, Xiang; Sun, Bao-Cun; Sun, Yun-Tian; Zhang, Xiang-Hong

    2014-02-01

    In the research community, resistance to apoptosis is often considered a hallmark of cancer. However, pathologists who diagnose cancer via microscope often see the opposite. Indeed, increased apoptosis and mitosis are usually observed simultaneously in cancerous lesions. Studies have shown that increased apoptosis is associated with cancer aggressiveness and poor clinical outcome. Furthermore, overexpression of Bcl-2, an antiapoptotic protein, is linked with better survival of cancer patients. Conversely, Bax, CD95, Caspase-3, and other apoptosis-inducing proteins have been found to promote carcinogenesis. This notion of the role of apoptosis in cancer is not new; cancer cells were found to be short-lived 88 years ago. Given these observations, resistance to apoptosis should not be considered a hallmark of cancer.

  14. Radio Frequency Interference: The Study of Rain Effect on Radio Signal Attenuation

    International Nuclear Information System (INIS)

    Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Atiq Wahidah Azlan; Zainol Abidin Ibrahim

    2015-01-01

    The intensity of radio waves received by radio telescopes is always not subject to human control. In the millimetre band, the propagation of the electromagnetic waves is severely affected by rain rate, dust particle size and drop size in the terms of attenuation, noise and depolarization. At the frequency above 10 GHz, the absorption and scattering by rain cause a reduction in the transmitted signal amplitude which will lead to the reducing of the availability, reliability and performance on the communications link. In this study, the rain effect on radio signal has been investigated. Spectrum analyzer and weather stations were used to obtain the RFI level and rain rate data respectively. The radio frequency interference (RFI) pattern due to rain factor was determined. This will benefit radio astronomer in managing sites for radio observation for radio astronomy purposes. (author)

  15. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  16. The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas.

    Science.gov (United States)

    Ngo, Teri-T B; Peng, Tien; Liang, Xing-Jie; Akeju, Oluwaseun; Pastorino, Sandra; Zhang, Wei; Kotliarov, Yuri; Zenklusen, Jean C; Fine, Howard A; Maric, Dragan; Wen, Patrick Y; De Girolami, Umberto; Black, Peter McL; Wu, Wells W; Shen, Rong-Fong; Jeffries, Neal O; Kang, Dong-Won; Park, John K

    2007-04-18

    Malignant gliomas are generally resistant to all conventional therapies. Notable exceptions are anaplastic oligodendrogliomas with loss of heterozygosity on chromosome 1p (1p+/-). Patients with 1p+/- anaplastic oligodendroglioma frequently respond to procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine. Because the underlying biologic basis for this clinical finding is unclear, we evaluated differentially expressed 1p-encoded proteins in 1p+/- and 1p+/+ malignant glioma cell lines and then examined whether their expression was associated with outcome of patients with anaplastic oligodendroglioma. We used a comparative proteomic screen of A172 (1p+/-) and U251 (1p+/+) malignant glioma cell lines to identify differentially expressed 1p-encoded proteins, including stathmin, a microtubule-associated protein. 1p+/- and 1p+/+ anaplastic oligodendroglioma specimens from 24 patients were assessed for stathmin expression by immunohistochemistry. The relationship between stathmin expression and clinical outcome was assessed with Kaplan-Meier analyses. RNA inhibition and cDNA transfection experiments tested effects of stathmin under- and overexpression, respectively, on the in vitro and in vivo resistance of malignant glioma cells to treatment with nitrosourea. For in vivo resistance studies, 36 mice with intracranial and 16 mice with subcutaneous xenograft tumor implants were used (one tumor per mouse). Flow cytometry was used for cell cycle analysis. Immunoblotting was used to assess protein expression. All statistical tests were two-sided. Decreased stathmin expression in tumors was statistically significantly associated with loss of heterozygosity in 1p (Pnitrosourea-treated mice carrying xenograft tumors. Median survival of mice with stathmin+/- tumors was 95 days (95% CI = 68.7 to 121.3 days) and that of mice with stathmin+/+ tumors was 64 days (95% CI = 58.2 to 69.8 days) (difference = 31 days, 95% CI = 4.1 to 57.9 days; PNitrosoureas induced

  17. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.

  18. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    NARCIS (Netherlands)

    Masereeuw, R.; Notenboom, S.; Smeets, P.H.E.; Wouterse, A.C.; Russel, F.G.M.

    2003-01-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is

  19. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  20. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.