WorldWideScience

Sample records for radio polarization measurements

  1. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Huffenberger, K. M. [Department of Physics, Florida State University, P.O. Box 3064350, Tallahassee, FL 32306-4350 (United States); Araujo, D.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Buder, I. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y.; Hasegawa, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Kusaka, A. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monsalve, R. [School of Earth and Space Exploration, Arizona State University, 781 E. Terrace Road, Tempe, AZ 85287 (United States); Næss, S. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Newburgh, L. B. [Dunlap Institute, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Reeves, R. [CePIA, Departamento de Astronomía, Universidad de Concepción (Chile); Ruud, T. M.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K.; Gaier, T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gundersen, J. O., E-mail: huffenbe@physics.fsu.edu [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  2. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    International Nuclear Information System (INIS)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-01-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  3. Polarization Characteristics Inferred From the Radio Receiver Instrument on the Enhanced Polar Outflow Probe

    Science.gov (United States)

    Danskin, Donald W.; Hussey, Glenn C.; Gillies, Robert G.; James, H. Gordon; Fairbairn, David T.; Yau, Andrew W.

    2018-02-01

    The Radio Receiver Instrument (RRI) on the CAScade, Smallsat, and Ionospheric Polar Explorer/enhanced Polar Outflow Probe (CASSIOPE/e-POP) satellite was used to receive continuous wave and binary phase shift keyed transmissions from a high-frequency transmitter located in Ottawa, ON, Canada during April 2016 to investigate how the ionosphere affects the polarization characteristics of transionospheric high-frequency radio waves. The spacecraft orientation was continuously slewed to maintain the dipole orientation in a plane perpendicular to the direction toward the transmitter, enabling the first in situ planar polarization determination for continuous wave and binary phase shift keyed modulated radio waves from space at times when the wave frequency is at least 1.58 times the plasma frequency. The Stokes parameters and polarization characteristics were derived from the measured data and interpreted using an existing ray tracing model. For the southern part of the passes, the power was observed to oscillate between the two dipoles of RRI, which was attributed to Faraday rotation of the radio waves. For the first time, a reversal in the rate of change of orientation angle was observed where the minimum in modeled Faraday rotation occurred. The reversal point was poleward of the point of closest approach between the satellite and transmitter; this was explained by the variations of total electron content and component of magnetic field along the direction of propagation. The received signals show both quasi-longitudinal (QL) and quasi-transverse characteristics. South of the transmitter the QL regime is dominant. Around the reversal point, a combination of QL and quasi-transverse nature was observed.

  4. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  5. The SUrvey for Pulsars and Extragalactic Radio Bursts III: Polarization properties of FRBs 160102 & 151230

    Science.gov (United States)

    Caleb, M.; Keane, E. F.; van Straten, W.; Kramer, M.; Macquart, J. P.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Bhandari, S.; Burgay, M.; Farah, W.; Jameson, A.; Jankowski, F.; Johnston, S.; Petroff, E.; Possenti, A.; Stappers, B.; Tiburzi, C.; Krishnan, V. Venkatraman

    2018-05-01

    We report on the polarization properties of two fast radio bursts (FRBs): 151230 and 160102 discovered in the SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes radio telescope. FRB 151230 is observed to be 6 ± 11% circularly polarized and 35 ± 13 % linearly polarized with a rotation measure (RM) consistent with zero. Conversely, FRB 160102 is observed to have a circular polarization fraction of 30 ± 11 %, linear polarization fraction of 84 ± 15 % for RM =-221(6) rad m-2 and the highest measured DM (2596.1 ± 0.3 pc cm-3) for an FRB to date. We examine possible progenitor models for FRB 160102 in extragalactic, non-cosmological and cosmological scenarios. After accounting for the Galactic foreground contribution, we estimate the intrinsic RM to be -256(9) rad m-2 in the low-redshift case and ˜-2.4 × 102 rad m-2 in the high-redshift case. We assess the relative likeliness of these scenarios and how each can be tested. We also place constraints on the scattering measure and study the impact of scattering on the signal's polarization position angle.

  6. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  7. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Hasankiadeh, Q. Dorosti; Falcke, H.; Horandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a

  8. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  9. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, A. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Vernet, J.; Fosbury, R. A. E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Villar-Martin, M. [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir, km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Di Serego Alighieri, S. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Cimatti, A., E-mail: andrew.humphrey@astro.up.pt [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  10. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    Science.gov (United States)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  11. The distribution of polarized radio sources >15 μJy IN GOODS-N

    International Nuclear Information System (INIS)

    Rudnick, L.; Owen, F. N.

    2014-01-01

    We present deep Very Large Array observations of the polarization of radio sources in the GOODS-N field at 1.4 GHz at resolutions of 1.''6 and 10''. At 1.''6, we find that the peak flux cumulative number count distribution is N(> p) ∼ 45*(p/30 μJy) –0.6 per square degree above a detection threshold of 14.5 μJy. This represents a break from the steeper slopes at higher flux densities, resulting in fewer sources predicted for future surveys with the Square Kilometer Array and its precursors. It provides a significant challenge for using background rotation measures (RMs) to study clusters of galaxies or individual galaxies. Most of the polarized sources are well above our detection limit, and they are also radio galaxies that are well-resolved even at 10'', with redshifts from ∼0.2-1.9. We determined a total polarized flux for each source by integrating the 10'' polarized intensity maps, as will be done by upcoming surveys such as POSSUM. These total polarized fluxes are a factor of two higher, on average, than the peak polarized flux at 1.''6; this would increase the number counts by ∼50% at a fixed flux level. The detected sources have RMs with a characteristic rms scatter of ∼11 rad m –2 around the local Galactic value, after eliminating likely outliers. The median fractional polarization from all total intensity sources does not continue the trend of increasing at lower flux densities, as seen for stronger sources. The changes in the polarization characteristics seen at these low fluxes likely represent the increasing dominance of star-forming galaxies.

  12. A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    Science.gov (United States)

    Carozzi, T. D.; Woan, G.

    2009-05-01

    We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.

  13. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  14. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  15. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    Science.gov (United States)

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  16. Relation between Radio Polarization and Spectral Index of Blazars ...

    Indian Academy of Sciences (India)

    Introduction. Blazars are a very special class of extragalactic objects showing some special proper- ties, including rapid variability, high and variability polarization, high luminosity and superluminal motion, etc. Their optical variability timescales can cover a range of hours to years from radio to γ-rays (Fan et al. 2004; Ulrich ...

  17. MAPPING THE POLARIZATION OF THE RADIO-LOUD Ly α NEBULA B3 J2330+3927

    International Nuclear Information System (INIS)

    You, Chang; Zabludoff, Ann; Smith, Paul; Jannuzi, Buell; Yang, Yujin; Kim, Eunchong; Lee, Myung Gyoon; Prescott, Moire K. M.; Matsuda, Yuichi

    2017-01-01

    Ly α nebulae, or “Ly α blobs,” are extended (up to ∼100 kpc), bright (L Lyα  ≳ 10 43 erg s −1 ) clouds of Ly α emitting gas that tend to lie in overdense regions at z  ∼ 2–5. The origin of the Ly α emission remains unknown, but recent theoretical work suggests that measuring the polarization might discriminate among powering mechanisms. Here we present the first narrowband imaging polarimetry of a radio-loud Ly α nebula, B3 J2330+3927, at z = 3.09, with an embedded active galactic nucleus (AGN). The AGN lies near the blob’s Ly α emission peak, and its radio lobes align roughly with the blob’s major axis. With the SPOL polarimeter on the 6.5 m MMT telescope, we map the total (Ly α + continuum) polarization in a grid of circular apertures of a radius of 0.″6 (4.4 kpc), detecting a significant (>2 σ ) polarization fraction P % in nine apertures and achieving strong upper limits (as low as 2%) elsewhere. P % increases from <2% at ∼5 kpc from the blob center to 17% at ∼15–25 kpc. The detections are distributed asymmetrically, roughly along the nebula’s major axis. The polarization angles θ are mostly perpendicular to this axis. Comparing the Ly α flux to that of the continuum and conservatively assuming that the continuum is highly polarized (20%–100%) and aligned with the total polarization, we place lower limits on the polarization of the Ly α emission P %,Lyα ranging from no significant polarization at ∼5 kpc from the blob center to 3%–17% at 10–25 kpc. Like the total polarization, the Ly α polarization detections occur more often along the blob’s major axis.

  18. A polarized fast radio burst at low Galactic latitude

    Science.gov (United States)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  19. Optical polarization position angle versus radio structure axis in Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R R.J. [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1983-05-12

    The hypothesis that there are two polarization classes of Seyfert galaxies, analogous to the perpendicular and parallel radio galaxy groups, is investigated by examining optical polarimetry data. In the sample considered it is shown that all the Seyfert 1 galaxies have roughly parallel polarization while all the Seyfert 2 galaxies have roughly perpendicular polarizations. These alignment effects can be interpreted as being due to thin and thick scattering disks, respectively, surrounding the continuum sources. This would represent a fundamental difference between the two types of Seyfert galaxies.

  20. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  1. ROTATION MEASURES ACROSS PARSEC-SCALE JETS OF FANAROFF-RILEY TYPE I RADIO GALAXIES

    International Nuclear Information System (INIS)

    Kharb, P.; Gabuzda, D. C.; O'Dea, C. P.; Shastri, P.; Baum, S. A.

    2009-01-01

    We present the results of a parsec-scale polarization study of three FRI radio galaxies-3C66B, 3C78, and 3C264-obtained with Very Long Baseline Interferometry at 5, 8, and 15 GHz. Parsec-scale polarization has been detected in a large number of beamed radio-loud active galactic nuclei, but in only a handful of the relatively unbeamed radio galaxies. We report here the detection of parsec-scale polarization at one or more frequencies in all three FRI galaxies studied. We detect Faraday rotation measures (RMs) of the order of a few hundred rad m -2 in the nuclear jet regions of 3C78 and 3C264. In 3C66B, polarization was detected at 8 GHz only. A transverse RM gradient is observed across the jet of 3C78. The inner-jet magnetic field, corrected for Faraday rotation, is found to be aligned along the jet in both 3C78 and 3C264, although the field becomes orthogonal further from the core in 3C78. The RM values in 3C78 and 3C264 are similar to those previously observed in nearby radio galaxies. The transverse RM gradient in 3C78, the increase in the degree of polarization at the jet edge, the large rotation in the polarization angles due to Faraday rotation, and the low depolarization between frequencies suggest that a layer surrounding the jet with a sufficient number of thermal electrons and threaded by a toroidal or helical magnetic field is a good candidate for the Faraday rotating medium. This suggestion is tentatively supported by Hubble Space Telescope optical polarimetry but needs to be examined in a greater number of sources.

  2. The New Horizons Bistatic Radio Science Experiment to Measure Pluto's Surface Properties

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Tyler, G. L.; Vincent, M.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for principally occultation and radiometric measurement of Pluto and Charon during the flyby in July 2015. The REX subsystem is contained, together with the NH X-Band radio, in the Integrated Electronics Module (IEM) in the New Horizons spacecraft. REX samples and records in two polarizations both total RF power in a 4.5 MHz bandwidth, and radio signal waveforms in a narrow, 1.25 kHz band. During the encounter, and at closest approach to Pluto, the spacecraft's high gain antenna (HGA) will scan Pluto's equatorial latitudes, intercepting the specular zone, a region near Pluto's limb that geometrically favors reflection from the earth's direction. At the same time, a powerful 80 kW uplink beacon will have been transmitted from earth by the DSN to arrive at Pluto during spacecraft closest approach. Reflection from the specular zone is expected to be sufficiently strong to observe the bistatic uplink in the REX narrowband record. Measurements in both polarizations will then be combined to yield surface reflectivity, roughness and limits on the dielectric constant in the specular zone.

  3. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  4. A novel method for the evaluation of polarization and hemisphere coverage of HF radio noise measurement antennas

    NARCIS (Netherlands)

    Witvliet, Ben A.; van Maanen, Erik; Bentum, Mark J.; Slump, Cornelis H.; Schiphorst, Roel

    2015-01-01

    In HF (3-30 MHz) communications the ambient electromagnetic background noise or 'radio noise' generally is the limiting factor in reception. Radio noise measurements are needed for spectrum pollution control and to provide reference levels for radio system design. This article discusses the

  5. MAPPING THE POLARIZATION OF THE RADIO-LOUD Ly α NEBULA B3 J2330+3927

    Energy Technology Data Exchange (ETDEWEB)

    You, Chang; Zabludoff, Ann; Smith, Paul; Jannuzi, Buell [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Yang, Yujin [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Eunchong; Lee, Myung Gyoon [Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 88226 (Korea, Republic of); Prescott, Moire K. M. [Department of Astronomy, New Mexico State University, 1320 Frenger Mall, Las Cruces, NM 88003 (United States); Matsuda, Yuichi, E-mail: yyang@kasi.re.kr [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-01-10

    Ly α nebulae, or “Ly α blobs,” are extended (up to ∼100 kpc), bright (L{sub Lyα}  ≳ 10{sup 43} erg s{sup −1}) clouds of Ly α emitting gas that tend to lie in overdense regions at z  ∼ 2–5. The origin of the Ly α emission remains unknown, but recent theoretical work suggests that measuring the polarization might discriminate among powering mechanisms. Here we present the first narrowband imaging polarimetry of a radio-loud Ly α nebula, B3 J2330+3927, at z = 3.09, with an embedded active galactic nucleus (AGN). The AGN lies near the blob’s Ly α emission peak, and its radio lobes align roughly with the blob’s major axis. With the SPOL polarimeter on the 6.5 m MMT telescope, we map the total (Ly α + continuum) polarization in a grid of circular apertures of a radius of 0.″6 (4.4 kpc), detecting a significant (>2 σ ) polarization fraction P {sub %} in nine apertures and achieving strong upper limits (as low as 2%) elsewhere. P{sub %} increases from <2% at ∼5 kpc from the blob center to 17% at ∼15–25 kpc. The detections are distributed asymmetrically, roughly along the nebula’s major axis. The polarization angles θ are mostly perpendicular to this axis. Comparing the Ly α flux to that of the continuum and conservatively assuming that the continuum is highly polarized (20%–100%) and aligned with the total polarization, we place lower limits on the polarization of the Ly α emission P{sub %,Lyα} ranging from no significant polarization at ∼5 kpc from the blob center to 3%–17% at 10–25 kpc. Like the total polarization, the Ly α polarization detections occur more often along the blob’s major axis.

  6. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  7. The rotation measures of radio sources and their interpretation

    International Nuclear Information System (INIS)

    Vallee, J.P.; Kronberg, P.P.

    1975-01-01

    Rotation measures of 251 discrete radio sources have been determined after incorporating new polarization data at short wavelenghts. These have been applied to a 'slab' model-fitting technique to determine the most likely spiral arm magnetic field structure. The best agreement is obtained for a longitudinal spiral arm magnetic field, directed toward (lII approximately 90 0 , bII approximately 0 0 ), but perturbed by an anomaly towards the North Galactic Spur. (orig.) [de

  8. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J H; Brindle, C; Axon, D J; Bailey, J; Sparks, W B

    1987-02-15

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10/sup 41/ erg s/sup -1/. This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear.

  9. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    International Nuclear Information System (INIS)

    Hough, J.H.; Brindle, C.; Axon, D.J.; Bailey, J.; Sparks, W.B.

    1987-01-01

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10 41 erg s -1 . This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear. (author)

  10. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  11. The Growth, Polarization, and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G

    2005-04-20

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. For a symmetric outflow, we find a deceleration in the expansion, from {approx}4.5 mas/day to <2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:1 axis ratio with an average position angle of -40{sup o} (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 {+-} 0.03 c (assuming a distance of 15 kpc) at a position angle of -45{sup o}. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  12. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  13. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  14. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  15. VARIABLE AND POLARIZED RADIO EMISSION FROM THE T6 BROWN DWARF WISEP J112254.73+255021.5

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. K. G.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gizis, J. E., E-mail: pwilliams@cfa.harvard.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2017-01-10

    Route and Wolszczan recently detected five radio bursts from the T6 dwarf WISEP J112254.73+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ∼17.3 minutes. We conducted follow-up observations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission. Assuming that the radio emission of this T dwarf is periodically variable on ∼hour timescales, like other radio-active ultracool dwarfs, we infer a likely period of 116 minutes. However, our observation lasted only 162 minutes and so more data are needed to test this hypothesis. The handedness of the circular polarization switches twice and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the object’s magnetic dipole axis may be highly misaligned relative to its rotation axis.

  16. BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-01-01

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases

  17. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  18. A polarized fast radio burst at low Galactic latitude

    NARCIS (Netherlands)

    Petroff, E.; van Haren, H.; The ANTARES Collaboration; The H.E.S.S. Collaboration

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm−3, a pulse duration of 2.8+1.2−0.5 ms, and a measured peak flux density assuming that

  19. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Słowikowska, Agnieszka [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland); Stappers, Benjamin W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); O' Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Van der Horst, Alexander J. [Astronomical Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  20. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Rowlinson, A.; O'Sullivan, Michael; Anghinolfi, Marco; Anton, G.; Avgitas, T.; Bertin, V.; Puricelli, Stefano; Coniglione, R.; Gleixner, A; Lefèvre, Dominique; Michael, Turner; Pellegrino, Carlo; Piattelli, P.; Sanchez Losa, Agustín; Schnabel, J.

    2017-01-01

    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3;3, a pulse duration of 2.8+1.2-0.25 ms, and a measured...

  1. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  2. Novel measurement-based indoor cellular radio system design

    OpenAIRE

    Aragón-Zavala, A

    2008-01-01

    A scaleable, measurement-based radio methodology has been created to use for the design, planing and optimisation of in door cellular radio systems. The development of this measurement-based methodology was performed having in mind that measurements are of ten required to valiate radio coverage in a building. Therefore, the concept of using care fully calibrated measurements to design and optimise a system is feasible since these measurements can easily be obtained prior to system deployment ...

  3. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  4. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Petroff, E.; Kasliwal, M.; Ravi, V.

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm^(−3), a pulse duration of 2.8 ^(+1.2)_(−0.5)ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7 ^(+0.2)_(−0.1) Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found t...

  5. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  6. Ulysses radio and plasma wave observations in the jupiter environment.

    Science.gov (United States)

    Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P

    1992-09-11

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  7. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  8. Extragalactic dispersion measures of fast radio bursts

    International Nuclear Information System (INIS)

    Xu, Jun; Han, J. L.

    2015-01-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70°. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm −3 , while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm −3 . Notice, however, that additional dispersion measures of tens to hundreds of pc cm −3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium. (paper)

  9. Revealing the Faraday depth structure of radio galaxy NGC 612 with broad-band radio polarimetric observations

    Science.gov (United States)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-05-01

    We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  10. Real-Time Measurements for Adaptive and Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Hüseyin Arslan

    2009-01-01

    Full Text Available Adaptive and cognitive radios (CR have been becoming popular for optimizing mobile radio system transmission and reception. One of the most important elements of the adaptive radio and CR concepts is the ability to measure, sense, learn about, and be aware of parameters related to the radio channel characteristics, availability of spectrum and power, interference and noise temperature, operational environment of radio, user requirements and applications, available networks and infrastructures, local policies, other operating restrictions, and so on. This paper discusses some of the important measurement parameters for enabling adaptive radio and CR systems along with their relationships and impacts on the performance including relevant challenges.

  11. Polarization Properties of 24 Fermi-Detected Blazars

    Science.gov (United States)

    Linford, Justin; Taylor, G. B.; Schinzel, F. K.; Zavala, R. T.

    2013-01-01

    Gamma-ray emitting blazars have been shown to frequently have significant polarization at radio wavelengths. In early 2012, we obtained Very Long Baseline Array (VLBA) observations of 24 blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. These observations utilized the new 2 gigabit-per-second mode of the VLBA. We observed each source with full polarization at 8.4 GHz, 15 GHz, and 22 GHz with 256 MHz of total bandwidth per polarization. Our sample contains 14 flat-spectrum radio quasars (FSRQs) and 10 BL Lacertae objects (BL Lacs). We analyze the spectral index, rotation measure, and magnetic field structures of these 24 gamma-ray loud blazars.

  12. Radio Frequency Interference Site Survey for Thai Radio Telescopes

    Science.gov (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.

    2017-09-01

    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  13. The New Horizons Radio Science Experiment: Performance and Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Bird, M. K.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The New Horizons (NH) spacecraft payload contained the Radio Science Experiment (REX) for determining key characteristics of Pluto and Charon during the July 14, 2015, flyby of the Pluto/Charon system. The REX flight equipment augments the NH X-band radio transceiver by providing a high precision, narrow band recording of high power uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation will review the performance and initial results of two high- priority observations. First, REX received two pair of 20-kW signals, one pair per polarization, transmitted from the DSN at 4.2-cm wavelength during a diametric radio occultation by Pluto. REX recorded these uplink signals and determined precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July and processed to obtain the pressure and temperature structure of Pluto's atmosphere. Second, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side are visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto's disk and temperature resolution of 0.1 K. Occultation and radiometric temperature results presented here will encompass additional data scheduled for playback in September.

  14. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    Science.gov (United States)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-05-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  15. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  16. Measurement Technique in Radio Frequency Interference (RFI) Study for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Roslan Umar; Roslan Umar; Nor Hazmin Sabri; Zainol Abidin Ibrahim; Zamri Zainal Abidin; Asyaari Muhamad

    2015-01-01

    In this paper, we will review our method in making measurements of radio frequency interference (RFI) in order to investigate the sereneness of interference in selected radio interference in Malaysia and Thailand. The selected site are University of Malaya (UM), Universiti Pendidikan Sultan Idris (UPSI), Ubon (UB) and Chiang Mai (CM). The major RFI affecting radio astronomical windows below 1 GHz are electronic equipment system specifically radio navigation between 73.1 MHz and 75.2 MHz, radio broadcasting (151 MHz, 151.8 MHz and 152 MHz), aeronautical navigation (245.5 MHz, 248.7 MHz and 249 MHz and also fixed mobile at 605 MHz, 608.3 MHz, 612.2 MHz, 613.3 MHz. It is obviously showed that all sites within this region are free from interference between 320MHz and 330 MHz and is the best specific region to be considered for solar burst monitoring. We also investigate the effect of RFI on discovery of solar burst. (author)

  17. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 2

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We discuss the wavelength dependence (0.44-2.2 μm) of polarization of the sample of 71 Seyfert and three broad-line radio galaxies presented in a previous paper. For four galaxies, 3A 0557-383, Fairall 51, IC 4392A and NGC 3783, we also present spectropolarimetry covering the wavelength range of 0.4-0.6 μm. (author)

  18. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  19. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst

    OpenAIRE

    Ravi, Vikram; Shannon, R. M.; Bailes, M.; Bannister, K.; Bhandari, S.; Bhat, N. D. R.; Burke-Spolaor, S.; Caleb, M.; Flynn, C.; Jameson, A.; Johnston, S.; Keane, E. F.; Kerr, M.; Tiburzi, C.; Tuntsov, A. V.

    2016-01-01

    Fast radio bursts (FRBs) are millisecond-duration events thought to originate beyond the Milky Way galaxy. Uncertainty surrounding the burst sources, and their propagation through intervening plasma, has limited their use as cosmological probes. We report on a mildly dispersed (dispersion measure 266.5 ± 0.1 pc cm^(−3)), exceptionally intense (120 ± 30 Jy), linearly polarized, scintillating burst (FRB 150807) that we directly localize to 9 arcmin^2. Based on a low Faraday rotation (12.0 ± 0.7...

  20. Measurements of radio frequent cavity volt ages by X-ray spectrum measurements

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available This paper deals with X-ray spectrum measurement as a method for the measurement of radio frequent cavity voltage and the theory of X-ray spectrum calculation. Experimental results at 72 MHz for three different values of the radio frequent power of ACCEL K250 super conducting cyclotron are being presented.

  1. Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet

    Science.gov (United States)

    Girart, J. M.; Fernández-López, M.; Li, Z.-Y.; Yang, H.; Estalella, R.; Anglada, G.; Áñez-López, N.; Busquet, G.; Carrasco-González, C.; Curiel, S.; Galvan-Madrid, R.; Gómez, J. F.; de Gregorio-Monsalvo, I.; Jiménez-Serra, I.; Krasnopolsky, R.; Martí, J.; Osorio, M.; Padovani, M.; Rao, R.; Rodríguez, L. F.; Torrelles, J. M.

    2018-04-01

    Here we present deep (16 μJy beam‑1), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations toward the massive protostar driving the HH 80–81 radio jet. The observations clearly resolve the disk oriented perpendicularly to the radio jet, with a radius of ≃0.″171 (∼291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R ≲ 170 au. The linear polarization of the dust emission is detected almost all along the disk, and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of ∼0.″1 (∼170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 μm. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with the self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.

  2. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  3. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  4. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  5. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  6. MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.

    Science.gov (United States)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2017-12-01

    The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.

  7. Direction-dependent Corrections in Polarimetric Radio Imaging. I. Characterizing the Effects of the Primary Beam on Full-Stokes Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jagannathan, P.; Bhatnagar, S.; Rau, U. [National Radio Astronomy Observatory, Socorro (United States); Taylor, A. R., E-mail: pjaganna@nrao.edu [Department of Astronomy, University of Cape Town (South Africa)

    2017-08-01

    Next generation radio telescope arrays are being designed and commissioned to accurately measure polarized intensity and rotation measures (RMs) across the entire sky through deep, wide-field radio interferometric surveys. Radio interferometer dish antenna arrays are affected by direction-dependent (DD) gains due to both instrumental and atmospheric effects. In this paper, we demonstrate the effect of DD errors of the parabolic dish antenna array on the measured polarized intensities of radio sources in interferometric images. We characterize the extent of polarimetric image degradation due to the DD gains through wide-band VLA simulations of representative point-source simulations of the radio sky at L band (1–2 GHz). We show that at the 0.5 gain level of the primary beam there is significant flux leakage from Stokes I to Q , U amounting to 10% of the total intensity. We further demonstrate that while the instrumental response averages down for observations over large parallactic angle intervals, full-polarization DD correction is required to remove the effects of DD leakage. We also explore the effect of the DD beam on the RM signals and show that while the instrumental effect is primarily centered around 0 rad-m{sup −2}, the effect is significant over a broad range of RM requiring full polarization DD correction to accurately reconstruct the RM synthesis signal.

  8. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    Science.gov (United States)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-12-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving towards the Earth's surface at the speed of light. The electric fields that exists in thunderclouds induces electric currents in the plasma cloud that emit radio waves. The radio footprint for intensity, linear and circular polarization thus contains the finger print of the atmospheric electric fields along the path of the air shower.Here we report on the analysis of many cosmic-ray radio footprints as have been measured at LOFAR, a dense array of simple radio antennas (several thousands of dual-polarized antennas) primarily developed for radio-astronomy observations. We show that this method can be used to determine the charge structure in thunderclouds and discuss the accuracy of the method. We have observed seasonal dependencies.

  9. Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog

    Science.gov (United States)

    Van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; Best, P.; Carretti, E.; Chyży, K. T.; Farnes, J. S.; Ferrière, K.; Hardcastle, M. J.; Heald, G.; Horellou, C.; Iacobelli, M.; Jelić, V.; Mulcahy, D. D.; O'Sullivan, S. P.; Polderman, I. M.; Reich, W.; Riseley, C. J.; Röttgering, H.; Schnitzeler, D. H. F. M.; Shimwell, T. W.; Vacca, V.; Vink, J.; White, G. J.

    2018-06-01

    The polarization properties of radio sources at very low frequencies (right ascension, 45°-57° declination, 570 square degrees). We have produced a catalog of 92 polarized radio sources at 150 MHz at 4.'3 resolution and 1 mJy rms sensitivity, which is the largest catalog of polarized sources at such low frequencies. We estimate a lower limit to the polarized source surface density at 150 MHz, with our resolution and sensitivity, of 1 source per 6.2 square degrees. We find that our Faraday depth measurements are in agreement with previous measurements and have significantly smaller errors. Most of our sources show significant depolarization compared to 1.4 GHz, but there is a small population of sources with low depolarization indicating that their polarized emission is highly localized in Faraday depth. We predict that an extension of this work to the full LOTSS data would detect at least 3400 polarized sources using the same methods, and probably considerably more with improved data processing.

  10. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  11. Optical Polarimetry and Radio Observations of PKS1510-089 between 2009 and 2013

    Directory of Open Access Journals (Sweden)

    Pedro P. B. Beaklini

    2018-02-01

    Full Text Available The blazar PKS 1510-089 has shown intense activity at γ -rays in the recent years. In this work, we discussed the results of our 7 mm radio continuum and optical polarimetric monitoring between 2009 and 2013. In 2009, we detected a large rotation of the optical polarization angle that we attributed to the ejection of new polarized components. In 2011, after the occurrence of several γ -rays flares, the radio emission started to increase, reaching values never observed before. We interpreted this increase as the consequence of the superposition of several new components ejected during the γ -rays flares. A delay was measured between the maximum in the radio emission and the γ -ray flares, which favors models involving expanding components like the shock-in-jet models. Finally, we tried to understand the polarization angle variability behavior filling the gaps in our observations with published results of other polarimetric campaigns, and using the criterion of minimum variation in the polarization angle between successive observations to solve the 180° multiplicity.

  12. Measurement of Λ polarization from Z decays

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajlatouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The polarization of Λ baryons from Z decays is studied with the ALEPH apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is PLΛ = -0.32 ± 0.07 for z = {p}/{p beam} > 0.3 . This agrees with the prediction of -0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ overlineΛ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

  13. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  14. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    International Nuclear Information System (INIS)

    Fischer, W.; Bazilevsky, A.

    2011-01-01

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. (bar P)), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g. ).

  15. HF Radio Angle-of-Arrival Measurements and Ionosonde Positioning

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2014-01-01

    Full Text Available Since 2010 a 2nd generation NOAA MF/HF radar, also referred to as the VIPIR ionosonde, has been operated at Hualien, Taiwan (23.8973°N, 121.5503°E. The Hualien VIPIR ionosonde is a modern ionospheric radar, fully digitizing complex signal records and using multiple parallel receiver channels for simultaneous signal measurements from multiple spaced receiving antennas. This paper considers radio direction finding based on interferometric phase measurements from a horizontal antenna array in the Hualien VIPIR ionosonde system. We applied the Hermite normal form method to solve the phase-measurement aliasing and least squares problems and improve the radio angle-of-arrival (AOA measurements. Backward ray-tracing simulation has been proposed to determine radio transmitter position. This paper presents a numerical, step by step ray-tracing method based on the IGRF superimposed onto a phenomenological ionospheric electron density model, the TaiWan Ionospheric Model (TWIM. The proposed methodology is successfully applied to locate two experimental HF radio transmitters at Longquan and Chungli with distance errors within 5 km and less than 5% of the great circle distances.

  16. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  17. Measurement of γ-quanta beam polarization

    International Nuclear Information System (INIS)

    Luchkov, B.I.; Tugaenko, V.Yu.; Maishev, V.A.

    1992-01-01

    A beam of polarized γ-quanta is produced and its polarization degree is measured. The experiment is conducted using an electron beam of the Serpukhov accelerator at the 'Kaskad' facility. 28 GeV energy electrons are recorded in a proportional chamber after which they enter a 15 mm thickness silicon crystal. After passing the second proportional chamber the electrons get into complete absorption spectrometer where their energy is measured, and the emitted gamma quanta get to 30 mm thickness silicon crystal. E + e - -pair coordinates are measured in the third proportional chamber. Gamma-quantum polarization value of 0.3±0.1 is obtained. 1 ref.; 1 fig

  18. Measurement of $\\Lambda$ polarization from Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The polarization of \\Lambda baryons from Z decays is studied with the {\\sc Aleph} apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal \\Lambda polarization is P^{\\Lambda}_{L} = -0.32 \\pm 0.07 for z = p/p_{\\mathrm{beam}} > 0.3. This agrees with the prediction of -0.39 \\pm 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for \\Lambda production. The observed \\Lambda polarization is diluted with respect to the primary s quark polarization by \\Lambda baryons without a primary s quark. Measurements of the \\Lambda forward-backward asymmetry and of the correlation between back-to-back \\Lambda \\bar{\\Lambda} pairs are used to check this dilution. In addition the transverse \\Lambda polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the \\La...

  19. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    Science.gov (United States)

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  20. Measuring fluorescence polarization with a dichrometer.

    Science.gov (United States)

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  1. Polarimetry and Unification of Low-Redshift Radio Galaxies

    International Nuclear Information System (INIS)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-01-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or Pα.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise steeply

  2. Polarimetry and Unification of Low-Redshift Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  3. Radio frequency sensing measurements and methods for location classification in wireless networks

    Science.gov (United States)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces

  4. Interference analysis for UAV connectivity over LTE using aerial radio measurements

    DEFF Research Database (Denmark)

    Kovacs, Istvan; Amorim, Rafhael Medeiros de; Nguyen, Huan Cong

    2017-01-01

    . In this paper, we use empirical measurements in live rural LTE networks to assess the impact of uplink and downlink radio interference on the UAV radio connectivity performance. Further, we provide a baseline analysis on the potential of interference mitigation schemes, needed to provide a reliable radio...... for these services is that the radio communication link must reliably cover a wide(er) area, when compared to the visual-line-of-sight range radio links currently used. Standardized cellular systems such as Long Term Evolution UMTS (LTE), are an obvious candidate to provide the radio communication link to UAVs...

  5. VLA radio observations of AR Scorpii

    Science.gov (United States)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  6. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  7. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    DEFF Research Database (Denmark)

    Shume, E. B.; Vergados, P.; Komjathy, A.

    2017-01-01

    This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...

  8. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    Directory of Open Access Journals (Sweden)

    Beuchert Tobias

    2013-12-01

    Full Text Available Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  9. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  10. Rapid radio polarization variability in the quasar 0917 + 624

    Energy Technology Data Exchange (ETDEWEB)

    Quirrenbach, A.; Witzel, A.; Qian, S.J.; Krichbaum, T.; Hummel, C.A.; Alberdi, A. (Max-Planck-Institut fuer Radioastronomie, Bonn 1 (DE))

    1989-12-01

    We have made measurements of the total flux density and the polarization of the quasar 0917+624 with a sampling of {approx} 1 hour using the 100 m telescope of the Max-Planck-Institut fuer Radioastronomie (MPIfR) at 6 and 11 cm wavelength. The total flux density showed variations with an amplitude of {approx} 25% and a typical time scale of {approx} 1 day at both wavelengths. The polarized flux density P showed even more dramatic variations with an amplitude of a factor {approx} 3, correlated with the variability of the total flux density S, P being high whenever S was low and vice versa. At 6 cm wavelength a swing of the polarization position angle {chi} of 180{sup 0} wasobserved at a time when the total flux density showed a maximum. These findings make any extrinsic explanations of the effect (e.g. scattering in the interstellar medium) very unlikely. We discuss a model which gives an explanation of the observed variability in terms of shocks propagating in a magnetized jet.

  11. Measuring Ethical Sensitivity to Radio Messages.

    Science.gov (United States)

    Potter, Robert F.

    A study examined whether ethical sensitivity can be measured in response to radio programming. The study was interested in the extent to which a person feels a program is unethical in either its substance or its presentation. Subjects, 17 undergraduates in telecommunications at a large midwestern university, received course credit for their…

  12. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  13. Polarization Measurements in High-Energy Deuteron Photodisintegration

    International Nuclear Information System (INIS)

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; Chang, C.; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis De Jager; Cornelis de Jager; Crovelli, D.; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; Holt, R.; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-01-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime

  14. Polarization observations of four southern pulsars at 1560 MHz

    Science.gov (United States)

    Wu, Xin-Ji; Manchester, R. N.; Lyne, A. G.

    1991-12-01

    Some interesting results from the mean pulse polarization observations of four southern pulsars made at the Australian National Radio Astronomy Observatory, Parkes, using the 64-m telescope in June and July, 1988, are presented. The 2 x 16 x 5 MHz filter system from Jodrell Bank has proved excellent in dedispersing the pulse signals and measuring their polarization properties. Data for the four pulsars are given in some detail, and their spectral behavior is discussed.

  15. A STUDY OF BROADBAND FARADAY ROTATION AND POLARIZATION BEHAVIOR OVER 1.3–10 GHz IN 36 DISCRETE RADIO SOURCES

    International Nuclear Information System (INIS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.

    2016-01-01

    We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple ). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us to identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.

  16. Electromagnetically Induced Transparency and Absorption of A Monochromatic Light Controlled by a Radio Frequency Field

    International Nuclear Information System (INIS)

    Cai Xun-Ming

    2015-01-01

    Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Polarization of the coherent radio emission from pulsars

    International Nuclear Information System (INIS)

    Ardavan, H.

    1982-01-01

    The polarization characteristics of the radiation from a quasi-steady pulsar magnetosphere are calculated using the amplitude-modulated-noise interpretation of the data on pulse structures. The total emission consists of three incoherently mixed radiation streams. Two of the independent polarization states are elliptically polarized (modes I and II) and one is linearly polarized (mode III). In the regime where the length scale of the radial distribution of the electric current density is appreciably longer than the wavelength of the radiation, the position angles of modes I and II are orthogonal and those of modes I and III coincident. However, the senses of circular polarization of modes I and II are in general uncorrelated. The degrees of circular polarization of the 'orthogonal' modes are decreasing functions of frequency and both approach zero in the limit where the frequency of the radiation is much higher than the rotation frequency of the pulsar. Longitudinal changes in the position angle and in the sense of circular polarization of each of the elliptically polarized modes are shown to arise, together with mode transitions, in part from the stochastic fluctuations and in part from the systematic variations of the electric current density with the azimuthal angle, in a narrow emitting region adjacent to the light cylinder. (author)

  18. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    Science.gov (United States)

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  19. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  20. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  1. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  2. Another look at AM Herculis - radio-astrometric campaign with the e-EVN at 6 cm

    Science.gov (United States)

    Gawroński, M. P.; Goździewski, K.; Katarzyński, K.; Rycyk, G.

    2018-03-01

    We conducted radio-interferometric observations of the well-known binary cataclysmic system AM Herculis. This particular system is formed from a magnetic white dwarf (primary) and a red dwarf (secondary), and it is the prototype of so-called polars. Our observations were conducted with the European VLBI Network (EVN) in e-EVN mode at 5 GHz. We obtained six astrometric measurements spanning 1 yr, which make it possible to update the annual parallax for this system with the best precision to date (π = 11.29 ± 0.08 mas), which is equivalent to a distance of 88.6 ± 0.6 pc. The system was observed mostly in the quiescent phase (visual magnitude mv ˜ 15.3), when the radio emission was at the level of about 300 μJy. Our analysis suggests that the radio flux of AM Herculis is modulated with the orbital motion. Such specific properties of the radiation can be explained using an emission mechanism like the scenario proposed for V471 Tau and, in general, for RS CVn-type stars. In this scenario, the radio emission arises near the surface of the red dwarf, where the global magnetic field strength may reach a few kG. We argue that the quiescent radio emission distinguishes AM Herculis and AR Ursae Majoris (a second known persistent radio polar) from other polars, which are systems with a magnetized secondary star.

  3. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  4. Polarization Monitoring of the Lens System JVAS B0218+357

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-10-01

    Full Text Available Monitoring of the lens system JVAS B0218+357 with the Fermi Gamma-ray Space Telescope measured a different time delay to that derived from radio observations. We have re-analysed three months of archival Very Large Array data to produce variability curves with an average sampling of one epoch per day in total flux, polarized flux and polarization position angle (PPA at 15, 8.4 and 5 GHz. The variability is particularly strong in polarized flux. Dense sampling and improved subtraction of the Einstein ring has allowed us to produce superior variability curves and a preliminary analysis has resulted in a time delay (11.5 days which agrees well with the γ -ray value. Both images of 0218+357 are subject to strong Faraday rotation and depolarization as a result of the radio waves passing through the interstellar medium of the spiral lens galaxy. Our data reveal frequency-dependent variations in the PPA that are different in each image and which must therefore result from variable Faraday rotation in the lens galaxy on timescales of a few days. Our analysis has revealed systematic errors in the polarization position angle measurements that strongly correlate with hour angle. Although we have been able to correct for these, we caution that all VLA polarization observations are potentially affected.

  5. The polarization of radio galaxies

    International Nuclear Information System (INIS)

    Jaegers, W.J.

    1986-01-01

    In this thesis radio observations at 0.6 GHz together with matched (convolved) observations at 1.4 GHz of 30 radiosources are described and interpreted. Sources of great interest which are individually discussed are the complex nearby source 3C66B, the source 4C73.48, the narrow edge-darkened double source 3C130 (together with two newly observed narrow-edge-darkened doubles), the galaxies 3C129 and 3C390.3 and the giant quasar 4C34.47. (Auth.)

  6. Polarization Measurements in Neutral Pion Photoproduction

    International Nuclear Information System (INIS)

    C. Jones; Krishni Wijesooriya; B. Fox; Andrei Afanasev; Moscov Amaryan; Konrad Aniol; Stephen Becher; Kamal Benslama; Louis Bimbot; Peter Bosted; Edward Brash; John Calarco; Zhengwei Chai; C. Chang; Ting Chang; Jian-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; Domenick Crovelli; Sonja Dieterich; Scott Dumalski; Dipangkar Dutta; Martin Epstein; Kevin Fissum; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Olivier Gayou; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Ole Hansen; Roy Holt; Jordan Hovdebo; Garth Huber; Kees de Jager; Xiaodong Jiang; Mark Jones; Jim Kelly; Edward Kinney; Edgar Kooijman; Gerfried Kumbartzki; Michael Kuss; John LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; Sergey Malov; Demetrius Margaziotis; Pete Markowitz; Kathy McCormick; Dave Meekins; Zein-Eddine Meziani; Robert Michaels; Joe Mitchell; Ludyvine Morand; Charles Perdrisat

    2002-01-01

    We present measurements of the recoil proton polarization for the 1 H(gamma-vector,p-vector)pi 0 reaction for theta c.m. pi = 60 o -135 o and for photon energies up to 4.1 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. Various theoretical models are compared with the results. No evidence for hadron helicity conservation is observed. Models that employ factorization are not favored. It appears from the strong angular dependence of the induced polarization at photon energies of 2.5 and 3.1 GeV that a relatively high spin resonance or background amplitude might exist in this energy region

  7. Simultaneous optical and infrared polarization measurements of blazars

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Hyland, A.R.

    1986-01-01

    Measurements are presented of the polarization and flux of a sample of 28 blazars (21 BL Lacs and 7 OVV quasars) at optical and near-infrared wavelengths, with repeated observations for some objects. For 20 objects, these are the first reported polarization measurements in either the optical or infrared, and for most of them the first simultaneous measurements at these wavelengths. Out of a total of 42 observations a spectral dependence of polarization level and position angle is found, although not necessarily occurring together, on 15 occasions. (author)

  8. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  9. Polarized Drell-Yan measurement at COMPASS-II

    CERN Document Server

    CERN

    2014-01-01

    The COMPASS experiment at CERN prepares a new measurement on the nucleon structure via Drell-Yan reactions using a transversely polarized ammonia target and a π− beam. This first-ever polarized Drell-Yan measurement will provide the insight into the transverse momentum depen- dent parton distribution functions such as the Sivers and Boer-Mulders functions, complementary to what is measured in the semi-inclusive deep-inelastic scattering process. The important features and status of this project are introduced.

  10. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  11. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis.

    Science.gov (United States)

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C

    1983-01-07

    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  12. Remote sensing of the ionosphere using satellite radio beacons

    International Nuclear Information System (INIS)

    Davies, Kenneth

    1991-01-01

    Since the launch of Sputnik I in 1957, satellite radio beacons have been used to measure the total electron content of the ionosphere. A review of the role of satellite beacons in studies of the vertical and spatial structure of the total electron content and on the occurrence of plasma irregularities, both of which affect transionospheric radio signals, is presented. Measurements of Faraday rotation and time of flight give information on the topside of the ionosphere and on the protonosphere. Morphological studies show that the slab thickness of the ionosphere depends on the solar index but is approximately independent of geographical location. Scintillation of amplitude, phase, polarization, and angle provide information on plasma irregularity occurrence in space and time. (author). 23 refs., 16 figs ., 4 tabs

  13. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    Science.gov (United States)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation

  14. Directivity of the radio emission from the K1 dwarf star AB Doradus

    Science.gov (United States)

    Lim, Jeremy; White, Stephen M.; Nelson, Graam J.; Benz, Arnold O.

    1994-01-01

    We present measurements of the spectrum and polarization of the flaring radio emission from the K1 dwarf star AB Doradus, together with previously reported single frequency measurements (with no polarization information) on 3 other days. On all 4 days spanning a 6 month period, the emission was strong and, when folded with the stellar rotation period, showed similar time variations with two prominant peaks at phase 0.35 and 0.75. These peaks coincide in longitude with two large starspots identified from the stellar optical light curve and have half-powe widths as small as 0.1 rotations and no larger than 0.2 rotations. The modulated emission shows no measurable circular polarization, and its two peaks have different turnover frequencies.

  15. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  16. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    Science.gov (United States)

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  17. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.

    1992-01-01

    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  18. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  19. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.; California Univ., Berkeley

    1988-01-01

    One of the unique features of the SLC is its capability to accelerate longitudinally polarized electrons. The SLC polarization group has been performed to implement the polarization program at the SLC. Technically the polarization project consists of three main parts: (1) a polarized source, (2) spin-rotating superconducting solenoid magnets to be used to manipulate the direction of the electron spin, and (3) the polarimeters needed to monitor and measure the electron beam polarization. It is this last topic that will concern us here. Two types of polarimeters will be used - Compton and Moeller. (orig./HSI)

  20. DEEP RADIO CONTINUUM IMAGING OF THE DWARF IRREGULAR GALAXY IC 10: TRACING STAR FORMATION AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Heesen, V.; Brinks, E.; Rau, U.; Rupen, M. P.; Hunter, D. A.

    2011-01-01

    We exploit the vastly increased sensitivity of the Expanded Very Large Array to study the radio continuum and polarization properties of the post-starburst, dwarf irregular galaxy IC 10 at 6 cm, at a linear resolution of ∼50 pc. We find close agreement between radio continuum and Hα emission, from the brightest H II regions to the weaker emission in the disk. A quantitative analysis shows a strictly linear correlation, where the thermal component contributes 50% to the total radio emission, the remainder being due to a non-thermal component with a surprisingly steep radio spectral index of between -0.7 and -1.0 suggesting substantial radiation losses of the cosmic-ray electrons. We confirm and clearly resolve polarized emission at the 10%-20% level associated with a non-thermal superbubble, where the ordered magnetic field is possibly enhanced due to the compression of the expanding bubble. A fraction of the cosmic-ray electrons has likely escaped because the measured radio emission is a factor of three lower than what is suggested by the Hα-inferred star formation rate.

  1. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  2. An exercise in gigantism: muon polarization measurements at ISABELLE

    International Nuclear Information System (INIS)

    Kasha, H.

    1977-01-01

    The possibility of carrying out muon polarization measurements at ISABELLE is briefly examined. The reasons for doing such measurements may well range from checking the obvious to exploring the unexpected. A measurement of the longitudinal muon polarization can serve as a check of the W + decay sample, or may serve as a tool to shed additional light on a new state or process. It is concluded that muon polarization measurements at ISABELLE are on the threshold of possibility, especially if one has to decide between widely separated values

  3. Measuring size evolution of distant, faint galaxies in the radio regime

    Science.gov (United States)

    Lindroos, L.; Knudsen, K. K.; Stanley, F.; Muxlow, T. W. B.; Beswick, R. J.; Conway, J.; Radcliffe, J. F.; Wrigley, N.

    2018-05-01

    We measure the evolution of sizes for star-forming galaxies as seen in 1.4 GHz continuum radio for z = 0-3. The measurements are based on combined VLA+MERLIN data of the Hubble Deep Field, and using a uv-stacking algorithm combined with model fitting to estimate the average sizes of galaxies. A sample of ˜1000 star-forming galaxies is selected from optical and near-infrared catalogues, with stellar masses M⊙ ≈ 1010-1011 M⊙ and photometric redshifts 0-3. The median sizes are parametrized for stellar mass M* = 5 × 1010 M⊙ as R_e = A× {}(H(z)/H(1.5))^{α _z}. We find that the median radio sizes evolve towards larger sizes at later times with αz = -1.1 ± 0.6, and A (the median size at z ≈ 1.5) is found to be 0.26^'' ± 0.07^'' or 2.3±0.6 kpc. The measured radio sizes are typically a factor of 2 smaller than those measure in the optical, and are also smaller than the typical H α sizes in the literature. This indicates that star formation, as traced by the radio continuum, is typically concentrated towards the centre of galaxies, for the sampled redshift range. Furthermore, the discrepancy of measured sizes from different tracers of star formation, indicates the need for models of size evolution to adopt a multiwavelength approach in the measurement of the sizes star-forming regions.

  4. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  5. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    Science.gov (United States)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  6. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions.

    Science.gov (United States)

    Yen, Chih-Ta; Chen, Wen-Bin

    2016-09-07

    Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  7. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2016-09-01

    Full Text Available Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC equalizer element of OFDM integrated with the dispersion compensation fiber (DCF is used in the proposed radio-over-fiber (RoF system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  8. Occultations of Astrophysical Radio Sources as Probes of Planetary Environments: A Case Study of Jupiter and Possible Applications to Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Paul [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Vogt, Marissa F. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2017-02-10

    Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significant changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.

  9. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  10. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  11. Faraday polarization fluctuations of satellite beacon signals

    Science.gov (United States)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  12. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  13. The crisis of the radio producing

    Directory of Open Access Journals (Sweden)

    Dr. Raúl Garcés

    2007-09-01

    Full Text Available In a media world highly influenced by new technologies revolution and the increasing impact of television, speeches on radio are frequently polarized: in one side, some scholars argue radio belongs to the past and it is no longer able of attracting younger audiences. In the other, lay those who predict long life to radio as a source of alternative and communitarian communication experiences. The author reviews the arguments that sustain both perspectives and emphasizes the need of renovating radio producing with audacious and creative formulas. At the same time, he discusses some of the challenges Cuban radio has ahead to attract new audiences, when television and printed press are recovering from the economic crack the Island suffered after Eastern European socialism disappeared.

  14. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  15. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  16. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  17. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  18. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    International Nuclear Information System (INIS)

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-01-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap

  19. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst.

    Science.gov (United States)

    Ravi, V; Shannon, R M; Bailes, M; Bannister, K; Bhandari, S; Bhat, N D R; Burke-Spolaor, S; Caleb, M; Flynn, C; Jameson, A; Johnston, S; Keane, E F; Kerr, M; Tiburzi, C; Tuntsov, A V; Vedantham, H K

    2016-12-09

    Fast radio bursts (FRBs) are millisecond-duration events thought to originate beyond the Milky Way galaxy. Uncertainty surrounding the burst sources, and their propagation through intervening plasma, has limited their use as cosmological probes. We report on a mildly dispersed (dispersion measure 266.5 ± 0.1 parsecs per cubic centimeter), exceptionally intense (120 ± 30 janskys), linearly polarized, scintillating burst (FRB 150807) that we directly localize to 9 square arc minutes. On the basis of a low Faraday rotation (12.0 ± 0.7 radians per square meter), we infer negligible magnetization in the circum-burst plasma and constrain the net magnetization of the cosmic web along this sightline to burst scintillation suggests weak turbulence in the ionized intergalactic medium. Copyright © 2016, American Association for the Advancement of Science.

  20. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  1. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  2. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  3. DISCOVERY OF POLARIZATION REVERBERATION IN NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, C. Martin; Shoji, Masatoshi [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0111 (United States); Goosmann, Rene W. [Observatoire astronomique de Strasbourg, 11 rue de l' Universite, F-67000 Strasbourg (France); Merkulova, Nelly I.; Shakhovskoy, Nikolay M., E-mail: martin.gaskell@uv.cl, E-mail: mshoji@astro.as.utexas.edu, E-mail: rene.goosmann@astro.unistra.fr [Crimean Astrophysical Observatory, Nauchny, Crimea 98409 (Ukraine)

    2012-04-20

    Observations of the optical polarization of NGC 4151 in 1997-2003 show variations of an order of magnitude in the polarized flux while the polarization position angle remains constant. The amplitude of variability of the polarized flux is comparable to the amplitude of variability of the total U-band flux, except that the polarized flux follows the total flux with a lag of 8 {+-} 3 days. The time lag and the constancy of the position angle strongly favor a scattering origin for the variable polarization rather than a non-thermal synchrotron origin. The orientation of the position angle of the polarized flux (parallel to the radio axis) and the size of the lag imply that the polarization arises from electron scattering in a flattened region within the low-ionization component of the broad-line region. Polarization from dust scattering in the equatorial torus is ruled out as the source of the lag in polarized flux because it would produce a larger lag and, unless the half-opening angle of the torus is >53 Degree-Sign , the polarization would be perpendicular to the radio axis. We note a long-term change in the percentage of polarization at similar total flux levels, and this could be due either to changing non-axisymmetry in the optical continuum emission or a change in the number of scatterers on a timescale of years.

  4. Jagiellonian University Polarized Drell-Yan measurements at COMPASS

    CERN Document Server

    Longo, R

    2017-01-01

    COMPASS is a fixed-target experiment operating on north area of SPS (M2 beamline) at CERN. An important part of the physics programme of the experiment is the exploration of the transverse spin structure of the nucleon via measurements of spin-(in)dependent azimuthal asymmetries in the semi-inclusive DIS and, recently, also in Drell-Yan processes. Drell-Yan measurements with a 190 GeV/c $\\pi^-$ beam impinging on a transversely polarized NH3 target started in the year 2015 (18 weeks data taking) and will be continued in 2018. The measurement of the Sivers and other azimuthal asymmetries in polarized SIDIS and Drell-Yan performed by COMPASS provides a unique possibility to test (pseudo-)universal features of transverse momentum-dependent parton distribution functions, predicted in QCD. In this review, results of the first ever measurements of the polarized Drell-Yan reaction performed by COMPASS are presented.

  5. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs

    Science.gov (United States)

    2008-01-01

    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the

  6. Extended radio sources in the cluster environment

    International Nuclear Information System (INIS)

    Burns, J.O. Jr.

    1979-01-01

    Extended radio galaxies that lie in rich and poor clusters were studied. A sample of 3CR and 4C radio sources that spatially coincide with poor Zwicky clusters of galaxies was observed to obtain accurate positions and flux densities. Then interferometer observations at a resolution of approx. = 10 arcsec were performed on the sample. The resulting maps were used to determine the nature of the extended source structure, to make secure optical identifications, and to eliminate possible background sources. The results suggest that the environments around both classical double and head-tail radio sources are similar in rich and poor clusters. The majority of the poor cluster sources exhibit some signs of morphological distortion (i.e., head-tails) indicative of dynamic interaction with a relatively dense intracluster medium. A large fraction (60 to 100%) of all radio sources appear to be members of clusters of galaxies if one includes both poor and rich cluster sources. Detailed total intensity and polarization observations for a more restricted sample of two classical double sources and nine head-tail galaxies were also performed. The purpose was to examine the spatial distributions of spectral index and polarization. Thin streams of radio emission appear to connect the nuclear radio-point components to the more extended structures in the head-tail galaxies. It is suggested that a non-relativistic plasma beam can explain both the appearance of the thin streams and larger-scale structure as well as the energy needed to generate the observed radio emission. The rich and poor radio cluster samples are combined to investigate the relationship between source morphology and the scale sizes of clustering. There is some indication that a large fraction of radio sources, including those in these samples, are in superclusters of galaxies

  7. Probabilistic Coexistence and Throughput of Cognitive Dual-Polarized Networks

    Directory of Open Access Journals (Sweden)

    J.-M. Dricot

    2010-01-01

    Full Text Available Diversity techniques for cognitive radio networks are important since they enable the primary and secondary terminals to efficiently share the spectral resources in the same location simultaneously. In this paper, we investigate a simple, yet powerful, diversity scheme by exploiting the polarimetric dimension. More precisely, we evaluate a scenario where the cognitive terminals use cross-polarized communications with respect to the primary users. Our approach is network-centric, that is, the performance of the proposed dual-polarized system is investigated in terms of link throughput in the primary and the secondary networks. In order to carry out this analysis, we impose a probabilistic coexistence constraint derived from an information-theoretic approach, that is, we enforce a guaranteed capacity for a primary terminal for a high fraction of time. Improvements brought about by the use of our scheme are demonstrated analytically and through simulations. In particular, the main simulation parameters are extracted from a measurement campaign dedicated to the characterization of indoor-to-indoor and outdoor-to-indoor polarization behaviors. Our results suggest that the polarimetric dimension represents a remarkable opportunity, yet easily implementable, in the context of cognitive radio networks.

  8. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  9. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    OpenAIRE

    Avva, J.; Kovac, J. M.; Miki, C.; Saltzberg, D.; Vieregg, A. G.

    2014-01-01

    We report an in situ measurement of the electric field attenuation length Lα at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be hLαi = 947+92 −85 m at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for t...

  10. The ELSA laser beamline for electron polarization measurements via Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Hinterkeuser, Florian; Koop, Rebecca; Hillert, Wolfgang [Electron Stretcher Facility ELSA, Physics Institute of Bonn University (Germany)

    2016-07-01

    The Electron Stretcher Facility ELSA provides a spin polarized electron beam with energies of 0.5 - 3.2 GeV for double polarization hadron physics experiments. As of 2015, the laser beamline of the polarimeter based on Compton backscattering restarted operation. It consists of a cw disk laser with design total beam power of 40 W and features two polarized 515 nm photon beams colliding head-on with the stored electron beam in ELSA. The polarization measurement is based on the vertical profile asymmetry of the back-scattered photons, which is dependent on the polarization degree of the stored electron beam. After recent laser repairs, beamline and detector modifications, the properties of the beamline have been determined and first measurements of the electron polarization degree were conducted. The beamline performance and first measurements are presented.

  11. Influences of optical elements on the polarization measurement

    International Nuclear Information System (INIS)

    Goto, M.; Hayakawa, M.; Atake, M.; Iwamae, A.

    2004-01-01

    An emission line of He I λ 667.8 nm is observed and the Large Helical Device (LHD) with a polarimeter, with which two linearly polarized components if the light from the same line of sight is simultaneously measured. The emission line exhibits splitting due to the normal Zeeman effect and the π and σ lights are respectively observed. The results indicate the polarization state of emission lines is different from our expectation. From two measurements, for the second of which the polarimeter is rotated 45 degrees form the first, the polarization ellipses of all the three polarized lights are determined. Some observations for a reversed magnetic field plasma operation, for different emission lines of different ions, and also for operation with some different magnetic field strengths suggest that the distortion state originates not in the atomic radiation itself or the plasma condition, but in the optical window at the observation port of the vacuum chamber. (author)

  12. Polar measurements on profiles

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, D.

    1985-03-01

    Wind tunnel models with a profile depth of t=0.5 m were measured in a laminar wind tunnel by the usual measuring processes. The profile resistance was determined by integration along the width of span. The smooth profiles were examined at Re=0.7/1.0 and 1.5 million. At Re=1.0 million, the position of the changeover points were determined with a stethoscope. Also at this Reynolds number measurements were taken with a trip wire of d=2 mm diameter, directly on the profile nose. The tables contain the co-ordinates of the profiles, the contours, the theoretical speed distributions for 4 different angles of attack, the csub(a)-csub(w) polar measurements and changeover points, and the torque coefficients around the t/4 point. (BR).

  13. A BROADBAND RADIO STUDY OF THE AVERAGE PROFILE AND GIANT PULSES FROM PSR B1821-24A

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, A. V. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Pennucci, T. T. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Demorest, P. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Ransom, S. M., E-mail: a.bilous@science.ru.nl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2015-04-20

    We present the results of a wideband (720–2400 MHz) study of PSR B1821–24A (J1824–2452A, M28A), an energetic millisecond pulsar (MSP) visible in radio, X-rays and γ-rays. In radio, the pulsar has a complex average profile that spans ≳85% of the spin period and exhibits strong evolution with observing frequency. For the first time we measure phase-resolved polarization properties and spectral indices of radio emission throughout almost all of the on-pulse window. We synthesize our findings with high-energy information to compare M28A to other known γ-ray MSPs and to speculate that M28A’s radio emission originates in multiple regions within its magnetosphere (i.e., both in the slot or outer gaps near the light cylinder and at lower altitudes above the polar cap). M28A is one of a handful of pulsars that are known to emit giant radio pulses (GRPs)—short, bright radio pulses of unknown nature. We report a drop in the linear polarization of the average profile in both windows of GRP generation and also a “W”-shaped absorption feature (resembling a double notch), partly overlapping with one of the GRP windows. The GRPs themselves have broadband spectra consisting of multiple patches with Δν/ν ∼ 0.07. Although our time resolution was not sufficient to resolve the GRP structure on the μs scale, we argue that GRPs from this pulsar most closely resemble the GRPs from the main pulse of the Crab pulsar, which consist of a series of narrowband nanoshots.

  14. Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity

    Science.gov (United States)

    McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2016-01-01

    Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.

  15. Polarization measurement of iron L-shell lines on EBIT-I

    International Nuclear Information System (INIS)

    Chen, Hui; Beiersdorfer, Peter; Robbins, Darron; Smith, A.J.; Gu, Ming Feng

    2004-01-01

    We report measurements of the line polarization of Ne-like and F-like of iron n=3 to n=2 transitions in the x-ray region. We used the ''two-crystal technique'' developed in previous polarization measurements in our laboratory. Preliminary results from our measurements are presented together with the theoretical calculations using the Flexible Atomic Code (FAC). Our calculations show that contributions from cascades play an important role in the polarization calculations of most of the transitions. The uncertainties and difficulties of our experiments are also discussed. (author)

  16. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  17. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio

    2017-10-01

    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  18. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  19. Observation of non-classical correlations in sequential measurements of photon polarization

    International Nuclear Information System (INIS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F

    2016-01-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength. (paper)

  20. Measurement of RF propagation around corners in underground mines and tunnels.

    Science.gov (United States)

    Jacksha, R; Zhou, C

    2016-01-01

    This paper reports measurement results for radio frequency (RF) propagation around 90° corners in tunnels and underground mines, for vertically, horizontally and longitudinally polarized signals. Measurements of signal power attenuation from a main entry into a crosscut were performed at four frequencies - 455, 915, 2450 and 5800 MHz - that are common to underground radio communication systems. From the measurement data, signal power loss was determined as a function of signal coupling from the main entry into the crosscut. The resultant power loss data show there are many factors that contribute to power attenuation from a main entry into a crosscut, including frequency, antenna polarization and cross-sectional entry dimensions.

  1. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  2. Polarization measurement by use of discrete space-variant sub wavelength dielectric gratings

    International Nuclear Information System (INIS)

    Biener, G.; Niv, A.; Gorodetski, Yu.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Polarization measurement has been widely used for a large range of applications such as ellipsometry bio-imaging, imaging polarimetry and optical communications. A commonly used method is measuring of the time-dependent signal once the beam is transmitted through a photoelastic modulator or a rotating quarter-wave plate followed by an analyzer. The polarization state of the beam can be derived by Fourier analysis of the detected signal. This method, however, requires a sequence of consecutive measurements, thus making it impractical for real-time polarization measurement in an application such as adaptive polarization-mode dispersion compensation in optical communications. Recently, we developed a novel method for real-time polarization measurement by use of a discrete space-variant sub wavelength dielectric grating (DSG). The formation of the grating is done by discrete orientation of the local sub wavelength grooves. The complete polarization analysis of the incident beam is determined by spatial Fourier transform of the near-field intensity distribution transmitted through the DSG followed by a sub wavelength metal polarizer. We realized the gratings for CO 2 laser radiation at a wavelength of 10.6 micron on GaAs substrate utilizing advanced photo lithographic and etching techniques. We experimentally demonstrated the ability of our method to measure the polarization state for fully and partially polarized light. Unlike other methods based on Fourier analysis, no active elements are required. It is possible to integrate our polarimeter on a two-dimensional detector array for lab-on chip applications to achieve a high-throughput and low-cost commercial polarimeter for bio sensing. Currently we are investigating the possibility of using far-field measurement of the beam emerging from a DSG for polarization measurement

  3. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    Science.gov (United States)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  4. Circular polarization measurements with a Ge(Li) detector

    DEFF Research Database (Denmark)

    Kopecký, J.; Warming, Inge Elisabeth

    1969-01-01

    This paper presents the results obtained in measurements of the degree of circular polarization of gamma transitions to bound states of 33S, 36Cl, 49Ti, 56Mn, 57Fe, 60Co and 64Cu following the capture of polarized thermal neutrons. Spin values have been determined on the basis of these results....

  5. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  6. SARAS MEASUREMENT OF THE RADIO BACKGROUND AT LONG WAVELENGTHS

    International Nuclear Information System (INIS)

    Patra, Nipanjana; Subrahmanyan, Ravi; Sethi, Shiv; Shankar, N. Udaya; Raghunathan, A.

    2015-01-01

    SARAS is a correlation spectrometer connected to a frequency independent antenna that is purpose-designed for precision measurements of the radio background at long wavelengths. The design, calibration, and observing strategies admit solutions for the internal additive contributions to the radiometer response, and hence a separation of these contaminants from the antenna temperature. We present here a wideband measurement of the radio sky spectrum by SARAS that provides an accurate measurement of the absolute brightness and spectral index between 110 and 175 MHz. Accuracy in the measurement of absolute sky brightness is limited by systematic errors of magnitude 1.2%; errors in calibration and in the joint estimation of sky and system model parameters are relatively smaller. We use this wide-angle measurement of the sky brightness using the precision wide-band dipole antenna to provide an improved absolute calibration for the 150 MHz all-sky map of Landecker and Wielebinski: subtracting an offset of 21.4 K and scaling by a factor of 1.05 will reduce the overall offset error to 8 K (from 50 K) and scale error to 0.8% (from 5%). The SARAS measurement of the temperature spectral index is in the range −2.3 to −2.45 in the 110–175 MHz band and indicates that the region toward the Galactic bulge has a relatively flatter index

  7. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag

    Directory of Open Access Journals (Sweden)

    Khaled Issa

    2017-01-01

    Full Text Available A novel compact dual-polarized-spectral-signature-based chipless radio-frequency identification (RFID tag is presented. Specifically, an L-shape resonator-based structure is optimized to have different spectral signatures in both horizontal and vertical polarizations, in order to double the encoding capacity. Resonators’ slot width and the space between closely placed resonators are also optimized to enhance the mutual coupling, thereby helping in achieving high-data encoding density. The proposed RFID tag operates over 5 GHz to 10 GHz frequency band. As a proof of concept, three different 18-bit dual-polarized RFID tags are simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show reasonable agreement with the simulation results, with respect to resonators’ frequency positions, null depth, and their bandwidth over the operational spectrum.

  8. A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cécere, Mariana [Instituto de Astronomía Teórica y Experimental, Universidad Nacional de Córdoba, X5000BGR, Córdoba (Argentina); Velázquez, Pablo F.; De Colle, Fabio; Esquivel, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, CP: 04510, D.F., México (Mexico); Araudo, Anabella T. [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58090, Morelia, Michoacán, México (Mexico)

    2016-01-10

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  9. Measuring c-quark polarization in W+c samples at ATLAS and CMS

    CERN Document Server

    Kats, Yevgeny

    2016-01-01

    The process $pp \\to W^-c$ produces polarized charm quarks. The polarization is expected to be partly retained in $\\Lambda_c$ baryons when those form in the $c$-quark hadronization. We argue that it will likely be possible for ATLAS and CMS to measure the $\\Lambda_c$ polarization in the $W$+$c$ samples in Run 2 of the LHC. This can become the first measurement ever of a longitudinal polarization of charm quarks. Its results will provide a unique input to the understanding of polarization transfer in fragmentation. They will also allow applying the same measurement technique to other (e.g., new physics) samples of charm quarks in which the polarization is a priori unknown. The proposed analysis is similar to the ATLAS and CMS measurements of the $W$+$c$ cross section in the 7 TeV run that used reconstructed $D$-meson decays for charm tagging.

  10. Muon implantation in inert gases studied by radio frequency spectroscopy

    International Nuclear Information System (INIS)

    Johnson, C; Cottrell, S P; Ghandi, K; Fleming, D G

    2005-01-01

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-μSR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu + , and not a bare μ + . In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-μSR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements

  11. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.; Mutel, R. L.; Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240 (United States); Guedel, M. [Department of Astrophysics, University of Vienna, A-1180 Vienna (Austria); Ray, T. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Skinner, S. L. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  12. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  13. Radio polarization and magnetic field structure in M 101

    Science.gov (United States)

    Berkhuijsen, E. M.; Urbanik, M.; Beck, R.; Han, J. L.

    2016-04-01

    We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.´ 5 (=5.4 kpc) and 4.´ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.´ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at Rchange in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at Rmechanism. We show that energetic events causing H I shells of mean diameter pitch angles that are about 8° larger than those of H I filaments. Based on observations with the 100 m telescope of the MPIfR at Effelsberg.FITS files of the images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A114

  14. American West Tephras – Geomagnetic polarity events redefined through calibration of radio-isotopic and astronomical time

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael

    calibration. Although this geomagnetic event is not part of the most recent geologic timescale, refined ages on short-lived excursions could hold importance to understanding time scales for the wavering nature of Earth’s magnetic field. We propose a new 40Ar/39Ar age for the Quaternary mineral dating standard......The foundation of the EARTHTIME/GTSnext initiative seeks to construct an internally consistent geologic timescale based on astronomical and radio-isotopic geochronology. American west tephras offer a prime opportunity to integrate these two independent timescales with the geomagnetic timescale....... Using an astronomically calibrated age for the monitor mineral Fish Canyon sanidine (FCs;28.201 ± 0.046 Ma, Kuiper, et al., 2008), ages of Pleistocene geomagnetic polarity events are reexamined. Of particular interest, the Quaternary mineral dating standard Alder Creek sandine (ACs) is the type locality...

  15. McDONALD OBSERVATORY ARCHIVE OF OPTICAL LINEAR POLARIZATION MEASUREMENTS

    International Nuclear Information System (INIS)

    Wills, Beverley J.; Wills, D.; Breger, M.

    2011-01-01

    We present 990 previously unpublished optical linear polarization measurements of quasars, active galactic nuclei, and some stars observed for interstellar polarization. The observations, covering the period 1981-2000, were made with McDonald Observatory's 2.1 m Struve reflector and the Breger photopolarimeter.

  16. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  17. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  18. Cosmological CPT violation and CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing, E-mail: xia@sissa.it [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2012-01-01

    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = −2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes −1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ε can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and ε. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ε very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on ε.

  19. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    Science.gov (United States)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  20. Radio evolution and the impact on/of audiences

    Directory of Open Access Journals (Sweden)

    Marko Ala-Fossi

    2013-06-01

    Full Text Available The evolution of radio is highly dependent not only on the national cultural contexts but also on the overall social, political and economic development of the societies. In addition, it happens in interplay with all the other forms of media and this is why there is no universal or separate evolution of radio. The growing importance of the internet and increasing popularity of mobile broadband together with the ongoing economic and demographic changes on a global scale continue to have a polarized effect: in the Western world, broadcast radio may have already had its all-time high, while in Asia and Africa, broadcast radio has still a huge potential for growth. 

  1. Measurement of $\\Lambda_{b}$ polarization in Z decays

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The \\Lambda_{\\mathrm{b}} polarization in hadronic \\mathrm{Z} decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic \\mathrm{Z} decays collected by the ALEPH detector at LEP between 1991 and 1994, 462\\pm 31 \\Lambda_{\\mathrm{b}} candidates are selected using (\\Lambda \\pi^+)--lepton correlations. From this event sample, the \\Lambda_{\\m athrm{b}} polarization is measured to be \\cal P_{\\Lambda_{\\mathrm{b}}}=-0.23^{+0.24}_{-0.20}(\\m athrm{stat}.)^{+0.08}_{-0.07} (\\mathrm{syst.})\\,.

  2. Cosmological measurements with forthcoming radio continuum surveys

    CSIR Research Space (South Africa)

    Raccanelli, A

    2012-08-01

    Full Text Available is to measure the cosmo- logical parameters of particular current interest. Among the biggest challenges in cosmology is to determine whether the standard � cold dark matter (CDM) model and its general relativity (GR) con- text are correct, or whether we need a... as a function of redshift and the bias of different source populations as a function of red- shift. These are required in order to make predictions for cosmo- logical probes, such as the autocorrelation function and the cross- correlation of radio...

  3. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  4. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  5. Interstellar scattering, the North Polar Spur, and a possible new class of compact galactic radio sources

    International Nuclear Information System (INIS)

    Rickard, J.J.; Cronyn, W.M.

    1979-01-01

    A reanalysis of the Cambridge interplanetary scintillation (IPS) catalog of angular sizes of radio sources reveals that there is no statistically significant evidence for increased interstellar angular broadening in the galactic plane, in conflict with previous studies. There is a significant contribution to the decrease in the ratios of scintillators/nonscintillators and strong/weak scintillators near the plane from galactic supernova remnants which were included in previous studies of source counts. Using the catalog angular sizes, we show there is no lack of small sources of any size in the plane. However, we do find a 500 deg 2 region near the North Polar Spur (NPS) radio feature, a suspected supernova remnant, where there seems to be a true deficit of small sources. This deficit may be caused by enhanced broadening associated with the NPS. Our conclusion about the apparent absence of angular broadening in the plane conflicts with estimates of broadening based upon the geometrical relationship between time delay and angular size applied to pulsar coherence bandwidths and pulse decay times. To explain this discrepancy, we suggest two alternatives: (1) Large angular broadening of extragalactic sources in the plane may indeed exist so that sources exhibiting IPS (i.e., of small angular diameter) must be galactic in nature. Properties of this possible new class of sources--called scintars--are discussed, and 42 scintar candidates are identified. (2) There is little angular broadening of extragalactic sources, and the pulsar data are being misinterpreted

  6. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. I. Imaging BL Lacertae at 21 Microarcsecond Resolution

    Science.gov (United States)

    Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.

    2016-02-01

    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.

  7. Improved dark energy detection through the polarization-assisted cross correlation of the cosmic microwave background with radio sources

    International Nuclear Information System (INIS)

    Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li

    2011-01-01

    Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.

  8. Recent VLA Measurements of CME-Induced Faraday Rotation

    Science.gov (United States)

    Kooi, Jason; Thomas, Najma; Guy, Michael; Spangler, Steven R.

    2018-01-01

    Observations of Faraday rotation, the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, have been used for decades to determine the strength and structure of the coronal magnetic field and plasma density. Similarly, observations of Faraday rotation through a coronal mass ejection (CME) have the potential to improve our understanding of the CME’s plasma structure. We report recent results from simultaneous white-light coronagraph and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of cosmic radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. A unique aspect of these observations is that the CME occulted several of these radio sources and, therefore, our Faraday rotation measurements provide information on the plasma structure in different regions of the CME. We successfully measured CME-induced Faraday rotation along multiple lines of sight because we made special arrangements with the staff at the National Radio Astronomy Observatory to trigger VLA observations when a candidate CME appeared low in the corona in near real-time images from the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument.

  9. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  10. Complementary analyses on the local polarity in lateral polarity-inverted GaN heterostructure on sapphire (0001) substrate

    International Nuclear Information System (INIS)

    Katayama, Ryuji; Kuge, Yoshihiro; Onabe, Kentaro; Matsushita, Tomonori; Kondo, Takashi

    2006-01-01

    The fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0001) using a radio-frequency-plasma-enhanced molecular beam epitaxy is demonstrated. Its microscopic properties such as surface potentials, piezoelectric polarizations, and residual carrier densities were investigated by Kelvin force microscopy and micro-Raman scattering. The inversion from Ga polarity to N polarity in a specific domain and its higher crystal perfection had been unambiguously confirmed by these complementary analyses. The results were also fairly consistent with that of KOH etching, which suggests the applicability of these processes to the fabrication of photonic nanostructures

  11. Polarization measurements of the Bok globule B361

    Energy Technology Data Exchange (ETDEWEB)

    Williams, I P; Vedi, K [Queen Mary Coll., London (UK); Griffiths, W K [Leeds Univ. (UK); Bhatt, H C; Kulkarni, P V; Ashok, N M [Physical Research Lab., Ahmedabad (India); Wallis, R E [Royal Greenwich Observatory, Hailsham (UK)

    1985-01-01

    The results of the first measurements of the polarization of light from background stars passing through B361 are described. Nearly all the stars show that the direction of the polarized light is approximately north-south. If the polarization is caused by aligned grains within the globule then a magnetic field of the order of 50-100 ..mu..G is required. Both polarimetry and photometry confirm that two of the stars studied are very distant background stars while three of these stars were found to be foreground stars. The analysis indicates that the globule is not further away than 650 pc, but can only establish an approximate upper limit.

  12. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  13. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  14. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization

    Directory of Open Access Journals (Sweden)

    Lin Ren

    2017-11-01

    Full Text Available This study analyzed the noise equivalent sigma zero (NESZ and ocean wind sensitivity for Chinese C-band Gaofen-3 (GF-3 quad-polarization synthetic aperture radar (SAR measurements to facilitate further operational wind extraction from GF-3 data. Data from the GF-3 quad-polarization SAR and collocated winds from both NOAA/NCEP Global Forecast System (GFS atmospheric model and National Data Buoy Center (NDBC buoys were used in the analysis. For NESZ, the co-polarization was slightly higher compared to the cross-polarization. Regarding co-polarization and cross-polarization, NESZ was close to RadarSAT-2 and Sentinel-1 A. Wind sensitivity was analyzed by evaluating the dependence on winds in terms of normalized radar cross-sections (NRCS and polarization combinations. The closest geophysical model function (GMF and the polarization ratio (PR model to GF-3 data were determined by comparing data and the model results. The dependence of co-polarized NRCS on wind speed and azimuth angle was consistent with the proposed GMF models. The combination of CMOD5 and CMOD5.N was considered to be the closest GMF in co-polarization. The cross-polarized NRCS exhibited a strong linear relationship with moderate wind speeds higher than 4 m·s−1, but a weak correlation with the azimuth angle. The proposed model was considered as the closest GMF in cross-polarization. For polarization combinations, PR and polarization difference (PD were considered. PR increased only with the incidence angle, whereas PD increased with wind speed and varied with azimuth angle. There were three very close PR models and each can be considered as the closest. Preliminary results indicate that GF-3 quad-polarization data are valid and have the ability to extract winds in each polarization.

  15. VME online system of the Bonn polarized nucleon targets and polarization measurements on NH3

    International Nuclear Information System (INIS)

    Thiel, W.

    1991-02-01

    The measurement of spin observables is the main purpose of the PHOENICS detector at the Bonn Electron Accelerator ELSA. Therefore a new frosen spin target was built allowing any spin orientation by means of two perpendicular holding fields and the use of a polarizing field up to 7 Tesla. With a vertical dilution refrigerator the polarization can be frozen at a temperature of 70 mK. This thesis describe a VME based control and monitor system for the various parts of this target. It mainly consists of a VIP processor together with different kinds of I/O and interface boards. Caused by its modular structure in hard- and software it can be easyly set up to control and monitor different hardware environments. A menu and command oriented user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liferpool module allowing a dispersion user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liverpool module allowing a dispersion free detection and a simple adjustment to different magnetic fields. A similar VME system takes care of all the necessary task for the polarization measurements. Fast optodecoupled analog I/O modules a e used as an interface to the NMR hardware. Finally the first measurements with this target are presented. Using NH 3 as target material and a polarizing field of 3.5 Tesla a proton polarization of +94% and -100% could be achieved. By lowering the magnetic field to 0.35 Tesla a superradiance effect was observed. (orig.)

  16. Muon implantation in inert gases studied by radio frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Cottrell, S P [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Ghandi, K [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada); Fleming, D G [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada)

    2005-01-14

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-{mu}SR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu{sup +}, and not a bare {mu}{sup +}. In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-{mu}SR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements.

  17. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  18. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  19. Atmospheric aerosol measurements by employing a polarization scheimpflug lidar system

    Science.gov (United States)

    Mei, Liang; Guan, Peng; Yang, Yang

    2018-04-01

    A polarization Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing a compact 808-nm multimode highpower laser diode and two highly integrated CMOS sensors in Dalian University of Technology (DLUT), Dalian, China. The parallel and orthogonal polarized backscattering signal are recorded by two 45 degree tilted image sensors, respectively. Atmospheric particle measurements were carried out by employing the polarization Scheimpflug lidar system.

  20. Turbulence in extended synchrotron radio sources. I. Polarization of turbulent sources. II. Power-spectral analysis

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1989-01-01

    Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs

  1. Measurement of the Λb polarization in Z decays

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The Λb polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λb candidates are selected using ( Λπ+)-lepton correlations. From this event sample, the Λb polarization is measured to be PΛ b = -0.23 -0.20+0.24(stat.) -0.07+0.08(syst.).

  2. Measuring the influence of aerosols and albedo on sky polarization.

    Science.gov (United States)

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  3. Measurement of tau polarization in Z boson decays at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Benedict; Davey, William; Dingfelder, Jochen [Physikalisches Institut, Universitaet Bonn (Germany)

    2016-07-01

    Decays of the Z boson in the Standard Model violate parity, leading to a net polarization of the decay products. Z boson decays to pairs of tau leptons provide a unique opportunity to measure the tau polarization by using the kinematics of the subsequent tau decays, hence testing the Standard Model predictions. They also provide a unique opportunity to pioneer experimental techniques that assess the tau helicity and may be used in searches for new particles and to study the properties of the Higgs boson. In this talk the status of the first measurement of the tau polarization in Z→ττ decays at a hadronic collider is presented. The analysis is based on the 20.3 fb{sup -1} collected by the ATLAS experiment at a center-of-mass energy of √(s) = 8 TeV. The tau polarization is measured in events in which one tau decays leptonically and the other decays hadronically by using the kinematics of the hadronic decay. A main focus is set on the determination of the systematic uncertainties and the limit setting procedure.

  4. A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

    Science.gov (United States)

    Liu, Hongyu; Chen, Yao; Cho, Kyungsuk; Feng, Shiwei; Vasanth, Veluchamy; Koval, Artem; Du, Guohui; Wu, Zhao; Li, Chuanyang

    2018-04-01

    A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB) of this burst is extremely high, over 10^{11} K at 150 MHz and over 108 K in general. The degree of circular polarization (q) is between -60% ˜ -100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3 ˜ -4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  5. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  6. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  7. Optimum measurement and analysis of small polarization asymmetry in high-energy inelastic scattering using a polarized target

    International Nuclear Information System (INIS)

    Niinikoski, T.O.

    1976-01-01

    Optimum linear filter theory is employed for maximizing the signal-to-noise ratio in measurements of small polarization asymmetry in the presence of severe counting efficiency fluctuation, most likely to occur in high-energy inclusive and inelastic scattering experiments, using a polarized target. The r.m.s. error of the polarization asymmetry is obtained in closed form, allowing numeric optimization of the operation of the target. Guidelines are given for processing the record of data. (Auth.)

  8. POLAR on board of the Tiangong 2 Chinese space station: measuring the polarization of hard X-rays photons, in particular the polarization of prompt photons from gamma ray bursts.

    Science.gov (United States)

    Produit, Nicolas

    2012-07-01

    POLAR is an homogeneous wide field Compton polarimeter using plastic scintillators and multichannel photomultipliers. The goal of this polarimeter is to measure with controlled systematics the polarization of hard X-ray emitted by unpredictable transient sources The instrument energy range sensitivity is optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRB). Monte-Carlo studies and calibration data collected in polarized photon beams predict that POLAR will be able to measure the polarization degree of 10 GRB per year with a combined systematics and statistical accuracy of better then 10%. POLAR will be mounted outside of the Tiangong 2 Chinese space station that will be launched in space in 2014.

  9. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; Badano, L.; Bravar, A.; Istituto Nazionale di Fisica Nucleare, Legnaro

    1993-06-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beams has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called ''stable'' direction. In this paper measurements at the Indiana University cooler ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  10. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; McPherson, J.; Olchowski, F.; Onel, Y.; Badano, L.; Conte, M.; Bravar, A.; Penzo, A.; Hall, J.; Kreiser, H.

    1993-01-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beam has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called open-quote stableclose quotes, direction. In this paper measurements at the Indiana University Cooler Ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  11. Design and implementation of VUV-CD and LD measurements using an ac modulated polarizing undulator

    International Nuclear Information System (INIS)

    Yagi-Watanabe, K.; Yamada, T.; Tanaka, M.; Kaneko, F.; Kitada, T.; Ohta, Y.; Nakagawa, K.

    2005-01-01

    VUV circular dichroism (CD) and linear dichroism (LD) have been successfully measured at wavelengths beyond the conventional limit by using an ac modulated polarizing undulator. We have developed CD and LD measuring technique by polarization modulation at the source, without using transmission type polarizing modulator, to extend to the coverage to wavelengths shorter than 140-bar nm. AIST developed in 1986 ac polarizing undulator by using a electron storage ring 'TERAS' based on an original concept. The undulator which can produce any desired polarization of vertical- and horizontal-linear polarization (VLP and HLP) and right- and left-handed circular polarization (RCP and LCP) is specially well suited to both measurements of CD and LD. With this undulator, the polarization alternate in the order of VLP-RCP-HLP-RCP-VLP-LCP-HLP-LCP-VLP-, i.e. when circular polarization is modulated in f Hz, linear polarization alters in 2f Hz. This allows us simultaneous measurements of CD and LD. Since the TERAS can produce ac-modulated polarized radiation of wavelength as short as 40-bar nm, it is expected to have CD and LD measurement extended to 40-bar nm

  12. On measurement of photon polarization by triplet production differential cross sections

    International Nuclear Information System (INIS)

    Vinokurov, E.A.; Boldyshev, V.F.

    1984-01-01

    Dependence of triplet production by linearly polarized photon (the recoil electron momenta being p 1 >=p 10 ) upon the electron pair invariant mass Δ (in the ranges of 0.1 mc 10 2 2 ) is studied aiming to analyze possible use of triplet photoproduction to measure polarization of high-energy photon beams. It is shown that the regions 2m 2 and 2m 200 mc 2 are optimum and provide a 17-35% accuracy improvement for the photon beam polarization measurement, the number of events decreasing by a factor of 2.4-4.4

  13. Polarization measurements for P-12C elastic scattering between 40-75 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Okada, K.; Kondo, M.; Shimizu, A.; Hosono, K.; Saito, T.; Matsuoka, N.; Nagamachi, S.; Nisimura, K.; Tamura, N.

    1980-01-01

    Absolute values of the polarization in p- 12 C elastic scattering have been measured at 60.0 and 64.5 MeV at 47.5 0 in the laboratory system using a double scattering method and a method to measure an asymmetry with a polarized beam. The results are P(60.0 MeV, 47.5 0 ) = 0.965 +- 0.011 and P(64.5 MeV, 47.5 0 ) = 0.975 +- 0.011. Based on these values, the polarization measurements have been extended to the energy range from 40-75 MeV at several angles around 47.5 0 using the polarized proton beam and the energy degrader. Differential cross sections and polarizations from 15-115 0 are also presented at 65 MeV. These data will be valuable for the monitoring of beam polarization in this energy region. (orig.)

  14. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  15. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    International Nuclear Information System (INIS)

    Fialkov, A.; Loeb, A.

    2016-01-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  16. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Institute for Teory and Computation, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  17. Measuring top-quark polarization in top-pair + missing-energy events.

    Science.gov (United States)

    Berger, Edmond L; Cao, Qing-Hong; Yu, Jiang-Hao; Zhang, Hao

    2012-10-12

    The polarization of a top quark can be sensitive to new physics beyond the standard model. Since the charged lepton from top-quark decay is maximally correlated with the top-quark spin, it is common to measure the polarization from the distribution in the angle between the charged lepton and the top-quark directions. We propose a novel method based on the charged lepton energy fraction and illustrate the method with a detailed simulation of top-quark pairs produced in supersymmetric top squark pair production. We show that the lepton energy ratio distribution that we define is very sensitive to the top-quark polarization but insensitive to the precise measurement of the top-quark energy.

  18. MGS Radio Science Measurements of Atmospheric Dynamics on Mars

    Science.gov (United States)

    Hinson, D. P.

    2001-12-01

    The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).

  19. Measurements of the effect of humidity on radio-aerosol penetration through ultrafine capillaries

    International Nuclear Information System (INIS)

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 microm. The ultrafine capillaries had a diameter of 250 microm. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios

  20. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  1. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  2. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  3. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  4. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  5. Radio-flaring Ultracool Dwarf Population Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew, E-mail: mroute@purdue.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2017-08-10

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  6. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  7. Polarimetry of the Fast Radio Burst Source FRB121102

    Science.gov (United States)

    Michilli, Daniele; Seymour, Andrew; Hessels, Jason W. T.; Spitler, Laura; Gajjar, Vishal; Archibald, Anne; Bower, Geoffrey C.; Chatterjee, Shami; Cordes, Jim; Gourdji, Kelly; Heald, George; Kaspi, Victoria; Law, Casey; Sobey, Charlotte

    2018-01-01

    Fast radio bursts (FRBs) are millisecond-duration radio flashes of presumably extragalactic origin. FRB121102 is the only FRB known to repeat and the only one with a precise localization. It is co-located with a persistent radio source inside a star-forming region in a dwarf galaxy at z=0.2. While the persistent source is compatible with either a low-luminosity accreting black hole or a very energetic nebula and supernova remnant, the source of the bursts is still a mystery. We present new bursts from FRB121102 detected at relatively high radio frequencies of ~5GHz. These observations allow us to investigate the polarization properties of the bursts, placing new constraints on the environment of FRB121102.

  8. Measurement of neutron spectra for photonuclear reaction with linearly polarized photons

    Directory of Open Access Journals (Sweden)

    Kirihara Yoichi

    2017-01-01

    Full Text Available Spectra of neutrons produced by a photonuclear reaction from a 197Au target were measured using 16.95 MeV linearly and circularly polarized photon beams at NewSUBARU-BL01 using a time-of-flight method. The difference in the neutron spectra between the cases of a linearly and circularly polarized photon was measured. The difference in the neutron yield increased with the neutron energy and was approximately threefold at the maximum neutron energy. In a direction perpendicular to that of the linear polarization, the neutron yields decreased as the neutron energy increased.

  9. MEASUREMENT OF POLARIZATION OBSERVABLES IN VECTOR MESON PHOTOPRODUCTION USING A TRANSVERSELY-POLARIZED FROZEN-SPIN TARGET AND POLARIZED PHOTONS AT CLAS, JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Priyashree [Florida State Univ., Tallahassee, FL (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-30

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Je?erson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ+π-(π0) will be presented. For the reaction ρπ+π-, eight polarization observables (Is, Ic, Px, Py, Psx; y, Pcx; y) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ+π(π0, five polarization

  10. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  11. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  12. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  13. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  14. Photometric intensity and polarization measurements of the solar corona.

    Science.gov (United States)

    Mcdougal, D. S.

    1971-01-01

    Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.

  15. Heterodyne detector for measuring the characteristic of elliptically polarized microwaves

    DEFF Research Database (Denmark)

    Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne

    2008-01-01

    In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two perpendicu......In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two...... be calculated. Results from measured and calculated wave characteristics of an elliptically polarized 110 GHz microwave beam for plasma heating launched into the TEXTOR-tokamak experiment are presented. Measurement and calculation are in good agreement. ©2008 American Institute of Physics...

  16. Measurement of top quark polarization in $t \\overline{t}$ lepton+jets final states

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Aushev, Volodymyr; Aushev, Yegor; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brochmann, Michelle; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Franc, Jiri; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stefaniuk, Nazar; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2017-01-09

    We present a study of top quark polarization in $t \\overline{t}$ events produced in $p \\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV. Data correspond to 9.7 fb$^{-1}$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $\\ell$+jets final states, and first measurement of transverse polarization in $t \\overline{t}$ production. The observed distributions are consistent with the standard model.

  17. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    International Nuclear Information System (INIS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-01-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.

  18. Source finding in linear polarization for LOFAR, and SKA predecessor surveys, using Faraday moments

    Science.gov (United States)

    Farnes, J. S.; Heald, G.; Junklewitz, H.; Mulcahy, D. D.; Haverkorn, M.; Van Eck, C. L.; Riseley, C. J.; Brentjens, M.; Horellou, C.; Vacca, V.; Jones, D. I.; Horneffer, A.; Paladino, R.

    2018-03-01

    The optimal source-finding strategy for linear polarization data is an unsolved problem, with many inhibitive factors imposed by the technically challenging nature of polarization observations. Such an algorithm is essential for Square Kilometre Array (SKA) pathfinder surveys, such as the Multifrequency Snapshot Sky Survey with the LOw Frequency ARray (LOFAR), as data volumes are significant enough to prohibit manual inspection. We present a new strategy of `Faraday Moments' for source-finding in linear polarization with LOFAR, using the moments of the frequency-dependent full-Stokes data (i.e. the mean, standard deviation, skewness, and excess kurtosis). Through simulations of the sky, we find that moments can identify polarized sources with a high completeness: 98.5 per cent at a signal to noise of 5. While the method has low reliability, rotation measure (RM) synthesis can be applied per candidate source to filter out instrumental and spurious detections. This combined strategy will result in a complete and reliable catalogue of polarized sources that includes the full sensitivity of the observational bandwidth. We find that the technique can reduce the number of pixels on which RM Synthesis needs to be performed by a factor of ≈1 × 105 for source distributions anticipated with modern radio telescopes. Through tests on LOFAR data, we find that the technique works effectively in the presence of diffuse emission. Extensions of this method are directly applicable to other upcoming radio surveys such as the POlarization Sky Survey of the Universe's Magnetism with the Australia Square Kilometre Array Pathfinder, and the SKA itself.

  19. Long-term Periodicity Analysis of Polarization Variation for Radio ...

    Indian Academy of Sciences (India)

    Kochanev, P. Yu., Gabuzda, D. C. 1998, In: Radio Emission From Galactic and Extragalactic. Compact Sources (eds) Zensus, J. A., Taylor, G. B., Wrobel, J. M., San Francisco: ASP, p. 273. Lomb, N. R. 1976, ApS&S, 39, 447. Mead, A. R. G., Ballard, K. R., Brand, P. W. J. L. et al. 1990, Astron. Astrophys. Suppl. Ser.,. 83, 183.

  20. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Science.gov (United States)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  1. Performance and retention of lightweight satellite radio tags applied to the ears of polar bears (Ursus maritimus)

    Science.gov (United States)

    Wiig, Øystein; Born, Erik W.; Laidre, Kristin L.; Dietz, Rune; Jensen, Mikkel Villum; Durner, George M.; Pagano, Anthony M.; Regehr, Eric V.; St. Martin, Michelle; Atkinson, Stephen N.; Dyck, Markus

    2017-01-01

    BackgroundSatellite telemetry studies provide information that is critical to the conservation and management of species affected by ecological change. Here we report on the performance and retention of two types (SPOT-227 and SPOT-305A) of ear-mounted Argos-linked satellite transmitters (i.e., platform transmitter terminal, or PTT) deployed on free-ranging polar bears in Eastern Greenland, Baffin Bay, Kane Basin, the southern Beaufort Sea, and the Chukchi Sea during 2007–2013.ResultsTransmissions from 142 out of 145 PTTs deployed on polar bears were received for an average of 69.3 days. The average functional longevity, defined as the number of days they transmitted while still attached to polar bears, for SPOT-227 was 56.8 days and for SPOT-305A was 48.6 days. Thirty-four of the 142 (24%) PTTs showed signs of being detached before they stopped transmitting, indicating that tag loss was an important aspect of tag failure. Furthermore, 10 of 26 (38%) bears that were re-observed following application of a PTT had a split ear pinna, suggesting that some transmitters were detached by force. All six PTTs that were still on bears upon recapture had lost the antenna, which indicates that antenna breakage was a significant contributor to PTT failure. Finally, only nine of the 142 (6%) PTTs—three of which were still attached to bears—had a final voltage reading close to the value indicating battery exhaustion. This suggests that battery exhaustion was not a major factor in tag performance.ConclusionsThe average functional longevity of approximately 2 months for ear-mounted PTTs (this study) is poor compared to PTT collars fitted to adult female polar bears, which can last for several years. Early failure of the ear-mounted PTTs appeared to be caused primarily by detachment from the ear or antenna breakage. We suggest that much smaller and lighter ear-mounted transmitters are necessary to reduce the risk of tissue irritation, tissue damage, and tag detachment, and

  2. Broadband Radio Polarimetry of Fornax A. I. Depolarized Patches Generated by Advected Thermal Material from NGC 1316

    Science.gov (United States)

    Anderson, C. S.; Gaensler, B. M.; Heald, G. H.; O’Sullivan, S. P.; Kaczmarek, J. F.; Feain, I. J.

    2018-03-01

    We present observations and analysis of the polarized radio emission from the nearby radio galaxy Fornax A over 1.28–3.1 GHz, using data from the Australia Telescope Compact Array. In this, the first of two associated papers, we use modern broadband polarimetric techniques to examine the nature and origin of conspicuous low-polarization (low-p) patches in the lobes. We resolve the (low-p) patches and find that their low fractional polarization is associated with complicated frequency-dependent interference in the polarized signal generated by Faraday effects along the line of sight (LOS). The low-p patches are spatially correlated with interfaces in the magnetic structure of the lobe, across which the LOS-projected magnetic field changes direction. Spatial correlations with the sky-projected magnetic field orientation and structure in total intensity are also identified and discussed. We argue that the (low-p) patches, along with associated reversals in the LOS magnetic field and other related phenomena, are best explained by the presence of { \\mathcal O }({10}9) {M}ȯ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the interstellar medium of NCG 1316 or its surrounding intracluster medium. Our study underscores the power and utility of spatially resolved, broadband, full-polarization radio observations to reveal new facets of flow behaviors and magneto-ionic structure in radio lobes and their interplay with the surrounding environment.

  3. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    Science.gov (United States)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  4. Polarized radio outbursts in BL Lacertae. I. Polarized emission from a compact jet. II. The flux and polarization of a piston-driven shock

    International Nuclear Information System (INIS)

    Aller, H.D.; Aller, M.F.; Hughes, P.A.

    1985-01-01

    A second highly polarized burst in BL Lacertae observed in 1983 which has very similar properties to the earlier burst in 1981-82 is described, and it is shown that in both bursts the electric vector of the polarized emission is nearly parallel to the observed extended structure. A weak shock, moving relativistically close to the line of sight, appears to be a very effective means of producing the observed behavior. A simple model is developed to represent the outbursts as due to a piston-driven shock which exhibits polarized emission due to compression of the otherwise random magnetic field of a collimated flow. It is shown that the general features of total flux, polarized flux, and polarization position angle as a function of frequency and time can be understood in terms of such a model. 34 references

  5. Internal magnetic turbulence measurement in plasma by cross polarization scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D

    1994-09-01

    For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.

  6. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  7. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  8. Advanced Multimode Radio for Wireless & Mobile Broadband Communication

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Lanzani, Christian

    2009-01-01

    Distributed base station architectures represent the new trend that operators follow in order to resolve cost, performance and efficiency challenges when deploying 4G networks. Main components of such architectures are multimode radios capable of operating according to GSM, HSPA, WiMAX and LTE...... of a digital predistortion (DPD) block is emphasized and an adaptive polynomial approach based on cartesian to polar conversion is then proposed. Such radio architecture has successfully been implemented on a low-cost FPGA family meeting the WiMAX/LTE spectrum and Error Vector Magnitude (EVM) requirements....

  9. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    International Nuclear Information System (INIS)

    Maan, Yogesh

    2015-01-01

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm −3 ) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts

  10. DISCOVERY OF LOW DM FAST RADIO TRANSIENTS: GEMINGA PULSAR CAUGHT IN THE ACT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh, E-mail: ymaan@ncra.tifr.res.in [National Centre for Radio Astrophysics, Pune 411007 (India)

    2015-12-20

    We report the discovery of several energetic radio bursts at 34 MHz, using the Gauribidanur radio telescope. The radio bursts exhibit two important properties associated with the propagation of astronomical signals through the interstellar medium: (i) frequency dependent dispersive delays across the observing bandwidth and (ii) Faraday rotation of the plane of linear polarization. These bursts sample a range of dispersion measures (DM; 1.4–3.6 pc cm{sup −3}) and show DM-variation at timescales of the order of a minute. Using groups of bursts having a consistent DM, we show that the bursts have originated from the radio-quiet gamma-ray pulsar Geminga. Detection of these bursts supports the existence of occasional radio emission from Geminga. The rare occurrence of these bursts, and the short timescale variation in their DM (if really caused by the intervening medium or the pulsar magnetosphere), might provide clues as to why the pulsar has not been detected in earlier sensitive searches. We present details of the observations and search procedure used to discover these bursts, a detailed analysis of their properties, and evidences of these bursts being associated with Geminga pulsar, and briefly discuss the possible emission mechanism of these bursts.

  11. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  12. Is the polarization of NGC1068 evidence for a non-thermal source

    International Nuclear Information System (INIS)

    McLean, I.S.; Aspin, C.; Heathcote, S.R.; McCaughrean, M.J.

    1983-01-01

    NGC1068 is one of the brightest galaxies included by Seyfert in his list of extragalactic objects having compact, luminous nuclei within which broad, high-excitation emission lines occur. It has been the subject of intensive studies at UV, optical, IR and radio wavelengths. Unresolved questions concern the nature and relationship of the sources of the excess flux seen in the UV and IR, their connection with the collimated jets apparent in high-resolution radio maps and their association with the extended region responsible for the broad emission lines. A further question is the location of any dust and its role in modifying the optical and UV spectrum. Observations are reported with two high-resolution optical spectro-polarimeters which throw new light on these questions. From detailed structure found in the linear polarization spectrum of the nucleus it is concluded that dilution by starlight modifies the polarization to an extent not previously appreciated. In fact the polarization of the non-stellar flux in the optical and near IR is approximately independent of wavelength (as expected for synchrotron emission or electron scattering) with a direction orthogonal to that of the radio jets; such an arrangement is reminiscent of certain quasars and radio galaxies. (author)

  13. Measurement of top quark polarization in top-antitop lepton+jets final states at DØ

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Kamil [Czech Technical Univ., Prague (Czech Republic)

    2017-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  14. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  15. Graphics of polar figure; Graficado de figura polar

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R

    1991-11-15

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  16. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  17. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  18. Measurement of proton and nitrogen polarization in ammonia and a test of equal spin temperature

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Baum, G; Berglund, P; Betev, L; De Botton, N R; Bradamante, Franco; Bradtke, C; Bravar, A; Bültmann, S; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Dreshpande, A; Dhawan, S K; Dulya, C M; Dutz, H; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gehring, R; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Harmsen, J; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Kok, E; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Martin, A; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Nassalski, J P; Niinikoski, T O; Oberski, J; Ogawa, A; Parks, D P; Pereira da Costa, H D; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Plückthun, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Reicherz, G; Rijllart, A; Rodríguez, M; Rondio, Ewa; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Tessarotto, F; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K

    1998-01-01

    The 1996 data taking of the SMC experiment used polarized protons to measure the spin dependent structure function $g_1$ of the proton. Three liters of solid granular ammonia were irradiated at the Bonn electron linac in order to create the paramagnetic radicals which are needed for polarizing the protons. Proton polarizations of $\\pm(90\\pm2.5)\\,\\%$ were routinely reached. An analysis based on a theoretical line-shape for spin-1 systems with large quadrupolar broadening was developed which allowed the nitrogen polarization in the ammonia to be determined with a 10% relative error. The measured quadrupolar coupling constant of $^{14}$N agrees well with earlier extrapolated values. The polarization of the nitrogen nuclei was measured as a function of the proton polarization in order to provide a test of the equal spin temperature (EST) hypothesis. It was found to be closely valid under the dynamic nuclear polarization conditions with which the protons are polarized. Large deviations from EST could be induced by...

  19. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  20. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  1. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Directory of Open Access Journals (Sweden)

    Corstanje Arthur

    2017-01-01

    Full Text Available The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n – 1 leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

  2. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  3. Some measurements of total electron content made with the ATS-6 radio beacon

    International Nuclear Information System (INIS)

    Davies, K.; Degenhardt, W.; Hartmann, G.K.

    1978-01-01

    The paper deals with some measurements made with the radio beacon on board the ATS-6 satellite in the American and European sectors. Measurements of the slant electron content, the Faraday content, and the plasmaspheric (or residual) content, made under different geographic and geomagnetic conditions, are discussed and compared

  4. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  5. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    Science.gov (United States)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  6. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  7. Magnetic field structures in active compact radio sources

    International Nuclear Information System (INIS)

    Jones, T.W.; Rudnick, L.; Fiedler, R.L.; Aller, H.D.; Aller, M.F.; Hodge, P.E.

    1985-01-01

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  8. Advanced Diagnostics for the Study of Linearly Polarized Emission. II. Application to Diffuse Interstellar Radio Synchrotron Emission

    Science.gov (United States)

    Herron, C. A.; Burkhart, Blakesley; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Bernardi, G.; Carretti, E.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.

    2018-03-01

    Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I, we derived polarization diagnostics that are rotationally and translationally invariant in the Q–U plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfvénic Mach numbers. We generate synthetic images of Stokes Q and U for these simulations for the cases where the turbulence is illuminated from behind by uniform polarized emission and where the polarized emission originates from within the turbulent volume. From these simulated images, we calculate the polarization diagnostics derived in Paper I for different lines of sight relative to the mean magnetic field and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.

  9. Method for Detection of Airborne UEs based on LTE Radio Measurements

    DEFF Research Database (Denmark)

    Wigard, Jeroen; Amorim, Rafhael Medeiros de; Nguyen, Huan Cong

    2017-01-01

    management can be optimized for UAVs separately from terrestrial UEs. In this paper, we present a classification algorithm using existing LTE UE radio measurements to identify whether a UE is airborne or terrestrial. The method is verified with LTE measurements made in a rural area at different heights......, including terrestrial measurements and it is shown that the method in 3 out of the 4 different measurement cases can detect a UE to be airborne with 99% likelihood, while the fourth case still can classify a UE correctly in 95% of the cases. The right classification can further be improved by taking...

  10. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Rikki [Florida State Univ., Tallahassee, FL (United States)

    2003-08-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p($\\vec{e}$, e' $\\vec{p}$) π° reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q2 = 1.0 GeV2/c2. Both the recoil proton polarization and polarized response function results will be presented in this thesis. Data were collected at Jefferson Lab, located in Newport News, Virginia during the summer of 2000. A 4.53 GeV polarized electron beam was scattered off of a cryogenic hydrogen target. The recoil proton polarization was measured in the Focal Plane Polarimeter (FPP), located in one of the two High Resolution Spectrometers (HRS) in Hall A. A maximum likelihood method was used to determine the polarized response functions directly from the measured polarizations and cross sections. A simultaneous fit of the cross sections, the recoil proton polarizations, and angular distributions of the polarized response functions will provide a determination of individual multipole amplitudes. Some of these multipole amplitudes are related to the concept of proton deformation. Both the recoil proton polarizations and polarized response functions were compared to two phenomenological models: MAID and SAID, which have all free parameters fixed, based on fits to previous world data. The measured helicity dependent observables, which are dominated by imaginary parts of Δ(1232)-resonance excitation multipole amplitudes, agree very well with the two models. The measured helicity independent observables, which are dominated by real parts of background multipole amplitudes, do not agree completely with

  11. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  12. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    Science.gov (United States)

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  13. Measuring political polarization: Twitter shows the two sides of Venezuela

    Science.gov (United States)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  14. Muon polarization in the MEG experiment: predictions and measurements

    International Nuclear Information System (INIS)

    Baldini, A.M.; Dussoni, S.; Galli, L.; Grassi, M.; Sergiampietri, F.; Signorelli, G.; Bao, Y.; Hildebrandt, M.; Kettle, P.R.; Mtchedlishvili, A.; Papa, A.; Ritt, S.; Baracchini, E.; Bemporad, C.; Cei, F.; D'Onofrio, A.; Nicolo, D.; Tenchini, F.; Berg, F.; Hodge, Z.; Rutar, G.; Biasotti, M.; Gatti, F.; Pizzigoni, G.; Boca, G.; De Bari, A.; Cattaneo, P.W.; Rossella, M.; Cavoto, G.; Piredda, G.; Renga, F.; Voena, C.; Chiarello, G.; Panareo, M.; Pepino, A.; Chiri, C.; Grancagnolo, F.; Tassielli, G.F.; De Gerone, M.; Fujii, Y.; Iwamoto, T.; Kaneko, D.; Mori, Toshinori; Nakaura, S.; Nishimura, M.; Ogawa, S.; Ootani, W.; Sawada, R.; Uchiyama, Y.; Yoshida, K.; Graziosi, A.; Ripiccini, E.; Grigoriev, D.N.; Haruyama, T.; Mihara, S.; Nishiguchi, H.; Yamamoto, A.; Ieki, K.; Ignatov, F.; Khazin, B.I.; Popov, A.; Yudin, Yu.V.; Kang, T.I.; Lim, G.M.A.; Molzon, W.; You, Z.; Khomutov, N.; Korenchenko, A.; Kravchuk, N.; Venturini, M.

    2016-01-01

    The MEG experiment makes use of one of the world's most intense low energy muon beams, in order to search for the lepton flavour violating process μ + → e + γ. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be P μ = -1 by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be P μ =.0.86 ± 0.02 (stat) -0.06 +0.05 (syst) at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our μ + → e + γ search induced by the muon radiative decay: μ + → e + anti ν μ ν e γ. (orig.)

  15. Measurement of Charmonium Polarization with the LHCb Detector

    CERN Document Server

    Zhang, Yanxi

    In particle physics, quantum chromodynamics (QCD) is the theory used to describe the interaction of colored particles. Heavy quarkonium is the bound state of heavy quark and its anti-quark, and its production cross section and polarization can be used to test the theory models in the framework of QCD. The computation of the heavy quarkonium production cross section by color singlet mechanism (CSM) underestimates the experimental measurements, while results from the calculation of non-relativistic QCD (NRQCD) can describe experimental data very well. However, the NRQCD predicts that the $S$ wave heavy quarkonium is heavily transversely polarized in the large transverse momentum region, which is contrary to experimental observations. LHCb, dedicated for precision measurement in bottom and charm physics, is one of the experiments located at the Large Hadron Collider (LHC). The LHCb detector, which is a forward region spectrometer covering the pseudo rapidity range 2-5, has fine particle reconstruction and identi...

  16. Measurement of polarization observables of the associated strangeness production in proton proton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hauenstein, F.; Klaja, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Borodina, E.; Dzhygadlo, R.; Gast, W.; Gillitzer, A.; Grzonka, D.; Kilian, K.; Mertens, M.; Roderburg, E.; Roeder, M.; Sefzick, T.; Wintz, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Clement, H.; Doroshkevich, E.; Ehrhardt, K. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Eyrich, W.; Kober, L.; Krapp, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Jowzaee, S. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Jagellonian University, Institute of Physics, Cracow (Poland); Moskal, P.; Smyrski, J. [Jagellonian University, Institute of Physics, Cracow (Poland); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Juelich Aachen Research Alliance, Forces and Matter Experiments (JARA-FAME), Forschungszentrum Juelich, Juelich (Germany); RWTH Aachen, Aachen (Germany); Ruhr-Universitaet Bochum, Experimentalphysik I, Bochum (Germany); Schroeder, W. [Forschungszentrum Juelich, Corporate Development, Juelich (Germany); Wuestner, P. [Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Collaboration: The COSY-TOF Collaboration

    2016-11-15

    The Λ polarization, the analyzing power, and the Λ spin transfer coefficient of the reaction pp → pK{sup +} Λ were measured at beam momenta of 2.70 GeV/c and 2.95 GeV/c corresponding to excess energies of 122 MeV and 204 MeV. While the analyzing power and the spin transfer coefficient do not change significantly with the excess energy, the Λ polarization varies strongly and changes its sign. As this is the first measurement of polarization observables below an excess energy of 200 MeV, the change of the sign of the Λ polarization was not observed before. The high statistics of the data (∼ 200 k events for each momentum) enables detailed studies of the dependence of the Λ polarization and the analyzing power on the center-of-mass momentum of the particles. The results of the spin transfer coefficient are in qualitative agreement with the DISTO experiment. The Λ polarization data of 2.95 GeV/c are only conform with the DISTO experiment, while both the 2.70 GeV/c and 2.95 GeV/c data differ strongly from all previous measurements, whether exclusive or inclusive. (orig.)

  17. VLBA Observations of Low Luminosity Flat Spectrum Radio Galaxies and BL Lac Objects: Polarisation Properties

    Science.gov (United States)

    Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.

    We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.

  18. Measuring changes of radio-frequency dielectric properties of chicken meat during storage

    Science.gov (United States)

    Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...

  19. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  20. ALMA SCIENCE VERIFICATION DATA: MILLIMETER CONTINUUM POLARIMETRY OF THE BRIGHT RADIO QUASAR 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H.; Nakanishi, K.; Hada, K. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Paladino, R. [INAF-Osservatorio di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Hull, C. L. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Cortes, P.; Fomalont, E. [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763 0355, Santiago de Chile (Chile); Moellenbrock, G. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Asada, K., E-mail: hiroshi.nagai@nao.ac.jp [The Academia Sinica Institute of Astronomy and Astrophysics, AS/NTU. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C (China)

    2016-06-20

    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C 286 made with the Atacama Large Millimeter and Submillimeter Array (ALMA) at 1.3 mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south–west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17%; this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or electric vector position angle (EVPA)) in the core is ∼39{sup ◦}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

  1. Measurement of the polarization correlation coefficient in elastic pp scattering at 610 MeV

    International Nuclear Information System (INIS)

    Borisov, N.S.; Glonti, L.N.; Kazarinov, M.Yu.

    1977-01-01

    The polarization correlation coefficient Csub(nn) for elastic pp scattering at 610+-10 MeV was measured for four scattering angles: 40, 67, 78 and 90 deg (c.m.s.). A polarized proton beam with a maximum polarization of 0.39+-0.02 and a polarized proton target of the frozen type were used. The maximum polarization of the target was 0.97+-0.04. The experimental procedure is described in detail. The Csub(nn) measured are compared with the results of a phase analysis and the findings at 575 MeV obtained elsewhere. The Csub(nn) coefficients are shown to be valuable to discriminate alternative solutions of the phase analysis. The polarized proton targets of the frozen type, no accounting the complexity of their design, are emphasized to be rather reliable and convenient devices for conducting experiments at accelerators

  2. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  3. Measurement of top quark polarization in top-antitop lepton+jets final states at D0

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Kamil [Czech Technical Univ., Prague (Czech Republic)

    2016-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  4. Theoretical and experimental studies of atmospheric structure and dynamics, using high altitude chemical release, Radio meteor, and meteorological rocket network and other data

    Science.gov (United States)

    Edwards, H. D.

    1976-01-01

    Data collected by the Georgia Tech Radio Meteor Wind Facility during the fall and winter of 1975 are analyzed indicating a relationship between lower thermospheric circulation at mid latitudes and polar stratospheric dynamics. Techniques of measurement of mixing processes in the upper atmosphere and the interpretation of those measurements are described along with a diffusion simulation program based on the Global Reference Atmosphere program.

  5. The Models for Radio Emission from Pulsars – The Outstanding issues

    Indian Academy of Sciences (India)

    tribpo

    in section 4, where existing models for pulsar radio emission are also reviewed. ... pair plasma flowing outward along open magnetic field lines from the polar caps ..... A reactive instability involves an intrinsically growing, phase-coherent wave.

  6. A scheme to measure the polarization asymmetry at the Z pole in LEP

    International Nuclear Information System (INIS)

    Blondel, A.

    1988-01-01

    If longitudinally polarized beams are available in the large electron-positron storage ring (LEP), it is shown that running with a specific sequence of polarized and depolarized bunches will allow both a measurement of the polarization asymmetry A LR and the absolute calibration of the polarimeters. The resulting accuracy that one can expect is discussed. (orig.)

  7. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  8. Linear polarized fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Partridge, R.B.; Nowakowski, J.; Martin, H.M.

    1988-01-01

    We report here limits on the linear (and circular) polarization of the cosmic microwave background on small angular scales, 18''≤ θ ≤ 160''. The limits are based on radio maps of Stokes parameters and polarisation (linear and circular). (author)

  9. Measuring CMB polarization from ISS: the SPOrt experiment

    International Nuclear Information System (INIS)

    Colombo, L.P.L.

    2004-01-01

    The SPOrt (Sky Polarization Observatory) experiment aims to measure CMBP (cosmic microwave background polarization) on about 80% of the sky from space. Selected by ESA to fly on board the ISS in 2006, it is funded by the Italian Space Agency (ASI). As shown also by the recent WMAP release, CMBP data, besides of removing various degeneracies among cosmological parameters, provided new and important information on the cosmic opacity τ and, therefore, on very early cosmic objects which reionized the world at z ∼ 15. Most such information is obtained from low-l spectral components, that SPOrt, with its HPBW resolution of 7 degrees will explore with a high level of sensitivity. The 4 polarimeters of SPOrt work at 22, 32 and (2x) 90 GHz. At lower frequencies they will provide a (nearly) all-sky survey of Galactic synchrotron polarized emission, while data at the higher frequency will measure the CMBP signal. Correlating SPOrt with anisotropy data, by other experiments, shall therefore provide significant cosmological information. We performed a number of simulations of SPOrt performance, aimed to determine how far τ and/or other parameter(s) concerning reionization are constrained by the expected data. We also considered a possible interplay between reionization histories and Dark Energy nature. Besides of information on technological developments for systematics reduction, long term stability and observing time efficiency, we report here recent outputs on the expected SPOrt performance in constraining cosmological models

  10. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  11. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  12. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  13. Measurement of W Boson Polarization in Top Quark Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vickey, Trevor Neil [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2004-01-01

    A measurement of the polarization of the W boson from top quark decay is an excellent test of the V-A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cosθ* distribution in the lepton-plus-jets channel of t$\\bar{t}$ candidate events from p$\\bar{p}$ collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of ~ 162 pb-1 of data collected with the CDF Run II detector, resulting in 31 t$\\bar{t}$ candidate events with at least one identified b jet. Using a binned likelihood fit to the cosθ* distribution from the t$\\bar{t}$ candidate events found in this sample, the fraction of W bosons with longitudinal polarization is determined to be F0 = 0.99$+0.29\\atop{-0.35}$stat.) ± 0.19(syst.), F0 > 0.33 @ 95% CL. This result is consistent with the standard model prediction, given a top quark mass of 174.3 GeV/c2, of F0 = 0.701 ± 0.012.

  14. Polarization Measurements in elastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Garcon, M.

    1989-01-01

    The deuteron electromagnetic form factors, are recalled. The experiment, recently performed in the Bates accelerator (M.I.T.), is described. The aim of the experiment is the measurement of the tensor polarization of the backscattered deuteron, in the elastic electron-deuteron scattering, up to q = 4.6 f/m. Different experimental methods, concerning the determination of this observable, are compared. Several improvement possibilities in this field are suggested

  15. Parsec-Scale Radio Properties of Gamma-ray Bright Blazars

    Science.gov (United States)

    Linford, Justin

    2012-01-01

    The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using both archival and contemporaneous data. In total, 244 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Archival radio data indicated that there was no significant correlation between radio flux density and gamma-ray flux, especially at lower flux levels. However, contemporaneous observations showed a strong correlation. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.

  16. Muon polarization in the MEG experiment: predictions and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A.M.; Dussoni, S.; Galli, L.; Grassi, M.; Sergiampietri, F.; Signorelli, G. [Pisa Univ. (Italy); INFN Sezione di Pisa, Pisa (Italy); Bao, Y.; Hildebrandt, M.; Kettle, P.R.; Mtchedlishvili, A.; Papa, A.; Ritt, S. [Paul Scherrer Institut PSI, Villigen (Switzerland); Baracchini, E. [University of Tokyo, ICEPP, Tokyo (Japan); INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bemporad, C.; Cei, F.; D' Onofrio, A.; Nicolo, D.; Tenchini, F. [INFN Sezione di Pisa, Pisa (Italy); Pisa Univ., Dipartimento di Fisica, Pisa (Italy); Berg, F.; Hodge, Z.; Rutar, G. [Paul Scherrer Institut PSI, Villigen (Switzerland); Swiss Federal Institute of Technology ETH, Zurich (Switzerland); Biasotti, M.; Gatti, F.; Pizzigoni, G. [INFN Sezione di Genova, Genova (Italy); Genova Univ., Dipartimento di Fisica, Genova (Italy); Boca, G.; De Bari, A. [INFN Sezione di Pavia, Pavia (Italy); Pavia Univ., Dipartimento di Fisica, Pavia (Italy); Cattaneo, P.W.; Rossella, M. [Pavia Univ. (Italy); INFN Sezione di Pavia, Pavia (Italy); Cavoto, G.; Piredda, G.; Renga, F.; Voena, C. [Univ. ' ' Sapienza' ' , Rome (Italy); INFN Sezione di Roma, Rome (Italy); Chiarello, G.; Panareo, M.; Pepino, A. [INFN Sezione di Lecce, Lecce (Italy); Univ. del Salento, Dipartimento di Matematica e Fisica, Lecce (Italy); Chiri, C.; Grancagnolo, F.; Tassielli, G.F. [Univ. del Salento (Italy); INFN Sezione di Lecce, Lecce (Italy); De Gerone, M. [Genova Univ. (Italy); INFN Sezione di Genova, Genova (Italy); Fujii, Y.; Iwamoto, T.; Kaneko, D.; Mori, Toshinori; Nakaura, S.; Nishimura, M.; Ogawa, S.; Ootani, W.; Sawada, R.; Uchiyama, Y.; Yoshida, K. [University of Tokyo, ICEPP, Tokyo (Japan); Graziosi, A.; Ripiccini, E. [INFN Sezione di Roma, Rome (Italy); Univ. ' ' Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Grigoriev, D.N. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State Technical University, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Haruyama, T.; Mihara, S.; Nishiguchi, H.; Yamamoto, A. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Ieki, K. [Paul Scherrer Institut PSI, Villigen (Switzerland); University of Tokyo, ICEPP, Tokyo (Japan); Ignatov, F.; Khazin, B.I.; Popov, A.; Yudin, Yu.V. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Kang, T.I.; Lim, G.M.A.; Molzon, W.; You, Z. [University of California, Irvine, CA (United States); Khomutov, N.; Korenchenko, A.; Kravchuk, N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Venturini, M. [Pisa Univ. (Italy); INFN Sezione di Pisa, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Collaboration: The MEG Collaboration

    2016-04-15

    The MEG experiment makes use of one of the world's most intense low energy muon beams, in order to search for the lepton flavour violating process μ{sup +} → e{sup +}γ. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be P{sub μ} = -1 by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be P{sub μ} =.0.86 ± 0.02 (stat){sub -0.06}{sup +0.05} (syst) at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our μ{sup +} → e{sup +}γ search induced by the muon radiative decay: μ{sup +} → e{sup +} anti ν{sub μ}ν{sub e}γ. (orig.)

  17. Design Studies for Flux and Polarization Measurements of Photons and Positrons for SLAC Proposal E166: An experiment to test polarized positron production in the FFTB (LCC-0107)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M

    2003-10-02

    We present results from design studies carried out to investigate measurements of the flux, spectrum and polarization of undulator photons for SLAC Proposal E166. A transmission Compton polarimeter is considered for measuring the photon circular polarization. We also present results for measuring the flux and spectrum of positrons produced by the undulator photons in an 0.5X{sub 0} Titanium target. And we present some considerations for use of a transmission Compton polarimeter to measure the circular polarization of bremsstrahlung photons emitted by the polarized positrons in a thin radiator.

  18. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  19. Measurement of the polarization of cumulative protons in γA → pX reaction

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Avakyan, E.O.; Avetisyan, A.Eh.

    1985-01-01

    The polarization of cumulative protons in γA → px reaction is measured in the range of proton energy (190+270) MeV for C, Cu, Sn, Pb nuclei. The measured polarization is practically independent of the energy of protons and the atomic number of nuclei

  20. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  1. On Polarization and Frequency Dependence of Diffuse Indoor Propagation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2011-01-01

    The room electromagnetics (RE) theory describes the radio propagation in a single room assuming diffuse scat- tering. A main characteristic is the exponential power-delay profile (PDP) decaying with the so-called reverberation time (RT) parameter, depending only on the wall area, the volume...... of the room and an absorption coefficient. The PDP is independent on the location in the room, except for the arrival time. Based on measurements in a room with a spherical array of 16 dual- polarized wideband horn antennas, the current work studies how the RE parameters depend on the receiver (Rx) antenna...

  2. Combined synthetic x-ray and radio observations of simulated radio jets

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. (Ian L.); Jones, T. W. (Thomas Walter),; Ryu, Dongsu

    2004-01-01

    We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy jets. This is the first such analysis to be based on simulations with sufficient physical detail to allow the application of standard observational analysis techniques to simulated radio galaxies. Here we focus on extracting magnetic field properties from nonthermal intensity information. We study field values obtained via the combination of synchrotron radio and inverse-Compton X-ray data as well as those from the minimum-energy approach. The combined radio/X-ray technique provides meaningful information about the field. The minimum-energy approach retrieves reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also look at how the two field measurement techniques might be combined to provide a rough measure of the actual energy in particles and fields. A full report on this work can be found in the Astrophysical Journal, v601, p778.

  3. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  4. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    Science.gov (United States)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  5. Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report measurements of single- and double-spin asymmetries for W± and Z/γ* boson production in longitudinally polarized p+p collisions at √s =510 GeV by the STAR experiment at RHIC. The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  6. 4He abundances: Optical versus radio recombination line measurements

    Science.gov (United States)

    Balser, Dana S.; Rood, Robert T.; Bania, T. M.

    2010-04-01

    Accurate measurements of the 4He/H abundance ratio are important in constraining Big Bang nucleosynthesis, models of stellar and Galactic evolution, and H ii region physics. We discuss observations of radio recombination lines using the Green Bank Telescope toward a small sample of H ii regions and planetary nebulae. We report 4He/H abundance ratio differences as high as 15-20% between optical and ratio data that are difficult to reconcile. Using the H ii regions S206 and M17 we determine 4He production in the Galaxy to be dY/dZ = 1.71 ± 0.86.

  7. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  8. Measured results of polarization crosstalk cancellation using LMS control. [Least Mean Square

    Science.gov (United States)

    Baird, C. A.; Rassweiler, G. G.

    1977-01-01

    This paper discusses the use of wideband decoupling networks for the cancellation of polarization crosstalk in dual-polarized communication links. Measured cancellation performance for an all-electronic IF network and an RF electro-mechanical waveguide network are presented. Each of these networks utilizes LMS-type adaptive control techniques to adjust the cancellation network.

  9. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  10. The Large Scale Structure: Polarization Aspects R. F. Pizzo

    Indian Academy of Sciences (India)

    ized radio sources in galaxy clusters and at their outskirts, emphasizing the crucial information provided by the polarized signal on the origin and evolution ..... Evrard, A. E., Gioia, I. M. 2002, in Astrophysics and Space Science Library, Vol. 272,.

  11. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NARCIS (Netherlands)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Ozben, C. S.; Prasuhn, D.; Sandri, P. Levi; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-01-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY

  12. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  13. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Directory of Open Access Journals (Sweden)

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  14. Radio measurements in the fields of gamma-ray sources. Pt. 1

    International Nuclear Information System (INIS)

    Sieber, W.; Schlickeiser, R.

    1982-01-01

    The γ-ray source CG 195+04 has been searched for radio counterparts at wavelengths between 2.8 cm and 18 cm with the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie, Bonn. We have detected a number of sources and measured their spectra. Our positions may form the basis for future surveys in other frequency ranges. Different physical emission models suggest compactness of the γ-ray source. (orig.)

  15. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    Science.gov (United States)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  16. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    International Nuclear Information System (INIS)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.; Katoh, Y.; Masuda, S.

    2017-01-01

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  17. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K. [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Katoh, Y. [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Masuda, S., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [Institute for Space—Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2017-06-10

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  18. Precision neutral current asymmetry parameter measurements from the Tau polarization at LEP

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    Measurements of the τ lepton polarization and forward-backward polarization asymmetry near the Z 0 resonance using the OPAL detector are described. The measurements are based on analyses of τ→ν e ν τ , τ→μν μ ν τ , τ→πν τ , τ→ρν τ and τ→ 1 ν τ decays from a sample of 144,810 e + e - →τ + τ - candidates corresponding to an integrated luminosity of 151 pb -1 . Assuming that the τ lepton decays according to V-A theory, we measure the average τ polarization near √(s) =M Z to be left angle P τ right angle = (-14.10 ±0.73 ±0.55)% and the τ polarization forward-backward asymmetry to be A pol FB = (-10.55 ±0.76 ±0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z 0 interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: A τ =0.1456±0.0076±0.0057, A e =0.1454±0.0108±0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give A l = 0.1455 ±0.0073. Within the context of the Standard Model this combined result corresponds to =0.23172 ±0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of =0.23211 ±0.00068. (orig.)

  19. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  20. Full polarization measurement of SR emitted from twin helical undulators using Sc/Cr multilayers at 398.6 eV

    International Nuclear Information System (INIS)

    Hirono, T.; Kimura, H.; Muro, T.; Saitoh, Y.; Ishikawa, T.

    2004-01-01

    Full text: Many of scientific measurements utilizing the polarization characteristics such as MCD are vigorously studied in soft x-ray region. To obtain polarization state precisely is important to study physical phenomena quantitatively. For example, using information of accurate polarization state of probe beam we are able to discuss not only a structure of spectrum but also absolute value of measured data. We carried out the full polarization measurements at BL25SU in SPring-8. The measurements were performed for synchrotron radiation (SR) beam of 398.6 eV emitted from twin helical undulators. All parameters of polarization state of the beam were determined with phase shifting transmission multilayer and polarizing reflection multilayer. The phase shifter was a newly developed Sc/Cr multilayer and was evaluated as a quarter-wave plate. In the presentation, we will report the full polarization measurement of circularly polarized light using the quarter-wave plate

  1. What do we learn from polarization measurements in deep-inelastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Anselmino, M.

    1979-01-01

    We examine what can be learned from deep-inelastic electron-nucleon scattering with polarized initial electrons and measurement of the polarization of the final electrons. A direct evaluation of the separate structure functions W 1 and W 2 is shown to be possible

  2. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  3. Measurement of gluon polarization through spin asymmetry in the production of charmed mesons

    International Nuclear Information System (INIS)

    Panebianco, St.

    2005-09-01

    The main aim of the COMPASS experiment is the measurement of the gluon polarization in the nucleon, which can be accessed by the spin asymmetry in the scattering of a polarized muon beam on a polarized nucleon target. The process sensitive to the gluon polarization is the photon-gluon fusion, which can be tagged in the cleanest way by looking at the production of D 0 mesons. At COMPASS, D 0 mesons are reconstructed from the invariant mass of their decay products. However, it is a rare process, dominated by a large combinatorial background. This thesis presents some studies devoted to the improvement of the charmed mesons reconstruction. The measurement of the efficiency and the space resolution of the 3 drift chamber stations of the COMPASS spectrometer is a necessary step in understanding the performances of the reconstruction of particle trajectories. The hadron identification, which is fundamental in the reconstruction of charmed meson decay, is performed by a RICH detector. A statistical treatment of signal and background, together with an upgrade project to replace the present front-end electronics, have been developed in order to improve the particle identification performances. The second part of this work concerns the spin asymmetry measurement, which requires the application of event selection criteria in order to minimize the noise over signal ratio in the D 0 invariant mass, and the development of event-weighting methods to reduce the statistical error. This work presents a preliminary result, based on 2002-2004 statistics, which is the ΔG/G measurement from open charm production. Although the error bars are large, the measured gluon polarization is compatible with zero. Given the present accuracy, this result is compatible with the existing direct measurements from other channels. However, it does not allow to distinguish between different theoretical models. (author)

  4. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  5. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  6. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  7. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    International Nuclear Information System (INIS)

    Rikki Roche

    2003-01-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p(rvec e), e(prime) (rvec p) π o reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q 2 = 1.0 GeV 2 /c 2 . Both the recoil proton polarization and polarized response function results will be presented in this thesis

  8. Lessons Learned from Six Decades of Radio Polarimetry

    Science.gov (United States)

    Wiesemeyer, Helmut; Güsten, R.; Kreysa, E.; Menten, K. M.; Morris, D.; Paubert, G.; Pillai, T.; Sievers, A.; Thum, C.

    2018-01-01

    The characterization of polarized emission from continuum radiation and spectral lines across large-scale galactic and extragalactic fields is a typical application of single-dish telescopes, from radio to far-infrared wavelengths. Despite its high analytical value, in many cases polarimetry was added to the design specifications of telescopes and their frontends only in advanced development stages. While in some situations the instrumental contamination of the Stokes parameters can be corrected, this becomes increasingly difficult for extended fields. This contribution summarizes the current situation at mm/submm telescopes. Strategies for post-observing polarization calibration are presented as well as methods to optimize the components in the beam path.

  9. Computing angle of arrival of radio signals

    Science.gov (United States)

    Borchardt, John J.; Steele, David K.

    2017-11-07

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.

  10. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  11. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  12. Extended radio emission and the nature of blazars

    International Nuclear Information System (INIS)

    Antonucci, R.R.J.; Ulvestad, J.S.

    1985-01-01

    The VLA has been used at 20 cm to map all 23 of the 54 confirmed blazars listed in the Angel and Stockman review paper that had not been mapped before at high resolution. (Blazars include BL Lac objects and optically violently variable quasars.) In addition, data on most of the previously mapped blazars have been reprocessed in order to achieve higher dynamic range. Extended emission has been detected associated with 49 of the 54 objects. The extended radio emission has been used to test the hypothesis that blazars are normal radio galaxies and radio quasars viewed along the jet axes. We find that blazars have substantial extended power, consistent with this hypothesis. Many have extended powers as high as the luminous Fanaroff-Riley class 2 radio doubles. The projected linear sizes are small, as expected from foreshortening of the extended sources, and many blazars have the expected core-halo morphology. There are also several small doubles, a head-tail source, and some one-sided sources, and these could be in cases where the line of sight is slightly off the jet axis, or projections of asymmetrical radio galaxies and quasars. The ratio of core to extended radio emission has been studied as a possible indicator of viewing aspect or beaming intensity. It is found to correlate with optical polarization, optical and radio core variability, and one-sided radio morphology. We can go beyond these consistency checks and work toward a proof of the hypothesis under discussion. The flux from the extended emission alone is sufficient in some blazars to qualify them for inclusion in the 3C and 4C catalogs. Suppose that the radio core emission is anisotropic, but the extended emission is predominantly isotropic. The isotropy of the extended emission implies that these blazars would be in the catalogs even if viewed from the side

  13. Measurement of the average polarization of b baryons in hadronic $Z^0$ decays

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; De Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, , is measured in approximately 4.3 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a \\Lambda baryon are identified through the correlation of the baryon number of the \\Lambda and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value = -0.56^{+0.20}_{-0.13} +/- 0.09 is obtained, where the first error is statistical and the second systematic.

  14. Central powering of the largest Lyman-α nebula is revealed by polarized radiation.

    Science.gov (United States)

    Hayes, Matthew; Scarlata, Claudia; Siana, Brian

    2011-08-17

    High-redshift Lyman-α (Lyα) blobs are extended, luminous but rare structures that seem to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to those of powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock-excited by supernovae. But not all blobs are associated with galaxies, and these ones may instead be heated by gas falling into a dark-matter halo. The polarization of the Lyα emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report observations of polarized Lyα from the blob LAB1 (ref. 2). Although the central region shows no measurable polarization, the polarized fraction (P) increases to ∼20 per cent at a radius of 45 kiloparsecs, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Lyα photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.

  15. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  16. The search for faint radio supernova remnants in the outer Galaxy: five new discoveries

    Science.gov (United States)

    Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert

    2014-06-01

    Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer

  17. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  18. Progress in measurement and understanding of beam polarization in electron positron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.

    1983-07-01

    A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)

  19. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    Science.gov (United States)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  20. Measurement of the linear polarization of the photons in the elementary processes of bremsstrahlung production

    International Nuclear Information System (INIS)

    Bleier, W.

    1983-01-01

    The polarization of the photons in the elementary processes of the electron-nucleus and electron-electron bremsstrahlung was measured. Electrons with an energy of 300 keV were scattered by copper, gold and carbon target. The polarization in the different processes was measured by using different coincidence methods. (BEF)

  1. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  2. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  3. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    Science.gov (United States)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  4. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  5. Moeller scattering and the measurement of beta-ray longitudinal polarization

    International Nuclear Information System (INIS)

    Kliwer, J.

    1989-01-01

    Two problems that are inherent in the measurement of longitudinal polarization of beta rays via Moeller scattering (Bhabha scattering for positrons) are the low signal-to-noise ratio due to the electron-nucleon-scattered background and the small fraction of electrons that are polarized in the target. The present article shows how to optimize the signal-to-noise ratio by the collection of Moeller-scattered events using a thick-lens beta-ray spectrometer where the entrance baffle is set very narow to accommodate the relativistically contracted cone of Moeller events; this in turn minimizes the electron-nucleon-scattered background and maximizes the signal-to-noise ratio. In the case of positrons, recent studies of electron channeling in crystals suggest a target that will reduce Bhabha scattering from the large fraction of unpolarized inner-shell electrons and predominantly pick off the polarized fraction of target electrons. (orig.)

  6. Tau Polarization Measurement in the L3 Detector

    International Nuclear Information System (INIS)

    Garcia, P.

    1996-01-01

    The Polarization asymmetry (A p ) measurement can be obtained from the energy spectra of the tau lepton (tau) decay products. This measurement provides a precise determination of the weak mixing angel (sin''2 tilde char theta w ), one of the Standard Model fundamental parameters. Tau leptons are produced at LEP in e''+e''-yields tilde char f interactions at a center of mass energy of the order of the Z boson mass. In order to get A p we have calculated the analytical formulae of the tau decay products energy spectra, including radiative corrections, for all of the one prong tau decay channels. We have also extended this analytical formalism to the detector level, including the selection criteria effectsand the detector resolution (calibration) in the analytical expressions.Detailed studies have been performed concerning our measurement using this formalism. From the data collected with the L3 detector between 1991 and 1994, which corresponds to an integrated luminosity of 118.8 pb''1 at a center of mass energy of the order of the Z mass, we have identified and selected the following tau decay channel samples: tau yields e nu tilde char nu, tau yields mu nu tilde char nu, tau yields pi/K nu y tau yields p/K*nu. From the analysis of these samples we get the tau polarization asymmetry measurement: A p =3D0.143+-0.014+-0.010, which corresponds to a value of sin''2 tilde char theta w =3D0.2320+-0.0018+-0.0013. (Author) 24 refs

  7. Radio and optical observations of 0218+357 - The smallest Einstein ring?

    Science.gov (United States)

    O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.

    1992-01-01

    VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.

  8. Electroweak coupling measurements from polarized Bhabha scattering at the Z0 resonance

    International Nuclear Information System (INIS)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e + e - → e + e - ) with polarized electrons at the center of mass energy of the Z 0 resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86±2.56 (stat)±4.23 (sys) nb -1 . The luminosity asymmetry for polarized beams is measured to be A LR (LUM) = (1.7 ± 6.4) x 10 -3 . The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z 0 through the measurement of the Z 0 → e + e - partial width, Γ ee , and the parity violation parameter, A e . From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be bar g v e = -0.0495±0.0096±0.0030, and bar g α e = -0.4977±0.0035±0.0064 respectively. The effective weak mixing angle is measured to be sin 2 θ W eff = 0.2251±0.0049±0.0015. These results are compared with other experiments

  9. Princess Elisabeth Antarctica: an International Polar Year outreach and media success story

    Directory of Open Access Journals (Sweden)

    Joseph Cheek

    2011-12-01

    Full Text Available One of the priorities of the fourth International Polar Year (IPY was to increase awareness of the polar regions and polar science among the general public through education, communication and other forms of outreach. This paper reports on the media coverage of Princess Elisabeth Antarctica (PEA, Belgium's “zero-emission” Antarctic research station designed by the non-profit International Polar Foundation (IPF to run on wind and solar energy and to employ state-of-the-art forms of energy management and other “green” technology. This paper provides background information on PEA, a review of IPF's media strategy for the project, a description of media coverage of the station and a discussion of the way in which the IPF's main messages were reported in the media. IPF staff surveyed approximately 300 media reports released between February 2004, when the PEA project was announced to the general public, and June 2010, when the IPF presented their findings at the IPY conference in Oslo. PEA was featured 580 times in print and web media in Belgium, and 303 times outside Belgium. Major international agencies such as the Associated Press, Agence France Presse, the BBC, Al-Jazeera and Reuters covered the project. On television and radio, PEA was featured in news broadcasts from all four major television networks in Belgium, most major radio stations and 34 different television and radio news outlets outside Belgium. The paper concludes that the media coverage for PEA was significant and suggests reasons why the project was so widely reported.

  10. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  11. COSMIC Radio Occultation technique for measurement of the tropopause during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    Basin during July 2008 and reached a maximum intensity of Category 3 and the typhoon Hondo, formed in the south Indian basin during February 2008 with maximum intensity of Category 4. Using measurements from a variety of earth observation satellites (A-Train constellation) and from aircraft together...... and they cool the tropopause layers. The GPS radio occultation technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution...

  12. Design and fabrication of the BNL radio frequency quadrupole

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H - injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few μ amperes of H - current, it is anticipated that future polarized H - sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report

  13. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  14. Flux density measurements of radio sources at 2.14 millimeter wavelength

    International Nuclear Information System (INIS)

    Cogdell, J.R.; Davis, J.H.; Ulrich, B.T.; Wills, B.J.

    1975-01-01

    Flux densities of galactic and extragalactic sources, and planetary temperatures, have been measured at 2.14 mm wavelength (140 GHz). Results are presented for OJ 287; the galactic sources DR 21, W3, and Orion A; the extragalactic sources PKS 0106plus-or-minus01, 3C 84, 3C 120, BL Lac, 3C 216, 3C 273, 3C 279, and NGC 4151; and the Sun, Venus, Mars, and Jupiter. Also presented is the first measurement of the 2.14-mm temperature of Uranus. The spectra of some of these sources are discussed. The flux density scale was calibrated absolutely. The measurements were made with a new continuum receiver on the 4.88-m radio telescope of The University of Texas

  15. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  16. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  17. Measurement of the photon polarization using ${B_s^0\\to \\phi\\gamma}$ at LHCb.

    CERN Document Server

    Hoballah, Mostafa; Deschamps, Olivier

    This thesis is dedicated to the study of the photon polarization in ${B_s^0\\to \\phi\\gamma}$ decays at LHCb. At the quark level, such decays proceed via a $b \\to s \\gamma$ penguin transition and are sensitive to possible virtual contributions from New Physics. The measurement of the photon polarization stands also as a test of the $V-A$ structure of the Standard Model coupling in the processes mediated by loop penguin diagrams. The measurement of the photon polarization can be done through a study of the time-dependent decay rate of the $B$ meson. A delicate treatment has been done to understand the proper time distribution and the selection acceptance affecting it. To control the proper time acceptance, data driven control methods have been developed. Several possible strategies to measure the photon polarization are introduced and preliminary blinded results are presented. A study of some of the systematic effects is discussed. In the context of studying radiative decays, the author has developed a new photo...

  18. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  19. Measurement of Quarkonium polarization to probe QCD at the LHC

    International Nuclear Information System (INIS)

    Knünz, V.

    2015-01-01

    With the first proton-proton collisions in the Large Hadron Collider (LHC) at CERN in 2010, a new era in high energy physics has been initiated. The data collected by the various experiments open up the possibility to study standard model processes with high precision, in new areas of phase space. The LHC provides excellent conditions for studies of quarkonium production, due to the high quarkonium production rates given the high center-of-mass energy and high instantaneous luminosity of the colliding proton beams. Studies of the production of heavy quarkonium mesons - bound states of a heavy quark and its respective antiquark - are very important to improve our understanding of hadron formation. Until quite recently, experimental and phenomenological efforts have not resulted in a satisfactory overall picture of quarkonium production cross sections and quarkonium polarizations. The Compact Muon Solenoid (CMS) detector is ideally suited to study quarkonium production in the experimentally very clean dimuon decay channel, up to considerably higher values of transverse momentum than accessible in previous experiments. The scope of this thesis is to describe in detail the measurements of the polarizations of the Upsilon(nS) bottomonium states and (in less detail) of the Psi(nS) charmonium states, based on a dimuon data sample collected with the CMS detector in proton-proton collisions at a center-of-mass energy of 7 TeV. Surprisingly, no significant polarizations were found in any of the studied quarkonium states, in none of the studied reference frames, nor in a frame-independent analysis. From an experimental point of view, these results, together with recent results from other experiments, clarify the confusing picture originating from previous measurements, which were plagued by experimental ambiguities and inconsistencies. The currently most favored approach to model and understand quarkonium production is non-relativistic quantum chromodynamics (NRQCD), a QCD

  20. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  1. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  2. Facility for the measurement of proton polarization in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Slobodrian, R J; Irshad, M; Labrie, R; Rioux, C; Roy, R; Pigeon, R [Laval Univ., Quebec City (Canada). Lab. de Physique Nucleaire

    1979-02-15

    A polarimetry facility based on high resolution and high efficiency silicon polarimeters with on-line particle identification is described. It has proven its capability to measure polarization in (/sup 3/He, p(pol)) reaction with cross section levels of 40 ..mu..b/sr.

  3. Faraday rotation in the M87 radio/X-ray halo

    Science.gov (United States)

    Dennison, B.

    1980-01-01

    Comparison of polarization maps at various wavelengths demonstrates the existence of a large Faraday rotation uniform over the radio core of M87. Much of this rotation must be external to the core, lest it appear completely depolarized when the rotation is about 90 degrees. The Faraday rotation is shown to occur primarily in the surrounding radio/X-ray halo. Using the electron density inferred from X-ray observations, the magnetic field in the halo is found to be 2.5 microgauss. The deduced magnetic field strength permits an evaluation of the importance of Compton scattering of 3 K background photons by relativistic electrons in the radio halo. The emergent Compton-scattered spectrum is calculated, and its contribution to the observed X-ray flux is small, probably about a percent or so, while the rest is due to thermal bremsstrahlung.

  4. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    Science.gov (United States)

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  5. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  6. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  7. Deep multi-frequency rotation measure tomography of the galaxy cluster A2255

    OpenAIRE

    Pizzo, R. F.; de Bruyn, A. G.; Bernardi, G.; Brentjens, M. A.

    2010-01-01

    We aim to unveil their 3-dimensional geometry of Abell 2255 through WSRT observations at 18, 21, 25, 85, and 200 cm. The polarization images of the cluster were processed through rotation measure (RM) synthesis, producing three final RM cubes. The radio galaxies and the filaments at the edges of the halo are detected in the high-frequency RM cube, obtained by combining the data at 18, 21, and 25 cm. Their Faraday spectra show different levels of complexity. The radio galaxies lying near by th...

  8. Deep multi-frequency rotation measure tomography of the galaxy cluster A2255

    Science.gov (United States)

    Pizzo, R. F.; de Bruyn, A. G.; Bernardi, G.; Brentjens, M. A.

    2011-01-01

    Aims: By studying the polarimetric properties of the radio galaxies and the radio filaments belonging to the galaxy cluster Abell 2255, we aim to unveil their 3-dimensional location within the cluster. Methods: We performed WSRT observations of A2255 at 18, 21, 25, 85, and 200 cm. The polarization images of the cluster were processed through rotation measure (RM) synthesis, producing three final RM cubes. Results: The radio galaxies and the filaments at the edges of the halo are detected in the high-frequency RM cube, obtained by combining the data at 18, 21, and 25 cm. Their Faraday spectra show different levels of complexity. The radio galaxies lying near by the cluster center have Faraday spectra with multiple peaks, while those at large distances show only one peak, as do the filaments. Similar RM distributions are observed for the external radio galaxies and for the filaments, with much lower average RM values and RM variance than those found in previous works for the central radio galaxies. The 85 cm RM cube is dominated by the Galactic foreground emission, but it also shows features associated with the cluster. At 2 m, no polarized emission from A2255 nor our Galaxy is detected. Conclusions: The radial trend observed in the RM distributions of the radio galaxies and in the complexity of their Faraday spectra favors the interpretation that the external Faraday screen for all the sources in A2255 is the ICM. Its differential contribution depends on the amount of medium that the radio signal crosses along the line of sight. The filaments should therefore be located at the periphery of the cluster, and their apparent central location comes from projection effects. Their high fractional polarization and morphology suggest that they are relics rather than part of a genuine radio halo. Their inferred large distance from the cluster center and their geometry could argue for an association with large-scale structure (LSS) shocks. The RM cubes in gif format are only

  9. Radio weak lensing shear measurement in the visibility domain - II. Source extraction

    Science.gov (United States)

    Rivi, M.; Miller, L.

    2018-05-01

    This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper, we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by isolating visibilities of each source with a faceting technique. In this second paper, we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 104 galaxies randomly located in a field of view of 1 \\deg ^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR ≥ 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing individual sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of individual sources, but it is significantly larger than typically found in optical surveys. This bias depends on the shape of the uv coverage and we suggest that a uv-plane weighting scheme to produce a more isotropic shape could reduce and control additive bias.

  10. Polarized Bhabha scattering and a precision measurement of the electron neutral current couplings

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    Bhabha scattering with polarized electrons at the Z 0 resonance has been measured with the SLD experiment at the SLAC Linear Collider. The first measurement of the left-right asymmetry in Bhabha scattering is presented, yielding the effective weak mixing angle of sinθ eff W =0.2245±0.0049±0.0010. The effective electron couplings to the Z 0 are extracted from a combined analysis of polarized Bhabha scattering and the left-right asymmetry previously published: υ e =-0.0414±0.0020 and a e =-0.4977±0.0045

  11. Neutron polarization measurements using the pulsed-polarized proton and deuteron beams at TUNL

    International Nuclear Information System (INIS)

    Walter, R.L.

    1981-01-01

    Nanosecond wide pulses of polarized protons or deuterons at a repetition rate of 4 MHz are now routinely available for studying interactions involving outgoing neutrons. Up to 90 nA of protons and 200 nA of deuterons have been observed on target. The authors' first experiments involved the determination of the analyzing power A /SUB y/ (UJ) for a few (→p,n) and (→d,n) reactions using conventional neutron time-of-flight detection. A major program for observing polarization effects in neutron elastic scattering has been initiated. The source of polarized neutrons for this program is the 2 H(→d,n→) 3 He reaction which yields a neutron beam having 90% of the polarization of the incident deuterons

  12. The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis

    Directory of Open Access Journals (Sweden)

    Francisco J. Casas

    2015-08-01

    Full Text Available This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.

  13. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  14. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  15. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    Science.gov (United States)

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  16. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    Science.gov (United States)

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  17. Dispersive detection of radio-frequency-dressed states

    Science.gov (United States)

    Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas

    2018-04-01

    We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.

  18. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  19. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID)

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Zheng, W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-05-15

    This study discussed the development of a corrosion sensing and monitoring system for military land vehicles. Radio-frequency identification device (RFID) technology uses radio waves to identify individual masses with RFID tags attached. A corrosion-sensing element was integrated with the RFID technology, which incorporated a galvanic corrosion cell designed to trigger RFID tags. Corrosion severity was then related to the galvanic current. The tag recorded the sensor reading and transmitted the data to an RFID reader. The tags consisted of a microchip and an antenna. A software development kit has also been developed to interface RFID data with existing applications. While it is currently not possible to modify the RFID tags to prevent security risks, further research is being conducted to assemble a data-logger system with corrosion probes to measure humidity, electrical resistance, and linear polarization resistance. Studies will also be conducted to assemble an active tag reader system and investigate potential modifications. 4 refs., 1 fig., 1 appendix.

  20. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  1. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  2. Influence from Polarized Galactic Background Noise on L-band Measurements of the Sea Surface Salinity

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2004-01-01

    galactic background signal and the measured results. The measured 3rd Stokes parameter has variations of the same order of magnitude as the two linear polarizations, and to verify this result, an experiment for direct observation of the sky over long time is set up. This experiment confirms the presence...... of a polarized galactic background signal, and conclusions are made with respect to the necessity for polarimetric corrections in future measurements over the sea at L-band....

  3. AURA-A radio frequency extension to IceCube

    International Nuclear Information System (INIS)

    Landsman, H.; Ruckman, L.; Varner, G.S.

    2009-01-01

    The excellent radio frequency (RF) transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube [A. Karle, Nucl. Instr. and Meth. A (2009), this issue, doi: (10.1016/j.nima.2009.03.180).; A. Achtenberg et al., The IceCube Collaboration, Astropart. Phys. 26 (2006) 155 ] drilling through 2010 to establish the RF technology needed to achieve 100-1000km 3 effective volumes. In the 2006-2007 Austral summer, three deep in-ice RF clusters were deployed at depths of ∼1300 and ∼300m on top of the IceCube strings. Additional three clusters will be deployed in the Austral summer of 2008-2009. Verification and calibration results from the current deployed clusters are presented, and the detector design and performances are discussed. Augmentation of IceCube with large-scale (1000km 3 sr) radio and acoustic arrays would extend the physics reach of IceCube into the EeV-ZeV regime and offer substantial technological redundancy.

  4. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  5. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  6. Analysis of polarization characteristics of plant canopies using ground-based remote sensing measurements

    International Nuclear Information System (INIS)

    Sid’ko, A.F.; Botvich, I.Yu.; Pisman, T.I.; Shevyrnogov, A.P.

    2014-01-01

    The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10–18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (R max and R min ), polarized component of the reflectance factor (R q ), and the degree of polarization (P). Wheat, corn, and grass canopies have higher R max and R min values than forest plants. The R q and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data. - Highlights: • The reflection and polarization properties of plant were studied. • The compiled electronic database of the spectrophotometric information of plant. • Polarization characteristics are a source of useful data on the state of plants

  7. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    Science.gov (United States)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; hide

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  8. Search for Physics Beyond the Standard Model via Positron Polarization Measurements with Polarized $ ^{17} $F.

    CERN Multimedia

    Versyck, S

    2002-01-01

    This proposal aims at measuring the longitudinal polarization of positrons emitted from polarized $^{17} $F~nuclei. The experiment will have a comparable sensitivity to possible right-handed current contributions in the weak interaction as the experiment which was recently carried out with $ ^{107} $In in Louvain-la-Neuve, but will provide a more stringent limit due to the fact that, since $ ^{17} $F decays through a superallowed $\\beta$ -transition, the recoil-order corrections to the allowed approximation can be taken into account very precisely. Furthermore, because $ ^{17} $F decays via a mixed Fermi/Gamow-Teller $\\beta$ -transition, this experiment will also yield a new limit on possible scalar contributions to the weak interaction. While the $^{17}$F beam is being developed, part of the beamtime was used to perform a similar experiment with $^{118}$ Sb. As this isotope decays via a pure GT $\\beta$ -transition, this experiment will yield new limits on the possible presence of both right-handed and tensor...

  9. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    Science.gov (United States)

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  10. GINA-A polarized neutron reflectometer at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bottyan, L.; Merkel, D. G.; Nagy, B.; Sajti, Sz.; Deak, L.; Endroczi, G. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Fuezi, J. [Wigner RCP, SZFKI, H-1525 Budapest, P.O. Box 49 (Hungary); University of Pecs, Pollack Mihaly Faculty of Engineering and Information Technology, H-7602 Pecs, P.O. Box 219 (Hungary); Petrenko, A. V. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie 6, Dubna, 141980 (Russian Federation); Major, J. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Max-Planck-Institut fuer Intelligente Systeme (formerly Max-Planck-Institut fuer Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)

    2013-01-15

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed 'Grazing Incidence Neutron Apparatus' at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 A are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 Multiplication-Sign 20 mm{sup 2} sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 Multiplication-Sign 10{sup -5} have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [{sup 62}Ni/{sup nat}Ni]{sub 5} isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  11. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  12. Polarized BRDF measurement of the type E235B low carbon structural steel

    Science.gov (United States)

    Liu, Yanlei; Yu, Kun; Zhang, Kaihua; Liu, Yufang

    2018-01-01

    Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials. The polarized BRDF contains more information, especially for the painted objects and target recognition. In this letter, we measured the in plane polarized spectral BRDF for the steel E235B in the wavelength range of 450-600 nm. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The measuring results indicates that the wavelength of incident light has a positive effect on the BRDF near the specular direction, and has a negative influence for other direction. BRDF increases slowly with reflected zenith angle and decreases rapidly with peak occurs at specular direction, which may be attributed to the shadowing effect. In addition, the results presents that the polarization of incident light has a slight influence on the BRDF of the sample.

  13. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  14. QUASI-QUIESCENT RADIO EMISSION FROM THE FIRST RADIO-EMITTING T DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Peter K. G.; Berger, Edo; Zauderer, B. Ashley, E-mail: pwilliams@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-04-20

    Radio detections of ultracool dwarfs provide insight into their magnetic fields and the dynamos that maintain them, especially at the very bottom of the main sequence, where other activity indicators dramatically weaken. Until recently, radio emission was only detected in the M and L dwarf regimes, but this has changed with the Arecibo detection of rapid polarized flares from the T6.5 dwarf 2MASS J10475385+2124234. Here, we report the detection of quasi-quiescent radio emission from this source at 5.8 GHz using the Karl G. Jansky Very Large Array. The spectral luminosity is L{sub {nu}} = (2.2 {+-} 0.7) Multiplication-Sign 10{sup 12} erg s{sup -1} Hz{sup -1}, a factor of {approx}100 times fainter than the Arecibo flares. Our detection is the lowest luminosity yet achieved for an ultracool dwarf. Although the emission is fully consistent with being steady, unpolarized, and broad band, we find tantalizing hints for variability. We exclude the presence of short-duration flares as seen by Arecibo, although this is not unexpected given estimates of the duty cycle. Follow-up observations of this object will offer the potential to constrain its rotation period, electron density, and the strength and configuration of the magnetic field. Equally important, follow-up observations will address the question of whether the electron cyclotron maser instability, which is thought to produce the flares seen by Arecibo, also operates in the very different parameter regime of the emission we detect, or whether instead this ultracool dwarf exhibits both maser and gyrosynchrotron radiation, potentially originating from substantially different locations.

  15. H I anisotropies associated with radio-polarimetric filaments . Steep power spectra associated with cold gas

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.

    2017-10-01

    Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium

  16. Detecting Changing Polarization Structures in Sagittarius A* with High Frequency VLBI

    Science.gov (United States)

    Fish, Vincent L.; Doeleman, Sheperd S.; Broderick, Avery E.; Loeb, Abraham; Rogers, Alan E. E.

    2009-12-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  17. Multiwavelength observations of Active Galactic Nuclei from the radio to the hard X-rays

    Science.gov (United States)

    Beuchert, Tobias

    2017-07-01

    Active Galaxies form a peculiar type of galaxies. Their cores, the so-called "Active Galactic Nuclei" (AGN), are the most persistent luminous objects in the universe. Accretion of several solar masses per year onto black holes of Millions to Billions of solar masses drive the immense energy output of these systems, which can exceed that of the entire galaxy. The compact energy source, however, only measures about one over a Billion times that of the entire galaxy. Subject of my thesis are observations of the two main channels of energy release of selected AGN systems, both of which are encompassed by profound and yet unanswered questions. These channels are on the one hand the pronounced X-ray emission of the hot and compact accreting environment in close vicinity of the black hole, and on the other hand the radio synchrotron emission of magnetically collimated jets that are fed by portions of the accreted matter. These jets also function as effective accelerators and drive the injected matter deep into the intergalactic medium. As the circumnuclear environment of AGN is too compact to be spatially resolved in the X-rays, I show how X-ray spectroscopy can be used to: (1) understand the effects of strong gravity to trace the geometry and physics of the X-ray source and (2) more consistently quantify matter that surrounds and dynamically absorbs our direct line of sight towards the X-ray source. Second, I unveil the valuable information contained in the polarized radio light being emitted from magnetized jet outflows. In contrast to the X-ray emitting region, I am able to spatially resolve the inner parts of the jet of a prominent galaxy with help of the Very Long Baseline Array, a large network of radio telescopes. The resulting polarization maps turn out to be exceptionally promising in answering fundamental questions related to jet physics.

  18. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  19. Evaluation of dual polarization scattering matrix radar rain backscatter measurements in the X- and Q-bands

    Science.gov (United States)

    Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.

    This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.

  20. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  1. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  2. Phase measurement for driven spin oscillations in a storage ring

    Science.gov (United States)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  3. A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope

    Science.gov (United States)

    Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang

    2018-04-01

    A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.

  4. Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. I. Formalism

    Science.gov (United States)

    Hirata, Christopher M.; Mishra, Abhilash; Venumadhav, Tejaswi

    2018-05-01

    We propose a new method to measure the tensor-to-scalar ratio r using the circular polarization of the 21 cm radiation from the pre-reionization epoch. Our method relies on the splitting of the F =1 hyperfine level of neutral hydrogen due to the quadrupole moment of the cosmic microwave background (CMB). We show that unlike the Zeeman effect, where MF=±1 have opposite energy shifts, the CMB quadrupole shifts MF=±1 together relative to MF=0 . This splitting leads to a small circular polarization of the emitted 21 cm radiation. In this paper (Paper I in a series on this effect), we present calculations on the microphysics behind this effect, accounting for all processes that affect the hyperfine transition. We conclude with an analytic formula for the circular polarization from the Dark Ages as a function of pre-reionization parameters and the value of the remote quadrupole of the CMB. We also calculate the splitting of the F =1 hyperfine level due to other anisotropic radiation sources and show that they are not dominant. In a companion paper (Paper II) we make forecasts for measuring the tensor-to-scalar ratio r using future radio arrays.

  5. A decision-directed network for dual-polarization crosstalk cancellation

    Science.gov (United States)

    Weber, W. J., III

    1979-01-01

    Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.

  6. A repeating fast radio burst.

    Science.gov (United States)

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  7. First time measurements of polarization observables for the charged cascade hyperon in photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Bono, Jason [Florida Intl Univ., Miami, FL (United States)

    2014-08-31

    The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Lambda and Sigma in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.

    At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3)F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb^-1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.

    The current analysis explores hyperon production through the yp -> K^+ K^+ Xi^- reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of

  8. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  9. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  10. Determination of polar cusp position by low-energy particle measurements made aboard AUREOLE satellite

    International Nuclear Information System (INIS)

    Gladyshev, V.A.; Jorjio, M.V.; Shuiskaya, F.K.; Crasnier, J.; Sauvaud, J.A.

    1974-01-01

    The Franco-Soviet experiment ARCAD, launched aboard the satellite AUREOLE December 27, 1971, has verified the existence of a particle penetration from the transition zone up to ionospheric altitudes across the polar cusp. The polar cusp is characterized by proton fluxes >10 7 particles/(cm 2 .s.sr.KeV) at 0.5KeV, with energy spectra similar to those in the transition zone. The position and form of the polar cusp are studied from measurements of protons in the range 0.4 to 30KeV during geomagnetically quiet periods (Kp [fr

  11. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    Science.gov (United States)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  12. Polar Voices: Relaying the Science and Story of Polar Climate Change through Podcast

    Science.gov (United States)

    Moloney, M.; Quinney, A.; Murray, M. S.

    2016-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000's spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America (AINA) partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. Now entering its third season of production, PoLAR Voices has facilitated the communication of scientific knowledge regarding the impact of climate change on the Arctic and Antarctic from the perspectives of both scientific researchers and Arctic indigenous peoples. We present a holistic program detailing both data and research related to climate change in addition to personal stories from those people and communities most affected. An evaluation of the program has been conducted by the Goodman Research Group to assess the effectiveness of the program for relaying the whole story of climate change to the public. The results of this assessment will be used to further develop the program to effectively reach larger and more diverse audiences. The series is currently available on thepolarhub.org and iTunes, and we are exploring opportunities to air the program on radio to reach as many people as possible.

  13. The optimal method for the measurement of tau polarization

    International Nuclear Information System (INIS)

    Davier, M.; Duflot, L.; Le Diberder, F.; Rouge, A.

    1992-12-01

    A variable is constructed for each τ decay channel which carries all the available information on the τ spin state. Its use allows a simple determination of the polarization with the maximal sensitivity for all final states. Further applications to the τ → α 1 ν channel are discussed, and it is shown that a sizeable improvement of the measurement can be achieved. (author) 14 refs., 2 figs., 1 tab

  14. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  15. Polarization observables measured in the reaction vector pp → pK{sup +}Λ by COSY-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Hauenstein, Florian [Forschungszentrum Juelich, Juelich (Germany); Collaboration: COSY-TOF-Collaboration

    2016-07-01

    The vector pp → pK{sup +}Λ reaction was measured with the COSY-TOF detector using a polarized proton beam with beam momenta 2.7 GeV/c and 2.95 GeV/c. The measurements with a polarized beam allow the determination of polarization observables in addition to the differential cross sections. These observables are the Λ polarization, the spin transfer to the Λ and the analyzing power of the final state particles. The latter is connected with the partial wave composition of the final state system, while the first two can improve the understanding of the underlying reaction mechanism of the associated strangeness production. Currently, no sophisticated models exist in this energy regime, thus, conclusive results concerning the reaction mechanism can not be drawn yet. Nevertheless, the obtained data are the first with full phase space acceptance and high statistics in this beam energy regime. In this talk the extraction methods for the different polarization observables are explained, and results for the polarization observables as a function of different variables are shown. The dependencies of the results on the beam momentum are discussed. Furthermore, a comparison with theoretical expectations from high energy physics for the Λ polarization is given.

  16. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  17. Three experimental tests of Bell's inequalities by measurement of polarization correlation of photons

    International Nuclear Information System (INIS)

    Aspect, A.

    1983-02-01

    We have performed three experimental tests of Bell's inequalities by measuring the linear-polarization correlation of photons emitted by pairs in the 4p 2 1 S 0 → 4s4p 1 P 1 → 4s 2 1 S 0 radiative cascade of calcium. The first part of this dissertation reminds the theoretical background (Bell's theorem), and the experimental situation (previous experiments). We then describe our apparatus: the source (calcium atomic beam selectively excited by two-photon absorption), the optics, the photon coincidence-counting system. Our first experiment, analogous to previous ones (but more precise) involves one-channel polarizers. Our second experiment, based on a conceptually simpler scheme, uses two-channel polarizers. The third experiment involves acousto-optical switches followed by two linear polarizers: these devices act as time-varying polarizers, the orientation of which is changed during the time of flight of photons. In the three experiments, the results are in good agreement with the Quantum mechanical predictions, and they distinctly violate the relevant Bell's inequalities [fr

  18. Prospects for measuring ΔG from jets at HERA with polarized protons and electrons

    International Nuclear Information System (INIS)

    Roeck, A. de; Feltesse, J.; Kunne, F.; Maul, M.; Schaefer, A.; Wu, C.Y.; Mirkes, E.; Raedel, G.

    1996-09-01

    The measurement of the polarized gluon distribution function ΔG(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes. (orig.)

  19. Prospects for Measuring $\\Delta$G from Jets at HERA with Polarized Protons and Electrons

    CERN Document Server

    De Roeck, A.; Kunne, F.; Maul, M.; Schafer, A.; Wu, C.Y.; Mirkes, E.; Radel, G.

    1996-01-01

    The measurement of the polarized gluon distribution function Delta G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes.

  20. The RadioAstron Dedicated DiFX Distribution

    Directory of Open Access Journals (Sweden)

    Gabriele Bruni

    2016-10-01

    Full Text Available Distributed FX-architecture (DiFX is a software Very Long Baseline Interferometry (VLBI correlator currently adopted by several main correlation sites around the globe. After the launch of the RadioAstron Space-VLBI mission in 2011, an extension was necessary to handle processing of an orbiting antenna, to be correlated with supporting ground arrays. Here, we present a branch of the main DiFX distribution (2.4, uploaded on the publicly available repository during July 2016, that the Max Planck Institute for Radio Astronomy (MPIfR developed to process data of the three key active galactic nuclei (AGN-imaging RadioAstron science projects, as well as part of the AGN survey project, and General Observing Time (GOT projects proposed since Announcement of Opportunity 2 (AO-2, July 2014–July 2015. It can account for general relativistic correction of an orbiting antenna with variable position/velocity, providing a routine to convert the native RadioAstron Data Format (RDF format to the more common Mark5 B (M5B. The possibility of introducing a polynomial clock allows one to mitigate the effects of spacecraft acceleration terms in near-perigee observations. Additionally, since for the first time polarimetry on space-baselines is available thanks to RadioAstron, this DiFX branch allows one to include the spacecraft orientation information at the correlation stage, in order to perform proper polarization calibration during data reduction. Finally, a fringe-finding algorithm able to manage an arbitrarily large fringe-search window is included, allowing one to increase the search space normally adopted by common software packages like HOPS.

  1. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  2. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  3. Measurement of the $\\beta$-asymmetry parameter in $^{35}$Ar decay with a laser polarized beam

    CERN Multimedia

    With this proposal we request beam time for the first two phases of a project that aims at measuring the $\\beta$-asymmetry parameter of the mirror $\\beta$-decay branch in $^{35}$Ar using an optically polarized Ar atom beam. The final goal of the experiment is to measure this parameter to a precision of 0.5%. This will allow the most precise determination of the V$_{ud}$ quark mixing matrix element from all the mirror transitions with an absolute uncertainty of 0.0007. The proposal will be presented in phases and we ask here 11 shifts (7 on-line + 4 off-line) for phase 1 and 15 shifts (6 on-line and 9 off-line) for phase 2. Phase 1 aims at establishing the optimal laser polarization scheme as well as the best implantation host for maintaining the polarization. Phase 2 aims at enhancing the beam polarization by removing the unpolarized part of the beam using re-ionization.

  4. Rayleigh beacon for measuring the surface profile of a radio telescope.

    Science.gov (United States)

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  5. Measurement of the {lambda}-bar polarization in {nu}{sub {mu}} charged current interactions in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B. E-mail: boris.popov@cern.ch; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.[and others

    2001-07-02

    We present a measurement of the polarization of {lambda}-bar hyperons produced in {nu}{sub {mu}} charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V{sup 0} identification procedure and analysis method reported in a previous paper [NOMAD Collaboration, Nucl. Phys. B 588 (2000) 3] for the case of {lambda} hyperons. The {lambda}-bar polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

  6. Use of polarization measurements in evaluating cascade contributions to optical excitation functions

    International Nuclear Information System (INIS)

    McConkey, J.W.

    1981-01-01

    Recent developments in theory and experimental measurements of rotational line polarization fractions of diatomic molecules following electron impact are used to show how in some instances cascade free optical excitation functions can be derived without additional measurements of the cascading contribution. The Lyman system of H 2 is presented as an example and some previously conflicting excitation cross-section measurements obtained by different techniques are reconciled

  7. Measurement of the photon polarization in radiative $B^0_s$ decays at LHCb

    CERN Multimedia

    Sanchez Mayordomo, Carlos

    2017-01-01

    The photon polarization is studied for the first time in $B_s^0$ decays, using an integrated luminosity of 3 fb$^{-1}$ of proton-proton data recorded by the LHCb experiment. An untagged time-dependent analysis of $B_s^0 \\rightarrow \\phi\\gamma$ decays allows to measure the CPV parameter $\\mathcal{A}^{\\Delta}$, which is sensitive to the left- and right-handed helicity amplitudes. The measured value $\\mathcal{A}^{\\Delta} = -0.98 \\; ^{+0.46}_{-0.52}\\text{(stat.)} ^{+0.23}_{-0.20}\\text{(syst.)}$ is consistent with the Standard Model prediction within two standard deviations. This value can put constraints on the Wilson coefficients $\\mathcal{C}_7$ and $\\mathcal{C}_7^{'}$. With a tagged analysis of the same decay the parameter $S_{\\phi\\gamma}$, also sensitive to the photon polarization, could be measured.

  8. Slotted Circularly Polarized Microstrip Antenna for RFID Application

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-12-01

    Full Text Available A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP is proposed for radio frequency identification (RFID application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  9. Measurement of the $t\\bar{t}$ spin correlations and top quark polarization in dileptonic channel

    CERN Document Server

    Khatiwada, Ajeeta

    2017-01-01

    The degree of top polarization and strength of $t\\bar{t}$ correlation are dependent on production dynamics, decay mechanism, and choice of the observables. At the LHC, measurement of the top polarization and spin correlations in $t\\bar{t}$ production is possible through various observables related to the angular distribution of decay leptons. A measurement of differential distribution provides a precision test of the standard model of particle physics and probes for deviations, which could be a sign of new physics. In particular, the phase space for the super-symmetric partner of the top quark can be constrained. Results from the Compact Muon Solenoid (CMS) collaboration for top quark polarization and spin correlation in the dileptonic channel are reviewed briefly in this proceeding. The measurements are obtained using 19.5 fb$^{-1}$ of data collected in pp collisions at the center-of-mass energy of 8 TeV.

  10. HERA Broadband Feed Design for Low-Frequency Radio Astronomy

    Science.gov (United States)

    Garza, Sierra; Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna

    2018-01-01

    As part of the Hydrogen Epoch of Reionization Array (HERA) project, we are designing a broadband low-frequency radio feed to extend the bandwidth from 100-200 MHz to 50-220 MHz. By extending the lower-limit to 50 MHz, we hope to detect the signatures of the first black holes heating the hydrogen gas in the intergalactic medium.The isolation of a very faint signal from vastly brighter foregrounds sets strict requirements on antenna spectral smoothness, polarization purity, forward gain, and internal reflections. We are currently working to meet these requirements with a broad-band sinuous antenna feed suspended over the 14-m parabolic HERA dish, using a combination of measurements and simulations to verify the performance of our design.A sinuous feed has been designed and simulated with Computer Simulation Technology (CST) software. We will present the construction of a prototype sinuous antenna and measurements of its reflection coefficient, S11, including laboratory characterization of baluns. Our measurements agree well with the CST simulations of the antenna’s performance, giving us confidence in our ability to model the feed and ensure that it meets the requirements of a 21cm cosmology measurement.

  11. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  12. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    Science.gov (United States)

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.

  13. Radio Telescope Focal Container for the Russian VLBI Network of New Generation

    Science.gov (United States)

    Ipatov, Alexander; Mardyshkin, Vyacheslav; Cherepanov, Andrey; Chernov, Vitaly; Diky, Dmitry; Khvostov, Evgeny; Yevstigneyev, Alexander

    2010-01-01

    This article considers the development of the structure of receivers for Russian radio telescopes. The development of these radio telescopes is undertaken within the project for creating a Russian small-antenna-based radio interferometer of new generation. It is shown that for small antennas (10. 12 meter) the principal unit, which provides the best SNR, is the so-called focal container placed at primary focus. It includes the primary feed, HEMT LNA, and cryogenic cooling system down to 20. K. A new multi-band feed based on traveling wave resonators is used. It has small dimensions, low weight, and allows working with circular polarizations. Thus it can be placed into focal container and cooled with the LNA. A sketch of the focal container, with traveling-wave-resonator feed, and calculations of the expected parameters of the multi-band receiver are presented.

  14. Direct measurements of the 160.01-min oscillation in the solar radio brightness

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    Direct (nondifferential) brightness measurements of the quiet sun at lambda = 8.2 and 13.5 mm, corrected by the Bouguer law for absorption in the terrestrial atmosphere, confirm the presence of a 160.009 +- 0.002 min periodicity. At the two wavelengths the relative amplitudes are roughly-equal0.6 x 10 -3 , 1 x 10 -3 . Maximum radio brightness occurs at the phase when optical data indicate the photosphere radius is largest

  15. Radio as the Voice of God: Peace and Tolerance Radio Programming’s Impact on Norms

    Directory of Open Access Journals (Sweden)

    Daniel P. Aldrich

    2012-12-01

    Full Text Available Observers have argued that radio programming can alter norms, especially through hate radio designed to increase animosity between groups. This article tests whether or not radio programming under the Countering Violent Extremism (CVE policy framework can reduce potential conflict and increase civic engagement and positive views of foreign nations. Data from surveys of more than 1,000 respondents in Mali, Chad, and Niger illuminate the ways in which peace and tolerance programming changed perspectives and altered behavior in statistically significant ways. Results show that individuals exposed to multi-level U.S. government programming were more likely to listen to peace and tolerance radio. Further, bivariate, multivariate regression, and propensity score matching techniques show that individuals who listened more regularly to such programs participated more frequently in civic activities and supported working with the West to combat terrorism (holding constant a number of potential confounding economic, demographic, and attitudinal factors. However, higher levels of radio listening had no measurable impact on opposition to the use of violence in the name of Islam or opposition to the imposition of Islamic law. Further, data indicate that women and men have responded to programming in measurably different ways. These mixed results have important implications for current and future “soft-side” programs for countering violent extremism.

  16. Measurement of double polarization observables in 2π{sup 0}-photoproduction off the proton with the CBELSA/TAPS-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mahlberg, Philipp [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    In contrast to the atomic spectrum with its sharp and well defined excitation levels, the nucleon excitation spectrum is dominated by broad, overlapping resonances. Partial wave analyses are needed to extract the contributing resonances from the experimental data. In order to find an unambiguous solution, the measurement of polarization observables is indispensable. The Crystal Barrel/TAPS experiment at the electron accelerator ELSA is, due to its high photon detection efficiency and its almost complete solid angle coverage, ideally suited to measure neutral mesons decaying into photons. The measurement with double polarization, i.e. a circularly polarized photon beam and a longitudinally polarized target provides access to single and double polarization observables. At higher energies, the cross sections show that multi-meson decay channels gain in importance compared e.g. to single pseudoscalar meson photoproduction. In this talk, preliminary results for the helicity asymmetry E in 2π{sup 0}-photoproduction measured with the CBELSA/TAPS experiment are presented.

  17. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  18. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  19. Linear polarization measurements at H. beta. of early-type emission line stars

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D; McLean, I S [Glasgow Univ. (UK)

    1976-02-01

    Linear polarization measurements across the H..beta.. emission lines of the stars ..gamma.. Cas, zeta Tau and 48 Per are presented. For the first two stars there is a marked reduction of the polarization at the centre of the line and for ..gamma.. Cas, this varies from night to night. During the H..beta.. observations of zeta Tau, a change of polarization over tens of minutes was indicated in a monitor channel tuned to the continuum on the blue side of H..beta... For the fainter star, 48 Per, the uncertainties of the polarimetry were increased in relation to ..gamma.. Cas and zeta Tau by a factor of about two and at this precision, no differential effects across the line were recorded. Observations of ..cap alpha.. Cyg are also given to demonstrate the reliability of the polarimeter.

  20. Radio-emission of pre-main sequence stars of the Rho Ophiuchi cloud: observations and interpretation

    International Nuclear Information System (INIS)

    Andre, P.

    1987-11-01

    Observations of the radio continuum emission of a young star population have been made at VLA on the whole molecular cloud Rho Ophiuchi, one of the closest site of star formation. A dozen of stellar sources have been detected. Radio emission of some identified objects seems to have a magnetic nature and be produced by gyrosynchrotron mechanism. In particular, one of the sources shows a radio radiation circularly polarized; two other stars have a radiation strongly variable probably due to magnetic eruptions more important than those detected in X radiation. More generally, radio observations select probably a specific population of young stars characterized by magnetic field presence extended on several stellar radii and by absence of dense circumstellar environment. Spatial distribution of these objects suggest, they are younger than most of the pre-main sequence stars [fr

  1. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  2. Latest results of the Tunka Radio Extension

    Directory of Open Access Journals (Sweden)

    Kostunin D.

    2017-01-01

    Full Text Available The Tunka Radio Extension (Tunka-Rex is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.

  3. Polarized BRDF measurement of steel E235B in the near-infrared region: Based on a self-designed instrument with absolute measuring method

    Science.gov (United States)

    Liu, Yanlei; Yu, Kun; Liu, Zilong; Zhao, Yuejin; Liu, Yufang

    2018-06-01

    The spectral bidirectional reflectance distribution (BRDF) offers a complete description of the optical properties of the opaque material. Numerous studies on BRDF have been conducted for its important role in scientific research and industrial production. However, most of these studies focus on the visible region and unpolarized BRDF, and the spectral polarized BRDF in the near-infrared region is rarely reported. In this letter, we propose an absolute method to measure the spectral BRDF in the near-infrared region, and the detailed derivation is presented. A self-designed instrument is set up for the absolute measurement of BRDF. The reliability of this method is verified by comparing the experimental data of the three metal (aluminum, silver and gold) mirrors with the reference data. The in-plane polarized BRDF of steel E235B are measured, and the influence of incident angle and roughness on the BRDF are discussed. The degree of linear polarization (DOLP) are determined based on the polarized BRDF. The results indicate that both the roughness and incident angle have distinct influence on the BRDF and DOLP.

  4. Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.

  5. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  6. Gamma-ray linear polarization measurements following heavy-ion bombardment of odd isotopes of Pd

    International Nuclear Information System (INIS)

    Kim, J.S.; Lee, Y.K.; Hardy, K.A.; Simms, P.C.; Grau, J.A.; Smith, G.J.; Rickey, F.A.

    1975-01-01

    γ-ray linear polarization measurements have been used to locate negative parity states in the even-odd isotopes 99 , 101 , 103 Pd. A Compton polarimeter based on two Ge(Li) coaxial detectors was used. Collective bands (I=11 - /2, 15 - /2, 19 - /2, . . .) bulit on 11 - /2 states were observed in 101 Pd and 103 Pd. Many negative parity states were also observed in 99 Pd, but they do not appear to be part of a similar collective band. These polarization measurements also confirm many angular momentum assignments which previously had been made using systematic arguments

  7. RADIO FLARING FROM THE T6 DWARF WISEPC J112254.73+255021.5 WITH A POSSIBLE ULTRA-SHORT PERIODICITY

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew; Wolszczan, Alexander, E-mail: mroute@purdue.edu, E-mail: alex@astro.psu.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2016-04-20

    We present new results from a continuing 5 GHz search for flaring radio emission from a sample of L and T brown dwarfs, conducted with the 305 m Arecibo radio telescope. In addition to the previously reported flaring from the T6.5 dwarf 2MASS J10475385+212423, we have detected and confirmed circularly polarized flares from another T6 dwarf, WISEPC J112254.73+255021.5. Although the flares are sporadic, they appear to occur at a stable period of 0.288 hr. Given the current constraints, periods equal to its second and third subharmonic cannot be ruled out. The stability of this period over the eight-month timespan of observations indicates that, if real, it likely reflects the star’s rapid rotation. If confirmed, any of the three inferred periodicities would be much shorter than the shortest, 1.41 hr, rotation period of a brown dwarf measured so far. This finding would place a new observational constraint on the angular momentum evolution and rotational stability of substellar objects. The detection of radio emission from the sixth ∼1000 K dwarf further demonstrates that the coolest brown dwarfs and, possibly, young giant planets, can be efficiently investigated using radio observations at centimeter wavelengths as a tool.

  8. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  9. The Properties of Primordial Stars and Galaxies measured from the 21-cm Global Spectrum using the Dark Ages Radio Explorer (DARE)

    Science.gov (United States)

    Burns, Jack O.; Bowman, Judd D.; Bradley, Richard F.; Fialkov, Anastasia; Furlanetto, Steven R.; Jones, Dayton L.; Kasper, Justin; Loeb, Abraham; Mirocha, Jordan; Monsalve, Raul A.; Rapetti, David; Tauscher, Keith; Wollack, Edward

    2017-01-01

    DARE is a mission concept designed to observe the formation of primordial stars, black holes, and galaxies (z=11-35) by measuring their spectral effects on the redshifted 21-cm hydrogen line. The UV and X-ray radiation emitted by these first objects ionized and heated the intergalactic medium and imprinted characteristic features in the 21-cm spectrum. The 1.4 GHz signal is redshifted into the radio band 40-120 MHz. DARE will take advantage of the quietest RF environment in the inner solar system by using the Moon as a shield from human radio frequency interference and solar emissions via observations on the lunar farside. DARE’s science objectives are to determine: when the first stars turned on and their properties, when the first black holes began accreting and their masses, the reionization history of the early Universe, and if evidence exists for exotic physics in the Dark Ages such as Dark Matter decay. Wideband crossed-dipole antennas, pilot tone stablized radiometric receivers, a polarimeter, and a digital spectrometer constitute the science instrument. DARE’s radiometer is precisely calibrated with a featureless spectral response, controlled systematics, and heritage from CMB missions. Models for the instrument main beam and sidelobes, antenna reflection coefficient, gain variations, and calibrations will be validated with electromagnetic simulations, laboratory and anechoic chamber measurements, and verified on-orbit. The unique frequency structure of the 21-cm spectrum, its uniformity over large angular scales, and its unpolarized state are unlike the spectrally featureless, spatially-varying, polarized emission of the bright Galactic foreground, allowing the signal to be cleanly separated from the foreground. The 21-cm signal will be extracted in the presence of foregrounds using a Bayesian framework with a Markov Chain Monto Carlo (MCMC) numerical inference technique. The DARE data analysis pipeline enables efficient, simultaneous, and self

  10. Electroproduction of polarized Λ's

    International Nuclear Information System (INIS)

    Kunne, R.A.

    1992-01-01

    Lambdas are a powerful tool to explore spin effects of QCD. The λ polarization is self analyzing, as it is measurable from the angular distribution of the decay products. Two applications of polarized electroproduced λ's are suggested: the measurement of λ polarization at large transverse momentum as a possible test of QCD and the measurement of transversely polarized parton distributions

  11. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  12. Design and Measurements of Dual-Polarized Wideband Constant-Beamwidth Quadruple-Ridged Flared Horn

    Science.gov (United States)

    Akgiray, Ahmed; Weinreb, Sander; Imbriale, William

    2011-01-01

    A quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is presented. Radiation pattern measurements show excellent beamwidth stability from 2 to 12 GHz. Measured return loss is > 10 dB over the entire band and > 15 dB from 2.5 to 11 GHz. Using a custom physical optics code, system performance of a radio telescope is computed and predicted performance is average 70% aperture efficiency and 10 Kelvin of antenna noise temperature.

  13. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  14. Measurement of the longitudinal polarization of the HERA electron beam using crystals and the ZEUS luminosity monitor

    International Nuclear Information System (INIS)

    Piotrzkowski, K.

    1995-12-01

    A measurement of the longitudinal polarization of the electron beam at HERA utilizing coherent interactions of high energy photons in crystals is described. Modification of existing facilities would allow an independent polarization measurement and a verification of birefringence phenomena in crystals for 20-30 GeV photons. Relevant experimental issues and systematic uncertainties are also presented. (orig.)

  15. Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089

    Science.gov (United States)

    Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.

    1998-01-01

    We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.

  16. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    Science.gov (United States)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  17. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    International Nuclear Information System (INIS)

    Cordova, F.A.; Middleditch, J.; Hjellming, R.M.; Mason, K.O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62%) and circular (19%) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18% + or - 6%, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar. 46 refs

  18. Gluon polarization measurements and the possible role of diffractive process in the transverse single spin asymmetry measurements in RHIC-PHENIX

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available Two selected topics from the latest RHIC spin results are discussed here. For the transversely polarized spin program, an unexpectedly large single spin asymmetry in the very forward neutron production observed in polarized proton + nucleus collisions at √s = 200 GeV is discussed in this document. For the longitudinal program, the latest highlights from the measurements on the gluon spin components of the proton spin is discussed. After a decade of continuous efforts to hunt for the gluon polarization, the RHIC collaboration is about to catch the tail of the experimental evidence that gluon carries substantially large portion of the proton spin.

  19. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Science.gov (United States)

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  20. Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.

    Science.gov (United States)

    Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K

    2011-03-01

    A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

  1. Simulation and Verification of Tip-Induced Polarization During Kelvin Probe Force Microscopy Measurements on Film Capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2017-01-01

    have developed a physics-based finite element model of KPFM measurements on dielectrics in order to investigate the impact of tip-induced polarization. The model is compared with experiments on film capacitors, where it is found that tip-induced polarization is a significant contributor...

  2. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    Science.gov (United States)

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  3. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    International Nuclear Information System (INIS)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels

    2009-01-01

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  4. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zuerich (Switzerland)], E-mail: kuehn@itis.ethz.ch

    2009-02-21

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  5. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  6. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  7. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    Science.gov (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  8. Faraday rotation at low frequencies: magnetoionic material of the large FRII radio galaxy PKS J0636-2036

    Science.gov (United States)

    O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.

    2018-04-01

    We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.

  9. Correct measurement of RF-exposure, caused by modern broadband radio systems; Korrekte Erfassung der Immissionen von modernen, breitbandigen Funksystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wuschek, M. [Fachhochschule Deggendorf (Germany)

    2004-07-01

    Correct measurement of exposure, caused by modern broadband radio systems (UMTS, DAB, DVB-T, WLAN) requires special measuring-techniques. Looking at UMTS mobile communication systems as example, in this article the minimum requirements on measuring equipment will be shown. Additional hints were given, in which way an extrapolation of measurement field-levels to maximum installation power is possible. (orig.)

  10. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    International Nuclear Information System (INIS)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs

  11. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  12. Flow velocity measurement by using zero-crossing polarity cross correlation method

    International Nuclear Information System (INIS)

    Xu Chengji; Lu Jinming; Xia Hong

    1993-01-01

    Using the designed correlation metering system and a high accurate hot-wire anemometer as a calibration device, the experimental study of correlation method in a tunnel was carried out. The velocity measurement of gas flow by using zero-crossing polarity cross correlation method was realized and the experimental results has been analysed

  13. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  14. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  15. High resolution polarimetry of the Sun at 3. 7 and 11. 1 cm wavelengths. [Stokes parameters, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K R [Tufts Univ., Medford, Mass. (USA). Dept. of Physics

    1977-04-01

    The four Stokes parameters are presented for interferometric observations of the Sun at wavelengths of lambda=3.7 cm and lambda=11 cm with angular resolutions between 2.7 and 36.7 seconds of arc. An H..cap alpha.. solar flare of importance SN and type C has a radio wavelength (lambda=3.7 cm) size of 5 seconds of arc, a flux density of 0.3 x 10/sup -22/Wm/sup -2/Hz/sup -1/, and a brightness temperature on the order of 10/sup 7/K. The radio flare is 30% left circularly polarized at lambda=3.7 cm, 70% left circularly polarized at lambda=11 cm, and no detectable linear polarization was observed at either wavelength. During a forty hour observation of sunspot region McMath No 13926 no substantial variations in circular polarization were observed, whereas one hour prior to the eruption of a solar flare dramatic changes in circular polarization were observed. Small scale features whose angular sizes are on the order of five seconds of arc exhibit changes of circular polarization of up to 80%. At times other than those immediately preceding flare emission, the degree of circular polarization was the same as the two wavelengths but the sign was reversed. This situation can be explained if magnetic fields of intensity H<=1000 G and electron densities of Nsub(e)>=10/sup 7/cm/sup -3/ are present.

  16. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    Science.gov (United States)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  17. Training the New Generation of Polar Researchers

    Science.gov (United States)

    Drobot, S.; Weiler, C. S.

    2008-12-01

    The polar regions are changing rapidly, and many of the pressing problems faced in the future will require a new generation of polar researchers to be disciplinary experts and work across traditional disciplinary boundaries to conduct socially relevant, transformative research, and translate it to more effective action. To learn about the past and better address these new challenges, a select international group of 35 students and early career researchers who are conducting research during the 2007-2009 International Polar Year were brought together May 4-11, 2008, at the La Foret Conference Center for the New Generation Polar Research (NGPR) Symposium. The participants were drawn from professional backgrounds spanning the spectrum of social, natural, and physical sciences and represented the research programs of 7 countries. In addition to the participants, 12 mentors, some of whom participated in the IGY, shared insights, stories, and expertise. This diverse and ambitious group spent an intensive week learning about many important aspects of IPY history and research, along with communication, outreach, interdisciplinary research and career development. Each of the participants presented a 7-minute overview of his or her IPY research and provided details and discussion in evening poster sessions. Polar history provided an informative and unifying context for discussions of the past, present, and future that lasted throughout the week. Mentors and guest speakers shared insights and advice on media interactions, and many participants were subsequently interviewed for an upcoming radio story to be aired on National Public Radio. Several presentations on outreach were followed by a hands-on session for a group 1st grade students who were visiting the La Foret Conference Center. The Symposium also featured several break-out sessions, where small groups of participants and mentors discussed challenges related to interdisciplinary research, science advocacy, and

  18. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  19. VIIRS-J1 Polarization Narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.

    2015-01-01

    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.

  20. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    V. Kan

    2018-02-01

    Full Text Available We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1 the isotropic Kolmogorov turbulence and (2 the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  1. Spin transport at the international linear collider and its impact on the measurement of polarization

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Moritz

    2013-12-15

    At the planned International Linear Collider (ILC), the longitudinal beam polarization needs to be determined with an unprecedented precision. For that purpose, the beam delivery systems (BDS) are equipped with two laser Compton polarimeters each, which are foreseen to achieve a systematic uncertainty of {<=} 0.25 %. The polarimeters are located 1.6 km upstream and 150 m downstream of the e{sup +}e{sup -} interaction point (IP). The average luminosity-weighted longitudinal polarization P{sup lumi}{sub z}, which is the decisive quantity for the experiments, has to be determined from these measurements with the best possible precision. Therefore, a detailed understanding of the spin transport in the BDS is mandatory to estimate how precise the longitudinal polarization at the IP is known from the polarimeter measurements. The envisaged precision for the propagation of the measurement value is {<=} 0.1 %. This thesis scrutinizes the spin transport in view of the achievable precision. A detailed beamline simulation for the BDS has been developed, including the simulation of the beam-beam collisions at the IP. The following factors which might limit the achievable precision is investigated: a variation of the beam parameters, the beam alignment precision at the polarimeters and the IP, the bunch rotation at the IP, the detector magnets, the beam-beam collisions, the emission of synchrotron radiation and misalignments of the beamline elements. In absence of collisions, a precision of 0.085% on the propagation of the measured longitudinal polarization has been found achievable. This result however depends mainly on the presumed precisions for the parallel alignment of the beam at the polarimeters and for the alignment of polarization vector. In presence of collisions, the measurement at the downstream polarimeter depends strongly on the intensity of the collision and the size of the polarimeter laser spot. Therefore, a more detailed study of the laser-bunch interaction is

  2. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  3. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  4. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    Science.gov (United States)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  5. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  6. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  7. The Radio Synchrotron Background: Conference Summary and Report

    Science.gov (United States)

    Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D. R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; Holder, G.; Jones, E.; Kellermann, K.; Kogut, A.; Linden, T.; Monsalve, R.; Mertsch, P.; Murphy, E.; Orlando, E.; Regis, M.; Scott, D.; Vernstrom, T.; Xu, L.

    2018-03-01

    We summarize the radio synchrotron background workshop that took place 2017 July 19–21 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero-level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.

  8. Measurement of polarization observables in the reaction γp→ pπ0π0 using linearly polarized photons with the CBELSA/TAPS experiment

    International Nuclear Information System (INIS)

    Sokhoyan, Vahe

    2012-01-01

    The spectrum and the properties of baryon resonances can be studied using photons with energies appropriate to excite baryonic states. Double meson photoproduction allows access to cascading resonance decays via other excited states. Also, at higher energies the importance of the double meson photoproduction increases due to higher cross-sections in comparison to single meson photoproduction. To study baryon resonances, the measurement of polarization observables as well as the measurement of differential cross-sections plays a very important role. In this work the three-body polarization observables I s , I c and the respective twobody asymmetry Σ were measured for the reaction γp → pπ 0 π 0 in an incoming photon energy range of E γ = 970 - 1650 MeV. The data were acquired with the CBELSA/TAPS experiment located at the ELSA accelerator in Bonn, using a linearly polarized photon beam impinging on a liquid hydrogen target. The observables I s and I c which occur in two-meson final states are measured for the first time in the reaction γp → pπ 0 π 0 . The corresponding two-body asymmetry Σ is measured in an extended energy range in comparison to already existing data. A comparison with theoretical models shows that the polarization observables provide valuable input to study resonance contributions and their decay modes. The D 33 (1700) → Δπ decay is studied based on the comparison of the Bonn-Gatchina Partial Wave Analysis (PWA) predictions with the data. Furthermore, a comparison of the data with the Bonn-Gatchina PWA and the Fix isobar model predictions allows to distinguish between these two models. Additionally, band-like structures and peaks are observed in the mass ranges of Δ(1232), D 13 (1520), F 15 (1680), f 0 (980) and f 2 (1270) in the according Dalitz plots and invariant mass distributions. The contributions of these states are confirmed by the Bonn-Gatchina PWA. An excellent compatibility with the existing data from the previous CBELSA

  9. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  10. Observations of radio sources or 'What happened to radio stars?'

    International Nuclear Information System (INIS)

    Conway, R.G.

    1988-01-01

    A review is given of the early history of the interpretation of the radiation mechanisms following the discovery of the discrete radio sources, both galactic and extragalactic. The conflicting views which prevailed in the early fifties are discussed in some detail: some advocated thermal radiation from stars relatively close by, and others proposed the alternative that synchrotron radiation was responsible for the majority of the radio sources. Attention is drawn to the importance of high-resolution interferometry, whereby the structure of many of the sources could be obtained. Red-shift measurements and spectral distributions also played a part in determining distances and flux strengths at the sources. (U.K.)

  11. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    Science.gov (United States)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  12. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  13. Theoretical analysis of the particle properties and polarization measurements made in microgravity

    International Nuclear Information System (INIS)

    Penttilae, A.; Lumme, K.; Worms, J.C.; Hadamcik, E.; Renard, J.B.; Levasseur-Regourd, A.C.

    2003-01-01

    We propose a new model to describe the shapes of stochastic polyhedra used in the microgravity experiment PROGRA 2 on board the Airbus A300 aircraft. The polarization measurements of scattering of visible light by boron carbide (B 4 C) particles with sizes between 9 and 88 μm can nicely be explained with the derived shape statistics and the (currently unknown) refractive index obtained. For the latter we derive 2 (-0.15/+0.1)+0.04i(-0.0025/+0.015) at 632.8 nm wavelength. The polarization method is a reliable and sensitive means to estimate various particle properties in various remote sensing applications, including the planetary sciences

  14. arXiv Measurement of the $\\Upsilon$ polarizations in $pp$ collisions at $\\sqrt{s}$=7 and 8TeV

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjoern, Mikkel; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Borysova, Maryna; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, Plamen Hristov; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddock, Brian Forrest; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombacher, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Gonzalo, David; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-12-20

    The polarization of the $\\Upsilon(1S)$, $\\Upsilon(2S)$ and $\\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\\Upsilon\\to\\mu^+\\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\\Upsilon)<30~GeV/c$, and rapidity $2.2< y^{(\\Upsilon)}<4.5$. No large polarization is observed.

  15. Mapping radio emitting-region on low-mass stars and brown dwarfs

    Directory of Open Access Journals (Sweden)

    Hallinan G.

    2011-07-01

    Full Text Available Strong magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7 have emerged from a number of radio observations, including the periodic beams. The highly (up to 100% circularly polarized nature of the emission point to an effective amplification mechanism of the high-frequency electromagnetic waves – the electron cyclotron maser (ECM instability. Several anisotropic velocity distibution models of electrons, including the horseshoe distribution, ring shell distribution and the loss-cone distribution, are able to generate the ECM instability. A magnetic-field-aligned electric potential would play an significant role in the ECM process. We are developing a theoretical model in order to simulate ECM and apply this model to map the radio-emitting region on low-mass stars and brown dwarfs.

  16. Letter to the EditorAbel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere

    Directory of Open Access Journals (Sweden)

    S. B. Healy

    2002-08-01

    Full Text Available Radio occultation measurements made with a receiver inside the Earth’s atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile. The measurement geometry is closely related to problems encountered when inverting seismic time-travel data and solar occultation measurements, where the Abel solution is well known. The method requires measuring both rays that originate from above and below the local horizon of the receiver. The Abel transform operates on a profile of "partial bending angles" found by subtracting the positive elevation measurement from the negative elevation value with the same impact parameter. In principle, the refractive index profile can be derived from measurements with a single frequency GPS receiver because the ionospheric bending is removed when the partial bending angle is evaluated.Key words. Atmospheric composition and structure (pressure, density and temperature – Radio science (remote sensing

  17. Letter to the EditorAbel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere

    Directory of Open Access Journals (Sweden)

    J. Haase

    Full Text Available Radio occultation measurements made with a receiver inside the Earth’s atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile. The measurement geometry is closely related to problems encountered when inverting seismic time-travel data and solar occultation measurements, where the Abel solution is well known. The method requires measuring both rays that originate from above and below the local horizon of the receiver. The Abel transform operates on a profile of "partial bending angles" found by subtracting the positive elevation measurement from the negative elevation value with the same impact parameter. In principle, the refractive index profile can be derived from measurements with a single frequency GPS receiver because the ionospheric bending is removed when the partial bending angle is evaluated.Key words. Atmospheric composition and structure (pressure, density and temperature – Radio science (remote sensing

  18. The G_E/G_M-ratio of the proton by recoil polarization measurement in e+parrow e'+p

    Science.gov (United States)

    Punjabi, Vina; Jones, Mark; Perdrisat, Charles F.; Quemener, Gilles

    1998-10-01

    The recently commissioned Hall A high resolution spectrometers (HRS) and the focal plane polarimeter (FPP) were used to obtain the ratio of the electric and magnetic form factors of the proton, G_E/G_M. This form factor ratio is proportional to the measured ratio of the transverse, P_t, to longitudinal, P_l, components of the recoiling proton polarization. The method takes advantage of the precession of the proton magnetic moment in the hadron HRS, which rotates the longitudinal polarization component into the plane of the FPP analyzer; this allows simultaneous measurement of both components of the polarization. The ratio P_t/P_l is independent of both the electron beam polarization and the polarimeter analyzing power. Most of the data were obtained with polarized beams of 100 μ A with polarization of ~ 0.39 incident on the 15 cm cell of the high power LH2 target. We will report the results for G_E/GM at several values of Q^2 between 0.5 and 3.5 GeV^2.

  19. Magnetic fields of AM band radio broadcast signals at the Richmond Field Station

    International Nuclear Information System (INIS)

    Becker, Alex; Frangos, William

    1998-01-01

    Non-invasive sensing of the shallow subsurface is necessary for detection and delineation of buried hazardous wastes, monitoring of the condition of clay containment caps, and a variety of other purposes. Electromagnetic methods have proven to be effective in environmental site characterization where there is a need for increased resolution in subsurface characterization. Two considerations strongly suggest the use of frequencies between 100 kHz and 100 MHz for such applications: 1) the induction response of many targets is small due to small size, and 2) a need to determine both the electrical conductivity and dielectric permittivity which are related to chemistry and hydrology. Modeling and physical parameter studies confirm that measurements at frequencies between 1 and 100 MHz can resolve variations in subsurface conductivity and permittivity. To provide the necessary technology for shallow subsurface investigations, we propose to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric and magnetic fields. Prior to assembling the equipment for measuring surface impedance using controlled, local source it was felt prudent to measure the surface impedance of geological materials at the University of California at Berkeley's Richmond Field (RFS) using ambient energy in the broadcast band. As a first step toward this intermediate goal, we have examined and characterized local AM band radio signals in terms of both signal strength and polarization of the magnetic component as received at RFS. In addition, we have established the viability of a commercial radio-frequency magnetic sensor

  20. Development of radio acoustic sounding method in Kharkov National University of Radio Electronics

    International Nuclear Information System (INIS)

    Proshkin, Y G; Kartashov, V M; Babkin, S I

    2008-01-01

    The analysis of the role of Kharkov National University of Radio Electronics in developing the atmosphere radio acoustic sounding (RAS) method within the period from 1968 to 2008 was carried out. As a part of the investigation program six experimental models of the sounding radio equipment were developed and manufactured. The atmosphere sounding methods were developed for measuring the base meteorological values. For the first time in the world practice, relevant comparative measurements of air temperature, wind velocity and direction were performed on a short base (about 150 m) using the centimetre RAS equipment and standard sensors of a high (300 m) meteorological mast. The RAS equipment was used for the purpose of meteorological support to investigations in the field of the atmosphere physics and applied problems. All instrumental, atmosphere and social factors, affecting operation the RAS systems, were generalized. It is shown that compact and mobile systems for remote monitoring of the atmospheric boundary layer with possible prompt obtaining of relevant information about base meteorological values in large volumes can be based on the RAS equipment