WorldWideScience

Sample records for radio frequency extension

  1. Radio emission of extensive air showers at microwave frequencies

    Science.gov (United States)

    Filonenko, A. D.

    2016-05-01

    It is found that the power of the incoherent radiation of ionization electrons of an extensive air shower in the frequency range of 150 GHz is more than 10-24 W/m2Hz, with the shower energy ~1018 eV at a distance of 5 km from its axis. This means that, unlike fluorescent detectors, a radio telescope with an effective area of more than 300 m2 can monitor the trajectory of showers with an energy higher than 1018 eV at any time of the day regardless of the weather. The spectrum maximum near the frequency of 150 GHz is roughly three orders of magnitude higher than the value experimentally measured in the characteristic band (~5-10 GHz).

  2. AURA - A radio frequency extension to IceCube

    CERN Document Server

    Ruckman, L

    2008-01-01

    The excellent radio frequency transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube drilling through 2010 to establish the radio frequency technology needed to achieve 100-1000 km^3 effective volumes. In the 2006-2007 Austral summer 3 deep in-ice radio frequency (RF) clusters were deployed at depths of 1300m and 300m on top of the IceCube strings. Additional 3 clusters will be deployed in the Austral summer of 2008-2009. Verification and calibration results from the current deployed clusters are presented, and the detector design and performances are discussed. Augmentation of IceCube with large-scale 1000km^3sr radio and acoustic arrays would exten...

  3. Radio frequency detection assembly and method for detecting radio frequencies

    Science.gov (United States)

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  4. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  5. Radio Frequency Identification

    Indian Academy of Sciences (India)

    V Rajaraman

    2017-06-01

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more ‘intelligent’ with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways. RFIDs are an integral part of Internet ofThings (IOT) and IT systems of smart cities. In this article,we introduce the technology used by RFID systems, illustratetheir use in several applications, and discuss problems of privacyand security when they are used.

  6. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  7. Measurement of radio emission from extensive air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R., E-mail: j.horandel@astro.ru.n [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Istituto di Fisica dello Spazio Interplan etario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)

    2011-02-21

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES{sup star} and new methods are explored to realize a radio self-trigger algorithm in real time.

  8. Measurement of Radio Emission from Extensive Air Showers with LOPES

    CERN Document Server

    Hoerandel, J R

    2009-01-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES-Star and new methods are explored to realize a radio self-trigger algorithm in real time.

  9. Radio Detection of Horizontal Extensive Air Showers with AERA

    CERN Document Server

    ,

    2015-01-01

    AERA, the Auger Engineering Radio Array, located at the Pierre Auger Observatory in Malarg\\"ue, Argentina measures the radio emission of extensive air showers in the 30-80 MHz frequency range and is optimized for the detection of air showers up to 60$^{\\circ}$ zenith angle. In this contribution the motivation, the status, and first results of the analysis of horizontal air showers with AERA will be presented.

  10. Low Frequency Radio Experiment (LORE)

    Science.gov (United States)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  11. Radio frequency propagation made easy

    CERN Document Server

    Faruque, Saleh

    2015-01-01

    This book introduces Radio Frequency Propagation to a broad audience.  The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications.  The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  12. Radio Frequency Solid State Amplifiers

    CERN Document Server

    Jacob, J

    2015-01-01

    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  13. LEP radio-frequency cavity

    CERN Multimedia

    1991-01-01

    One of the copper radio-frequency accelerating cavities installed for the first phase of LEP (1989-1995). Bunches of electrons and positrons circulated in LEP in opposite directions and were accelerated in eight different sets of 16 cavities (situated on either side of the four experiments), gaining 400 million volts of accelerating power per turn.

  14. Radio frequency modulation made easy

    CERN Document Server

    Faruque, Saleh

    2017-01-01

    This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  15. The radio-frequency quadrupole

    CERN Document Server

    Vretenar, Maurizio

    2013-01-01

    Radio-frequency quadrupole (RFQ) linear accelerators appeared on the accelerator scene in the late 1970s and have since revolutionized the domain of low-energy proton and ion acceleration. The RFQ makes the reliable production of unprecedented ion beam intensities possible within a compact radio-frequency (RF) resonator which concentrates the three main functions of the low-energy linac section: focusing, bunching and accelerating. Its sophisticated electrode structure and strict beam dynamics and RF requirements, however, impose severe constraints on the mechanical and RF layout, making the construction of RFQs particularly challenging. This lecture will introduce the main beam optics, RF and mechanical features of a RFQ emphasizing how these three aspects are interrelated and how they contribute to the final performance of the RFQ.

  16. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  17. Radio Frequency Power Load and Associated Method

    Science.gov (United States)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  18. Radio frequency integrated circuit design

    CERN Document Server

    Rogers, John W M

    2010-01-01

    This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC

  19. Latest results of the Tunka Radio Extension

    Directory of Open Access Journals (Sweden)

    Kostunin D.

    2017-01-01

    Full Text Available The Tunka Radio Extension (Tunka-Rex is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.

  20. Radio Frequency Interference Mitigation at the WSRT

    CERN Document Server

    Fridman, P A; Millenaar, R P

    2010-01-01

    The sensitivity of radio astronomical stations is often limited by man-made radio frequency interference (RFI) due to a variety of terrestrial activities. An RFI mitigation subsystem (RFIMS) based on real-time digital signalprocessing is proposed here for the Westerbork Synthesis Radio Telescope based on a powerful field programmable gate array processor. In this system the radio astronomy signals polluted by RFI are "cleaned" with the RFIMS before routine back-end correlation processing takes place. The high temporal and frequency resolution of RFIMS allows the detection and excision of RFI better than do standard radio telescope back-end configurations.

  1. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  2. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Engelen, Steven; Bentum, Mark; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  3. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    Science.gov (United States)

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  4. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  5. The radio signal from extensive air showers

    CERN Document Server

    Revenu, Benoît

    2014-01-01

    The field of ultra-high energy cosmic rays made a lot of progresses last years with large area experiments such as the Pierre Auger Observatory, HiRes and the Telescope Array. A suppression of the cosmic ray flux at energies above $5.5x10^{19}$ eV is observed at a very high level of significance but the origin of this cut-off is not established: it can be due to the Greisen-Zatsepin-Kuzmin suppression but it can also reflect the upper limit of particle acceleration in astrophysical objects. The key characteristics to be measured on cosmic rays is their composition. Upper limits are set above $10^{18}$ eV on primary photons and neutrinos and primary cosmic rays are expected to be hadrons. Identifying the precise composition (light or heavy nuclei) will permit to solve the puzzle. It has been proven that the radio signal emitted by the extensive air showers initiated by ultra-high energy cosmic rays reflects their longitudinal profile and can help in constraining the primary particle. We review in this paper th...

  6. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  7. Radio Frequency Fragment Separator at NSCL

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States)], E-mail: bazin@nscl.msu.edu; Andreev, V. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Becerril, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Doleans, M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Mantica, P.F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Ottarson, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Stoker, J.B. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Vincent, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2009-07-21

    A new device has been designed and built at NSCL which provides additional filtering of radioactive beams produced via projectile fragmentation. The Radio Frequency Fragment Separator (RFFS) uses the time micro structure of the beams accelerated by the cyclotrons to deflect particles according to their time-of-flight, in effect producing a phase filtering. The transverse RF (Radio Frequency) electric field of the RFFS has superior filtering performance compared to other electrostatic devices, such as Wien filters. Such filtering is critical for radioactive beams produced on the neutron-deficient side of the valley of stability, where strong contamination occurs at intermediate energies from 50 to 200 MeV/u.

  8. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  9. Radio Frequency Fragment Separator at NSCL

    Science.gov (United States)

    Bazin, D.; Andreev, V.; Becerril, A.; Doléans, M.; Mantica, P. F.; Ottarson, J.; Schatz, H.; Stoker, J. B.; Vincent, J.

    2009-07-01

    A new device has been designed and built at NSCL which provides additional filtering of radioactive beams produced via projectile fragmentation. The Radio Frequency Fragment Separator (RFFS) uses the time micro structure of the beams accelerated by the cyclotrons to deflect particles according to their time-of-flight, in effect producing a phase filtering. The transverse RF (Radio Frequency) electric field of the RFFS has superior filtering performance compared to other electrostatic devices, such as Wien filters. Such filtering is critical for radioactive beams produced on the neutron-deficient side of the valley of stability, where strong contamination occurs at intermediate energies from 50 to 200 MeV/u.

  10. LOFAR, a new low frequency radio telescope

    CERN Document Server

    Röttgering, H J A

    2003-01-01

    LOFAR, the Low Frequency Array, is a large radio telescope consisting of approximately 100 soccer-field sized antenna stations spread over a region of 400 km in diameter. It will operate at frequencies from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for studies of a broad range of astrophysical topics, including reionisation, transient radio sources and cosmic rays, distant galaxies and AGNs. In this contribution a status rapport of the LOFAR project and an overview of the science case is presented.

  11. Measurement of radio emission from extensive air showers with LOPES

    NARCIS (Netherlands)

    Horandel, J.R.; Apel, W.D.; Arteaga, J.C.; Asch, T.; Badea, F.; Bahren, L.; Bekk, K.; Bertaina, M.; Biermann, P.L.; Blumer, J.; Bozdog, H.; Brancus, I.M.; Bruggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; Souza, V. de; Pierro, F. di; Doll, P.; Ender, M.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P.L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Horneffer, A.; Huege, T.; Isar, P.G.; Kampert, K.H.; Kang, D.; Kickelbick, D.; Kromer, O.; Kuijpers, J; Lafebre, S.J.; Link, K.; Luczak, P.; Ludwig, M.; Mathes, H.J.; Mayer, H.J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlager, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schroder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G.C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J.A.

    2011-01-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequ

  12. Radio frequency source coding made easy

    CERN Document Server

    Faruque, Saleh

    2015-01-01

    This book introduces Radio Frequency Source Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  13. Radio frequency channel coding made easy

    CERN Document Server

    Faruque, Saleh

    2016-01-01

    This book introduces Radio Frequency Channel Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  14. Cost cutting using radio frequency inventory control.

    Science.gov (United States)

    Weber, J

    1992-05-01

    Bar coding should be a staple in every hospital by now--but it's not. The author tells how bar coding and the use of radio frequency transmission of inventory data direct to their mainframe computer has saved them time and money.

  15. Radio Frequency Identifiers: What are the Possibilities?

    CERN Document Server

    Elmorshidy, Ahmed

    2010-01-01

    This paper defines the components of radio frequency identifiers (RFID). It also explores the different areas and sectors where RFID can be beneficial. The paper discusses the uses and advantages of RFID in deference, consumer packaged goods (CPG), healthcare, logistics, manufacturing, and retail.

  16. Graphene for radio frequency electronics

    Directory of Open Access Journals (Sweden)

    Lei Liao

    2012-07-01

    Full Text Available Graphene is emerging as an attractive electronic material for future electronics. With the highest carrier mobility, high saturation velocity, high critical current densities, and single atomic thickness, graphene has great potential for ultra-high speed transistors, with the highest projected cut-off frequency exceeding 1 THz. However, the fabrication of high speed graphene transistors is of significant challenge, since conventional electronic fabrication processes often introduce undesirable defects into graphene lattices. Significant efforts have made to mitigate these challenges. Here we review the opportunities, challenges, as well as the recent advances in the development of high speed graphene transistors and circuits.

  17. A Radio Frequency Charge Parity Meter

    OpenAIRE

    Schroer, M. D.; Jung, M.; Petersson, K. D.; Petta, J. R.

    2012-01-01

    We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensi...

  18. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  19. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Radio Frequency Based Water Level Monitor and Controller for Residential Applications. ... Nigerian Journal of Technology ... This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor ...

  20. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    Science.gov (United States)

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  1. Ultra-Wideband Radio Frequency Identification Systems

    CERN Document Server

    Nekoogar, Faranak

    2012-01-01

    Ultra-Wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification systems as well as their target markets. The authors provide a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of some commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband technology for tag/reader communications. The book presents practical aspects of UWB RFID system such as: pulse generation, remote powering, tag and reader antenna design, as well as special applications of  UWB RFIDs in a simple and easy-to-understand language.

  2. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  3. An Introduction to Radio Frequency Engineering

    Science.gov (United States)

    Coleman, Christopher

    2004-06-01

    Using an easily understood approach combined with numerous worked examples, illustrations and homework problems, this textbook focuses on minimizing the mathematics needed to grasp radio frequency engineering. The book includes broad coverage of RF systems, circuit design, antennas, propagation and digital techniques. Written for upper level undergraduate courses, it will also provide an excellent introduction to the subject for graduate students, researchers and practicing engineers.

  4. TOUTATIS: A radio frequency quadrupole code

    OpenAIRE

    Romuald Duperrier

    2000-01-01

    A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ) is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates...

  5. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  6. Characteristics of Collision, Capacitive Radio Frequency Sheath

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu; DingWanYu; Wang Wenchun; Liu JinYuan; Wang Xiaogang; Liu Yue

    2005-01-01

    A simple collisional radio frequency (rf) sheath fluid model, which is not restricted by the ratio of rf frequency to ion plasma frequency (β=ωrf/ωpi), was established and solved numerically. In the ion balance equation, the effect of the collision on the ion and the ion velocity is assumed to be a direct ratio to ion velocity. The ion energy distributions (IEDs) calculated in the model in comparison with the experimental data [M. A. Sobolewski, J. K. Olthoff, and Y.C. Wang, J. Appl. Phys. 85, 3966 (1999)], proved the validity of the model. And the effect of the collision on the sheath characteristic was obtained and discussed. This paper demonstrates that the collision frequency is another crucial parameter as well as the ratio β to determine the rf sheath characteristics and the shape of IE Ds.

  7. Radio-frequency scanning tunnelling microscopy.

    Science.gov (United States)

    Kemiktarak, U; Ndukum, T; Schwab, K C; Ekinci, K L

    2007-11-01

    The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.

  8. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  9. Influence of atmospheric electric fields on the radio emission from extensive air showers

    NARCIS (Netherlands)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.; van den Berg, A. M.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Horandel, J. R.; Kohn, C.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of 30-

  10. Measurement of radio emission from extensive air showers

    OpenAIRE

    Hoerandel, Joerg R.

    2009-01-01

    A new promising development in astroparticle physics is to measure the radio emission from extensive air showers. The particles in the cascade emit synchrotron radiation (30 - 90 MHz) which is detected with arrays of dipole antennas. Recent experimental efforts are discussed.

  11. Polarized radio emission from extensive air showers measured with LOFAR

    NARCIS (Netherlands)

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles,

  12. Radio Frequency Simulation System (RFSS) Capabilities Summary

    Science.gov (United States)

    1977-04-01

    S- 0LEVEL-- TECHNICAL REPORT TD -77-8 RADIO FREQUENCY SIMULATION SYSTEM (RFSS) CAPABILITIES SUMMARY 00 SAeroballistios Directorate Advanced Simulation...gAttn: DRDMT - TD /AMCMS 63 303.214131101 RedstngArj gUAl. Alabmt 35809______________ It CONTITL.uNG OFFICE NAME AND ADDRESS CoMuaa ner US Army Missile...r ~- -- 0 0 0 1 N -4 -- -~ *5 0 - 5e41 -A I: a 00 I I. S Jto cc iI us V A U. II I’~z’LF~iJ - - - - -> 3-cc dc -4 -.40 =! Jo -AZC 4 C - 442q 0 M~A $Ji a

  13. Radio frequency driven multicusp sources (invited)

    Science.gov (United States)

    Leung, Ka-Ngo

    1998-02-01

    The radio frequency (rf)-driven multicusp source was originally developed for use in the superconducting super collider injector. The source can routinely provide 30 mA of H˜ beam at 0.1% duty factor. By adding a minute quantity of cesium to the discharge, H- beam current in excess of 100 mA and e/H˜1 has been achieved. The rf-driven H˜ source is being further developed for 6% duty factor operation to be used in the national spallation neutron source. Application of the rf-driven multicusp source has been extended to radioactive ion beam production, ion projection lithography, and compact neutron tubes.

  14. Radio frequency transistors principles and practical applications

    CERN Document Server

    Dye, Norm

    1993-01-01

    Cellular telephones, satellite communications and radar systems are adding to the increasing demand for radio frequency circuit design principles. At the same time, several generations of digitally-oriented graduates are missing the essential RF skills. This book contains a wealth of valuable design information difficult to find elsewhere.It's a complete 'tool kit' for successful RF circuit design. Written by experienced RF design engineers from Motorola's semiconductors product section.Book covers design examples of circuits (e.g. amplifiers; oscillators; switches; pulsed power; modular syst

  15. Tunka-Rex: The radio extension of the Tunka experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, Roman [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik (IKP); Collaboration: Tunka-Rex-Collaboration

    2013-07-01

    The Tunka-133 experiment is a non-imaging Cherenkov detector for extensive air showers, induced by primary cosmic ray particles with energies above 10{sup 16} eV. It is located in the Tunka valley near the southern tip of lake Baikal, Siberia. Tunka-Rex is the radio extension of Tunka-133. Its first stage was deployed in autumn 2012 and it began operation on October 8th 2012. It consists currently of 20 radio antennas, placed within the Tunka-133 array covering an area of 1 km{sup 2}. Triggered by Tunka-133, Tunka-Rex measures the radio signal of a shower in coincidence with its Cherenkov emission. This gives the opportunity to explore the possible precision of the radio detection technique in determination of primary energy and mass in detail by cross-calibrating the radio signal with the well understood Cherenkov detector. In this report we present the overall concept of Tunka-Rex and its current status with a focus on its hardware properties and their impact on the measurement.

  16. Galaxies at Z=2 extensions around radio-quiet QSOs

    CERN Document Server

    Aretxaga, I; Terlevich, R J

    1995-01-01

    We have been conducting an imaging survey to detect host galaxies of radio-quiet QSOs at high redshift (z = 2), in order to compare them with those of radio-loud objects. Six QSOs were observed in the R passband with the auxiliary port of the 4.2m WHT of the {\\it Observatorio de Roque de los Muchachos} indir August 1994. The objects were selected to be bright (M(B) < -28~mag) and have bright stars in the field, which could enable us to define the point spread function (PSF) accurately. The excellent seeing of La Palma (<0.9 arcsec thoughout the run) allowed us to detect extensions to the nuclear PSFs around three (one radio-loud and two radio-quiet) QSOs, out of 4 suitable targets. The extensions are most likely due to the host galaxies of these QSOs, with luminosities of at least 3-7% of the QSO luminosity. The most likely values for the luminosity of the host galaxies lie in the range 6-18% of the QSO luminosity. Our observations show that, if the extensions we have detected are indeed galaxies, extra...

  17. Radio frequency multicusp ion source development (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  18. Radio frequency driven multicusp sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road-MS 5/119, University of California, Berkeley, California 94720 (United States)

    1998-02-01

    The radio frequency (rf)-driven multicusp source was originally developed for use in the superconducting super collider injector. The source can routinely provide 30 mA of H{sup {approximately}} beam at 0.1{percent} duty factor. By adding a minute quantity of cesium to the discharge, H{sup {minus}} beam current in excess of 100 mA and e/H{approximately}1 has been achieved. The rf-driven H{approximately} source is being further developed for 6{percent} duty factor operation to be used in the national spallation neutron source. Application of the rf-driven multicusp source has been extended to radioactive ion beam production, ion projection lithography, and compact neutron tubes.{copyright} {ital 1998 American Institute of Physics.}

  19. Radio frequency multicusp ion source development (invited)

    Science.gov (United States)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  20. SMART TRAVELLING WITH RADIO FREQUENCY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Zainab Rasheed Fahad Mirza

    2013-01-01

    Full Text Available Radio Frequency Identification (RFID technology is being widely used now-a-days and is becoming more popular with every passing day. There are varied applications of this technology in various fields such as industry, communication, travel and transportation. Roads, rail ways, air traffic and container vessel shipping all share underlying abstractions of transportation nets with hubs. This study is concerned with applications of RFID technology with Cloud computing, innovation in the field of travelling and its applications for different modes of transportation at Harbors, airports, train stations, road intersections providing security, coordination, to the users. Combined with other technologies, RFID technology is being used for modern airports baggage system, for railroad car identification, in container transportation systems, for fuel supply control of vehicles, in traffic management system and in travelling information system.

  1. TOUTATIS: A radio frequency quadrupole code

    Directory of Open Access Journals (Sweden)

    Romuald Duperrier

    2000-12-01

    Full Text Available A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine description of the forces without being time consuming. The field is calculated through a Poisson solver and the vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities. Theoretical and experimental tests are also described and show a good agreement between simulations and reference cases.

  2. Radio labeling with pre-assigned frequencies

    NARCIS (Netherlands)

    Bodlaender, H.L.; Broersma, H.J.; Fomin, F.V.; Pyatkin, A.V.; Woeginer, G.J.

    2007-01-01

    A radio labeling of a graph G is an assignment of pairwise distinct, positive integer labels to the vertices of G such that labels of adjacent vertices differ by at least 2. The radio labeling problem (RL) consists in determining a radio labeling that minimizes the maximum label that is used (the so

  3. Radio labeling with pre-assigned frequencies

    NARCIS (Netherlands)

    Bodlaender, H.L.; Broersma, H.J.; Fomin, F.V.; Pyatkin, A.V.; Woeginer, G.J.

    2002-01-01

    A radio labeling of a graph G is an assignment of pairwise distinct, positive integer labels to the vertices of G such that labels of adjacent vertices differ by at least 2. The radio labeling problem (RL) consists in determining a radio labeling that minimizes the maximum label that is used (the

  4. Radio labeling with pre-assigned frequencies

    NARCIS (Netherlands)

    Bodlaender, H.L.; Broersma, Haitze J.; Fomin, F.V.; Pyatkin, A.V.; Woeginger, Gerhard

    2002-01-01

    A radio labeling of a graph $G$ is an assignment of pairwise distinct, positive integer labels to the vertices of $G$ such that labels of adjacent vertices differ by at least $2$. The radio labeling problem (\\mbox{\\sc RL}) consists in determining a radio labeling that minimizes the maximum label

  5. Trirotron: triode rotating beam radio frequency amplifier

    Science.gov (United States)

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  6. Influence of Atmospheric Electric Fields on the Radio Emission from Extensive Air Showers

    CERN Document Server

    Trinh, T N G; Buitink, S; Berg, A M van den; Corstanje, A; Ebert, U; Enriquez, J E; Falcke, H; Hörandel, J R; Köhn, C; Nelles, A; Rachen, J P; Rossetto, L; Rutjes, C; Schellart, P; Thoudam, S; ter Veen, S; de Vries, K D

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very non-linear dependence of the signal strength in the frequency window of 30-80 MHz on the magnitude of the atmospheric electric field. In this work we present an explanation of this dependence based on Monte-Carlo simulations, supported by arguments based on electron dynamics in air showers and expressed in terms of a simplified model. We show that by extending the frequency window to lower frequencies additional sensitivity to the atmospheric electric field is obtained.

  7. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  8. Experimental radio frequency link for Ka-band communications applications

    Science.gov (United States)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  9. 47 CFR 80.927 - Antenna radio frequency indicator.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  10. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  11. The Tunka radio extension (Tunka-Rex): Radio measurements of cosmic rays in Siberia

    Science.gov (United States)

    Schröder, F. G.; Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Wischnewski, R.; Zagorodnikov, A.

    2016-07-01

    The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately 1016 -1018 eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about 3km2, which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary cosmic-ray particles can be determined. Finally, Tunka-Rex can be used for cosmic-ray physics at energies close to 1 EeV, where the standard Tunka-133 analysis is limited by statistics. In contrast to the air-Cherenkov measurements, radio measurements are not limited to dark, clear nights and can provide an order of magnitude larger exposure.

  12. Radio-frequency measurement in semiconductor quantum computation

    Science.gov (United States)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  13. Radio Frequency Heating for Soil Remediation.

    Science.gov (United States)

    Price, Stephen L; Kasevich, Raymond S; Johnson, Mark A; Wiberg, Dan; Marley, Michael C

    1999-02-01

    Radio frequency heating (RFH) is a technology that increases the cost-effectiveness of a variety of site remediation technologies by accelerating the rate of contaminant removal. Heating makes the physical, chemical, and biological properties of materials such as contaminants, soil, and groundwater more amenable to remediation. RFH brings controlled heating to the subsurface, enhancing the removal of contaminants by soil vapor extraction (SVE), groundwater aeration (air sparging), bioremediation, and product recovery. The results presented are from a bench-scale study and a field demonstration that both used RFH to enhance the performance of SVE. The bench-scale study performed on PCE-contaminated soil revealed an increase, by a factor of 8, in the removal rate when RFH was used to heat soil to 90 °C. The application of RFH for a three-week period at a former gasoline station near St. Paul, MN, resulted in raising the ambient soil temperature from 8 °C to 100 °C in the immediate vicinity of the RFH applicator and to 40 °C 1.5 m (5 ft) away. Most significantly, the use of an integrated RFH/SVE system achieved an overall 50% reduction in gasoline range organics (GRO) in soil over a two- to three-month period. The discussion includes applications of RFH for enhancing bioremediation and product recovery.

  14. Differentially-Enhanced Sideband Imaging via Radio-frequency Encoding

    CERN Document Server

    Fard, A M; Jalali, B

    2015-01-01

    We present a microscope paradigm that performs differential interference imaging with high sensitivity via optical amplification and radio-frequency (RF) heterodyne detection. This method, termed differentially-enhanced sideband imaging via radio-frequency encoding (DESIRE), uniquely exploits frequency-to-space mapping technique to encode the image of an object onto the RF sidebands of an illumination beam. As a proof-of-concept, we show validation experiment by implementing radio frequency (f = 15 GHz) phase modulation in conjunction with spectrally-encoded laser scanning technique to acquire one-dimensional image of a barcode-like object using a commercial RF spectrum analyzer.

  15. The Tunka Radio Extension (Tunka-Rex): Radio Measurements of Cosmic Rays in Siberia (PISA 2015)

    CERN Document Server

    Schröder, F G; Budnev, N M; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately $10^{16}-10^{18}\\,$eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about $3\\,$km$^2$, which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary...

  16. Inductively coupled radio frequency methane plasma simulation

    Science.gov (United States)

    Bera, K.; Farouk, B.; Vitello, P.

    2001-05-01

    A self-consistent two-dimensional radio frequency inductively coupled glow discharge model has been developed in cylindrical coordinates using a fluid model. The objective of the study is to provide insight into charged species dynamics and investigate their effects on plasma process for a methane discharge. The model includes continuity and energy equations for electrons and continuity, momentum and energy equations for positive and negative ions. An electromagnetic model that considers the electric field due to the space charge within the plasma and due to inductive power coupling is also incorporated. For an inductively coupled methane discharge we expect to find higher fluxes of ions and radicals to the cathode, and hence a higher deposition/etch rate for a high-density plasma. The independent control of ion energy to the cathode in an inductively coupled discharge will facilitate control on film deposition/etch rate and uniformity on the wafer. Swarm data as a function of the electron energy are provided as input to the model. The model predicts the electron density, ion density and their fluxes and energies to the cathode. The radical and neutral densities in the discharge are calculated using a gas phase chemistry model. The diamond-like-carbon thin-film deposition/etch rate is predicted using a surface chemistry model. The gas phase chemistry model considers the diffusion of radicals and neutrals along with creation and loss terms. The surface deposition/etching process involves adsorption-desorption, adsorption layer reaction, ion stitching, direct ion incorporation and carbon sputtering.

  17. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    Science.gov (United States)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  18. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  19. Low frequency follow up of radio halos and relics in the GMRT Radio Halo Cluster Survey

    CERN Document Server

    Venturi, Tiziana; Dallacasa, Daniele; Cassano, Rossella; Brunetti, Gianfranco; Macario, Giulia; Athreya, Ramana

    2012-01-01

    We performed GMRT low frequency observations of the radio halos, relics and new candidates belonging to the GMRT Radio Halo Cluster Sample first observed at 610 MHz. High sensitivity imaging was performed using the GMRT at 325 MHz and 240 MHz. The properties of the diffuse emission in each cluster were compared to our 610 MHz images and/or literature information available at other frequencies, in order to derive the integrated spectra over a wide frequency range.Beyond the classical radio halos, whose spectral index $\\alpha$ is in the range $\\sim1.2\\div1.3$ (S$\\propto\

  20. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  1. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...

  2. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  3. Solar system radio emissions studies with the largest low-frequency radio telescopes

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  4. Planetary and exoplanetary low frequency radio observations from the Moon

    Science.gov (United States)

    Zarka, P.; Bougeret, J.-L.; Briand, C.; Cecconi, B.; Falcke, H.; Girard, J.; Grießmeier, J.-M.; Hess, S.; Klein-Wolt, M.; Konovalenko, A.; Lamy, L.; Mimoun, D.; Aminaei, A.

    2012-12-01

    We analyze the planetary and exoplanetary science that can be carried out with precursor as well as future low frequency radio instruments on the Moon, assessing the limiting noise sources, comparing them to the average and peak spectra of all planetary radio components as they will be seen from the Lunar surface or orbit. We identify which objectives will be accessible with each class of instrument, and discuss the interest of these observations compared to observations by planetary probes and to ground-based observations by large low-frequency radio arrays. The interest of goniopolarimetry is emphasized for pathfinder missions.

  5. Application of Radio Frequency Identification (RFID) in Dairy Information Management

    Institute of Scientific and Technical Information of China (English)

    Wu Hong-da

    2012-01-01

    As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some

  6. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  7. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  8. Implementation and extension of a GNU-Radio RFID reader

    Science.gov (United States)

    Smietanka, G.; Brato, S.; Freudenberg, M.; Götze, J.

    2013-07-01

    The development of a flexible software defined RFID is discused. Commercial reader systems only allow a top level view on the communication and restrict the variation for many transmission parameters. Recently a software reader from the CGran project was proposed which uses the GNU Radio environment in combination with an USRP front end. Because most of the signal processing is done on a common host PC, this reader offers high flexibility, but also has several disadvantages. One of the main hardware limitations is the usage of only one separated antenna per transmit and receive path. Commercial readers usually use four antennas which are time multiplexed and can be used as transmitter and receiver. In this work a HF multiplexer for the USRP device is introduced. With this extension up to four transmit and receive antennas can be used in combination with the software reader. It is shown that the multiplexer achieves good read rates for a switching interval of 100 ms. Using this multiplexer the read range of the system decrease compared to the basic software reader, but distances over two meters can still be realized without additional hardware extensions.

  9. The statistics of low frequency radio interference at the Murchison Radio-astronomy Observatory

    CERN Document Server

    Sokolowski, Marcin; Lewis, Morgan

    2016-01-01

    We characterize the low frequency radio-frequency interference (RFI) environment at the Murchison Radio-astronomy Observatory (MRO), the location selected for the low-frequency component of the Square Kilometre Array. Data were collected from the BIGHORNS instrument, located at the MRO, which records a contiguous bandwidth between 70 and 300 MHz, between November 2014 to March 2015 inclusive. The data were processed to identify RFI, and we describe a series of statistics in both the time and frequency domain, including modeling of the RFI occupancy and signal power as a series of distribution functions, with the goal of aiding future scientists and operation staff in observation planning.

  10. Radio frequency interference protection of communications between the Deep Space Network and deep space flight projects

    Science.gov (United States)

    Johnston, D. W. H.

    1981-01-01

    The increasing density of electrical and electronic circuits in Deep Space Station systems for computation, control, and numerous related functions has combined with the extension of system performance requirements calling for higher speed circuitry along with broader bandwidths. This has progressively increased the number of potential sources of radio frequency interference inside the stations. Also, the extension of spectrum usage both in power and frequency as well as the greater density of usage at all frequencies for national and international satellite communications, space research, Earth resource operations and defense, and particularly the huge expansion of airborne electronic warfare and electronic countermeasures operations in the Mojave area have greatly increased the potential number and severity of radio frequency interference incidents. The various facets of this problem and the efforts to eliminate or minimize the impact of interference on Deep Space Network support of deep space flight projects are described.

  11. Low-Frequency Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. Radio frequency powering of microelectronic sensor modules

    Energy Technology Data Exchange (ETDEWEB)

    Boegel, Gerd vom; Meyer, Frederic; Kemmerling, Martin [Fraunhofer-Institut fuer Mikroelektronische Schaltungen und Systeme, Duisburg (Germany)

    2013-03-01

    In RFID applications the power supply of transponders via electromagnetic field is state-of-the-art. In this presentation the use of electromagnetic energy will be discussed for the operation of sensor modules. Starting with the question, whether the omnipresent radiation from power supply networks, radio transmitters, and mobile phone base stations is useable (energy harvesting), the feasibility of the operation of self-sufficient sensor modules is explained. Ancillary conditions of typical applications (e.g. operating range) and technology are considered. (orig.)

  13. Magnetoreception in birds: the effect of radio-frequency fields.

    Science.gov (United States)

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.

  14. Polarized radio emission from extensive air showers measured with LOFAR

    CERN Document Server

    Schellart, P; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Krause, M; Nelles, A; Rachen, J P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization exceeding $99\\%$, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for $179$ individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from $(3.47\\pm 0.79)\\%$ for very inclined air showers at $25\\, \\m...

  15. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    Science.gov (United States)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  16. Full Monte Carlo simulations of radio emission from extensive air showers with CoREAS

    CERN Document Server

    Huege, Tim

    2013-01-01

    CoREAS is a Monte Carlo simulation code for the calculation of radio emission from extensive air showers. It is based on the "endpoint formalism" for radiation from moving charges implemented directly in CORSIKA. Consequently, the full complexity of the air-shower physics is taken into account without the need for approximations or assumptions on the emission mechanism. We present results of simulations for an unthinned shower performed with CoREAS for both MHz and GHz frequencies. At MHz frequencies, the simulations predict the well-known mixture of geomagnetic and charge excess radiation. At GHz frequencies, the emission is strongly influenced by Cherenkov effects arising from the varying refractive index in the atmosphere. In addition, a qualitative difference in the symmetry of the GHz radiation pattern is observed when compared to the ones at lower frequencies. We also discuss the strong increase in the ground area subtended by the radio emission when going from near-vertical to very inclined geometries,...

  17. Experimental characterization of radio frequency microthermal thruster performance

    Science.gov (United States)

    Williams, Shae E.

    Microsatellite (cold gas thrusters. Design constraints rule out much of traditional propulsion, requiring new and nonobvious technologies to advance the state of the art and enable longer and more flexible missions. The radio frequency microthermal thruster is shown to be worth thorough study for this application. A basic analytical model is constructed to look at expected performance, and the theory behind that model is explained. Calibration and the challenges in working with extremely low forces and displacements are also examined. The results of extensive testing on this thruster type are presented. Important trends are confirmed and validated, such as a linearity of specific impulse with power, and consistent nonlinearities with frequency and mass flow rate. Additionally, tests indicate a nonlinear relationship between applied frequency and thruster internal geometry that can more than triple the heating occurring in the thruster. Further tests focus on this relationship, and find more information about how these parameters couple are found to be primarily due to induced inefficiencies in stochastic heating and the inability of a vibrating voltage sheath to transfer energy into the flow. Additionally, first steps towards optimizing a design for performance are taken, such as analyzing the effect of adding a converging/diverging nozzle and finding an optimal length of inner electrode to be exposed to plasma. Overall, specific impulses of up to 85 seconds are found with argon as the propellant, doubling cold gas specific impulse, and an error on specific impulse is calculated to be less than 3% in either direction. These results after only slight efforts at design optimization indicate much more improvement is possible with this technology that would make an RF microthermal thruster viable as a commercial product.

  18. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    CERN Document Server

    Mena, Juan; Cliche, Jean-Francois; Dobbs, Matt; Gilbert, Adam; Tang, Qing Yang

    2013-01-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications

  19. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Messina, S.; Scholten, O.; van den Berg, A.M.

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) f

  20. On the high frequency polarization of pulsar radio emission

    CERN Document Server

    Von Hoensbroech, A; Krawczyk, A

    1998-01-01

    We have analyzed the polarization properties of pulsars at an observing frequency of 4.9 GHz. Together with low frequency data, we are able to trace polarization profiles over more than three octaves into an interesting frequency regime. At those high frequencies the polarization properties often undergo important changes such as significant depolarization. A detailed analysis allowed us to identify parameters, which regulate those changes. A significant correlation was found between the integrated degree of polarization and the loss of rotational energy E^dot. The data were also used to review the widely established pulsar profile classification scheme of core- and cone-type beams. We have discovered the existence of pulsars which show a strongly increasing degree of circular polarization towards high frequencies. Previously unpublished average polarization profiles, recorded at the 100m Effelsberg radio telescope, are presented for 32 radio pulsars at 4.9 GHz. The data were used to derive polarimetric param...

  1. Steering Wheel Shaped Frequency Reconfigurable Antenna for Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Harbinder Singh

    2014-05-01

    Full Text Available This paper depicts an outline to design a novel compact and low profile frequency reconfigurable microstrip patch antenna for possible applications in cognitive radio systems to act as a fast switching antenna capable of operating in seven different frequencies in the range of 6.25 to 8.25 GHz. The antenna structure comprises a center rectangular encircled patch, in which rectangular patch is driven patch and the encirclement is for frequency reconfigure ability. The reconfiguration ability of the antenna is obtained by placing four radio frequency micro-electromechanical system (RF-MEMS switches in between encircled patch and driven patch. Different switch configurations were investigated and the same was evaluated for diverse frequency ranges.

  2. Radio Frequency Interference mitigation using deep convolutional neural networks

    CERN Document Server

    Akeret, Joel; Lucchi, Aurelien; Refregier, Alexandre

    2016-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE & SEEK radio data simulation and processing packages, as well as data collected at the Bleien Observatory. We find that our U-Net implementation can outperform classical RFI mitigation algorithms such as SEEK's SumThreshold implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  3. Radio frequency interference mitigation using deep convolutional neural networks

    Science.gov (United States)

    Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.

    2017-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  4. Mapping the Orion Molecular Cloud Complex in Radio Frequencies

    Science.gov (United States)

    Castelaz, Michael W.; Lemly, C.

    2013-01-01

    The purpose of this research project was to create a large-scale intensity map of the Orion Molecular Cloud Complex at a radio frequency of 1420 MHz. A mapping frequency of 1420 MHz was chosen because neutral hydrogen, which is the primary component of the Orion Molecular Complex, naturally emits radio waves at this frequency. The radio spectral data for this project were gathered using a 4.6-m radio telescope whose spectrometer was tuned to 1420 MHz and whose beam width was 2.7 degrees. The map created for this project consisted of an eight-by-eight grid centered on M42 spanning 21.6 degrees per side. The grid consisted of 64 individual squares spanning 2.7 degrees per side (corresponding to the beam width of the telescope). Radio spectra were recorded for each of these individual squares at an IF gain of 18. Each spectrum consisted of intensity on an arbitrary scale from 0 to 10 plotted as a function frequencies ranging from -400 kHz to +100 kHz around the origin of 1420 MHz. The data from all 64 radio spectra were imported into Wolfram Alpha, which was used to fit Gaussian functions to the data. The peak intensity and the frequency at which this peak intensity occurs could then be extracted from the Gaussian functions. Other helpful quantities that could be calculated from the Gaussian functions include flux (integral of Gaussian function over frequency range), average value of intensity (flux integral divided by frequency range), and half maximum of intensity. Because all of the radio spectra were redshifted, the velocities of the hydrogen gas clouds of the Orion Molecular Cloud Complex could be calculated using the Doppler equation. The data extracted from the Gaussian functions were then imported into Mathcad to create 2D grayscale maps with right ascension (RA) on the x-axis, declination on the y-axis, and intensity (or flux, etc.) represented on a scale from black to white (with white representing the highest intensities). These 2D maps were then imported

  5. Radio Frequency Radiation Dosimetry Handbook (Fifth Edition)

    Science.gov (United States)

    2009-07-01

    high-level RF fields. Lossy-line systems work best for frequencies above 100 MHz. For high fields below 100 MHz, line burnout may be a problem. Fiber...overexposures to the head could result in a post-concussion syndrome (IEEE COMAR, 2002). Delayed effects are adverse effects that don‘t show up...individual received an overexposure to his head, it is also possible for signs and symptoms similar to that of a post-concussion syndrome to develop

  6. LOFAR: A new radio telescope for low frequency radio observations: Science and project status

    CERN Document Server

    Röttgering, H J A; Fender, R P; Kuijpers, J; Van Haarlem, M P; Johnston-Hollitt, M; Miley, G K

    2003-01-01

    LOFAR, the Low Frequency Array, is a large radio telescope consisting about 100 soccer field sized antenna stations spread over a region of 400 km in diameter. It will operate in the frequency range from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for a broad range of astrophysical studies. In this contribution we first discuss four major areas of astrophysical research in which LOFAR will undoubtedly make important contributions: reionisation, distant galaxies and AGNs, transient radio sources and cosmic rays. Subsequently, we will discuss the technical concept of the instrument and the status of the LOFAR project

  7. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Science.gov (United States)

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  8. Low Frequency Radio Astronomy Summary: A Festschrift For Bill Erickson

    Science.gov (United States)

    Clark, B. G.; Kassim, N. E.; Perez, M. R.

    2005-12-01

    The science and technological issues presented at this workshop in honor of Bill Erickson's 74th birthday, are certainly opening up a new window of astronomical observations at the low end of the radio frequency spectrum. We briefly review some of the contributions concentrating our comments on the topics of science, technology, and history.

  9. Radio frequency power sensor based on MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Wiegerink, Remco J.; Jansen, Henricus V.; Flokstra, Jan; Flokstra, Jakob; Elwenspoek, Michael Curt

    2003-01-01

    We present the first measurement results of a power sensor for radio frequency (rf) signals (50 kHz - 40 GHz) with almost no dissipation during the measurement. This sensor is, therefore, a 'through' power sensor, that means that the rf signal is available during the measurement of its power. The

  10. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  11. Modelling of Voids in Complex Radio Frequency Plasmas

    NARCIS (Netherlands)

    W. J. Goedheer,; Land, V.; Venema, J.

    2009-01-01

    In this paper hydrodynamic and kinetic approaches to model low pressure capacitively coupled complex radio-frequency discharges are discussed and applied to discharges under microgravity. Experiments in the PKE-Nefedov reactor on board the International Space Station, as well as discharges in which

  12. How can radio frequency identification technology impact nursing practice?

    Science.gov (United States)

    Billingsley, Luanne; Wyld, David

    2014-12-01

    Radio frequency identification (RFID) technology can save nurses time, improve quality of care, en hance patient and staff safety, and decrease costs. However, without a better understanding of these systems and their benefits to patients and hospitals, nurses may be slower to recommend, implement, or adopt RFID technology into practice.

  13. Localized radio frequency communication using asynchronous transfer mode protocol

    Science.gov (United States)

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  14. Topology optimization of radio frequency and microwave structures

    DEFF Research Database (Denmark)

    Aage, Niels

    This thesis focuses on topology optimization of conductor-based microwave and radio frequency electromagnetic devices. The research is motivated by the ever increasing usage of small hand-held, or autonomous, electric devices, which have lead to a series of new challenges for the design...

  15. Monitoring of tumor radio frequency ablation using derivative spectroscopy

    NARCIS (Netherlands)

    Spliethoff, J.W.; Tanis, E.; Evers, Daniel James; Hendriks, B.H.; Prevoo, W.; Ruers, T.J.M.

    2014-01-01

    Despite the widespread use of radio frequency (RF) ablation, an effective way to assess thermal tissue damage during and after the procedure is still lacking. We present a method for monitoring RF ablation efficacy based on thermally induced methemoglobin as a marker for full tissue ablation. Diffus

  16. Eddy current imaging with an atomic radio-frequency magnetometer

    CERN Document Server

    Wickenbrock, Arne; Blanchard, John W; Budker, Dmitry

    2016-01-01

    We use a radio-frequency $^{85}$Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  17. Use of GIS in Radio Frequency and Positioning Applications

    OpenAIRE

    Jewell, Victoria Rose

    2014-01-01

    GIS are geoprocessing programs that are commonly used to store and perform calculations on terrain data, maps, and other geospatial data. GIS offers the latest terrain and building data as well as tools to process this data. This thesis considers three applications of GIS data and software: a Large Scale Radio Frequency (RF) Model, a Medium Scale RF Model, and Indoor Positioning. The Large Scale RF Model estimates RF propagation using the latest terrain data supplied in GIS for frequencies ra...

  18. LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies

    Science.gov (United States)

    Kokotanekov, G.; Wise, M.; Heald, G. H.; McKean, J. P.; Bîrzan, L.; Rafferty, D. A.; Godfrey, L. E. H.; de Vries, M.; Intema, H. T.; Broderick, J. W.; Hardcastle, M. J.; Bonafede, A.; Clarke, A. O.; van Weeren, R. J.; Röttgering, H. J. A.; Pizzo, R.; Iacobelli, M.; Orrú, E.; Shulevski, A.; Riseley, C. J.; Breton, R. P.; Nikiel-Wroczyński, B.; Sridhar, S. S.; Stewart, A. J.; Rowlinson, A.; van der Horst, A. J.; Harwood, J. J.; Gürkan, G.; Carbone, D.; Pandey-Pommier, M.; Tasse, C.; Scaife, A. M. M.; Pratley, L.; Ferrari, C.; Croston, J. H.; Pandey, V. N.; Jurusik, W.; Mulcahy, D. D.

    2017-09-01

    We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We studied the correlation at low radio frequencies using two new surveys - the first alternative data release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's firstall-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation Pcav ∝ Lβ148, with a logarithmic slope of β = 0.51 ± 0.14, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. Previous studies have shown that the magnitude of this scatter can be reduced when bolometric radio luminosity corrected for spectral aging is used. We show that including additional measurements at 148 MHz alone is insufficient to improve this correction and further reduce the scatter in the correlation. For a subset of four well-resolved sources, we examined the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In the case of Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X

  19. Low Frequency Radio Transients in the Galactic Center

    Science.gov (United States)

    Hyman, S. D.; Bartleson, A. L.; Lazio, T. J. W.; Kassim, N. E.

    2001-12-01

    We report the detection of a new radio transient source, GCRT J1746-2757, located only 1.1 degrees north of the Galactic center. Consistent with other radio transients toward the Galactic center, this source brightened and faded on a time scale of a few months. No X-ray counterpart was detected, but upper limits suggest that GCRT J1746-2757 may have been a "fast" transient, with a time scale of days. We also report new 0.33 GHz measurements of the radio counterpart to the X-ray transient source, XTE J1748-288, previously detected and monitored at higher radio frequencies. We show that the spectrum of XTE J1748-288 steepened considerably during a period of a few months after its peak. We also discuss the need for a more efficient means of finding additional radio transients. This research is supported by funding from the Jeffress Memorial Trust, Research Corporation, and the Sweet Briar College Faculty Grants program. Basic research in radio astronomy at NRL is supported by the Office of Naval Research.

  20. An Intelligent Traffic Flow Control System Based on Radio Frequency Identification and Wireless Sensor Networks

    OpenAIRE

    Chao, Kuei-Hsiang; Chen, Pi-Yun

    2014-01-01

    This study primarily focuses on the use of radio frequency identification (RFID) as a form of traffic flow detection, which transmits collected information related to traffic flow directly to a control system through an RS232 interface. At the same time, the sensor analyzes and judges the information using an extension algorithm designed to achieve the objective of controlling the flow of traffic. In addition, the traffic flow situation is also transmitted to a remote monitoring control syste...

  1. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    Directory of Open Access Journals (Sweden)

    Liu Guoqing

    2006-01-01

    Full Text Available The quadrupole resonance (QR technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs. Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.

  2. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    is characterized by consecutive broadband pulses in the low-frequency radio range from similar to 10 to 300 kHz at a distance of similar to 800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges...... at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... ionospheric reflection of the first hop sky wave. Two consecutive pulses occur similar to 4.5 ms and similar to 3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband...

  3. Addressed qubit manipulation in radio-frequency dressed lattices

    Science.gov (United States)

    Sinuco-León, G. A.; Garraway, B. M.

    2016-03-01

    Precise control over qubits encoded as internal states of ultracold atoms in arrays of potential wells is a key element for atomtronics applications in quantum information, quantum simulation and atomic microscopy. Here we theoretically study atoms trapped in an array of radio-frequency dressed potential wells and propose a scheme for engineering fast and high-fidelity single-qubit gates with low error due to cross-talk. In this proposal, atom trapping and qubit manipulation relies exclusively on long-wave radiation making it suitable for atom-chip technology. We demonstrate that selective qubit addressing with resonant microwaves can be programmed by controlling static and radio-frequency currents in microfabricated conductors. These results should enable studies of neutral-atom quantum computing architectures, powered by low-frequency electromagnetic fields with the benefit of simple schemes for controlling individual qubits in large ensembles.

  4. Analytic Calculation of Radio Emission from Extensive Air Showers subjected to Atmospheric Electric Fields

    CERN Document Server

    Scholten, Olaf; de Vries, Krijn D; van Sloten, Lucas

    2016-01-01

    We have developed a code that semi-analytically calculates the radio footprint (intensity and polarization) of an extensive air shower subject to atmospheric electric fields. This can be used to reconstruct the height dependence of atmospheric electric field from the measured radio footprint. The various parameterizations of the spatial extent of the induced currents are based on the results of Monte-Carlo shower simulations. The calculated radio footprints agree well with microscopic CoREAS simulations.

  5. Population density effect on radio frequencies interference (RFI) in radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  6. Phase responses of harmonics reflected from radio-frequency electronics

    Science.gov (United States)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  7. The shape of the radio wavefront of extensive air showers as measured with LOFAR

    NARCIS (Netherlands)

    Corstanje, A.; et al., [Unknown; Swinbank, J.

    2015-01-01

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyper

  8. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  9. Photonics-based tunable and broadband radio frequency converter

    Science.gov (United States)

    Borges, Ramon Maia; Mazzer, Daniel; Rufino Marins, Tiago Reis; Sodré, Arismar Cerqueira

    2016-03-01

    This paper is regarding the concept and development of a photonics-based tunable and broadband radio frequency converter (PBRC). It employs an external modulation technique to generate and reconfigure its output frequency, a digital circuit to manage the modulators' bias voltages, and an optical interface for connecting it to optical-wireless networks based on radio-over-fiber technology. The proposed optoelectronic device performs photonics-based upconversion and downconversion as a function of the local oscillator frequency and modulators' bias points. Experimental results demonstrate a radiofrequency (RF) carrier conversion with spectral purity over the frequency range from 750 MHz to 6.0 GHz, as well as the integration of the photonics-based converter with an optical backhaul based on a 1.5-km single-mode fiber from a geographically distributed optical network. Low phase noise and distortion absence illustrate its applicability for convergent and reconfigurable optical wireless communications. A potential application relies on the use of PBRC in convergent optical wireless networks to dynamically provide RF carriers as a function of the telecom operator demand and radio propagation environment.

  10. Low Frequency Spectral Structure of X-shaped Radio Sources

    Science.gov (United States)

    Lal, D. V.; Rao, A. P.

    2005-12-01

    X-shaped radio galaxies are attributed to be formed by galactic mergers as the black holes of two galaxies fall into the merged system and form a bound system. Recent analysis of Giant Metrewave Radio Telescope low frequency data for an X-shaped source, 3C 223.1 has revealed an unusual result (Lal & Rao 2004). The radio morphologies of it at 240 and 610 MHz show well defined X-shape with a pair of active jets along the north-south axis and a pair of wings along the east-west axis, that pass symmetrically through the undetected radio core. The wings (or low surface brightness jets) have flatter spectral indices with respect to the high surface brightness jets, which confirms the earlier marginal result obtained at high frequency by Dennett-Thorpe et al. (2002). Although unusual, it is a valuable result which puts stringent constraints on the formation models and nature of these sources. We present preliminary results for two such sources.

  11. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  12. Final report: In situ radio frequency heating demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jarosch, T.R.; Beleski, R.J.; Faust, D.

    1994-01-05

    A field demonstration of in situ radio frequency heating was performed at the Savannah River Site (SRS) as part of the US Department of Energy-Office of Technology Development`s Integrated Demonstration. The objective of the demonstration was to investigate the effectiveness of in situ radio frequency (RF) heating as an enhancement to vacuum extraction of residual solvents (primarily trichloroethylene and perchloroethylene) held in vadose zone clay deposits. Conventional soil vacuum extraction techniques are mass transfer limited because of the low permeabilities of the clays. By selectively heating the clays to temperatures at or above 100{degrees}C, the release or transport of the solvent vapors will be enhanced as a result of several factors including an increase in the contaminant vapor pressure and diffusivity and an increase in the effective permeability of the formation with the release of water vapor.

  13. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  14. Radio Frequency (RF) Measurements for Human Detection, Tracking, and Identification

    Science.gov (United States)

    2007-10-01

    of tick bites and the potential for Lyme disease . Insect repellent will be available at the test site and we will ask volunteers to inspect...2003, 150 (4). 6. Chen, Victor C.; Ling, Hao. Time Frequency for Radar Imaging and Signal Analysis; Artech House, 2002. 7. Natecz, Marek ; Rytel... disease that is the direct result of participating in this project (under the provisions of AR 40-38 and AR 70-25). Title of Research Project: Radio

  15. Base Level Management of Radio Frequency Radiation Protection Program

    Science.gov (United States)

    1989-04-01

    with a healti h....:d. V. STANDARDS A. The Basis of Our Permissible Exposure Limits (PELs). 1. What level of RFR is safe? It’s a big question, and a lot...mobile lifting equipment, hand-held radios, climbing gear, etc. b. Check out your equipment. Is the calibration current? Does the probe frequency range...CH--Hazardous levels possible, but only in areas that require climbing . GH--Ground-level hazardous exposures possible. DL--Transmitter dummy loaded. SH

  16. Integration of Radio Frequency Identification and Wireless Sensor Networks

    OpenAIRE

    2013-01-01

    ABSTRACT: Radio frequency identification (RFID) system is used for detecting and identifying the tagged objects by electromagnetic signals. The main components of RFID are tag (transponder), reader (transceiver) and a host computer. RFID can be implemented in wide applications such as supply chain, car access, animal tracking and smart cards. Wireless sensor network (WSN), which consists of a huge numbers of nodes, can monitor the condition of the environment including pressure, humidity, and...

  17. Radio Frequency Radiation (RFR) Measurements in Operational Settings.

    Science.gov (United States)

    1984-12-01

    1NURAT0 OF -HSAG Deport No. 84-028CV111ARA USAF OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY Brooks AFB, Texas 78235 RADIO FREQUENCY RADIATION (RFR...with a 60 Watt/cm3 peak power burnout rating. First attempts to use these early instruments (Model 8300). in the investigation of an alleged...an aside, Narda also makes several other probe series for measurements to as low as 300 Kiz. All Narda probes are susceptible to burnout when exposed

  18. Large-N correlator systems for low frequency radio astronomy

    Science.gov (United States)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the

  19. Longitudinal capture in the radio-frequency-quadrupole structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described.

  20. Radio frequency heating for in-situ remediation of DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Woburn, MA (United States)

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  1. SIGNAL IDENTIFICATION AND ISOLATION UTILIZING RADIO FREQUENCY PHOTONICS

    Science.gov (United States)

    2017-09-01

    AFRL-RY-WP-TR-2017-0158 SIGNAL IDENTIFICATION AND ISOLATION UTILIZING RADIO FREQUENCY PHOTONICS Preetpaul S. Devgan RF/EO Subsystems Branch...MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this document for...ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may be obtained from the Defense

  2. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    Science.gov (United States)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  3. Radio-frequency interference mitigating hyperspectral L-band radiometer

    Science.gov (United States)

    Toose, Peter; Roy, Alexandre; Solheim, Frederick; Derksen, Chris; Watts, Tom; Royer, Alain; Walker, Anne

    2017-02-01

    Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400-1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.

  4. The radio-frequency design of an iris-type coupler for the CPHS radio-frequency quadrupole

    Institute of Scientific and Technical Information of China (English)

    XIONG Zheng-Feng; ZHENG Shu-Xin; XING Qing-Zi; GUAN Xia-Ling

    2012-01-01

    The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV,16 kW,50 mA peak current,0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications.The CPHS linac consists of a 3 MeV radio frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL).Both the RFQ and DTL share a 325 MHz,2.1 MW klystron source.A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity.Threedimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented,and the design process and results of the RLWG and iris plate are described in detail.

  5. The radio-frequency design of an iris-type coupler for the CPHS radio-frequency quadrupole

    Science.gov (United States)

    Xiong, Zheng-Feng; Zheng, Shu-Xin; Xing, Qing-Zi; Guan, Xia-Ling

    2012-01-01

    The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV, 16 kW, 50 mA peak current, 0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications. The CPHS linac consists of a 3 MeV radio-frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL). Both the RFQ and DTL share a 325 MHz, 2.1 MW klystron source. A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity. Three-dimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented, and the design process and results of the RLWG and iris plate are described in detail.

  6. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  7. Eddy current imaging with an atomic radio-frequency magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de [Johannes Gutenberg-Universität Mainz, 55128 Mainz (Germany); Leefer, Nathan; Blanchard, John W. [Helmholtz Institut Mainz, 55099 Mainz (Germany); Budker, Dmitry [Johannes Gutenberg-Universität Mainz, 55128 Mainz (Germany); Helmholtz Institut Mainz, 55099 Mainz (Germany); Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-02

    We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  8. The effect of the atmospheric refractive index on the radio signal of extensive air showers

    Science.gov (United States)

    Corstanje, A.; Bonardi, A.; Buitink, S.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, G.; Winchen, T.

    2017-03-01

    For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N =106(n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum Xmax. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred Xmax between 3.5 and 11 g/cm2, for proton showers with zenith angles ranging from 15 to 50°. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm2. These offsets were found to be proportional to the geometric distance to Xmax. We have compared the results to a simple model based on the Cherenkov angle. For the 120 - 250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in Xmax compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of Xmax measurements.

  9. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  10. Radio Frequency Energy Harvesting for Long Lifetime Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Han, Bo; Nielsen, Rasmus Hjorth; Prasad, Ramjee

    2014-01-01

    , harvesting energy from the radio frequency (RF) waves gives the lowest system design. Previous research on RF energy harvesting is based on the model that the radio energy is omnidirectional in the air. In this paper, a directional transmission/receiving model is proposed which can further overcome the path...... loss of the RF signals. On the node level, a virtual floating gate based CMOS biasing is used for the energy conversion circuit. With the proposed technique, the sensor node is able to harvest the energy from base station up to 30 meters......., in most of the cases, the sensor nodes are either powered by non-replaceable batteries, or there will be a considerable replacement cost. Thus a self-rechargeable sensor node design is necessary: the sensor node should be able to harvest energy from the environment. Among the existing techniques...

  11. Distributed multi-frequency image reconstruction for radio-interferometry

    CERN Document Server

    Deguignet, Jérémy; Mary, David; Ferrari, Chiara

    2016-01-01

    The advent of enhanced technologies in radio interferometry and the perspective of the SKA telescope bring new challenges in image reconstruction. One of these challenges is the spatio-spectral reconstruction of large (Terabytes) data cubes with high fidelity. This contribution proposes an alternative implementation of one such 3D prototype algorithm, MUFFIN (MUlti-Frequency image reconstruction For radio INterferometry), which combines spatial and spectral analysis priors. Using a recently proposed primal dual algorithm, this new version of MUFFIN allows a parallel implementation where computationally intensive steps are split by spectral channels. This parallelization allows to implement computationally demanding translation invariant wavelet transforms (IUWT), as opposed to the union of bases used previously. This alternative implementation is important as it opens the possibility of comparing these efficient dictionaries, and others, in spatio-spectral reconstruction. Numerical results show that the IUWT-...

  12. High-resolution radio study of SNR IC443 at low radio frequencies

    CERN Document Server

    Castelletti, G; Clarke, T; Kassim, N E

    2011-01-01

    We investigated in detail the morphology at low radio frequencies of the supernova remnant IC443 and accurately established its radio continuum spectral properties. We used the VLA in multiple configurations to produce high resolution radio images of IC443 at 74 and 330 MHz. The changes with position in the radio spectral index were correlated with data in near infrared from 2MASS, in gamma-rays from VERITAS, and with the molecular 12^CO line emission. The new image at 74 MHz has HPBW=35", rms=30 mJy/beam and at 330 MHz HPBW= 17" and rms=1.7 mJy/beam. The integrated flux densities for the whole SNR are S_74MHz=470+/-51 Jy and S_330MHz=248+/-15 Jy. For the pulsar wind nebula associated with the compact source CXOUJ061705.3+222127, we calculated S_330MHz=0.23+/-0.05 Jy, S_1420MHz=0.20+/-0.04 Jy, and alpha~0.0. Substantial variations are observed in spectral index between 74 and 330 MHz across IC443. The flattest spectral components (-0.25< alpha<-0.05) coincide with the brightest parts of the SNR along th...

  13. On the production mechanism of radio-pulses from large extensive air showers

    Science.gov (United States)

    Datta, P.; Pathak, K. M.

    1985-01-01

    None of the theories put forward so far to explain the radio emission from cosmic ray showers, has been successful in giving a satisfactory explanation for all the experimental data obtained from various laboratories over the globe. It is apprehended that emission mechanism at low and high frequencies may be quite different. This calls for new theoretical look into the phenomenon. Theoretical as well as the experimental results indicate that the frequency spectrum is rather flat in the frequency range (40 to 60 MHz. Above 80 MHz, the radio emission can be explained with the help of geomagnetic mechanism. But at very low frequency ( 10 MHz), mechanisms other than geomagnetic are involved.

  14. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion\\'s water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  15. Flexible Frequency Discrimination Subsystems for Reconfigurable Radio Front Ends

    Directory of Open Access Journals (Sweden)

    Carey-Smith Bruce E

    2005-01-01

    Full Text Available The required flexibility of the software-defined radio front end may currently be met with better overall performance by employing tunable narrowband circuits rather than pursuing a truly wideband approach. A key component of narrowband transceivers is appropriate filtering to reduce spurious spectral content in the transmitter and limit out-of-band interference in the receiver. In this paper, recent advances in flexible, frequency-selective, circuit components applicable to reconfigurable SDR front ends are reviewed. The paper contains discussion regarding the filtering requirements in the SDR context and the use of intelligent, adaptive control to provide environment-aware frequency discrimination. Wide tuning-range frequency-selective circuit elements are surveyed including bandpass and bandstop filters and narrowband tunable antennas. The suitability of these elements to the mobile wireless SDR environment is discussed.

  16. Flexible Frequency Discrimination Subsystems for Reconfigurable Radio Front Ends

    Directory of Open Access Journals (Sweden)

    Carey-Smith Bruce E.

    2005-01-01

    Full Text Available The required flexibility of the software-defined radio front end may currently be met with better overall performance by employing tunable narrowband circuits rather than pursuing a truly wideband approach. A key component of narrowband transceivers is appropriate filtering to reduce spurious spectral content in the transmitter and limit out-of-band interference in the receiver. In this paper, recent advances in flexible, frequency-selective, circuit components applicable to reconfigurable SDR front ends are reviewed. The paper contains discussion regarding the filtering requirements in the SDR context and the use of intelligent, adaptive control to provide environment-aware frequency discrimination. Wide tuning-range frequency-selective circuit elements are surveyed including bandpass and bandstop filters and narrowband tunable antennas. The suitability of these elements to the mobile wireless SDR environment is discussed.

  17. Multifunctional radio-frequency generator for cold atom experiments

    Science.gov (United States)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  18. Modal response of 4-rod type radio frequency quadrupole linac

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Avik; Mahapatra, Abhijit [Central Mechanical Engineering Research Institute (CMERI), M.G. Avenue, Durgapur 713209 (India); Mondal, Manas; Chakrabarti, Alok [Variable Energy Cyclotron Centre (VECC), Sector-1/AF, Bidhannagar, Kolkata 700064 (India)

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  19. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    Science.gov (United States)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  20. Time frequency analysis of Jovian and Saturnian radio spectral patterns

    Science.gov (United States)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut

    2016-04-01

    Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.

  1. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, Marinus Jan; van 't Klooster, K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The a

  2. Highly sensitive passive radio frequency identification based sensor systems.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  3. Highly sensitive passive radio frequency identification based sensor systems

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  4. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  5. Fast Adaptive Beamforming with Smart Antenna for Radio Frequency Repeater

    Directory of Open Access Journals (Sweden)

    Wang Chaoqun

    2016-01-01

    Full Text Available We present a fast adaptive beamforming null algorithm with smart antenna for Radio Frequency Repeater (RFR. The smart antenna system is realized by a Direction Of Arrival (DOA Estimator, whose output is used by an adaptive beamforming algorithm to shape a suitable radiation pattern of the equivalent antenna; so that the co-channel interference due to retransmitting antenna can be reduced. The proposed adaptive beamforming algorithm, which has been proved by formulaic analysis and simulation, has a lower computation complexity yet better performance.

  6. The polarimetric multi-frequency radio sources properties

    CERN Document Server

    Galluzzi, V

    2016-01-01

    The polarization properties of extragalactic radio sources at frequencies higher than 20 GHz are still poorly constrained. However, their characterization would provide invaluable information about the physics of the emission processes and is crucial to estimate their contamination as foregrounds of the polarized cosmic microwave background (CMB) angular power spectrum on scales 200 mJy (at 20 GHz) carried out with the Australia Telescope Compact Array between 5.5 and 38 GHz. The analysis clearly shows that polarization properties cannot be simply inferred from total intensity ones, as the spectral behaviors of the two signals are typically different.

  7. Radio Frequency Identification (RFID) in healthcare: a literature review.

    Science.gov (United States)

    Kolokathi, Aikaterini; Rallis, Panagiotis

    2013-01-01

    Creating and maintaining a safe and high-quality health care environment is of great importance for global community. New technologies and their applications can help us achieve this goal. Radio-Frequency Identification (RIFD) technology is considered one of those technologies and even today there are some interesting deployments in the health industry. As a result, this work aims to present the basic idea behind RFID solutions, problems that can be addressed with the adoption of RFID and the benefits of relative applications.

  8. RFID explained a primer on radio frequency identification technologies

    CERN Document Server

    Want, Roy

    2006-01-01

    This lecture provides an introduction to Radio Frequency Identification (RFID), a technology enabling automatic identification of objects at a distance without requiring line-of-sight. Electronic tagging can be divided into technologies that have a power source (active tags), and those that are powered by the tag interrogation signal (passive tags); the focus here is on passive tags. An overview of the principles of the technology divides passive tags into devices that use either near field or far field coupling to communicate with a tag reader. The strengths and weaknesses of the approaches a

  9. Applications of Radio Frequency Identification (RFID) in Mining Industries

    Science.gov (United States)

    Khairul Nizam Mahmad, Mohd; Z, Mohd Remy Rozainy M. A.; Baharun, Norlia

    2016-06-01

    RFID technology has recently become a dream of many companies or organizations because of its strategic potential in transforming mining operations. Now is the perfect time, for RFID technology arise as the next revolution in mining industries. This paper will review regarding the application of RFID in mining industries and access knowledge regarding RFID technology and overseen the opportunity of this technology to become an importance element in mining industries. The application of Radio-Frequency Identification (RFID) in mining industries includes to control of Personal Protective Equipment (PPE), control of personnel to access mining sites and RFID solutions for tracking explosives.

  10. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    CERN Document Server

    Deans, Cameron; Hussain, Sarah; Renzoni, Ferruccio

    2016-01-01

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  11. Implantable radio frequency identification sensors: wireless power and communication.

    Science.gov (United States)

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  12. Hollow metal target magnetron sputter type radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, N., E-mail: mwada@mail.doshisha.ac.jp; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyoto 610–0321 (Japan); Tsubouchi, N. [Kansai Institute, Advanced Industrial Science and Technology, Osaka 563–8577 (Japan)

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  13. Potentials for Radio Frequency Identification in AEC/FM

    Institute of Scientific and Technical Information of China (English)

    Karsten Menzel; CONG Zixiang; Luke Allan

    2008-01-01

    Radio frequency identification (RFID) technology has proved to be very effective in industries as di-verse as aircraft manufacturing to health and care. The construction industry has been slow to take up on RFID and this paper will discuss the merits of the technology in its potential for application within the con-struction sector. The paper reports about the prototypical implementation of RFID-based information man-agement in FM-scenarios. The prototypes were tested at University College Cork (UCC). The general appli-cability of RFID for decentralised information management could be demonstrated.

  14. INTEGRATING RADIO FREQUENCY IDENTIFICATION TECHNOLOGY IN ACADEMIC MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Zainab Rasheed Mirza

    2014-01-01

    Full Text Available The purpose of this study is building a web and windows based intelligent system using web technologies, biometric and Radio Frequency Identification technologies (RFID to strengthen an Academic Management System (AMS in a campus for monitoring and improving academic performance of teachers and students. A campus mobile phone application will allow guardians to monitor student’s movement history at campus, e-payments and food choices at canteen, class attendance, exam attendance and academic performance on daily basis. Mobile application for students will allow students to view their class schedules, teacher appointments, e-payment statement, warnings or announcements, locate their exam halls and search for classrooms.

  15. NQR Spectrometer with a Two Integrated Circuits Radio Frequency Head

    Science.gov (United States)

    Zikumaru, Yushi

    1990-04-01

    An NQR spectrometer has been constructed using two linear integrated circuits in its oscillator-detector. This is very simple and compact and works in range 3-65 MHz. The radio frequency voltage can be varied from 10 mVp-p to 15 V p-p by changing the supply-voltage of an integrated circuit μA 733. The utility of the spectrometer is demonstrated by recording 35Cl NQR spectra in p-C6H4Cl2 , NaClO3 , and KClO3 .

  16. Computer controls of the CERN PS radio-frequency system

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, G.P.; Garoby, R.

    1986-06-01

    The PS computer control project has recently been terminated with the integration of the radio-frequency system. While the general controls frame was used, special software and hardware solutions were also necessary to cope with the peculiarities of the RF system. After a brief description of both the RF process and the PS control system, this paper recalls the various operational requirements and real-time constraints and relates on the criteria and methods followed during the design phase. Some implementation is illustrated with emphasis on diagnostics and measurements.

  17. Computer controls of the CERN PS radio-frequency system

    Science.gov (United States)

    Benincasa, G. P.; Garoby, R.

    1986-06-01

    The PS computer control project has recently been terminated with the integration of the radio-frequency system. While the general controls frame was used, special software and hardware solutions were also necessary to cope with the peculiarities of the rf system. After a brief description of both the rf process and the PS control system, this paper recalls the various operational requirements and real-time constraints and relates on the criteria and methods followed during the design phase. Some implementation is illustrated with emphasis on diagnostics and measurements.

  18. Low frequency radio observations of SN 2011dh and the evolution of its post-shock plasma properties

    CERN Document Server

    Yadav, Naveen

    2016-01-01

    We present late time, low frequency observations of SN 2011dh made using the Giant Metrewave Radio Telescope (GMRT). Our observations at $325\\ \\rm MHz$, $610\\ \\rm MHz$ and $1280\\ \\rm MHz$ conducted between $93-421\\ \\rm days$ after the explosion supplement the millimeter and centimeter wave observations conducted between $4-15 \\ \\rm days$ after explosion using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and extensive radio observations ($ 1.0-36.5\\ \\rm GHz$) conducted between $16-93\\ \\rm days$ after explosion using Jansky Very Large Array (JVLA). We fit a synchrotron self absorption model (SSA) to the $610\\ \\rm MHz$ and $1280\\ \\rm MHz$ radio light curves. We use it to determine the radius ($R_{\\rm p}$) and magnetic field ($B_{\\rm p}$) at $173$ \\& $323$ days after the explosion. A comparison of the peak radio luminosity $L_{\\rm op}$, with the product of the peak frequency $\

  19. Effect of economic techniques on radio frequency utilization

    Science.gov (United States)

    Fox, Richard N.

    1991-03-01

    This thesis compares the efficacy of spectrum assignment and allocation using a market based system with the current government controlled regulatory system. In making this comparison, a brief review of the spectrum and its radio communication uses is given. An examination of the current system--historical, organizational and political--is also presented. The spectrum is then discussed as a resource in relation to its economic characteristics: supply, demand, opportunity costs, prices, externalities and property rights. Although the spectrum is a unique resource as compared to most other natural resources, this conclusion is no valid reason for not allowing the establishment of a spectrum market exists. An examination of how such a market might be established and operated, and the implications of such a market are then discussed, with an example of how this market would operate in the Land Mobile Radio Services. To better illustrate this point, a brief history of land mobile radio, its technology and applications, and current allocation and assignment mechanisms is also presented. This study concludes by discussing the importance of the frequency spectrum to economic growth, summarizes the advantages and disadvantages of both marketplace and government regulation, and proposes that a market trial be instituted to test the viability of a spectral market.

  20. Multi-frequency image reconstruction for radio interferometry. A regularized inverse problem approach

    CERN Document Server

    Ferrari, André; Ferrari, Chiara; Mary, David; Schutz, Antony; Smirnov, Oleg

    2015-01-01

    We describe a "spatio-spectral" deconvolution algorithm for wide-band imaging in radio interferometry. In contrast with the existing multi-frequency reconstruction algorithms, the proposed method does not rely on a model of the sky-brightness spectral distribution. This non-parametric approach can be of particular interest for the new generation of low frequency radiotelescopes. The proposed solution formalizes the reconstruction problem as a convex optimization problem with spatial and spectral regularizations. The efficiency of this approach has been already proven for narrow-band image reconstruction and the present contribution can be considered as its extension to the multi-frequency case. Because the number of frequency bands multiplies the size of the inverse problem, particular attention is devoted to the derivation of an iterative large scale optimization algorithm. It is shown that the main computational bottleneck of the approach, which lies in the resolution of a linear system, can be efficiently ...

  1. Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies

    CERN Document Server

    Bentum, Mark J; Spallicci, Alessandro D A M

    2016-01-01

    Our understanding of the universe relies mostly on electromagnetism. As photons are the messengers, fundamental physics is concerned in testing their properties. Photon mass upper limits have been earlier set through pulsar observations, but new investigations are offered by the excess of dispersion measure (DM) sometimes observed with pulsar and magnetar data at low frequencies, or with the fast radio bursts (FRBs), of yet unknown origin. Arguments for the excess of DM do not reach a consensus, but are not mutually exclusive. Thus, we remind that for massive electromagnetism, dispersion goes as the inverse of the frequency squared. Thereby, new avenues are offered also by the recently operating ground observatories in 10-80 MHz domain and by the proposed Orbiting Low Frequency Antennas for Radio astronomy (OLFAR). The latter acts as a large aperture dish by employing a swarm of nano-satellites observing the sky for the first time in the 0.1 - 15 MHz spectrum. The swarm must be deployed sufficiently away from...

  2. Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies

    Science.gov (United States)

    Bentum, Mark J.; Bonetti, Luca; Spallicci, Alessandro D. A. M.

    2017-01-01

    Our understanding of the universe relies mostly on electromagnetism. As photons are the messengers, fundamental physics is concerned in testing their properties. Photon mass upper limits have been earlier set through pulsar observations, but new investigations are offered by the excess of dispersion measure (DM), sometimes observed with pulsar and magnetar data at low frequencies, or with the fast radio bursts (FRBs), of yet unknown origin. Arguments for the excess of DM do not reach a consensus, but are not mutually exclusive. Thus, we remind that for massive electromagnetism, dispersion goes as the inverse of the frequency squared. Thereby, new avenues are offered also by the recently operating ground observatories in 10-80 MHz domain and by the proposed Orbiting Low Frequency Antennas for Radio astronomy (OLFAR). The latter acts as a large aperture dish by employing a swarm of nano-satellites observing the sky for the first time in the 0.1-15 MHz spectrum. The swarm must be deployed sufficiently away from the ionosphere to avoid distorsions from terrestrial interference, especially during solar maxima, and offer stable conditions for calibration during observations.

  3. Radio-frequency ion deflector for mass separation

    Energy Technology Data Exchange (ETDEWEB)

    Schlösser, Magnus, E-mail: magnus.schloesser@googlemail.com; Rudnev, Vitaly; Ureña, Ángel González, E-mail: laseres@pluri.ucm.es [Unidad de Láseres y Haces Moleculares, Instituto Plurisdisciplinar, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  4. Radio-frequency-modulated Rydberg states in a vapor cell

    CERN Document Server

    Miller, Stephanie A; Raithel, Georg

    2016-01-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  5. Spread spectrum compressed sensing MRI using chirp radio frequency pulses

    CERN Document Server

    Qu, Xiaobo; Zhuang, Xiaoxing; Yan, Zhiyu; Guo, Di; Chen, Zhong

    2013-01-01

    Compressed sensing has shown great potential in reducing data acquisition time in magnetic resonance imaging (MRI). Recently, a spread spectrum compressed sensing MRI method modulates an image with a quadratic phase. It performs better than the conventional compressed sensing MRI with variable density sampling, since the coherence between the sensing and sparsity bases are reduced. However, spread spectrum in that method is implemented via a shim coil which limits its modulation intensity and is not convenient to operate. In this letter, we propose to apply chirp (linear frequency-swept) radio frequency pulses to easily control the spread spectrum. To accelerate the image reconstruction, an alternating direction algorithm is modified by exploiting the complex orthogonality of the quadratic phase encoding. Reconstruction on the acquired data demonstrates that more image features are preserved using the proposed approach than those of conventional CS-MRI.

  6. Multiplexed infrared photodetection using resonant radio-frequency circuits

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Allen, J. W.; Allen, M. S. [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, Florida 32542 (United States); Wenner, B. R. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson Air Force Base, Ohio 45433 (United States)

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  7. Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction

    CERN Document Server

    Besson, D Z; Sullivan, M; Allison, P; Barwick, S W; Baughman, B M; Beatty, J J; Belov, K; Bevan, S; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; De Marco, D; Dowkontt, P F; DuVernois, M; Goldstein, D; Gorham, P W; Grashorn, E W; Hill, B; Hoover, S; Huang, M; Israel, M H; Javaid, A; Kowalski, J; Learned, J; Liewer, K M; Matsuno, S; Mercurio, B C; Miki, C; Mottram, M; Nam, J; Naudet, C J; Nichol, R J; Palladino, K; Romero-Wolf, A; Ruckman, L; Saltzberg, D; Seckel, D; Shang, R Y; Stockham, M; Varner, G S; Vieregg, A G; Wang, Y

    2013-01-01

    From an elevation of ~38 km, the balloon-borne ANtarctic Impulsive Transient Antenna (ANITA) is designed to detect the up-coming radio frequency (RF) signal resulting from a sub-surface neutrino-nucleon collision. Although no neutrinos have been discovered thus far, ANITA is nevertheless the only experiment to self-trigger on radio frequency emissions from cosmic-ray induced atmospheric air showers. In the majority of those cases, down-coming RF signals are observed via their reflection from the Antarctic ice sheet and back up to the ANITA interferometer. Estimating the energy scale of the incident cosmic rays therefore requires an estimate of the fractional power reflected at the air-ice interface. Similarly, inferring the energy of neutrinos interacting in-ice from observations of the upwards-directed signal refracting out to ANITA also requires consideration of signal coherence across the interface. By comparing the direct Solar RF signal intensity measured with ANITA to the surface-reflected Solar signal ...

  8. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  9. Solar Corona and plasma effects on Radio Frequency waves

    Science.gov (United States)

    Nkono, C.; Rosenblatt, P.; Dehant, V. M.

    2009-12-01

    Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.

  10. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Duran, M.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy o

  11. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Buitink, S.; Docters, W.; Dorosti Hasankiadeh, Q.; Messina, S.; Scholten, O.; van den Berg, A.M.

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy o

  12. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    Science.gov (United States)

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances.

  13. Low Frequency Radio Observations of X-ray Ghost Bubbles in Abell 2597: A History of Radio Activity in the Core

    CERN Document Server

    Clarke, T E; Blanton, E L; Neumann, D M; Kassim, N E

    2005-01-01

    A previous analysis of the Chandra X-ray image of the center of the cooling core cluster Abell 2597 showed two ``ghost holes'' in the X-ray emission to the west and northeast of the central radio galaxy PKS 2322-123. Previous radio observations did not detect any radio emission coming from the interior of the X-ray holes. We present new low frequency radio observations of Abell 2597. At 330 MHz, radio emission extends into the interior of the western ghost bubble, but not the northeast one. Our re-analysis of the archival Chandra data shows evidence for an X-ray tunnel (elongated region of reduced X-ray emission) extending from near the center of the cD out to the west ghost bubble. We also detect a smaller X-ray hole to the northeast of the center of the cD and closer than the outer ghost bubbles. Radio observations at 1.3 GHz show extensions to the west along the X-ray tunnel toward the west ghost bubble, to the northeast into the new X-ray hole, and to the northwest. All of these structures are much larger...

  14. Radio-frequency energy harvesting for wearable sensors.

    Science.gov (United States)

    Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-02-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too.

  15. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  16. High Radio Frequency Properties and Variability of Brightest Cluster Galaxies

    CERN Document Server

    Hogan, M T; Geach, J E; Grainge, K J B; Hlavacek-Larrondo, J; Hovatta, T; Karim, A; McNamara, B R; Rumsey, C; Russell, H R; Salomé, P; Aller, H D; Aller, M F; Benford, D J; Fabian, A C; Readhead, A C S; Sadler, E M; Saunders, R D E

    2015-01-01

    We consider the high radio frequency (15 GHz - 353 GHz) properties and variability of 35 Brightest Cluster Galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that >6.0% of our parent sample (>15.1% if only cool-core clusters are considered) contain a radio-source at 150 GHz of at least 3mJy (~1x10^23 W/Hz at our median redshift of z~0.13). Furthermore, >3.4% of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to >8.5% if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week-month) time-scales although we see variations greater than 20% at 150 GHz over 6-month times-frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year-decade time-scale) variability, with average annua...

  17. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  18. Novel radio-frequency ion trap with spherical geometry

    CERN Document Server

    Noshad, Houshyar

    2014-01-01

    Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The SIT simple geometry and relative ease of fabrication along with its increased trapping volume compared to the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.

  19. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  20. Radio-frequency dressed state potentials for neutral atoms

    CERN Document Server

    Hofferberth, S; Fischer, B; Verdu, J; Schmiedmayer, J

    2006-01-01

    Potentials for atoms can be created by external fields acting on properties like magnetic moment, charge, polarizability, or by oscillating fields which couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here we present an experimental investigation of the remarkable properties of potentials derived from radio-frequency (RF) coupling between electronic ground states. The coupling is magnetic and the vector character allows to design state dependent potential landscapes. On atom chips this enables robust coherent atom manipulation on much smaller spatial scales than possible with static fields alone. We find no additional heating or collisional loss up to densities approaching $10^{15}$ atoms / cm$^3$ compared to static magnetic traps. We demonstrate the creation of Bose-Einstein condensates in RF potentials and investigate the difference in the interference between two independe...

  1. High-frequency radio polarization measurements of WMAP point sources

    CERN Document Server

    Jackson, N; Battye, R A; Gabuzda, D; Taylor, A C

    2009-01-01

    We present polarization measurements at 8.4, 22, and 43 GHz made with the VLA of a complete sample of extragalactic sources stronger than 1 Jy in the 5-year WMAP catalogue and with declinations north of -34 degrees. The observations were motivated by the need to know the polarization properties of radio sources at frequencies of tens of GHz in order to subtract polarized foregrounds for future sensitive Cosmic Microwave Background (CMB) experiments. The total intensity and polarization measurements are generally consistent with comparable VLA calibration measurements for less-variable sources, and within a similar range to WMAP fluxes for unresolved sources. A further paper will present correlations between measured parameters and derive implications for CMB measurements.

  2. An evaluation of radio frequency exposure from therapeutic diathermy equipment.

    Science.gov (United States)

    Li, C Y; Feng, C K

    1999-10-01

    To assess the physiotherapist's exposure to radio frequency electromagnetic fields (RF) leaking from short wave diathermy equipment, we conducted on-site measurements of stray electric and magnetic fields (27.12 MHz) close to continuous wave (CW) short wave equipment. The results show that the operator's knees may have the highest exposure level for both electric field (E-field) and magnetic field (H-field) in the normal operating position, i.e., behind the device console. The whole-body E-field exposure normally does not exceed the 1992 IEEE recommended limit during a normal treatment session. On the other hand, the operator's whole-body exposure to H-field was barely below the recommended limit. Our data suggest little chance of immediate harmful effects of RF leakage from the diathermy. Nonetheless, physiotherapists should still be advised to remain at a distance of at least 20 cm from the electrodes and cables to avoid possible overexposure.

  3. Numerical model study of radio frequency vessel sealing thermodynamics

    Science.gov (United States)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  4. Indoor localization and beacon calibration using ultrasonic and radio frequency

    Science.gov (United States)

    Yoon, Jeong-Yong; Jung, Kyoo-Sick; Shin, Dong-Hun

    2005-12-01

    Using the ultrasonic and the radio frequency, a method for the robot localization and calibration was presented. The distance between the receiver and a beacon can be computed by using the difference between times of flight. The presented method uses the gradient of the maximum amplitude of the ultrasonic in order to measure the time of flight precisely. The measured three distances between the receiver and the beacon were used to compute the robot position by the direct inverse method and the iterated least square approximation method. This paper defines the calibration as the problem to find the location of 3 beacons and 3 robots, and presents 3 methods for it and found the 2B2R method as the best among them.

  5. Application of radio-frequency identification in perioperative care.

    Science.gov (United States)

    Ku, Hsueh-Ling; Wang, Pa-Chun; Su, Mu-Chun; Liu, Charles C H; Hwang, Wu-Yuin

    2011-08-01

    Every perioperative department could benefit from having an information system that facilitates managerial function and improves efficiency in the OR. The Patient Advancement Monitoring System-Surgical implemented in a hospital in Taipei, Taiwan, is one such a system that uses radio-frequency identification technology for tracking perioperative care of patients along workflow checkpoints. This web-based medical information system can facilitate care provided throughout perioperative services by providing instant patient information to staff members in cross-functional health care teams. Manpower is not wasted on duplicating data entry because the surgical progression is displayed in real time. Satisfaction with the system has been high for both nurses and administrators. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  6. Effective Control of Cold Collisions with Radio Frequency Fields

    CERN Document Server

    Ding, Yijue; Greene, Chris H

    2016-01-01

    We study $^{87}$Rb cold collisions in a static magnetic field and a single-color radio frequency (RF) field by employing the multi-channel quantum defect theory in combination with the Floquet method to solve the two-body time-dependent Schr\\"odinger equation. Our results show that RF fields can modify the two-body scattering length by a large scale through Feshbach resonances both in low and high static magnetic field regimes. Such RF induced Feshbach resonances can be applied to quenching experiments or controlling interactions in spinor condensates. Here, we also show that analogous to photo-association, RF fields can also associate cold atoms into molecules at a useful rate.

  7. Radio frequency heating of ceramic windows in fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.D. Jr.

    1981-11-01

    Ceramic windows will be used as material barriers for radio frequency plasma heating in fusion reactors. This report examines the theory behind rf heating phenomena. Heating calculations are presented for various window materials, thicknesses, wavelengths, and power densities. The most pertinent material properties are loss tangent, thermal conductivity, dielectric constant, strength, and radiation resistance. Calculations indicate that among candidate materials, beryllium oxide offers the most promise because of its large thermal conductivity and relatively low loss tangent and dielectric constant. On the other hand, beryllia is susceptible to neutron damage, and this may adversely affect its electrical properties. Another promising candidate is sapphire, particularly at lower temperatures where the thermal conductivity is high. Fused silica suffers from low thermal conductivity and large positive temperature coefficient for loss tangent, but it may be useful under some conditions. In summary, calculations of heating can lead to elimination of some candidate materials and selection of others for further study.

  8. CERN Open Days 2013, Point 4: LHC Radio Frequency

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: At Point 4 visitors will descend into the LHC tunnel to see the "engine" of the collider: the accelerating cavities where the circulating particles get a small kick of energy as they pass by 11,000 times each second. During your visit underground, you will see the superconducting magnets as well as instruments for observing the beams. You will also walk through the huge cavern containing the Radio Frequency power plants which provide the particle beams with energy. On surface no restricted access  Above ground, you will see the cryogenics installations which keep the accelerator at a just few degrees above absolute zero. Lots of fascinating information and exhibits about CERN's accelerators and experiments will be on display, with CERN engineers and physicists on hand all day to answer your questions.

  9. Fiducialization of Superconducting Radio Frequency Cryomodules at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    C. J. Curtis; J. Dahlberg; W. Oren; J. Preble; K. Tremblay

    2006-09-26

    During the early 1990's the Continuous Electron Beam Accelerator Facility (CEBAF), was under construction in Newport News, Virginia. The facility was to be the first of its kind in that it was to provide a continuous beam of electrons for experimental physics at energies of several GeV. One of the key elements of this unique machine was the 338 superconducting radio frequency (SRF) cavities built into 42 cryomodules and arranged in two linacs. These were linked by arcs of conventional magnets which allowed recirculation through the linacs up to five times, in order to achieve the design energy of 4GeV. Within each cryomodule the cavities were aligned and referenced to external fiducials allowing alignment on the design beampath. This paper describes the process developed to achieve this, how it evolved with improving instrumentation, and the results obtained. Suggestions for alternative methods which may prove useful for future projects are also discussed.

  10. Sgr A* at low radio frequencies: GMRT observations

    CERN Document Server

    Roy, S; Roy, Subhashis

    2004-01-01

    The central region of the Galaxy has been observed at 580, 620 and 1010 MHz with the Giant Metrewave Radio Telescope (GMRT). We detect emission from Sgr-A*, the compact object at the dynamical centre of the Galaxy, and estimate its flux density at 620 MHz to be 0.5 +/- 0.1 Jy. This is the first detection of Sgr A* below 1 GHz (Roy & Rao 2002, 2003), which along with a possible detection at 330 MHz (Nord et al. 2004) provides its spectrum below 1 GHz. Comparison of the 620 MHz map with maps made at other frequencies indicates that most parts of the Sgr A West HII region have optical depth 2. However, Sgr A*, which is seen in the same region in projection, shows a slightly inverted spectral index between 1010 MHz and 620 MHz. This is consistent with its high frequency spectral index, and indicates that Sgr A* is located in front of the Sgr A West complex, and rules out any low frequency turnover around 1 GHz, as suggested by Davies et al. (1976).

  11. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  12. Design, development, and acceleration trials of radio-frequency quadrupole

    Science.gov (United States)

    Rao, S. V. L. S.; Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-01

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (˜±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D+) beam, we tested it by accelerating both the proton (H+) and D+ beams. The RFQ was operated in pulsed mode and accelerated both H+ and D+ beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  13. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics

    NARCIS (Netherlands)

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-01-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at

  14. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  15. Low Frequency Extensions of the Saturn Kilometric Radiation as a Proxy for Magnetospheric Dynamics.

    Science.gov (United States)

    Reed, J.; Jackman, C. M.; Whiter, D. K.; Kurth, W. S.; Lamy, L.

    2016-12-01

    Saturn Kilometric Radiation (SKR) is a radio emission formed via the cyclotron maser instability on field aligned currents near the auroral regions of Saturn. The SKR has been found to respond to both internal and external driving, and to be linked to both solar wind compressions and magnetotail reconnection events. The radio emission is remotely sensed quasi-continuously and therefore offers the potential to be used as a proxy for magnetospheric activity when the spacecraft is not in an ideal viewing region for observing signatures of reconnection. In this work we use data taken by the Cassini magnetometer and radio and plasma wave sensor while Cassini was executing its deepest tail orbits in 2006. We characterise the behaviour of the SKR over this period and develop an automatic method for finding low frequency extensions (LFE), where the SKR emission extends down to lower frequencies below the main band. LFEs have been shown to occur in response to reconnection at Saturn (Jackman et al, 2009) and their appearance in Earth's analogous Auroral Kilometric Radiation (AKR) has been shown to coincide with substorm onset (e.g. Morioka et al, 2007). Using a new catalogue of LFEs we discuss their correlation with known tail reconnection events and solar wind shocks (as inferred from the use of propagated solar wind models). We also look at their properties such as length and recurrence rate, as well as their relationship to the planetary periodicities.

  16. The GMRT Radio Halo Survey and low frequency follow-up

    CERN Document Server

    Venturi, T; Cassano, R; Brunetti, G; Dallacasa, D; Macario, G; Setti, G; Bardelli, S; Athreya, R

    2009-01-01

    The GMRT Radio Halo Survey, carried out at 610 MHz to investigate the statistical properties of cluster radio halos in a complete cluster sample selected in the redshift interval z=0.2-0.4, has significantly improved our understanding of the origin of cluster radio halos and relics. Here we briefly summarize the most relevant results of our investigation. A low frequency follow-up is in progress with the GMRT at 325 MHz and 240 MHz on the diffuse sources and candidated found at 610 MHz. We briefly report some preliminary results on these low frequency observations. Cluster radio halos with different radio spectral properties have been unexpectedly found.

  17. Alternative Adaptive Filter Structures for Improved Radio Frequency Interference Cancellation in Radio Astronomy

    CERN Document Server

    Mitchell, D A; Sault, R J

    2010-01-01

    In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal paths. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise,...

  18. Low Frequency Radio-wave System for subsurface investigation

    Science.gov (United States)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the

  19. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.

    Science.gov (United States)

    Kim, Kwang-Seok; Park, Bum-Geun; Jung, Kwang-Ho; Kim, Jong-Woong; Jeong, Myung Yung; Jung, Seung-Boo

    2015-03-01

    Microwave sintering is a promising method for low-temperature processes, as it provides advantages such as uniform, fast, and volumetric heating. In this study, we investigated the electrical characteristics of inkjet-printed silver (Ag) circuits sintered by microwaves. The microstructural evolutions of inkjet-printed Ag circuits sintered at various temperatures for different durations were observed with a field emission scanning electron microscope. The electrical properties of the inkjet-printed Ag circuits were analysed by electrical resistivity measurements and radio frequency properties including scattering-parameters in the frequency range of 20 MHz to 20 GHz. The experimental results show that the signal losses of the Ag circuits sintered by microwave heating were lower than those sintered by conventional heating as microwave heating led to granular films which were nearly fully sintered without pores on the surfaces. When the inkjet-printed Ag circuits were sintered by microwaves at 300 °C for 4 min, their electrical resistivity was 5.1 µΩ cm, which is 3.2 times larger than that of bulk Ag. Furthermore, microwave sintering at 150 °C for 4 min achieved much lower signal losses (1.1 dB at 20 GHz) than conventional sintering under the same conditions.

  20. Mechanical properties of niobium radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G., E-mail: gciovati@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Dhakal, P.; Matalevich, J.; Myneni, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W. [Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany)

    2015-08-26

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.

  1. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  2. Low-frequency radio observations of SN 2011dh and the evolution of its post-shock plasma properties

    Science.gov (United States)

    Yadav, Naveen; Ray, Alak; Chakraborti, Sayan

    2016-06-01

    We present late time, low-frequency observations of SN 2011dh made using the Giant Metrewave Radio Telescope (GMRT). Our observations at 325, 610 and 1280 MHz conducted between 93 and 421 d after the explosion supplement the millimeter and centimetre wave observations conducted between 4 and 15 d after explosion using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and extensive radio observations (1.0-36.5 GHz) conducted between 16 and 93 d after explosion using Jansky Very Large Array (JVLA). We fit a synchrotron self absorption model (SSA) to the 610 and 1280 MHz radio light curves. We use it to determine the radius (Rp) and magnetic field (Bp) at 173 and 323 d after the explosion. A comparison of the peak radio luminosity Lop with the product of the peak frequency νp and time to peak tp shows that the supernova evolves between the epochs of CARMA, JVLA and GMRT observations. It shows a general slowing down of the expansion speed of the radio emitting region on a time-scale of several hundred days during which the shock is propagating through a circumstellar medium set up by a wind with a constant mass-loss parameter, dot{M}/{v}_w. We derive the mass-loss parameter (A⋆) based on 610 and 1280 MHz radio light curves, which are found to be consistent with each other within error limits.

  3. The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources

    CERN Document Server

    Mahony, E K; Prandoni, I; van Bemmel, I M; Shimwell, T W; Brienza, M; Best, P N; Brüggen, M; Rivera, G Calistro; de Gasperin, F; Hardcastle, M J; Harwood, J J; Heald, G; Jarvis, M J; Mandal, S; Miley, G K; Retana-Montenegro, E; Röttgering, H J A; Sabater, J; Tasse, C; van Velzen, S; van Weeren, R J; Williams, W L; White, G J

    2016-01-01

    The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterising the physical and evolutionary properties of the various source populations detected in deep radio fields (mainly star-forming galaxies and AGNs). In this paper we present new 150-MHz observations carried out with the LOw Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6$\\times$14.7 arcsec and reaches an rms of 160 $\\mu$Jy beam$^{-1}$ at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of $\\alpha_{150}^{1400}=-0.78\\pm0.015$. The median spectral index becomes slightly flatter (increasing from $\\alpha_{150}^{1400}=-0.84$ to $\\alpha_{150}^{1400}=-0.75$) with decreasing flux density down to $S_{150} \\sim$10 mJy b...

  4. Nanoionics-Based Switches for Radio-Frequency Applications

    Science.gov (United States)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  5. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital si...

  6. Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

    Science.gov (United States)

    Zimmerli, Greg; Mueller, Carl

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98. Together, these results suggested that a tank constructed from graphite-epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 Q 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  7. 76 FR 18652 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2011-04-05

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual...

  8. 78 FR 52097 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2013-08-22

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, NTIA is releasing a new edition of the...

  9. 75 FR 54790 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2010-09-09

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual...

  10. 75 FR 6818 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2010-02-11

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, the NTIA updates the version of the Manual...

  11. 77 FR 75567 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2012-12-21

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual...

  12. 76 FR 56984 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Science.gov (United States)

    2011-09-15

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... regulations, which relate to the public availability of the Manual of Regulations and Procedures for Federal Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual...

  13. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Science.gov (United States)

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive...

  14. 78 FR 19311 - Certain Radio Frequency Identification (“RFID”) Products And Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-29

    ... COMMISSION Certain Radio Frequency Identification (``RFID'') Products And Components Thereof; Institution of... (``RFID'') products and components thereof by reason of infringement of U.S. Patent No. 7,081,819 (``the... sale within the United States after importation of certain radio frequency identification...

  15. Coordinated observations using the world largest low-frequency radio telescopes and space misiions

    Science.gov (United States)

    Konovalenko, A. A.; Zarka, Ph.; Kolyadin, V. L.; Zakharenko, V. V.; Stepkin, S. V.; Panchenko, M.; Lecacheux, A.; Rucker, H. O.; Fischer, G.; Ulyanov, O. M.; Melnik, V. N.; Litvinenko, G. V.; Sidorchuk, M. A.; Bubnov, I. N.; Vasilyeva, Ya. Yu.; Bojko, A. I.; Shaposhnikov, V.; Mann, G.; Kalinichenko, N. N.; Falkovich, I. S.; Koval, A. A.; Mylostna, K.; Pylaev, O. S.; Shepelev, V. A.; Reznik, A. P.

    2013-09-01

    The positive possibilities of astrophysical objects studies(including the Solar system investigations) using coordinated observations with the largest existing and coming low frequency radio telescopes are shown. The observations of the Sun, Jupiter, Saturn, ant others with UTR-2, URAN, NDA radio telescopes, and WIND, Cassini and STEREO space missions at frequencies lower than 40 MHz have been carried out.

  16. Electron Temperatures in W51 Complex from High Resolution, Low Frequency Radio Observations

    Indian Academy of Sciences (India)

    P. K. Srivastava; A. Pramesh Rao

    2010-03-01

    W51 is a giant radio complex lying along the tangent to the Sagitarius arm at a distance of about 7 kpc from the Sun, with an extension of about 1° in the sky. It is divided into three components A, B, C where W51A and W51B consist of many compact HII regions while W51C is a supernova remnant. We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission spectrum and their physical properties like electron temperatures and emission measures have been estimated. The electron temperatures from continuum spectra are found to be lower than the temperatures reported from radio recombination line (RRL) studies of these HII regions indicating the need for a filling factor even at this resolution. Also, the observed brightness at 240 MHz is found to be higher than expected from the best fits suggesting the need for a multicomponent model for the region.

  17. Radio frequency radiation (RFR): the nature of exposure and carcinogenic potential.

    Science.gov (United States)

    Valberg, P A

    1997-05-01

    Epidemiologic evidence on the relation between radio-frequency radiation (RFR) and cancer is reviewed. Radio-wave communications are used extensively in modern society; thus, we are all subject to RFR created by radio, television, wireless telephony, emergency communications, radar, etc. Interest in the health effects of RFR has been motivated by the rapid growth in wireless communications and by media reports expressing concern that specific diseases may be caused by RFR exposure, e.g., from cellular telephone handsets. Due to the ubiquitous presence of RFR, the public health implication of any connection between RFR and cancer risk is potentially significant. (It is important to keep RFR distinct from power-line electromagnetic fields.) Comparison of potential risks from RFR exposure with other occupational and environmental health risks requires evaluating the level of support from available epidemiology, from studies with laboratory animals, and from mechanistic or biophysical information about the interaction of RFR with living tissues. A large number of studies have been done with laboratory animals and with in vitro systems; a more limited set of epidemiologic studies is available. Effects from RFR exposure that lead to temperature increases have been consistently reported, but 'non-thermal' effects have not been substantiated. Also, there are no mechanistic theories that support 'non-thermal' interactions with biology. Evidence to support a causal relationship between exposure to RFR and human cancers is scant. Our present state of knowledge about exposure, mechanisms, epidemiology, and animal studies does not identify significant cancer risks.

  18. The highest-frequency detection of a radio relic: 16-GHz AMI observations of the `Sausage' cluster

    CERN Document Server

    Stroe, Andra; Harwood, Jeremy J; van Weeren, Reinout; Röttgering, Huub J A; Saunders, Richard D E; Sobral, David; Perrott, Yvette C; Schammel, Michel P

    2014-01-01

    We observed the cluster CIZA J2242.8+5301 with the Arcminute Microkelvin Imager at $16$ GHz and present the first high radio-frequency detection of diffuse, non-thermal cluster emission. This cluster hosts a variety of bright, extended, steep-spectrum synchrotron-emitting radio sources, associated with the intra-cluster medium, called radio relics. Most notably, the northern, Mpc-wide, narrow relic provides strong evidence for diffusive shock acceleration in clusters. We detect a puzzling, flat-spectrum, diffuse extension of the southern relic, which is not visible in the lower radio-frequency maps. The northern radio relic is unequivocally detected and measures an integrated flux of $1.2\\pm0.3$ mJy. While the low-frequency ($<2$ GHz) spectrum of the northern relic is well represented by a power-law, it clearly steepens towards $16$ GHz. This result is inconsistent with diffusive shock acceleration predictions of ageing plasma behind a uniform shock front. The steepening could be caused by an inhomogeneous...

  19. Calibration of the absolute amplitude scale of the Tunka Radio Extension (ICRC 2015)

    CERN Document Server

    Hiller, R; Budnev, N M; Gress, O A; Haungs, A; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Schröder, F G; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    The Tunka Radio Extension (Tunka-Rex) is an array of 44 radio antenna stations, distributed over 3 km$^{2}$, constituting a radio detector for air showers with an energy threshold around 10$^{17}$ eV. It is an extension to Tunka-133, an air-Cherenkov detector in Siberia, which is used as an external trigger for Tunka-Rex and provides a reliable reconstruction of energy and shower maximum. Each antenna station consists of two perpendicularly aligned active antennas, called SALLAs. An antenna calibration of the SALLA with a commercial reference source enables us to reconstruct the detected radio signal on an absolute scale. Since the same reference source was used for the calibration of LOPES and, in a calibration campaign in 2014, also for LOFAR, these three experiments now have a consistent calibration and, therefore, absolute scale. This was a key ingredient to resolve a longer standing contradiction between measurements of two calibrated experiments. We will present how the calibration was performed and com...

  20. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  1. Radio frequency nonionizing radiation in a community exposed to radio and television broadcasting.

    Science.gov (United States)

    Burch, James B; Clark, Maggie; Yost, Michael G; Fitzpatrick, Cole T E; Bachand, Annette M; Ramaprasad, Jaya; Reif, John S

    2006-02-01

    Exposure to radio frequency (RF) nonionizing radiation from telecommunications is pervasive in modern society. Elevated disease risks have been observed in some populations exposed to radio and television transmissions, although findings are inconsistent. This study quantified RF exposures among 280 residents living near the broadcasting transmitters for Denver, Colorado. RF power densities outside and inside each residence were obtained, and a global positioning system (GPS) identified geographic coordinates and elevations. A view-shed model within a geographic information system (GIS) characterized the average distance and percentage of transmitters visible from each residence. Data were collected at the beginning and end of a 2.5-day period, and some measurements were repeated 8-29 months later. RF levels logged at 1-min intervals for 2.5 days varied considerably among some homes and were quite similar among others. The greatest differences appeared among homes within 1 km of the transmitters. Overall, there were no differences in mean residential RF levels compared over 2.5 days. However, after a 1- to 2-year follow-up, only 25% of exterior and 38% of interior RF measurements were unchanged. Increasing proximity, elevation, and line-of-sight visibility were each associated with elevated RF exposures. At average distances from > 1-3 km, exterior RF measurements were 13-30 times greater among homes that had > 50% of the transmitters visible compared with homes with < or = 50% visibility at those distances. This study demonstrated that both spatial and temporal factors contribute to residential RF exposure and that GPS/GIS technologies can improve RF exposure assessment and reduce exposure misclassification.

  2. THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna (Italy); D' Abrusco, R.; Paggi, A.; Cowperthwaite, Philip S. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy); Funk, S., E-mail: fmassaro79@gmail.com [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States)

    2014-07-01

    A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts for the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.

  3. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  4. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  5. Radio Frequency Identification (RFID) technology and patient safety.

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-09-01

    Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors.

  6. Radio-frequency plasma transducer for use in harsh environments.

    Science.gov (United States)

    May, Andrew; Andarawis, Emad

    2007-10-01

    We describe a compact transducer used to generate and modulate low-intensity radio-frequency atmospheric pressure plasma (RF-APP) for high temperature gap measurement and generation of air-coupled ultrasound. The new transducer consists of a quarter-wave transmission line where the ground return path is a coaxial solenoid winding. The RF-APP is initiated at the open end of the transmission line and stabilized by passive negative feedback between the electrical impedance of the plasma and the energy stored in the solenoid. The electrical impedance of the plasma was measured at the lower-voltage source end of the transducer, eliminating the need to measure kilovolt-level voltages near the discharge. We describe the use of a 7 MHz RF-APP prototype as a harsh-environment clearance sensor to demonstrate the suitability of plasma discharges for a common nondestructive inspection application. Clearance measurements of 0-5 mm were performed on a rotating calibration target with a measurement precision of 0.1 mm and a 20 kHz sampling rate.

  7. Fast biodiesel production from beef tallow with radio frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaoyang; Wang, Yifen [Biosystems Engineering Department, Auburn University, 200 Tom E. Corley Building, Auburn, AL 36849-5417 (United States); Oh, Jun-Hyun [Department of Plant Science and Technology, Sangmyung University (Korea, Republic of); Herring, Josh L. [Department of Food and Animal Sciences, Alabama A and M University, Normal, AL 35762 (United States)

    2011-03-15

    Efficient biodiesel production from beef tallow was achieved with radio frequency (RF) heating. A conversion rate of 96.3 {+-} 0.5% was obtained with a NaOH concentration of 0.6% (based on tallow), an RF heating for 5 min, and a methanol/tallow molar ratio of 9:1. Response surface methodology was employed to evaluate the influence of NaOH dose, RF heating time, and methanol/tallow ratio. The alkaline concentration showed the largest positive impact on the conversion rate. Similar fast conversion from canola oil to biodiesel was achieved in our previous work, indicating that RF heating, as an accelerating technique for biodiesel production, had a large applying area. Viscosities of biodiesel products from beef tallow and canola oil were measured as 5.23 {+-} 0.01 and 4.86 {+-} 0.01 mm{sup 2} s{sup -1}, respectively, both meeting the specification in ASTM D6751 (1.9-6.0 mm{sup 2} s{sup -1}). (author)

  8. Development of A Pulse Radio-Frequency Plasma Jet

    Science.gov (United States)

    Wang, Shou-Guo; Zhao, Ling-Li; Yang, Jing-Hua

    2013-09-01

    A small pulse plasma jet was driven by new developed radio-frequency (RF) power supply of 6.78 MHz. In contrast to the conventional RF 13.56 MHz atmospheric pressure plasma jet (APPJ), the power supply was highly simplified by eliminating the matching unit of the RF power supply and using a new circuit, moreover, a pulse controller was added to the circuit to produce the pulse discharge. The plasma jet was operated in a capacitively coupled manner and exhibited low power requirement of 5 W at atmospheric pressure using argon as a carrier gas. The pulse plasma plume temperature remained at less than 45 °C for an extended period of operation without using water to cool the electrodes. Optical emission spectrum measured at a wide range of 200-1000 nm indicated various excited species which were helpful in applying the plasma jet for surface sterilization to human skin or other sensitive materials. Institude of Plasma Physics, Chinese Academy of Science, Hefei, China.

  9. Radio frequency leakage current from unipolar laparoscopic electrocoagulators.

    Science.gov (United States)

    DiNovo, J A

    1983-09-01

    Radio frequency (RF) leakage current has been suspected of causing accidental tissue burns associated with laparoscopic electrocoagulation used for tubal sterilization. A study was done to determine the levels of capacitively coupled RF leakage current from six unipolar laparoscopes manufactured by five companies. Leakage current values ranging from less than 100 mA to over 550 mA were measured at electrosurgical unit power settings of up to 150 w into 1,000 ohms. These levels represent 24-62% of the total electrosurgical current generated by the electrosurgical units. Using a criterion for tissue injury of 100 mA/sq cm applied for ten seconds, leakage current levels exceeding 400 mA are capable of producing burns either at the abdominal wall or to internal organs that accidentally come into contact with the body of the laparoscope. One of the six devices tested had leakage current levels higher than 400 mA at power settings lower than 100 w. Capacitance measurements between the unipolar laparoscope body and the forceps ranged from 53 to 140 picofarads.

  10. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Leena G.; Mahapatra, Anirban S. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Joseph, K. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721301 (India); Nair, C.P. Reghunadan [Polymers and Special Chemicals Group, Vikram Sarabhai Space Centre, Trivandrum, Kerala 695022 (India)

    2015-06-15

    Highlights: • Plasma functionalization of MWCNT to obtain oxygen and nitrogen containing groups. • Functionalization and removal of amorphous carbon from MWCNT without affecting structural integrity. • Enhanced dispersion in water. • Plasma-CNT interaction mechanism. - Abstract: Surface modification of multiwall carbon nanotubes (MWCNT) was carried out by radio frequency (RF) plasma discharges of oxygen and nitrogen gases to improve their dispersibility. Various oxygen and nitrogen containing functional groups were incorporated as a result of plasma treatment and were confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of plasma treatment on structural properties and morphology changes of MWCNTs was analyzed by Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The morphological studies indicate that untreated MWCNT exists as closely packed with highly entangled bundle. During the plasma treatment, MWCNT tubes get disentangled. XRD, Raman and TEM confirmed the absence of any surface damage during plasma treatment. Functionalized carbon nanotubes exhibit high zeta potential values indicating their good dispersibility in water. The method offers a direct and dry means for functionalization of MWCNT without affecting the structure of MWCNT.

  11. Radio Frequency Microelectromechanical Systems in Defence and Aerospace

    Directory of Open Access Journals (Sweden)

    D.V.K. Sastry

    2009-11-01

    Full Text Available For all onboard systems applications, it is important to have very low-loss characteristics and low power consumption coupled with size reduction. The controls and instrumentation in defence and aerospace continually calls for newer technologies and developments. One such technology showing remarkable potential over the years is radio frequency microelectromechanical systems (RF MEMS which have already made their presence felt prominently by offering replacement in radar and communication systems with high quality factors and precise tunability. The RF MEMS components have emerged as potential candidates for defence and aerospace applications. The core theme of this paper is to drive home the fact that the limitations faced by the current RF devices can be overcome by the flexibility and better device performance characteristics of RF MEMS components, which ultimately propagate the device level benefits to the final system to attain the unprecedented levels of performance.Defence Science Journal, 2009, 59(6, pp.568-567, DOI:http://dx.doi.org/10.14429/dsj.59.1561

  12. Report on GMI Special Study #15: Radio Frequency Interference

    Science.gov (United States)

    Draper, David W.

    2015-01-01

    This report contains the results of GMI special study #15. An analysis is conducted to identify sources of radio frequency interference (RFI) to the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The RFI impacts the 10 GHz and 18 GHz channels at both polarities. The sources of RFI are identified for the following conditions: over the water (including major inland water bodies) in the earth view, and over land in the earth view, and in the cold sky view. A best effort is made to identify RFI sources in coastal regions, with noted degradation of flagging performance due to the highly variable earth scene over coastal regions. A database is developed of such sources, including latitude, longitude, country and city of earth emitters, and position in geosynchronous orbit for space emitters. A description of the recommended approach for identifying the sources and locations of RFI in the GMI channels is given in this paper. An algorithm to flag RFI contaminated pixels which can be incorporated into the GMI Level 1Base/1B algorithms is defined, which includes Matlab code to perform the necessary flagging of RFI. A Matlab version of the code is delivered with this distribution.

  13. Manufacture of Radio Frequency Micromachined Switches with Annealing

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2014-01-01

    Full Text Available The fabrication and characterization of a radio frequency (RF micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  14. Manufacture of radio frequency micromachined switches with annealing.

    Science.gov (United States)

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  15. Radio Frequency Identification (RFID technology and patient safety

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2013-01-01

    Full Text Available Background: Radio frequency identification (RFID systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS and electronic health records (EHRs and support it by clinical decision support systems (CDSS, it facilitates processes and reduce medical, medication and diagnosis errors.

  16. Radio Frequency Identification (RFID) technology and patient safety

    Science.gov (United States)

    Ajami, Sima; Rajabzadeh, Ahmad

    2013-01-01

    Background: Radio frequency identification (RFID) systems have been successfully applied in areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services to name a few. However, the different advantages and disadvantages expressed in various studies of the challenges facing the technology of the use of the RFID technology have been met with skepticism by managers of healthcare organizations. The aim of this study was to express and display the role of RFID technology in improving patient safety and increasing the impact of it in healthcare. Materials and Methods: This study was non-systematical review, which the literature search was conducted with the help of libraries, books, conference proceedings, PubMed databases and also search engines available at Google, Google scholar in which published between 2004 and 2013 during Febuary 2013. We employed the following keywords and their combinations; RFID, healthcare, patient safety, medical errors, and medication errors in the searching areas of title, keywords, abstract, and full text. Results: The preliminary search resulted in 68 articles. After a careful analysis of the content of each paper, a total of 33 papers was selected based on their relevancy. Conclusion: We should integrate RFID with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), it facilitates processes and reduce medical, medication and diagnosis errors. PMID:24381626

  17. A Graphical Approach to Radio Frequency Quadrupole Design

    CERN Document Server

    Turemen, G; Yasatekin, B

    2014-01-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ b...

  18. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-12-31

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  19. Three-dimensional effects for radio frequency antenna modeling

    Science.gov (United States)

    Carter, M. D.; Batchelor, D. B.; Stallings, D. C.

    1994-10-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  20. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37821-8071 (United States))

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  1. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2–4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  2. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  3. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  4. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  5. Split-aloha algorithm for radio frequency identification system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anti-Collision algorithm is one of the most important components of radio frequency identification (RFID) technology, which possesses a key position in the performance of the whole system. ALOHA algorithm is one of the most popular methods to solve the collision problem because of its efficiency and practicability. The grouping method has been developed for enhancing the performance of conventional ALOHA when there are thousands of tags. However, the existing grouping method has limitations in applications due to its rigorous requirements for the estimation of the number of backlog tags or the admirable characteristics of the tags' ID number. Working on the improvement of the grouping methods, we proposed an algorithm named split-ALOHA with a novel grouping method that split tags as a binary tree. The novel grouping method makes it more practicable than the existing grouping methods due to the simplified requirements for tags. Simulations of the proposed algorithm show the superior performance of a linearly increasing of the number of consumed time slots while the number of tags increases. The algorithm performance analysis between split-ALOHA and ALOHA algorithms with other grouping methods has been implemented in a proper way.

  6. Evaluating the Readability of Radio Frequency Identification for Construction Materials

    Directory of Open Access Journals (Sweden)

    Younghan Jung

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID, which was originally introduced to improve material handling and speed production as part of supply chain management, has become a globally accepted technology that is now applied on many construction sites to facilitate real-time information visibility and traceability. This paper describes a senior undergraduate project for a Construction Management (CM program that was specifically designed to give the students a greater insight into technical research in the CM area. The students were asked to determine whether it would be possible to utilize an RFID system capable of tracking tagged equipment, personnel and materials across an entire construction site. This project required them to set up an experimental program, execute a series of experiments, analyze the results and summarize them in a report. The readability test was performed using an active Ultra-High frequency (UHF, 433.92 MHz RFID system with various construction materials, including metal, concrete, wood, plastic, and aluminum. The readability distance distances are measured for each of the six scenarios. The distance at which a tag was readable with no obstructions was found to be an average of 133.9m based on three measurements, with a standard deviation of 3.9m. This result confirms the manufacturer’s claimed distance of 137.2m. The RFID tag embedded under 50.8mm of concrete was readable for an average distance of only 12.2m, the shortest readable distance of any of the scenarios tested. At the end of the semester, faculty advisors held an open discussion session to gather feedback and elicit the students’ reflections on their research experiences, revealing that the students’ overall impressions of their undergraduate research had positively affected their postgraduate education plans.

  7. Spatial Identification of Passive Radio Frequency Identification Tags Using Software Defined Radios

    Science.gov (United States)

    2012-03-01

    of 56 MBytes per second [20]. All communications between the main board and GNU Radio on the host PC take place through this controller. More recent...Digital AGC and Data signal from the main board are both determined by the Python code generated by GNU Radio on the host PC. This local oscillator signal...running Ubuntu 10.10 and GNU Radio , a USRP1 SDR with a Flex 900 daughter card and two Alien 9611-CR antennas. The GNU Radio installation has been

  8. Potential radio frequency interference with the GPS L5 band for radio occultation measurements

    Directory of Open Access Journals (Sweden)

    A. M. Wolff

    2014-05-01

    Full Text Available New Radio Occultation (RO receivers are planned to utilize the newly implemented Global Positioning System (GPS L5 signal centered at 1176.45 MHz. Since there are currently no operational GPS L5 receivers used for space-based RO applications, the interference environment is unclear. Distance Measuring Equipment (DME and Tactical Air Navigation (TACAN stations share the same frequency band as the GPS L5 signal. DME/TACAN signals have been identified to be a means of interference for any GPS L5 receiver. This study focuses on implementing a Systems Tools Kit (STK simulation to gain insight into the power received by a RO satellite in Low Earth Orbit (LEO from a DME/TACAN transmission. In order to confirm the validity of utilizing STK for communication purposes, a theoretical scenario was recreated as a simulation and the results were confirmed. Once the method was validated, STK was used to output a received power level aboard a RO satellite from a DME/TACAN station as well as a tool to predict the number of interfering DME/TACAN stations at any point in time. Taking a conservative approach, the signal power received was much greater than the typical power level received by a RO satellite from a GPS satellite transmission. This relatively high received power along with a high number of interfering DME/TACAN stations as an RO satellite passes over North America or Western Europe indicate that DME/TACAN interference may conflict with RO receivers.

  9. Variable low-frequency radio emission of the solar system and galactic objects

    Science.gov (United States)

    Konovalenko, Alexander; Kolyadin, Vladimir; Rucker, Helmut; Zakharenko, Vyacheslav; Zarka, Philippe; Griessmeier, Jean-M.; Denis, Loran; Melnik, Valentin; Litvinenko, Galina; Zaitsev, Valerij; Falkovich, Igor; Ulyanov, Oleg; Sidorchuk, Mikhail; Stepkin, Sergej; Stanislavskij, Alexander; Kalinichenko, Nikolaj; Boiko, Nastja; Vasiljiva, Iaroslavna; Mukha, Dmytro; Koval, Artem

    2013-04-01

    There are many physical processes and propagation effects for the producing the time variable radio emission just at the low frequencies (at the decameter wavelength). The study of this radio emission is the important part of the modern radio astronomy. Strong progress in the development of the radio telescopes, methods and instrumentation allowed to start the corresponding investigations at new quality and quantity levels. It related to the implementation of the world largest UTR-2 radio telescope (effective area is more than 100 000 sq.m) more high sensitive at frequencies less than 30 MHz. During last years many new observations were carried out with this radio telescope and many new effects have been detected for the Sun, planets, interplanetary medium, exoplanets as well as various kinds of the stars.

  10. Epidemiological studies of radio-frequency radiation: Current status and areas of concern

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John R. [Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva (Israel)

    1996-02-11

    These comments deal with the possible impact on human populations of intense sources of radio-frequency radiation, and not the much lower level of the usual sources of such radiation associated, for example with household appliances. These intense sources were developed and extensively used first in World War II (1940-45). Much of the health evaluation has been done by, and for, military organizations. There are important differences in the energy generated by low frequency (ELF) and radar; it then follows that there may be differences in their effects on human populations. Problems common to both types are: (1) the uncertainty as to biological mechanisms; (2) weak experimental evidence of effect; (3) epidemiological preoccupation with carcinogenesis, with its latency and low incidence. For both types there is the presumption of greater occupational than community risk, the latter often not well studied, and problems as to exposure quantification and specificity. To these one must add (4) the inherently epidemiological problems of a study at a given source of adequate sample size, case-findings, exposure estimation, confounders, and residential and job instability. Despite these problems, there are findings from sets of studies which suggest four possible health effects from radar (radio-frequency radiation) exposure: (A) disturbances in blood counts, not necessarily of clinical severity; (B) changes in chromosomes of white blood cells; (C) increases in frequency of unfavorable reproductive outcomes, especially spontaneous abortion, and (D) increases in cancers of certain sites. A review article on this topic was published elsewhere, providing evidence from various exposures on such possible effects. A brief critique is provided of evidence on these four possible effects, identifying some areas of uncertainty for which studies at sites like Skrunda could provide useful information

  11. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    Science.gov (United States)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  12. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-09-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. Comparisons with experiments indicate that these 2-D calculations can overestimate the loading of the antenna and fail to give the correct reactive behavior. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap, conducting sidewalls, and finite phase velocity are considered. The plasma impedance matrix for the loading calculation is generated by use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D limit. For finite-length antennas, inductance calculations are found to be in much more reasonable agreement with experiments for 3-D modeling than for the 2-D estimates. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna sidewalls rather than in the plasma as in the 2-D model. Thus, the feeders have much more influence than the plasma on the currents that return in the sidewall. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model.

  13. Collisionless expansion of pulsed radio frequency plasmas. I. Front formation

    Science.gov (United States)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The dynamics during plasma expansion are studied with the use of a versatile particle-in-cell simulation with a variable neutral gas density profile. The simulation is tailored to a radio frequency plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47(5), 055207 (2014)]. The experiment has shown the existence of a propagating ion front. The ion front features a strong electric field and features a sharp plasma potential drop similar to a double layer. However, the presented results of a first principle simulation show that, in general, the ion front does not have to be entangled with an electric field. The propagating electric field reflects the downstream ions, which stream with velocities up to twice as high as that of the ion front propagation. The observed ion density peak forms due to the accumulation of the reflected ions. The simulation shows that the ion front formation strongly depends on the initial ion density profile and is subject to a wave-breaking phenomenon. Virtual diagnostics in the code allow for a direct comparison with experimental results. Using this technique, the plateau forming in the wake of the plasma front could be indirectly verified in the expansion experiment. Although the simulation considers profiles only in one spatial dimensional, its results are qualitatively in a very good agreement with the laboratory experiment. It can successfully reproduce findings obtained by independent numerical models and simulations. This indicates that the effects of magnetic field structures and tangential inhomogeneities are not essential for the general expansion dynamic. The presented simulation will be used for a detailed parameter study dealt with in Paper II [Schröder et al., Phys. Plasma 23, 013512 (2016)] of this series.

  14. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  15. Scattering of radio frequency waves by turbulence in fusion plasmas

    Science.gov (United States)

    Ram, Abhay K.

    2016-10-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back

  16. Radiation effects on communication performance of radio frequency identification tags.

    Science.gov (United States)

    Mori, Kazuyuki; Meng, Zhaowu; Kikuchi, Hirosumi; Kataoka, Yasuhide; Nakazato, Kazuhisa; Deji, Shizuhiko; Ito, Shigeki; Saze, Takuya; Hirota, Masahiro; Nishizawa, Kunihide

    2010-11-01

    Radioactive materials (sources) are managed by bookkeeping and stocktaking. The radiation protection section staffs should check the sources manually. Annual effective dose concerning stocktaking of them are estimated at some mSv concerning fingers. A radio frequency identification (RFID) tag's absorbed dose is estimated at some dozen Gy. RFID for stocktaking automatically was devised. Radiation effects on the communication performance of RFID tags were investigated by using response times and read ranges as indices. The RFID system was composed of a computer, a detector, and transponders (tag) consisting of an integrated circuit chip and an antenna. The tag is joined to the source for identification. The tags were irradiated at doses between 5 and 5,000 Gy by an x-ray irradiator. The response times and the read ranges were tracked from 40 to 23,200 min after irradiation. Relative read ranges fluctuated between 0.9 and 1.1 in the dose region less than 2,000 Gy, but fluctuated greatly in the dose region beyond 2,000 Gy. Malfunctioning tags appeared from 3,000 Gy, and all tags malfunctioned in the dose region over 4,500 Gy. The threshold dose leading to malfunction was determined to be 2,100 Gy. Time variation of relative read ranges was classified into four patterns. The pattern shifted from pattern 1 to 4 when the dose was increased. The relative read ranges lengthened in pattern 1. The relative read rages were approximately 1.0 in pattern 2. The read ranges tentatively shortened, then recovered in pattern 3. The tags malfunctioned in pattern 4. Once the tags malfunctioned, they never recovered their performance. Radiation enhances or deteriorates communication performance depending on dosage. Tags can spontaneously recover from radiation deterioration. The time variation of the read ranges can be illustrated by enhancement, deterioration, and recovery. The mechanism of four patterns is explained based on the variation of the frequency harmonization strength and

  17. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    CERN Document Server

    Avva, J; Miki, C; Saltzberg, D; Vieregg, A G

    2014-01-01

    We report an in situ measurement of the electric field attenuation length at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be 947 +92/-85 meters at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for the detection of ultra-high energy (UHE) astrophysical particles via their radio emission in dielectric media such as ice. The measured attenuation length at Summit Station is comparable to previously measured radio-frequency attenuation lengths at candidate particle detector sites around the world, and strengthens the case for Summit Station as the most promising northern site for UHE neutrino detection.

  18. Low Frequency Radio Emission from the 'Quiet' Sun

    Indian Academy of Sciences (India)

    R. Ramesh

    2000-09-01

    We present observations of the 'quiet' Sun close to the recent solar minimum (Cycle 22), with the Gauribidanur radioheliograph. Our main conclusion is that coronal streamers also influence the observed radio brightness temperature.

  19. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Anjos, R C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Eser, J; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; García-Gámez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hervé, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A W Kuotb; LaHurd, D; Lang, A; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pękala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J

    2015-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the posit...

  20. Performance of transmit-reference radio system in frequency-selective fading channels

    NARCIS (Netherlands)

    Wang, Jing; Haartsen, J.C.

    2005-01-01

    Noise-based Transmit-Reference (TR) radio system is a simple and practical candidate for ultra-wideband (UWB) communication applications. This paper evaluates the performance of the Transmit-Reference radio system in a frequency-selective fading channel by theoretical analysis and computer

  1. 47 CFR 15.204 - External radio frequency power amplifiers and antenna modifications.

    Science.gov (United States)

    2010-10-01

    ... person shall use, manufacture, sell or lease, offer for sale or lease (including advertising for sale or lease), or import, ship, or distribute for the purpose of selling or leasing, any external radio... separate product. (1) An external radio frequency power amplifier may be marketed for individual...

  2. Calculus, Radio Dials and the Straight-Line Frequency Variable Capacitor

    Science.gov (United States)

    Boyadzhiev, Khristo N.

    2010-01-01

    Most often radio dials of analogue radios are not uniformly graded; the frequencies are cramped on the left side or on the right side. This makes tuning more difficult. Why are dials made this way? We shall see here that simple calculus can help understand this problem and solve it. (Contains 7 figures.)

  3. EPICS based low-level radio frequency control system in LIPAc

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Julio, E-mail: julio.calvo@ciemat.es [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain); Rivers, Mark L. [Department of Geophysical Sciences and Center for Advanced Radiation Sources, The University of Chicago (United States); Patricio, Miguel A. [Departamento de Informatica, Universidad Carlos III de Madrid (Spain); Ibarra, Angel [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The system proposed can control amplitude and phase of each cavity. Black-Right-Pointing-Pointer Rapid diagnostics are refreshed in milliseconds. Black-Right-Pointing-Pointer Increasing control parameters will not increase consumed time neither complexity. Black-Right-Pointing-Pointer IQ demodulation can be achieved thanks to the transformed values at driver level. - Abstract: The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be a 9 MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor (DEMO). The radio frequency (RF) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI) field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC. For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

  4. FR II radio galaxies at low frequencies - II. Spectral ageing and source dynamics

    Science.gov (United States)

    Harwood, Jeremy J.; Hardcastle, Martin J.; Morganti, Raffaella; Croston, Judith H.; Brüggen, Marcus; Brunetti, Gianfranco; Röttgering, Huub J. A.; Shulevski, Aleksander; White, Glenn J.

    2017-07-01

    In this paper, the second in a series investigating Fanaroff-Riley type II (FR II) radio galaxies at low frequencies, we use LOw Frequency ARray (LOFAR) and Very Large Array (VLA) observations between 117 and 456 MHz, in addition to archival data, to determine the dynamics and energetics of two radio galaxies, 3C 452 and 3C 223, by fitting spectral ageing models on small spatial scales. We provide improved measurements for the physical extent of the two sources, including a previously unknown low surface brightness extension to the northern lobe of 3C 223, and revised energetics based on these values. We find spectral ages of 77.05^{+9.22}_{-8.74} and 84.96^{+15.02}_{-13.83} Myr for 3C 452 and 3C 223, respectively, suggesting a characteristic advance speed for the lobes of around 1 per cent of the speed of light. For 3C 452, we show that, even for a magnetic field strength not assumed to be in equipartition, a disparity of a factor of approximately 2 exists between the spectral age and that determined from a dynamical standpoint. We confirm that the injection index of both sources (as derived from the lobe emission) remains steeper than classically assumed values, even when considered on well-resolved scales at low frequencies. However, we find an unexpected sharp discontinuity between the spectrum of the hotspots and the surrounding lobe emission. We suggest that this discrepancy is a result of the absorption of hotspot emission and/or non-homogeneous and additional acceleration mechanisms; as such, hotspots should not be used in the determination of the underlying initial electron energy distribution.

  5. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Koliadin, V.; Kalinichenko, N.; Stanislavsky, A.; Dorovskyy, V.; Shepelev, V.; Bubnov, I.; Yerin, S.; Melnik, V.; Koval, A.; Shevchuk, N.; Vasylieva, I.; Mylostna, K.; Shevtsova, A.; Skoryk, A.; Kravtsov, I.; Volvach, Y.; Plakhov, M.; Vasilenko, N.; Vasylkivskyi, Y.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Ryabov, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshyn, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.

    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here, we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.

  6. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never

  7. 78 FR 43916 - Certain Radio Frequency Identification (RFID) Products and Components Thereof; Commission...

    Science.gov (United States)

    2013-07-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Radio Frequency Identification (RFID) Products and Components Thereof; Commission... that termination of this investigation did not impose any undue burdens on the public health...

  8. Computer-aided design of digital radio devices with frequency representation of information

    OpenAIRE

    Kychak, Vasyl; Kychak, Volodymyr

    2012-01-01

    This paper presents a system of automated design of digital radio devices with frequency representation of information, which can significantly simplify the design process of digital devices with large number of input signals.

  9. A C-Band Radio Frequency Interference (RFI) Detection and Mitigation Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radio Frequency Interference (RFI) can render microwave radiometer measurements useless. We propose a method and an architecture that can be used to identify sources...

  10. An L-Band Radio Frequency Interference (RFI) Detection and Mitigation Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radio Frequency Interference (RFI) can render microwave radiometer measurements useless. We have proposed a method and an architecture that can be used to identify...

  11. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  12. Low frequency solar radio astronomy at the Indian Institute of Astrophysics (IIA)

    Science.gov (United States)

    Ramesh, R.

    IIA is presently involved in the expansion of its existing radioheliograph operating in the frequency 120-40 MHz at the Gauribidanur radio observatory located about 80 km north of Bangalore. Once completed, the expanded array will have an angular resolution of ≈ 1' at a typical frequency of 100 MHz. This paper describes the development of solar radio astronomy activities at IIA since 1952 when the first observations were carried out.

  13. Ultra-Wideband Harmonic Radar for Locating Radio-Frequency Electronics

    Science.gov (United States)

    2015-03-01

    Ultra-Wideband Harmonic Radar for Locating Radio- Frequency Electronics by Gregory J Mazzaro, Kyle A Gallagher, Albert R Owens, Kelly D...Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...Research Laboratory Adelphi, MD 20783-1138 ARL-TR-7256 March 2015 Ultra-Wideband Harmonic Radar for Locating Radio- Frequency Electronics

  14. Radio-Frequency Field-Induced Quantum Interference Effects in Cold Atoms

    Institute of Scientific and Technical Information of China (English)

    龙全; 周蜀渝; 周善钰; 王育竹

    2001-01-01

    We propose constructing a quantum interference configuration for cold atoms in a magneto-optical trap by applying a radio frequency field, which coherently couples adjacent Zeeman sublevels, in combination with a repumping laser field. One effect of this interference is that a dip exists in the absorption of the repumping light when the radio frequency is scanned. Our prediction has been indirectly detected through the fluorescence of cold atoms in a preliminary experiment.

  15. Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-Yin; QU Qiu-Zhi; ZHOU Zi-Chao; LI Xiao-Lin; WANG Yu-Zhu; LIU Liang

    2007-01-01

    We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.

  16. Radio signals from extensive air showers with the energies E 0 ≥ 1019 eV according to data from the Yakutsk extensive air shower array

    Science.gov (United States)

    Knurenko, S. P.; Petrov, I. S.

    2016-09-01

    A radio instrument and results obtained from the measurements of the 32-MHz radio signal from particles of extensive air showers (EASs) with energies E 0 ≥ 1×1019 eV are reported in brief. The data were obtained at the Yakutsk EAS array in 1987-1989 (the first series of measurements) and in 2009-2014 (new series of measurements). The radio signal from EASs with energies above 1020eV was detected at the Yakutsk EAS array for the first time, including the shower with the record energy of 2×1020 eV for the Yakutsk EAS array.

  17. Towards a cosmic-ray mass-composition study at Tunka Radio Extension

    Science.gov (United States)

    Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2017-03-01

    The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.

  18. Minimal prospects for radio detection of extensive air showers in the atmosphere of Jupiter

    CERN Document Server

    Bray, J D

    2016-01-01

    One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (~3*10^7 km^2), but the acceptance angle is so small that the typical geometric aperture (~10^3 km^2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (~10^23 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-...

  19. Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory

    CERN Document Server

    Schröder, F G; Budnev, N M; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Mirgazov, R R; Pankov, L; Prosin, V V; Rubtsov, G I; Savinov, V; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio signal of air-showers in coincidence with the non-imaging air-Cherenkov array Tunka-133. Furthermore, this year additional antennas will go into operation triggered by the new scintillator array Tunka-Grande measuring the secondary electrons and muons of air showers. Tunka-Rex is a demonstrator for how economic an antenna array can be without losing significant performance: we have decided for simple and robust SALLA antennas, and we share the existing DAQ running in slave mode with the PMT detectors and the scintillators, respectively. This means that Tunka-Rex is triggered externally, and does not need its own infrastructure and DAQ for hybrid measurements. By this, the performance and the added value of the supplementary radio measurements can be studied, in particular, the precision for the reconstructed energy and the shower maximum in the energy range of a...

  20. Minimal Prospects for Radio Detection of Extensive Air Showers in the Atmosphere of Jupiter

    Science.gov (United States)

    Bray, J. D.; Nelles, A.

    2016-07-01

    One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (˜3 × 107 km2), but the acceptance angle is so small that the typical geometric aperture (˜103 km2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (˜1023 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-term prospect that will require a different technique, such as orbital fluorescence detection.

  1. Towards a cosmic-ray mass-composition study at Tunka Radio Extension (ARENA 2016)

    CERN Document Server

    Kostunin, D; Budnev, N M; Fedorov, O; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Korosteleva, E E; Krömer, O; Kungel, V; Kuzmichev, L A; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Osipova, E A; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Schröder, F G; Wischnewski, R; Zagorodnikov, A

    2016-01-01

    The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, which statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we...

  2. Radio frequency identification-enabled capabilities in a healthcare context: An exploratory study.

    Science.gov (United States)

    Hornyak, Rob; Lewis, Mark; Sankaranarayan, Balaji

    2016-09-01

    Increasingly, the adoption and use of radio frequency identification systems in hospital settings is gaining prominence. However, despite the transformative impact that radio frequency identification has in healthcare settings, few studies have examined how and why this change may occur. The purpose of this study is to systematically understand how radio frequency identification can transform work practices in an operational process that directly impacts cost and operational efficiency and indirectly contributes to impacting patient safety and quality of care. We leverage an interdisciplinary framework to explore the contextual characteristics that shape the assimilation of radio frequency identification in healthcare settings. By linking the use of radio frequency identification with specific contextual dimensions in healthcare settings, we provide a data-driven account of how and why radio frequency identification can be useful in inventory management in this setting. In doing so, we also contribute to recent work by information systems scholars who argue for a reconfiguration of conventional assumptions regarding the role of technology in contemporary organizations.

  3. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    Science.gov (United States)

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  4. The shape of the radio wavefront of extensive air showers as measured with LOFAR

    CERN Document Server

    Corstanje, A; Nelles, A; Buitink, S; Enriquez, J E; Falcke, H; Frieswijk, W; Hörandel, J R; Krause, M; Rachen, J P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, G; Akker, M van den; Alexov, A; Anderson, J; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J; Butcher, H R; Ciardi, B; de Gasperin, F; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Engels, D; Fallows, R A; Ferrari, C; Garrett, M A; Griessmeier, J; Gunst, A W; Hamaker, J P; Hoeft, M; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kohler, J; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; McFadden, R; McKay-Bukowski, D; Mevius, M; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D; Smirnov, O; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, C; Vermeulen, R; Vocks, C; van Weeren, R J; Wijnholds, S J; Wucknitz, O; Yatawatta, S; Zarka, P

    2014-01-01

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth's atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical or conical shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond accuracy in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be s...

  5. Lateral Distribution of the Radio Signal in Extensive Air Showers Measured with LOPES

    CERN Document Server

    Apel, W D; Asch, T; Badea, A F; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Bluemer, J; Bozdog, H; Brancus, I M; Brueggemann, M; Buchholz, P; Buitink, S; Cantoni, E; Chiavassa, A; Cossavella, F; Daumiller, K; De Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Finger, M; Fuhrmann, D; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Isar, P G; Kampert, K H; Kang, D; Kickelbick, D; Krömer, O; Kuijpers, J; Lafebre, S; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Oehlschläger, J; Over, S; Palmieri, N; Petcu, M; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Saftoiu, A; Schieler, H; Schmidt, A; Schroeder, F; Sima, O; Singh, K; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J; Zensus, J A

    2009-01-01

    The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from Extensive Air Showers. The coincident measurements allow us to reconstruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0 describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic pr...

  6. Radio Gaga? Intra-team communication of Australian Rules Football umpires - effect of radio communication on content, structure and frequency.

    Science.gov (United States)

    Neville, Timothy J; Salmon, Paul M; Read, Gemma J M

    2017-07-31

    Intra-team communication plays an important role in team effectiveness in various domains including sport. As such, it is a key consideration when introducing new tools within systems that utilise teams. The difference in intra-team communication of Australian Rules Football (AFL) umpiring teams was studied when umpiring with or without radio communications technology. A cross-sectional observational study was conducted to analyse the verbal communication of seven umpiring teams (20 participants) grouped according to their experience with radio communication. The results identified that radio communication technology increased the frequency and altered the structure of intra-team communication. Examination of the content of the intra-team communication identified impacts on the 'Big Five' teamwork behaviours and associated coordinating mechanisms. Analysis revealed that the communications utilised did not align with the closed-loop form of communication described in the Big Five model. Implications for teamwork models, coaching and training of AFL umpires are discussed. Practitioner Summary: Assessing the impact of technology on performance is of interest to ergonomics practitioners. The impact of radio communications on teamwork is explored in the highly dynamic domain of AFL umpiring. When given radio technology, intra-team communication increased which supported teamwork behaviours, such as backup behaviour and mutual performance monitoring.

  7. Radio Frequency Radiation of Millimeter Wave Length: An Evaluation of Potential Occupational Safety Issues Relating to Surface Heating

    Science.gov (United States)

    2016-06-14

    Radio frequency radiation of millimeter wave length: An evaluation of potential occupational safety issues. 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Paper------------------------------- RADIO FREQUENCY RADIATION OF MILLIMETER WAVE LENGTH: POTENTIAL OCCUPATIONAL...cancer. Health Phys. 78(2):170-181; 2000 Key words: cancer; radiation , nonionizing; occupational safety; radiofrequency INTRODUCTION THE RADIO

  8. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    CERN Document Server

    Giroletti, M; D'Abrusco, R; Lico, R; Burlon, D; Hurley-Walker, N; Johnston-Hollitt, M; Morgan, J; Pavlidou, V; Bell, M; Bernardi, G; Bhat, R; Bowman, J D; Briggs, F; Cappallo, R J; Corey, B E; Deshpande, A A; Ewall-Rice, A; Emrich, D; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hindson, L; Kaplan, D L; Kasper, J C; Kratzenberg, E; Feng, L; Jacobs, D; Kurdryavtseva, N; Lenc, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Offringa, A R; Ord, S M; Pindor, B; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by \\fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray bl...

  9. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  10. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  11. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements were

  12. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  13. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  14. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    CERN Document Server

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anastasi, Gioacchino Alex; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Blazek, Jiri; Bleve, Carla; Blümer, Hans; Boháčová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bretz, Thomas; Bridgeman, Ariel; Brogueira, Pedro; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Anjos, Rita dos; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filipčič, Andrej; Fratu, Octavian; Freire, Martín Miguel; Fujii, Toshihiro; García, Beatriz; Garcia-Gamez, Diego; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; Głas, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Keilhauer, Bianca; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Kuempel, Daniel; Mezek, Gasper Kukec; Kunka, Norbert; Awad, Alaa Metwaly Kuotb; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lucero, Agustin; Malacari, Max; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mariş, Ioana; Marsella, Giovanni; Martello, Daniele; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano; Micheletti, Maria Isabel; Middendorf, Lukas; Minaya, Ignacio A; Miramonti, Lino; Mitrica, Bogdan; Molina-Bueno, Laura; Mollerach, Silvia; Montanet, François; Morello, Carlo; Mostafá, Miguel; Moura, Celio A; Muller, Marcio Aparecido; Müller, Gero; Müller, Sarah; Navas, Sergio; Necesal, Petr; Nellen, Lukas; Nelles, Anna; Neuser, Jens; Nguyen, Phong H; Niculescu-Oglinzanu, Mihai; Niechciol, Marcus; Niemietz, Lukas; Niggemann, Tim; Nitz, Dave; Nosek, Dalibor; Novotny, Vladimir; Nožka, Lyberis; Núñez, Luis; Ochilo, Livingstone; Oikonomou, Foteini; Olinto, Angela; Pacheco, Noelia; Selmi-Dei, Daniel Pakk; Palatka, Miroslav; Pallotta, Juan; Papenbreer, Philipp; Parente, Gonzalo; Parra, Alejandra; Paul, Thomas; Pech, Miroslav; Pękala, Jan; Pelayo, Rodrigo; Pepe, Iuri; Perrone, Lorenzo; Petermann, Emily; Peters, Christine; Petrera, Sergio; Petrov, Yevgeniy; Phuntsok, Jamyang; Piegaia, Ricardo; Pierog, Tanguy; Pieroni, Pablo; Pimenta, Mário; Pirronello, Valerio; Platino, Manuel; Plum, Matthias; Porcelli, Alessio; Porowski, Czeslaw; Prado, Raul Ribeiro; Privitera, Paolo; Prouza, Michael; Quel, Eduardo J; Querchfeld, Sven; Quinn, Sean; Rautenberg, Julian; Ravel, Olivier; Ravignani, Diego; Reinert, Darius; Revenu, Benoît; Ridky, Jan; Risse, Markus; Ristori, Pablo; Rizi, Vincenzo; de Carvalho, Washington Rodrigues; Rojo, Jorge Rubén Rodriguez; Rodríguez-Frías, Maria Dolores; Rogozin, Dmytro; Rosado, Jaime; Roth, Markus; Roulet, Esteban; Rovero, Adrian; Saffi, Steven J; Saftoiu, Alexandra; Salazar, Humberto; Saleh, Ahmed; Greus, Francisco Salesa; Salina, Gaetano; Gomez, Jose Sanabria; Sánchez, Federico; Sanchez-Lucas, Patricia; Santos, Edivaldo Moura; Santos, Eva; Sarazin, Fred; Sarkar, Biswaijt; Sarmento, Raul; Sarmiento-Cano, Christian; Sato, Ricardo; Scarso, Carlos; Schauer, Markus; Scherini, Viviana; Schieler, Harald; Schmidt, David; Scholten, Olaf; Schoorlemmer, Harm; Schovánek, Petr; Schröder, Frank G; Schulz, Alexander; Schulz, Johannes; Schumacher, Johannes; Sciutto, Sergio; Segreto, Alberto; Settimo, Mariangela; Shadkam, Amir; Shellard, Ronald C; Sigl, Guenter; Sima, Octavian; Śmiałkowski, Andrzej; Šmída, Radomir; Snow, Gregory; Sommers, Paul; Sonntag, Sebastian; Sorokin, J; Squartini, Ruben; Srivastava, Yogendra N; Stanca, Denis; Stanič, Samo; Stapleton, James; Stasielak, Jaroslaw; Stephan, Maurice; Stutz, Anne; Suarez, Federico; Durán, Mauricio Suarez; Suomijärvi, Tiina; Supanitsky, A Daniel; Sutherland, Michael; Swain, John; Szadkowski, Zbigniew; Taborda, Oscar Alejandro; Tapia, Alex; Tepe, Andreas; Theodoro, Vanessa Menezes; Timmermans, Charles; Peixoto, Carlos J Todero; Toma, Gabriel; Tomankova, Lenka; Tomé, Bernardo; Tonachini, Aurelio; Elipe, Guillermo Torralba; Machado, Diego Torres; Travnicek, Petr; Trini, Marta; Ulrich, Ralf; Unger, Michael; Urban, Martin; Galicia, Jose F Valdés; Valiño, Ines; Valore, Laura; van Aar, Guus; van Bodegom, Patrick; Berg, Ad M van den; van Velzen, Sjoert; van Vliet, Arjen; Varela, Enrique; Cárdenas, Bernardo Vargas; Varner, Gary; Vasquez, Rafael; Vázquez, Jose R; Vázquez, Ricardo; Veberič, Darko; Verzi, Valerio; Vicha, Jakub; Videla, Mariela; Villaseñor, Luis; Vlcek, Brian; Vorobiov, Serguei; Wahlberg, Hernan; Wainberg, Oscar; Walz, David; Watson, Alan; Weber, Marc; Weidenhaupt, Klaus; Weindl, Andreas; Welling, Christoph; Werner, Felix; Widom, Allan; Wiencke, Lawrence; Wilczyński, Henryk; Winchen, Tobias; Wittkowski, David; Wundheiler, Brian; Wykes, Sarka; Yang, Lili; Yapici, Tolga; Yushkov, Alexey; Zas, Enrique; Zavrtanik, Danilo; Zavrtanik, Marko; Zepeda, Arnulfo; Zimmermann, Benedikt; Ziolkowski, Michael; Zuccarello, Francesca

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \\pm 0.7 (stat) \\pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  15. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    Science.gov (United States)

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  16. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ±0.7 (stat)±6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  17. The Density and Mass of Unshocked Ejecta in Cassiopeia A through Low Frequency Radio Absorption

    CERN Document Server

    DeLaney, Tracey; Rudnick, Lawrence; Perley, R A

    2014-01-01

    Characterizing the ejecta in young supernova remnants is a requisite step towards a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9 arcseconds and 18.5 arcseconds resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 electrons per cubic centimeters and a total mass of 0.39 Solar masses with uncertainties of a factor of about 2. This is a significant improvement over the 100 electrons per cubic centimeter upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a numb...

  18. Carrier phase recovery performance for PN-spread TDRSS link with radio-frequency interference

    Science.gov (United States)

    Mckenzie, T. M.; Braun, W. R.

    1979-01-01

    The carrier-phase recovery performance of a Costas loop for a nonlinear satellite channel with uplink and downlink noise is analyzed, and the extension of these results to the case where uplink radio-frequency interference (RFI) is present is considered. The signal format here is binary phase-shift-keyed (BPSK) or unbalanced quaternary phase-shift-keyed (UQPSK), the signals being either the non-return-to-zero (NRZ) or biphase (Manchester) type. With UQPSK, at least one data stream must be PN-spread. The channel comprises additive white Gaussian noise (WGN), a wideband filter, a bandpass nonlinearity and more additive WGN. The RFI being considered is pulsed continuous-wave, pulsed WGN, or a combination of the two. It is noted that the Tracking and Data Relay Satellite System (TDRSS) will be subjected to RFI from certain locations, especially in the S-band of frequencies. The characteristics of this link are generalized to form the assumptions underlying this analysis. The analytical results given include the S-curve of the equivalent loop and the phase-error variance of the linearized loop.

  19. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  20. Detection of radio-frequency interference in microwave radiometers using spectral kurtosis

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Svoboda, Jan; Balling, Jan E.;

    2012-01-01

    This paper describes the spectral kurtosis detector as an additional indicator for radio frequency interference, RFI in passive remote sensing systems. The estimator is based on continuous Fast Fourier Transformation of samples, followed by evaluation of each frequency bin in subsequent data bloc...

  1. Radio frequency science considerations. [technology utilization of telecommunications system

    Science.gov (United States)

    Croft, T. A.

    1974-01-01

    Use of the 400 MHz telecommunications system to obtain scientific information, to provide backup information for the experiments flown, and to obtain measurements which aid in designing future probes is considered. Recommended objectives of such a program are summarized and include: measure 400 MHz amplitude to determine adsorption and perhaps scintillation (if data rate permits); measure noise strength near 400 MHz to reexamine 400 MHz choice and to observe thermal, cosmic, and local synchrotron noise trends; probe VSWR sensing to monitor integrity of system, icing, and possible plasma effects; after the probe is finished, have the bus radio occultation in the same region where the probe fell to evaluate the occultation.

  2. Tools and Methods of Low-Frequency Radio Recombination Lines Investigations

    Science.gov (United States)

    Konovalenko, A. A.; Stepkin, S. V.; Mukha, D. V.; Vasilkovskiy, E. V.

    In the report the tools and methods of observations of radio recombination lines which are carried out at Institute of Radio Astronomy of the National Academy of Sciences of Ukraine using the world's largest decameter radio telescope UTR-2 (arrays "South - North" and "East - West") are described. The low-frequency radio recombination lines can be used as effective means of the low-density partially ionized interstellar medium diagnostic. However, low intensities of the lines and high level of interferences makes such investigations very difficult and impose high requirements to equipment. Observations are carried out with the 4096-channel digital correlometer and new generation digital spectral processors with 8192 spectral channels. Currently, the systematic observations of radio recombination lines have been carried out in the directions of remnants of supernova stars, Galactic plane, nebulas and dust clouds. Experiments aimed to finding the redshifted line of neutral hydrogen HI which arises in the cosmological epochs of reionization in the range 8 - 32 MHz are carried out. The carbon radio recombination lines have been detected in the direction of Cassiopeia A in the broad range of frequencies from 20 to 32 MHz. The carbon radio recombination line, corresponding to the transitions to atomic level with number of 1009 (these corresponds to the Bohr size of atom near 0,1 mm) have been registered.

  3. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    CERN Document Server

    Scholten, O; Bonardi, A; Buitink, S; Correa, P; Corstanje, A; Hasankiadeh, Q Dorosti; Falcke, H; Hörandel, J R; Mitra, P; Mulrey, K; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Thoudam, S; ter Veen, S; de Vries, K D; Winchen, T

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  4. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    Science.gov (United States)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Dorosti Hasankiadeh, Q.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-11-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  5. Characterization of an Outdoor Ambient Radio Frequency Environment

    Science.gov (United States)

    2016-02-16

    electromagnetic compatibility (EMC) testing in anechoic chambers, the antennas have calibration tables in frequency steps corresponding to antenna factors...because it uses resistive elements instead of inductive and capacitive elements. Inductive and capacitive components are not purely inductive and... inductive or capacitive elements because they are small in size compared to the input frequency wavelengths. The input attenuator is designed to limit the

  6. Assessment of occupational exposure to radio frequency electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Halina Aniołczyk

    2015-06-01

    Full Text Available Background: European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency electromagnetic field (RF EMF (range: 100 kHz – 300 GHz and indicate workplaces with the highest risk to employee health. Material and Methods: Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland were analyzed. The analysis covered the results of electric field intensity (E for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI values were also analyzed. The determinations and measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. Results: The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold and microwave diathermy units (up to 8-fold. Conclusions: Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio communication facilities (especially radio and TV broadcasting stations. Med Pr 2015;66(2:199–212

  7. Printed Circuit Board Integrated Toroidal Radio Frequency Inductors

    DEFF Research Database (Denmark)

    Kamby, Peter; Knott, Arnold; Andersen, Michael A. E.

    2012-01-01

    Modern power semiconductors allow for switching frequencies of power converters in the very high frequency (VHF) band (30 MHz to 300 MHz). The major advantage of this frequency increase is a remarkable reduction of the size of power converters due to smaller passive components. However crucial...... attention needs to be payed to switching losses, so that the size reduction in electrical components does not get consumed by a major increase in heatsink size. This paper is investigating the major size limiting component in power converters: the inductor. In the VHF range, inductors are typically...

  8. A Measurement Method of Time Jitter of a Laser Pulse with Respect to the Radio-Frequency Wave Phase in a Photocathode Radio-Frequency Gun

    Institute of Scientific and Technical Information of China (English)

    刘圣广; 李永贵; 王鸣凯

    2002-01-01

    In a photo-cathode radio-frequency (rf) gun, the micro-bunched charge output from the gun is dependent linearly on the laser injection phase, due to the Scottay effect in the process of photoemission and the procedure of the electron longitudinal acceleration. Based on this principle, a new method is proposed, which should be utilized to measure the time jitter between the driving laser pulse and the rf phase with a very high resolution of a few tens of femtoseconds.

  9. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  10. Low-frequency radio constraints on the synchrotron cosmic web

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Brown, S.; Lenc, E.; Norris, R. P.

    2017-06-01

    We present a search for the synchrotron emission from the synchrotron cosmic web by cross-correlating 180-MHz radio images from the Murchison Widefield Array with tracers of large-scale structure (LSS). We use two versions of the radio image covering 21.76° × 21.76° with point sources brighter than 0.05 Jy subtracted, with and without filtering of Galactic emission. As tracers of the LSS, we use the Two Micron All-Sky Survey and the Wide-field InfraRed Explorer redshift catalogues to produce galaxy number density maps. The cross-correlation functions all show peak amplitudes at 0°, decreasing with varying slopes towards zero correlation over a range of 1°. The cross-correlation signals include components from point source, Galactic, and extragalactic diffuse emission. We use models of the diffuse emission from smoothing the density maps with Gaussians of sizes 1-4 Mpc to find limits on the cosmic web components. From these models, we find surface brightness 99.7 per cent upper limits in the range of 0.09-2.20 mJy beam-1 (average beam size of 2.6 arcmin), corresponding to 0.01-0.30 mJy arcmin-2. Assuming equipartition between energy densities of cosmic rays and the magnetic field, the flux density limits translate to magnetic field strength limits of 0.03-1.98 μG, depending heavily on the spectral index. We conclude that for a 3σ detection of 0.1 μG magnetic field strengths via cross-correlations, image depths of sub-mJy to sub-μJy are necessary. We include discussion on the treatment and effect of extragalactic point sources and Galactic emission, and next steps for building on this work.

  11. Opportunistic Access in Frequency Hopping Cognitive Radio Networks

    Science.gov (United States)

    2014-03-27

    Modulator ib X c(t) s(t) Figure 3.4: Transmitter function model. + s(t) n(t) i(t) X c(t) MFSK Demod îb Figure 3.5: Receiver function model...Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x I. Introduction...thresholding MA multiple access MFSK M-ary frequency shift keying MIMO multiple-input/multiple-output OFDM orthogonal frequency-division multiplexing x

  12. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Nori, M. [Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  13. Implementation of Frequency Drift for Identification of Solar Radio Burst Type II

    Directory of Open Access Journals (Sweden)

    Nur Zulaikha Mohd Afandi

    2016-10-01

    Full Text Available Sun is constantly produced mass and radiation during its natural activities, which will interact with ionosphere and affect the earth weather. In radio astronomer community, CALLISTO is used to capture the radio signal comes from solar activities such as solar burst. Solar flares and Coronal Mass Ejections (CMEs were closely associated with the production of solar radio burst Type II and III. However, the determination of solar burst existence is done manually using spectrograph which appears for every 15 minutes.  In order to assist the solar radio researcher to speed up the process of solar burst identification and detection, this work presents a new algorithm to auto classify solar radio burst Type II and III. The value of frequency drift was used as the main idea in this auto classify algorithm because it can easily implemented using MATLAB. There are three main steps involved named as pre-processing, identification and classification. Auto calculation of frequency drift burst on spectra was obtained from two parts which are frequency axis (df and time axis (dt. The results of the frequency drift implementation in classification algorithm show that the algorithm developed gave almost similar determination as in manual detection. However, there are always have rooms for improvement for better detection system in future which may include specific characterization of bursts and improved noise elimination.

  14. Three-dimensional multi-physics analysis and commissioning frequency tuning strategy of a radio-frequency quadrupole accelerator

    Science.gov (United States)

    Ma, Wei; Lu, Liang; Liu, Ting; Xu, Xianbo; Sun, Liepeng; Li, Chenxing; Shi, Longbo; Wang, Wenbin; He, Yuan; Zhao, Hongwei

    2017-09-01

    The resonant frequency stability of the radio frequency quadrupole (RFQ) is an important concern during commissioning. The power dissipated on the RFQ internal surface will heat the cavity and lead to a temperature rise and a structural deformation, especially in the continuous wave (CW) RFQs, which will cause the resonant frequency shifts. It is important to simulate the temperature rise, the deformation and the frequency shift of the RFQ cavity. The cooling water takes away the power to maintain the frequency stability. Meanwhile, the RFQ resonant frequency can be tuned by adjusting the water temperature. In this paper, a detailed three-dimensional multi-physics analysis of the Low Energy Accelerator Facility (LEAF) RFQ will be presented and a commissioning frequency tuning strategy will be studied.

  15. Detection of erosion/deposition depth using a low frequency passive Radio Frequency Identification (RFID) technology

    Science.gov (United States)

    Moustakidis, Iordanis Vlasios

    This thesis presents an experimental study both in the laboratory and field to develop and test a method for continuously measuring and monitoring scour using an automated identification technology known as Radio Frequency Identification (RFID). RFID systems consist of three main components, namely (a) the reader which controls the system, (b) the transponder (derived from transmitter/responder) that transmits data to the reader and (c) the excitation antenna that allows the communication between the reader and the transponder. The study provides an insight into the RFID technology and develops the framework for using this technology to eventually address two central themes in river mechanics and sediment transport; (a) the determination of the active layer thickness and (b) the scour/deposition depth around a hydraulic structure. In particular, this study develops the methodology for relating the signal strength of a radio frequency (RF) device with the distance between an excitation antenna and the RF device. The experiments presented herein are classified into two main groups, (1) the laboratory and (2) the RF signal vs. the detection distance experiments (field experiments). The laboratory experiments were designed to understand the effect of key RFID parameters (e.g., transponder orientation with respect to the excitation antenna plane, maximum antenna-transponder detection distance), measured in terms of the transponder return RF signal strength for various antenna-transponder distances, transponder orientations with respect to the excitation antenna plane and different mediums in between the excitation antenna and the transponder, on the overall performance of the RFID system. On the other hand, the RF signal vs. the detection distance experiments were based on the results obtained during the laboratory experiments and focused on developing calibration curves by relating the transponder return RF signal strength with the distance between the excitation

  16. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    Science.gov (United States)

    Gupta, N.; Saro, A.; Mohr, J. J.; Benson, B. A.; Bocquet, S.; Capasso, R.; Carlstrom, J. E.; Chiu, I.; Crawford, T. M.; de Haan, T.; Dietrich, J. P.; Gangkofner, C.; Holzapfel, W. L.; McDonald, M.; Rapetti, D.; Reichardt, C. L.

    2017-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 percent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. Allowing for redshift evolution of the form (1 + z)2.5 increases the incompleteness to 5.6 ± 1.0 percent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.

  17. Evaluation at the Remote Site for Ultra-stable Radio Frequency Dissemination via Fiber Links

    CERN Document Server

    Li, Shanglin; Zhang, Shuangyou; Li, Dawei; Leng, Jianxiao; Zhao, Jianye

    2016-01-01

    We demonstrate a method which can directly evaluate the radio frequency transfer quality via fiber links at the remote site. Coherent signals are first transferred to the same remote site via two stabilized fiber links. The two signals at the remote site are compared with each other. The relative phase difference can represent transfer stability loss. This evaluation method at the remote site has been compared with the traditional one with which the signal is evaluated at the local site. The two results match perfectly. It indicates that the method is available to evaluate the transfer performance of radio frequency (RF) dissemination in such applications as antenna array systems.

  18. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  19. Detection of NMR signals with a radio-frequency atomic magnetometer

    CERN Document Server

    Savukov, I M; Seltzer, S J

    2006-01-01

    We demonstrate detection of proton NMR signals with a radio frequency atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz$^{1/2}$ using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.

  20. Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    CERN Document Server

    Singh, K; Scholten, O; Anderson, J M; van Ardenne, A; Arts, M; Avruch, M; Asgekar, A; Bell, M; Bennema, P; Bentum, M; Bernadi, G; Best, P; Boonstra, A -J; Bregman, J; van de Brink, R; Broekema, C; Brouw, W; Brueggen, M; Buitink, S; Butcher, H; van Cappellen, W; Ciardi, B; Coolen, A; Damstra, S; Dettmar, R; van Diepen, G; Dijkstra, K; Donker, P; Doorduin, A; Drost, M; van Duin, A; Eisloeffel, J; Falcke, H; Garrett, M; Gerbers, M; Griessmeier, J; Grit, T; Gruppen, P; Gunst, A; van Haarlem, M; Hoeft, M; Holties, H; Horandel, J; Horneffer, L A; Huijgen, A; James, C; de Jong, A; Kant, D; Kooistra, E; Koopman, Y; Koopmans, L; Kuper, G; Lambropoulos, P; van Leeuwen, J; Loose, M; Maat, P; Mallary, C; McFadden, R; Meulman, H; Mol, J -D; Morawietz, J; Mulder, E; Munk, H; Nieuwenhuis, L; Nijboer, R; Norden, M; Noordam, J; Overeem, R; Paas, H; Pandey, V N; Pandey-Pommier, M; Pizzo, R; Polatidis, A; Reich, W; de Reijer, J; Renting, A; Riemers, P; Roettgering, H; Romein, J; Roosjen, J; Ruiter, M; Schoenmakers, A; Schoonderbeek, G; Sluman, J; Smirnov, O; Stappers, B; Steinmetz, M; Stiepel, H; Stuurwold, K; Tagger, M; Tang, Y; ter Veen, S; Vermeulen, R; de Vos, M; Vogt, C; van der Wal, E; Weggemans, H; Wijnholds, S; Wise, M; Wucknitz, O; Yattawatta, S; van Zwieten, J

    2011-01-01

    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an e?cient trigger implementation for LOFAR optimized for the observation of short radio pulses.

  1. Radio frequency sensing measurements and methods for location classification in wireless networks

    Science.gov (United States)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces

  2. Radio-frequency sheath voltages and slow wave electric field spatial structure

    Energy Technology Data Exchange (ETDEWEB)

    Colas, Laurent, E-mail: laurent.colas@cea.fr; Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Křivská, Alena [LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquot, Jonathan [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  3. Deriving Kinetic Luminosity Functions from the Low-Frequency Radio Luminosity Functions of FRII Sources

    Science.gov (United States)

    Kapinska, Anna D.; Uttley, P.; Kaiser, C. R.

    2010-03-01

    FRII radio galaxies are relatively simple systems which can be used to determine the influence of jets on their environments. Even simple analytical models of FRII evolution can link the observed lobe luminosities and sizes to fundamental properties such as jet power and density of the ambient medium; these are crucial for understanding AGN feedback. However, due to strong flux selection effects interpreting FRII samples is not straightforward. To overcome this problem we construct Monte Carlo simulations to create artificial samples of radio galaxies. We explore jet power and external density distributions by using them as the simulation input parameters. Further, we compute radio luminosity functions (RLF) and fit them to the observed low-frequency radio data that cover redshifts up to z 2, which gives us the most plausible distributions of FRIIs' fundamental properties. Moreover, based on these RLFs, we obtain the kinetic luminosity functions of these powerful sources.

  4. The widest-frequency radio relic spectra: observations from 150 MHz to 30 GHz

    CERN Document Server

    Stroe, Andra; Rumsey, Clare; van Weeren, Reinout; Kierdorf, Maja; Donnert, Julius; Jones, Thomas W; Röttgering, Huub J A; Hoeft, Matthias; Rodriguez-Gonzalvez, Carmen; Harwood, Jeremy J; Saunders, Richard D E

    2015-01-01

    Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage' and `Toothbrush' relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$\\sigma$ significance level, supports the spectral steepening previously found in the `Sausage' and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for ...

  5. The radio-frequency HTS SQUID for magnetic microscopy

    CERN Document Server

    Khvostov, S S; Garbuz, A S; Shnyrkov, V I

    2003-01-01

    The spectral density of magnetic flux noise S subPHI sup 1 sup / sup 2 (f) for HTS RF SQUIDs with a pumping frequency of 390-457 Mhz within triple-layer permalloy and superconducting shields are investigated. The superconducting interferometers of 100 centre dot 100 mm, are fabricated by the thin film technology with ramp-edge type Josephson junctions YBaCuO-PrBaCuO-YBaCuO. It is shown that with a cooled preamplifier the energy resolution of SQUIDs makes up to 4 centre dot 10 sup - sup 3 sup 0 J/Hz at 'white' noise (at frequencies above 1 kHz) and is mainly defined by inherent noise of the HTS interferometer and the shields. At low frequencies the noises related to exterior fields that penetrate directly into the shields, are dominant. At frequencies above 1 kHz, the ferromagnetic antenna of the SQUID microscope increases the intrinsic noise of the magnetometer up to 8 centre dot 10 sup - sup 3 sup 0 J/Hz.

  6. FR II radio galaxies at low frequencies I: morphology, magnetic field strength and energetics

    CERN Document Server

    Harwood, Jeremy J; Intema, Huib T; Stewart, Adam J; Ineson, Judith; Hardcastle, Martin J; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W

    2016-01-01

    Due to their steep spectra, low-frequency observations of FR II radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths has meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C452 and 3C223. We find that the morphology of 3C452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total ...

  7. Beyond Raw Frequency: Incidental Vocabulary Acquisition in Extensive Reading

    Science.gov (United States)

    Kweon, Soo-Ok; Kim, Hae-Ri

    2008-01-01

    Second language vocabulary can be learned incidentally while the learner is engaged in extensive reading or reading for meaning, inferring the meaning of unknown words (Huckin & Coady, 1999; Hulstijn, 1992; Krashen, 1993; Pigada & Schmitt, 2006). 12 Korean learners of English read authentic literary texts and were tested on their knowledge of…

  8. Photonic radio-frequency phase shifter based on polarization interference.

    Science.gov (United States)

    Chen, Han; Dong, Yi; He, Hao; Hu, Weisheng; Li, Lemin

    2009-08-01

    An rf photonic phase shifter based on polarization interference is presented, and the theoretical fundamentals of the design are explained. This phase shifter provides broad operational bandwidth and a full 360 degrees phase-shift tuning range with a single external electrical control. A prototype of the rf photonic phase shifter with a frequency of 26.75 GHz and 360 degrees tuning range is experimentally demonstrated.

  9. Radio Frequency Propagation and Performance Assessment Suite (RFPPAS)

    Science.gov (United States)

    2016-11-15

    heterogeneous atmospheric medium where the index of refraction is allowed to vary both vertically and horizontally, and is valid for frequencies from 2 MHz...parabolic equation (PE) parameters for fine control of the split-step PE algorithm. This is optional. 7 Random number generator seed . 8 Process or thread...1975), that resides in the AREPS. The central kernel traces rays through a three-dimensionally varying medium, including anisotropic and dispersive

  10. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  11. The history of early low frequency radio astronomy in Australia. 2: Tasmania

    Science.gov (United States)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    Significant contributions to low frequency radio astronomy were made in the Australian state of Tasmania after the arrival of Grote Reber in 1954. Initially, Reber teamed with Graeme Ellis, who was then working with the Ionospheric Prediction Service, and they carried out observations as low as 0.52 MHz during the 1955 period of exceptionally low sunspot activity. In the early 1960s, Reber established a 2.085 MHz array in the southern central region of the State and used this to make the first map of the southern sky at this frequency. In addition, in the 1960s the University of Tasmania constructed several low frequency arrays near Hobart, including a 609m × 609m array designed for operation between about 2 MHz and 20 MHz. In this paper we present an overview of the history of low frequency radio astronomy in Tasmania.

  12. DARIS : a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, M.J.; Rajan, R.T.; Wijnholds, M.; Arts, M.; Klooster, van 't K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  13. A low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, M.J.; Rajan, R.T.; Wijnholds, S.J.; Arts, M.; Klooster, van 't K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  14. The low-frequency radio emission in blazar PKS2155-304

    CERN Document Server

    Pandey-Pommier, M; Chadwick, P; Martin, J -M; Colom, P; van Driel, W; Combes, F; Kharb, P; Crespeau, P-J; Richard, J; Guiderdoni, B

    2016-01-01

    We report radio imaging and monitoring observations in the frequency range 0.235 - 2.7 GHz during the flaring mode of PKS 2155-304, one of the brightest BL Lac objects. The high sensitivity GMRT observations not only reveal extended kpc-scale jet and FRI type lobe morphology in this erstwhile `extended-core' blazar but also delineate the morphological details, thanks to its arcsec scale resolution. The radio light curve during the end phase of the outburst measured in 2008 shows high variability (8.5%) in the jet emission in the GHz range, compared to the lower core variability (3.2%) seen at the lowest frequencies. The excess of flux density with a very steep spectral index in the MHz range supports the presence of extra diffuse emission at low frequencies. The analysis of multi wavelength (radio/ optical/ gamma-ray) light curves at different radio frequencies confirms the variability of the core region and agrees with the scenario of high energy emission in gamma-rays due to inverse Compton emission from a ...

  15. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    Science.gov (United States)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  16. Adiabatic radio-frequency potentials for the coherent manipulation of matter waves

    DEFF Research Database (Denmark)

    Lesanovsky, Igor; Schumm, Thorsten; Hofferberth, S.

    2006-01-01

    Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one...

  17. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    Science.gov (United States)

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  18. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  19. Effect of thermal and radio frequency electric fields treatments on Escherichia coli bacteria in apple juice

    Science.gov (United States)

    The need for a non-thermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. However, insight into the mechanism of bacterial inactivation by this technology is ...

  20. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

    NARCIS (Netherlands)

    Marpaung, David; Chevalier, Ludovic; Burla, Maurizio; Roeloffzen, Chris

    2011-01-01

    We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator

  1. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    Science.gov (United States)

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  2. THEORETICAL STUDIES ON HIGH POWERED RADIO-FREQUENCY TRANSVERSE-EXCITED WAVEGUIDE ATOMIC GAS LASERS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    @@ By solving the extended Boltzmann equation and the electron number balance equation,we obtained the electron energy distribution functions(EEDFs)and the electronic excitation rates in the discharge of the radio-frequency(RF)transverse-excited intermediate pressure waveguide heliumneon laser.

  3. Radio Frequency Electric Fields Inactivation of Lactobacillus plantarum in Apple Cider

    Science.gov (United States)

    Radio frequency electric fields (RFEF) nonthermal processing has recently been shown to be effective at reducing Escherichia coli in fruit juices. While considerable effort and progress have been made in studying the effect of RFEF processing on this gram negative bacteria, there is a total lack of...

  4. Optimization of Ta2O5 optical thin film deposited by radio frequency magnetron sputtering.

    Science.gov (United States)

    Shakoury, R; Willey, Ronald R

    2016-07-10

    Radio frequency magnetron sputtering has been used here to find the parameters at which to deposit Ta2O5 optical thin films with negligible absorption in the visible spectrum. The design of experiment methodology was employed to minimize the number of experiments needed to find the optimal results. Two independent approaches were used to determine the index of refraction n and k values.

  5. Dielectric properties and heating rate of broccoli powder as related to radio-frequency heating

    Science.gov (United States)

    Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....

  6. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Science.gov (United States)

    2010-10-01

    ... advertising for sale or lease), or import, ship, or distribute for the purpose of selling or leasing or... prohibit agreements between such parties to produce new products, manufactured in accordance with... section, a radio frequency device may be advertised or displayed, e.g., at a trade show or...

  7. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NARCIS (Netherlands)

    Nishiguchi, K.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET w

  8. DARIS : a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, Marinus Jan; Rajan, R.T.; Rajan, Raj; Wijnholds, M.; Arts, M.; van 't Klooster, K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  9. A low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, Marinus Jan; Rajan, R.T.; Rajan, Raj; Wijnholds, S.J.; Arts, M.; van 't Klooster, K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  10. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never b

  11. CoSMOS: Performance of Kurtosis Algorithm for Radio Frequency Interference Detection and Mitigation

    DEFF Research Database (Denmark)

    Misra, Sidharth; Kristensen, Steen Savstrup; Skou, Niels

    2007-01-01

    The performance of a previously developed algorithm for Radio Frequency Interference (RFI) detection and mitigation is experimentally evaluated. Results obtained from CoSMOS, an airborne campaign using a fully polarimetric L-band radiometer are analyzed for this purpose. Data is collected using two...

  12. New optical and radio frequency angular tropospheric refraction models for deep space applications

    Science.gov (United States)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  13. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    Science.gov (United States)

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  14. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However...

  15. Phenomenology of Dark Matter from radio to gamma ray frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Vollmann, Martin

    2015-07-15

    Multiwavelength astronomical observations have been proven to be of crucial relevance in understanding the most fundamental questions in physics. One of the biggest mysteries of nature is the existence of a (still) unidentified type of matter that makes up most of the material universe. Although little is known about its nature, it is very likely that this exotic Dark Matter (DM) is made of so-called Weakly Interacting Massive Particles (WIMPs). In this thesis we investigate which strategies can best address the fundamental question: What is Dark Matter? Specifically, by following the ''WIMP'' paradigm as our guiding principle, we comprehensively discuss the phenomenology of prospective ''indirect'' detection scenarios of such WIMPs. Special consideration is given to extraterrestrial gamma rays and radio waves produced around the center of the Milky Way. In light of two recently highly debated claims of WIMP Dark Matter discovery, namely the 130 GeV gamma-ray line and the GeV gamma-ray excess, we invoke our methods to confront those hypotheses. In addition our study contains antiparticle cosmic-ray (antiproton and positron) data analyses. The phenomenology for indirect DM detection with these ''messengers'' is briefly discussed as well. By exploiting the high degree of symmetry of typical annihilating 2-WIMP initial states, we are able to employ a very powerful tool in theoretical particle physics: the generalized optical theorem. This theorem relates the amplitude of loop-suppressed processes, such as the 130 GeV line if interpreted as product of WIMP annihilations, with tree-level process which are constrained in the same way as with the GeV excess. Unprecedentedly reported analytical computations of partial-wave (and helicity) cross sections with general applicability are calculated and applied. The possibility that a non-trivial effect in the particle model for DM might enhance the strength of a gamma

  16. Moessbauer absorption by thick ferromagnets in radio-frequency magnetic field

    CERN Document Server

    Dzyublik, A Y

    2002-01-01

    The dynamical scattering theory is developed for transmission of the Moessbauer radiation through a ferromagnetic absorber of arbitrary thickness whose magnetization periodically reverses under the influence of an external radio-frequency (RF) magnetic field. The thickness dependence of the Moessbauer absorption spectrum as well as the time dependence and energy distribution of the transmitted beam are analyzed. The transmitted spectrum as a function of the frequency of transmitted gamma-quanta, reveals a sideband structure separated by twice the frequency of the RF field, which collapses to a single line at high frequencies.

  17. Lattice Wave of Magnetized Spherical Dust in Radio-Frequency Sheath with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic held contributes to dropping the wave frequency a little.

  18. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  19. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  20. Calibration of Frequency Data Collection Systems Using Shortwave Radio Signals

    Science.gov (United States)

    Estler, Ron

    2000-09-01

    The atomic-clock-derived audio tones broadcast on the National Institute of Standards and Technology (NIST) shortwave station WWV are used to calibrate computer frequency data collection systems via Fast Fourier Transforms (FFT). Once calibrated, the data collection system can be used to accurately determine the audio signals used in several instructional physical chemistry laboratory experiments. This method can be applied to virtually any hardware-software configuration that allows adjustment of the apparent time scale (digitizing rate) of the recorded audio file.

  1. GMRT 610-MHz observations of the faint radio source population - and what these tell us about the higher radio-frequency sky

    Science.gov (United States)

    Whittam, I. H.; Green, D. A.; Jarvis, M. J.; Riley, J. M.

    2017-01-01

    We present 610-MHz Giant Metrewave Radio Telescope observations of 0.84 deg2 of the AMI001 field (centred on 00h23m10s, +31°53') with an rms noise of 18 μJy beam-1 in the centre of the field. A total of 955 sources are detected, and 814 are included in the source count analysis. The source counts from these observations are consistent with previous work. We have used these data to study the spectral index distribution of a sample of sources selected at 15.7 GHz from the recent deep extension to the Tenth Cambridge (10C) survey. The median spectral index, α, (where S ∝ ν-α) between 0.08 < S_{15.7 GHz} / mJy < 0.2 is 0.32 ± 0.14, showing that star-forming galaxies, which have much steeper spectra, are not contributing significantly to this population. This is in contrast to several models, but in agreement with the results from the 10C ultradeep source counts; the high-frequency sky therefore continues to be dominated by radio galaxies down to S15.7GHz = 0.1 mJy.

  2. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID)

    OpenAIRE

    2016-01-01

    Changes in the drinking behaviour of pigs may indicate health, welfare or productivity problems. Automated monitoring and analysis of drinking behaviour could allow problems to be detected, thus improving farm productivity. A high frequency radio frequency identification (HF RFID) system was designed to register the drinking behaviour of individual pigs. HF RFID antennas were placed around four nipple drinkers and connected to a reader via a multiplexer. A total of 55 growing-finishing pigs w...

  3. Solution of the problem of interaction between capacitive coupled radio-frequency discharge and a sample

    Science.gov (United States)

    Chebakova, V. Ju; Gaisin, A. F.; Zheltukhin, V. S.

    2016-11-01

    The numerical study of interaction between the capacitive coupled radio frequency (CCRF) discharge and materials is performed. A nonlinear problem, which includes initialboundary value problems for electron, ion, neutral atom, metastable atom, gas temperature and Poisson's equation is solved. A harmonic voltage on the loaded electrodes and Ohm's law for the sample is assumed. A results of calculations of the model problem at pressure p=760 Torr, frequency of generator f=13.76 MHz in local approximation are presented.

  4. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  5. A new method for finding and characterizing galaxy groups via low-frequency radio surveys

    Science.gov (United States)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.

    2017-09-01

    We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ∼2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.

  6. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    and demonstrated. On subcomponent level, solutions for implementing the envelope tracking power supply are proposed and demonstrated. A number of buck-type DCDC converter topologies are investigated and compared, with the objective of showing the trade-offs involved between switching frequency, control bandwidth...... and ripple voltage. It is found that the simple fourth-order filter buck converter is ideal for TETRA and TEDS envelope tracking power supplies. The problem of extracting maximum control bandwidth from a given power topology is given particular attention, with a range of, arguably new, insights resulting....... It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...

  7. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective

    CSIR Research Space (South Africa)

    Roul, BK

    2009-05-01

    Full Text Available Micron size Fe3O4 powders were chemically prepared and processed by radio frequency (13.56 MHz) oxygen plasma irradiation technique at different elevated temperatures using low radio frequency (RF) power level. Low magnetic field RF superconducting...

  8. 78 FR 49529 - Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and Drug...

    Science.gov (United States)

    2013-08-14

    ... of RF energy, and the RF wireless emissions from one product or device could potentially affect the... HUMAN SERVICES Food and Drug Administration (formerly Docket No. 2006D-0504) Radio Frequency Wireless...) is announcing the availability of the guidance entitled ``Radio Frequency Wireless Technology in...

  9. The low-frequency environment of the Murchison Widefield Array: radio-frequency interference analysis and mitigation

    CERN Document Server

    Offringa, A R; Hurley-Walker, N; Kaplan, D L; Barry, N; Beardsley, A P; Bell, M E; Bernardi, G; Bowman, J D; Briggs, F; Callingham, J R; Cappallo, R J; Carroll, P; Deshpande, A A; Dillon, J S; Dwarakanath, K S; Ewall-Wice, A; Feng, L; For, B -Q; Gaensler, B M; Greenhill, L J; Hancock, P; Hazelton, B J; Hewitt, J N; Hindson, L; Jacobs, D C; Johnston-Hollitt, M; Kapińska, A D; Kim, H -S; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Morgan, J; Neben, A R; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Shankar, N Udaya; Sethi, S; Srivani, K S; Staveley-Smith, L; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Thyagarajan, N; Tingay, S J; Trott, C M; Webster, R L; Williams, A; Williams, C L; Wu, C; Wyithe, J S; Zheng, Q

    2015-01-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) detection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFAR's radio environment, but adequate detection of RFI is still required before data can be analysed. We include speci...

  10. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea.

    Science.gov (United States)

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C J

    2017-02-01

    The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Five participants (eight ears) with extensive high-frequency DRs were tested. Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants.

  11. Three-body radio-frequency association of Efimov trimers

    Energy Technology Data Exchange (ETDEWEB)

    Tscherbul, T. V. [Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138 (United States); ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Rittenhouse, Seth T. [ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2011-12-15

    We present a theoretical analysis of rf association of Efimov trimers in a two-component Bose gas with short-range interactions. Using the adiabatic hyperspherical formalism to solve the quantum three-body problem, we obtain universal expressions for three-body rf association rates as a function of the s-wave scattering length a>0. We find that the association rates scale as a{sup -2} in the limit of large a, and diverge as a{sup 3}a{sub ad}{sup 3} whenever an Efimov state crosses the atom-dimer threshold (where a{sub ad} stands for the atom-dimer scattering length). Our calculations show that trimer formation rates as large as {approx}10{sup -21} cm{sup 6}/s can be achieved with rf Rabi frequencies on the order of 1 MHz, suggesting that direct rf association is a powerful tool for making and probing few-body quantum states in ultracold atomic gases.

  12. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    Science.gov (United States)

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  13. Effects of microwave and radio frequency electromagnetic fields on lichens.

    Science.gov (United States)

    Urech, M; Eicher, B; Siegenthaler, J

    1996-01-01

    The effects of electromagnetic fields on lichens were investigated. Field experiments of long duration (1-3 years) were combined with laboratory experiments and theoretical considerations. Samples of the lichen species Parmelia tiliacea and Hypogymnia physodes were exposed to microwaves (2.45 GHz; 0.2, 5, and 50 mW/cm2; and control). Both species showed a substantially reduced growth rate at 50 mW/cm2. A differentiation between thermal and nonthermal effects was not possible. Temperature measurements on lichens exposed to microwaves (2.45 GHz, 50 mW/cm2) showed a substantial increase in the surface temperature and an accelerated drying process. The thermal effect of microwave on lichens was verified. The exposure of lichens of both species was repeated near a short-wave broadcast transmitter (9.5 MHz, amplitude modulated; maximum field strength 235 V/m, 332 mA/m). No visible effects on the exposed lichens were detected. At this frequency, no thermal effects were expected, and the experimental results support this hypothesis. Theoretical estimates based on climatic data and literature showed that the growth reductions in the initial experiments could very likely have been caused by drying of the lichens from the heating with microwaves. The results of the other experiments support the hypothesis that the response of the lichens exposed to microwaves was mainly due to thermal effects and that there is a low probability of nonthermal effects.

  14. Low-frequency study of two giant radio galaxies: 3C 35 and 3C 223

    Science.gov (United States)

    Orrù, E.; Murgia, M.; Feretti, L.; Govoni, F.; Giovannini, G.; Lane, W.; Kassim, N.; Paladino, R.

    2010-06-01

    Aims: Radio galaxies with a projected linear size ⪆1 Mpc are classified as giant radio sources. According to the current interpretation these are old sources which have evolved in a low-density ambient medium. Because radiative losses are negligible at low frequency, extending spectral aging studies in this frequency range will allow us to determine the zero-age electron spectrum injected and then to improve the estimate of the synchrotron age of the source. Methods: We present Very Large Array images at 74 MHz and 327 MHz of two giant radio sources: 3C 35 and 3C 223. We performed a spectral study using 74, 327, 608 and 1400 GHz images. The spectral shape is estimated in different positions along the source. Results: The radio spectrum follows a power-law in the hotspots, while in the inner region of the lobe the shape of the spectrum shows a curvature at high frequencies. This steepening agrees with synchrotron aging of the emitting relativistic electrons. In order to estimate the synchrotron age of the sources, the spectra were fitted with a synchrotron model of emission. They show that 3C 35 is an old source of 143 ± 20 Myr, while 3C 223 is a younger source of 72 ± 4 Myr.

  15. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-01-01

    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  16. INFLUENCE OF CONSTRUCTIVE AND TECHNOLOGICAL DEFECTS ON COAXIAL RADIO-FREQUENCY CABLE IMPEDANCE

    Directory of Open Access Journals (Sweden)

    G.V. Bezprozvannych

    2013-04-01

    Full Text Available Coaxial user's radio-frequency cables belong to a category of cable television network elements parameters of which essentially specify the system capabilities as a whole. The cable working frequency spectrum spreading to 1000 MHz along with digital television and soundtrack signals transmission and high-definition television introduction causes more rigid requirements for wave impedance and, consequently, for the cable design. The established norms on user's cable impedance deviations fail to answer the state-of-the-art requirements for granting a complex of interactive services. On the basis of calculations performed, values of internal and external conductor diameters deviations as well as dielectric permeability of the insulation material are validated. For up-to-date user's radio-frequency cables, the impedance deviation from the normalized average value of 75 Ohm should not exceed ± 2 Ohm.

  17. Stopping Frequency of Type III Solar Radio Bursts in Expanding Magnetic Flux Tubes

    CERN Document Server

    Reid, Hamish A S

    2015-01-01

    Understanding the properties of type III radio bursts in the solar corona and interplanetary space is one of the best ways to remotely deduce the characteristics of solar accelerated electron beams and the solar wind plasma. One feature of all type III bursts is the lowest frequency they reach (or stopping frequency). This feature reflects the distance from the Sun that an electron beam can drive the observable plasma emission mechanism. The stopping frequency has never been systematically studied before from a theoretical perspective. Using numerical kinetic simulations, we explore the different parameters that dictate how far an electron beam can travel before it stops inducing a significant level of Langmuir waves, responsible for plasma radio emission. We use the quasilinear approach to model self-consistently the resonant interaction between electrons and Langmuir waves in inhomogeneous plasma, and take into consideration the expansion of the guiding magnetic flux tube and the turbulent density of the in...

  18. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics

    Science.gov (United States)

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  19. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics.

    Science.gov (United States)

    Harwood, Jeremy J; Croston, Judith H; Intema, Huib T; Stewart, Adam J; Ineson, Judith; Hardcastle, Martin J; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  20. Gamma-Ray Bursts Subset and Supernova Remnants Low Radio-Frequency Turnover

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang

    2000-01-01

    Durations of gamma-ray bursts (GRB's) are featured by >2s subset and <2s one, with initial corresponding energy ratio being 20:1. It is found that supernova remants(SNR 's) turnover frequencies peak at 100 and 500 MHz. After assuming that GRB's originate from hypernova and making an analysis on the evolution of GRB's, we find that the initial energy of two GRB subsets leads to a different radio-frequency turnover of their remnant spectra, which accords positively with the turnover-frequency ratio of SNR's.

  1. Impact of the 1985 space World Administrative Radio Conference on frequency/orbit planning and use

    Science.gov (United States)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts: (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  2. Interpretation of the Low-Frequency Peculiarities in the Radio Profile Structure of the Crab Pulsar

    CERN Document Server

    Petrova, S A

    2008-01-01

    The theory of magnetized induced scattering off relativistic gyrating particles is developed. It is directly applicable to the magnetosphere of a pulsar, in which case the particles acquire gyration energies as a result of resonant absorption of radio emission. In the course of the radio beam scattering into background the scattered radiation concentrates along the ambient magnetic field. The scattering from different harmonics of the particle gyrofrequency takes place at different characteristic altitudes in the magnetosphere and, because of the rotational effect, gives rise to different components in the pulse profile. It is demonstrated that the induced scattering from the first harmonic into the state under the resonance can account for the so-called low-frequency component in the radio profile of the Crab pulsar. The precursor component is believed to result from the induced scattering between the two states well below the resonance. It is shown that these ideas are strongly supported by the polarization...

  3. NASA's Radio Frequency Bolt Monitor: A Lifetime of Spinoffs

    Science.gov (United States)

    2005-01-01

    , improving, inventing, and modifying the "bolt monitor", all the while, filing numerous patents, presenting papers, and holding demonstrations as the technology matured. Industry engineers challenged Heyman s inventiveness, and reminded the physicist that most bolts are not perfect resonators, and that early devices required that the bolt have reasonably flat and parallel faces. The U.S. Geological Survey asked NASA for help in determining the load in mine roof bolts, which are 8- to 10-feet-long and rough cut. To solve that problem, Heyman modified the original device to operate at a lower frequency and to generate propagation modes that could be used to "lock" the instrument on a particular mode. Further work in this vein led to the development of the Pulsed Phase Locked Loop (P2L2) that worked on the mine bolts. The next set of problems involved high-strength bolts with head markings. For this solution, Heyman invented a modified P2L2 that tracked a specific phase point in the measurement wave. This class of instrumentation, well suited to measuring small changes in acoustic velocity, won the NASA "Invention of the Year" award in 1982. Other scientists and engineers have continued the evolution of this technology both inside NASA and outside of the Agency. Within NASA, the technology has been improved for medical applications, with a particular focus on intercranial pressure (ICP) monitoring.

  4. Radio signal correlation at 32 MHz with extensive air showers parameters

    OpenAIRE

    Knurenko, Stanislav; Petrov, Igor

    2014-01-01

    The paper present correlation of radio signal with air shower parameters: shower energy E0 and depth of maximum Xmax. It is shown that from radio emission measurements of air showers one can obtain individual showers parameters and mass composition of cosmic rays. We also derived generalized formula for calculating energy of the air showers.

  5. Calibration of low-frequency radio telescopes using the galactic background radiation

    Science.gov (United States)

    Dulk, G. A.; Erickson, W. C.; Manning, R.; Bougeret, J.-L.

    2001-01-01

    We consider the calibration of flux densities of radio bursts from decametric to kilometric wavelengths using ground-based and space-based data. The method we derive is applicable to low-frequency radio telescopes where galactic background radiation is the principal contribution to system temperature. It can be particularly useful for telescopes of low angular resolution observing spectra of radio bursts from the Sun and the planets because absolute calibration of these telescopes is very difficult with conventional techniques. Here we apply the method to observations from about 7 to 47 MHz that were made on the ground with the Bruny Island Radio Spectrometer located in Tasmania, Australia, and those from about 20 kHz to 13.8 MHz were made with the radio experiment WAVES on the WIND spacecraft. The spectrum of the galactic background radiation from 30 MHz has been carefully measured with low-resolution telescopes, starting more than a decade ago. We use this known spectrum to calibrate both BIRS and WAVES on an absolute scale. The accuracy we achieve is about a factor of two, whereas the flux densities of solar and planetary radio sources vary by many orders of magnitude. Our method permits inter-calibration of ground-based and space-based observations, and allows corrections to be made for instrumental uncertainties on both radio experiments. In addition, on the ground, it allows the spectra to be corrected for ionospheric absorption and partial ground reflections. As an application we show the spectrum of a solar type III burst observed from 47 MHz to 20 kHz. Its flux density was largest, S~ 10-17 W m-2 Hz-1, at about 3 MHz, while at 60 kHz and at 47 MHz it was lower by a factor of about 300.

  6. Radio Frequency Transistors and Circuits Based on CVD MoS2.

    Science.gov (United States)

    Sanne, Atresh; Ghosh, Rudresh; Rai, Amritesh; Yogeesh, Maruthi Nagavalli; Shin, Seung Heon; Sharma, Ankit; Jarvis, Karalee; Mathew, Leo; Rao, Rajesh; Akinwande, Deji; Banerjee, Sanjay

    2015-08-12

    We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.

  7. First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    CERN Document Server

    Oberoi, Divya; Cairns, Iver H; Emrich, David; Lobzin, Vasili; Lonsdale, Colin J; Morgan, Edward H; Prabu, T; Vedantham, Harish; Wayth, Randall B; Williams, Andrew; Williams, Christopher; White, Stephen M; Allen, G; Arcus, Wayne; Barnes, David; Benkevitch, Leonid; Bernardi, Gianni; Bowman, Judd D; Briggs, Frank H; Bunton, John D; Burns, Steve; Cappallo, Roger C; Clark, M A; Corey, Brian E; Dawson, M; DeBoer, David; De Gans, A; deSouza, Ludi; Derome, Mark; Edgar, R G; Elton, T; Goeke, Robert; Gopalakrishna, M R; Greenhill, Lincoln J; Hazelton, Bryna; Herne, David; Hewitt, Jacqueline N; Kamini, P A; Kaplan, David L; Kasper, Justin C; Kennedy, Rachel; Kincaid, Barton B; Kocz, Jonathan; Koeing, R; Kowald, Errol; Lynch, Mervyn J; Madhavi, S; McWhirter, Stephen R; Mitchell, Daniel A; Morales, Miguel F; Ng, A; Ord, Stephen M; Pathikulangara, Joseph; Rogers, Alan E E; Roshi, Anish; Salah, Joseph E; Sault, Robert J; Schinckel, Antony; Shankar, N Udaya; Srivani, K S; Stevens, Jamie; Subrahmanyan, Ravi; Thakkar, D; Tingay, Steven J; Tuthill, J; Vaccarella, Annino; Waterson, Mark; Webster, Rachel L; Whitney, Alan R

    2011-01-01

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array (MWA), observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9-201.6 MHz. Though our observing period is characterized as a period of `low' to `medium' activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low frequency radio interferometers come on-line over the next few years.

  8. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    CERN Document Server

    Gupta, N; Mohr, J J; Benson, B A; Bocquet, S; Carlstrom, J E; Capasso, R; Chiu, I; Crawford, T M; de Haan, T; Dietrich, J P; Gangkofner, C; Holzapfel, W L; McDonald, M; Rapetti, D; Reichardt, C L

    2016-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; $\\langle z \\rangle = 0.14$) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg$^2$ SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. ...

  9. Radio frequency heating of foods: principles, applications and related properties--a review.

    Science.gov (United States)

    Piyasena, Punidadas; Dussault, Chantal; Koutchma, Tatiana; Ramaswamy, H S; Awuah, G B

    2003-01-01

    Radio frequency (RF) heating is a promising technology for food applications because of the associated rapid and uniform heat distribution, large penetration depth and lower energy consumption. Radio frequency heating has been successfully applied for drying, baking and thawing of frozen meat and in meat processing. However, its use in continuous pasteurization and sterilization of foods is rather limited. During RF heating, heat is generated within the product due to molecular friction resulting from oscillating molecules and ions caused by the applied alternating electric field. RF heating is influenced principally by the dielectric properties of the product when other conditions are kept constant. This review deals with the current status of RF heating applications in food processing, as well as product and system specific factors that influence the RF heating. It is evident that frequency level, temperature and properties of food, such as viscosity, water content and chemical composition affect the dielectric properties and thus the RF heating of foods. Therefore, these parameters should be taken into account when designing a radio frequency heating system for foods.

  10. Multi-frequency solar observations at Metsähovi Radio Observatory and KAIRA

    Science.gov (United States)

    Kallunki, J.; Uunila, M.; McKay-Bukowski, D.

    2015-08-01

    We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metsähovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the Sodankylä Geophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi-instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April-October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi-frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15-hour unique solar observations possible during summer time.

  11. An extension of command shaping methods for controlling residual vibration using frequency sampling

    Science.gov (United States)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  12. An extension of command shaping methods for controlling residual vibration using frequency sampling

    Science.gov (United States)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  13. Unveiling the nature of the unidentified gamma-ray sources III: gamma-ray blazar-like counterparts at low radio frequencies

    CERN Document Server

    Massaro, F; Giroletti, M; Paggi, A; Masetti, N; Tosti, G; Nori, M; Funk, S

    2013-01-01

    About one third of the gamma-ray sources listed in the second Fermi LAT catalog (2FGL) have no firmly established counterpart at lower energies so being classified as unidentified gamma-ray sources (UGSs). Here we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the ...

  14. Radio Frequency Scanning and Simulation of Oriented Strand Board Material Property

    Science.gov (United States)

    Liu, Xiaojian; Zhang, Jilei; Steele, Philip. H.; Donohoe, J. Patrick

    2008-02-01

    Oriented strandboard (OSB) is a wood composite product with the largest market share in U.S. residential and commercial construction. Wood specific gravity (SG) and moisture content (MC) play an important role in the OSB manufacturing process. They are the two of the critical variables that manufacturers are required to monitor, locate, and control in order to produce a product with consistent quality. In this study, radio frequency scanning nondestructive evaluation (NDE) technologies evaluated the local area MC and SG of OSB panels following panel production by hot pressing. A finite element software simulation tool was used to optimize the sensor geometry and for investigating the interaction between electromagnetic field and wood dielectric properties. Our results indicate the RF scanning response is closely correlated to the MC and SG variations in OSB panels. Radio frequency NDE appears to have potential as an effective method for insuring OSB panel quality during manufacturing.

  15. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  16. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings

    Science.gov (United States)

    Palumbo, Giovanna; Iadicicco, Agostino; Tosi, Daniele; Verze, Paolo; Carlomagno, Nicola; Tammaro, Vincenzo; Ippolito, Juliet; Campopiano, Stefania

    2016-11-01

    We report on the integration of fiber optic sensors with commercial medical instrumentation for temperature monitoring during radio frequency ablation for tumor treatment. A suitable configuration with five fiber Bragg grating sensors bonded to a bipolar radio frequency (RF) probe has been developed to monitor the area under treatment. A series of experiments were conducted on ex-vivo animal kidney and liver and the results confirm that we were able to make a multipoint measurement and to develop a real-time temperature profile of the area, with a temperature resolution of 0.1°C and a spatial resolution of 5 mm during a series of different and consecutive RF discharges.

  17. Effect of radio frequency fields on the radical pair magnetoreception model

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Li, Hai; Li, Jun-Gang; Shao, Bin

    2014-10-01

    Although the radical pair (RP) model is widely accepted for birds' orientation, the physical mechanism of it is still not fully understood. In this paper we consider the RP model in the total angular-momentum representation and clearly show a detailed mechanism for orientation. When only the vertical hyperfine (HF) coupling component is considered, analytical expressions of singlet yield angular profiles are obtained with and without considering the radio frequency field, and when the horizontal HF coupling components are considered, a numerical calculation of the singlet yield is given. Based on these analytical and numerical results we present a detailed account of the following issues: how the HF coupling induces the singlet-triplet conversion; why the vertical radio frequency field can disorient the birds, while the parallel one cannot; and why the birds are able to "train" to different field strengths. Finally, we consider a multinuclei RP model.

  18. Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials

    DEFF Research Database (Denmark)

    Lesanovsky, Igor; Hofferberth, S.; Schmiedmayer, Jörg

    2006-01-01

    We explore properties of atoms whose magnetic hyperfine sublevels are coupled by an external magnetic radio frequency (rf) field. We perform a thorough theoretical analysis of this driven system and present a number of systematic approximations which eventually give rise to dressed adiabatic radio...... frequency potentials. The predictions of this analytical investigation are compared to numerically exact results obtained by a wave packet propagation. We outline the versatility and flexibility of this class of potentials and demonstrate their potential use to build atom optical elements such as double...... wells, interferometers, and ringtraps. Moreover, we perform simulations of interference experiments carried out in rf induced double-well potentials. We discuss how the nature of the atom-field coupling mechanism gives rise to a decrease of the interference contrast....

  19. Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    CERN Document Server

    Hemke, Torben; Gebhardt, Markus; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The \\textit{radio-frequency driven micro-scaled atmospheric pressure plasma jet} ($\\mu$APPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of a $\\mu$APPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O$_3$ and O$_2(^1\\Delta)$).

  20. Achieving low-emissivity materials with high transmission for broadband radio-frequency signals.

    Science.gov (United States)

    Liu, Liu; Chang, Huiting; Xu, Tao; Song, Yanan; Zhang, Chi; Hang, Zhi Hong; Hu, Xinhua

    2017-07-07

    The use of low-emissivity (low-e) materials in modern buildings is an extremely efficient way to save energy. However, such materials are coated by metallic films, which can strongly block radio-frequency signals and prevent indoor-outdoor wireless communication. Here, we demonstrate that, when specially-designed metallic metasurfaces are covered on them, the low-e materials can remain low emissivity for thermal radiation and allow very high transmission for a broad band of radio-frequency signals. It is found that the application of air-connected metasurfaces with subwavelength periods is critical to the observed high transmission. Such effects disappear if periods are comparable to wavelengths or metal-connected structures are utilized. The conclusion is supported by both simulations and experiments. Advantages such as easy to process, low cost, large-area fabrication and design versatility of the metasurface make it a promising candidate to solve the indoor outdoor communication problem.

  1. A Review of the Radio Frequency Non-destructive Testing for Carbon-fibre Composites

    Directory of Open Access Journals (Sweden)

    Li Zhen

    2016-04-01

    Full Text Available The purpose of this paper is to review recent research on the applications of existing non-destructive testing (NDT techniques, especially radio frequency (RF NDT, for carbon-fibre reinforced plastics (CFRP composites. Electromagnetic properties of CFRP composites that are associated with RF NDT are discussed first. The anisotropic characteristic of the conductivity and the relationship between the penetration depth and conductivity should be paid much attention. Then, the well-established RF NDT including eddy current technique, microwave technique and RF-based thermography are well categorised into four types (i.e. electromagnetic induction, resonance, RF-based thermography and RF wave propagation and demonstrated in detail. The example of impact damage detection using the induction and resonance methods is given. Some discussions on the development (like industrial-scale automated scanning, three-dimensional imaging, short-range ultra-wideband (UWB imaging and the radio frequency identification technology (RFID-based NDT are presented.

  2. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation.

    Science.gov (United States)

    Gagliardi, G; Salza, M; Ferraro, P; De Natale, P

    2005-04-04

    We demonstrate the possibility of using radio-frequency modulation spectroscopic techniques for interrogation of fiber Bragg-grating (FBG) structures. Sidebands at 2 GHz are superimposed onto the output spectrum of a 1560-nm DFB diode laser. The power reflected by an FBG is demodulated at multiples of the sideband frequency. The sideband-to-carrier beat signal is shown to be extremely sensitive to Bragg wavelength shifts due to mechanical stress. Using this method, both static and dynamic strain measurements can be performed, with a noise-equivalent sensitivity of the order of 150 nepsilon/ radicalHz, in the quasi-static domain (2 Hz), and 1.6 nepsilon/ radicalHz at higher frequencies (1 kHz). The measured frequency response is presently limited at 20 kHz only by the test device bandwidth. A long-term reproducibility in strain measurements within 100 nepsilon is estimated from laser frequency drift referred to molecular absorption lines.

  3. A Full-Duplex Radio-over-Fiber System Based on Frequency Twelvefold

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; TAO Jin; XIE Jin-Ling

    2011-01-01

    A full-duplex radio-over-fiber system using frequency-twelvefold optical millimeter-wave based on external modulation via a Mach-Zehnder modulator is proposed and analyzed theoretically. The simulation results show that the power penalties for both the downstream and upstream signals are less than 0.5 dB. In this scheme, the configuration of a base station is simplified without laser, while the frequency of local oscillator signal is largely reduced due to the frequency-twelvefold millimeter-wave technique. The cost of the new system is largely reduced.%@@ A full-duplex radio-over-fiber system using frequency-twelvefold optical millimeter-wave based on external modulation via a Mach-Zehnder modulator is proposed and analyzed theoretically.The simulation results show that the power penalties for both the downstream and upstream signals are iess than 0.5 dB.In this scheme, the configuration of a base station is simplified without laser, while the frequency of local oscillator signal is largely reduced due to the frequency-twelvefold millimeter-wave technique.The cost of the new system is largely reduced.

  4. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  5. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    Science.gov (United States)

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  6. Investigations on bipolar radio-frequency current application for interstitial thermotherapy (RF-ITT)

    Science.gov (United States)

    Desinger, Kai; Mueller, Gerhard J.; Stein, Thomas; Tschepe, Johannes

    1996-01-01

    This paper discusses the feasibility of radio-frequency current in bipolar technique for interstitial thermotherapy (rf-ITT). A short survey of established methods for interstitial tissue coagulation, e.g. the interstitial laser photocoagulation (ILP) and microwave exposure are given. In addition, a new concept for interstitial application of bipolar or quasi-bipolar radio- frequency alternating current is presented. Theoretical investigations of the electrical field distribution generated by a dipole model come together in the different mechanisms of heat generation by using radio-frequency alternating current. New concepts of bipolar or quasi- bipolar coaxial layered applicators are presented. This bipolar needle electrode enables the surgeon to use a partial and homogeneous exposure of radio-frequency current for interstitial thermotherapy, e.g. for the treatment of BPH or for concha coagulation in ENT. Less power is needed due to the limited current exposition at the immediate operation site and a highly safe procedure is possible. Therefore, to determine the thermal damage of tissue, depending on the rf parameters, a computer model for a real-time simulation of the spatial electrical field distribution especially for a multiple probe application is currently being developed. This is an appropriate tool for dosimetry. A similar program for LITT, called LITCIT, developed at the Laser-Medizin-Zentrum Berlin has already shown its efficiency in clinical use. Furthermore the feasibility of a 'cross-over' applicator is discussed which combines ILP and rf-application by using metallized optical fibers for a simultaneous application of electrical energy and laser radiation.

  7. Design of UWB pulse radio transceiver using statistical correlation technique in frequency domain

    Directory of Open Access Journals (Sweden)

    M. Anis

    2007-06-01

    Full Text Available In this paper, we propose a new technique to extract low power UWB pulse radio signals, near to noise level, using statistical correlation technique in frequency domain. The receiver consists of many narrow bandpass filters which extract energy either from transmitted UWB signal, interfering channels or noise. Transmitted UWB data can be eliminated by statistical correlation of multiple bandpass filter outputs. Super-regenerative oscillators, tuned within UWB spectrum, are designed as bandpass filters. Summers and comparators perform statistical correlation.

  8. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati, E-mail: dhakal@jlab.org; Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  9. Thermal Injury in Human Subjects Due to 94-GHz Radio Frequency Radiation Exposures

    Science.gov (United States)

    2016-02-24

    AFRL-RH-FS-TR-2016-0001 Thermal Injury in Human Subjects Due to 94-GHz Radio Frequency Radiation Exposures James E. Parker General...them. This report was cleared for public release by the 88th ABW Public Affairs Office and is available to the general public, including foreign ...This report is published in the interest of scientific and technical information exchange , and its

  10. Equivalent circuit of radio frequency-plasma with the transformer model.

    Science.gov (United States)

    Nishida, K; Mochizuki, S; Ohta, M; Yasumoto, M; Lettry, J; Mattei, S; Hatayama, A

    2014-02-01

    LINAC4 H(-) source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H(-) source, to that of final amplifier. We model RF plasma inside the H(-) source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.

  11. Challenges and opportunities of silent commerce - applying Radio Frequency Identification technology

    Directory of Open Access Journals (Sweden)

    Teuta Cata

    2006-04-01

    Full Text Available This research paper investigates applications of Radio Frequency Technology (RFID as an application of ubiquitous commerce. RFID has a wide application in the supply chain but still is very limited for customer support. This study introduces the concept of the Silent CRM (s-CRM which is an application of RFID to proactively support customer needs. Challenges of RFID application within companies, outside of companies and about the technology itself are discussed as well.

  12. Morphological aspects of poly-organic impact of radio frequency electromagnetic radiation in experiment

    OpenAIRE

    TASHPULATOVA GUZAL ALIEVNA; MAVLYAN-HODZHAEV RAVSHAN SHUKHRATOVICH

    2015-01-01

    The impact of radio frequency electromagnetic radiation (RFEMR) on morphological responses of some organs of experimental animals has been studied. The RFEMR effect was shown to manifest itself by pathological changes in the structure of the majority of organs and tissues with the critical impact of the micro-vascular bed impairment on not only morphological, metabolic but also many other homeostasis shifts that occurred.

  13. Impedance matching and DC-DC converter designs for tunable radio frequency based mobile telecommunication systems

    OpenAIRE

    Wong, Yan Chiew

    2014-01-01

    Tunability and adaptability for radio frequency (RF) front-ends are highly desirable because they not only enhance functionality and performance but also reduce the circuit size and cost. This thesis presents a number of novel design strategies in DC-DC converters, impedance networks and adaptive algorithms for tunable and adaptable RF based mobile telecommunication systems. Specifically, the studies are divided into three major directions: (a) high voltage switch controller ba...

  14. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    Science.gov (United States)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  15. Electrical characteristics for capacitively coupled radio frequency discharges of helium and neon

    Indian Academy of Sciences (India)

    MURAT TANISLI; NESLIHAN SAHIN; SÜLEYMAN DEMIR

    2017-09-01

    In this study, a symmetric radio frequency (RF) (13.56 MHz) electrode discharge system of simple geometry has been designed and made. The electrical properties of capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms using different reactor designs. Calculations are done, in detail, according to the homogeneous discharge model of capacitively coupled RF. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure using this model.

  16. La radio comunitaria como estrategia de comunicacion de la extension pesquera para el desarrollo local

    National Research Council Canada - National Science Library

    Gurgel, Washington

    2011-01-01

    El proposito de este estudio es analizar la radio comunitaria como estrategia de comunicacion en comunidades como la de Isla de Dios, en Recife, Brasil, cuya principal actividad economica es la pesca...

  17. Passive ultra high frequency radio frequency identification systems for single-item identification in food supply chains

    Directory of Open Access Journals (Sweden)

    Paolo Barge

    2017-02-01

    Full Text Available In the food industry, composition, size, and shape of items are much less regular than in other commodities sectors. In addition, a wide variety of packaging, composed by different materials, is employed. As material, size and shape of items to which the tag should be attached strongly influence the minimum power requested for tag functioning, performance improvements can be achieved only selecting suitable radio frequency (RF identifiers for the specific combination of food product and packaging. When dealing with logistics units, the dynamic reading of a vast number of tags could originate simultaneous broadcasting of signals (tag-to-tag collisions that could affect reading rates and the overall reliability of the identification procedure. This paper reports the results of an analysis of the reading performance of ultra high frequency radio frequency identification systems for multiple static and dynamic electronic identification of food packed products in controlled conditions. Products were considered when arranged on a logistics pallet. The effects on reading rate of different factors, among which the product type, the gate configuration, the field polarisation, the power output of the RF reader, the interrogation protocol configuration as well as the transit speed, the number of tags and their interactions were statistically analysed and compared.

  18. A Radio Frequency Electric Current Enhances Antibiotic Efficacy against Bacterial Biofilms

    Science.gov (United States)

    Caubet, R.; Pedarros-Caubet, F.; Chu, M.; Freye, E.; de Belém Rodrigues, M.; Moreau, J. M.; Ellison, W. J.

    2004-01-01

    Bacterial biofilms are notably resistant to antibiotic prophylaxis. The concentration of antibiotic necessary to significantly reduce the number of bacteria in the biofilm matrix can be several hundred times the MIC for the same bacteria in a planktonic phase. It has been observed that the addition of a weak continuous direct electric current to the liquid surrounding the biofilm can dramatically increase the efficacy of the antibiotic. This phenomenon, known as the bioelectric effect, has only been partially elucidated, and it is not certain that the electrical parameters are optimal. We confirm here the bioelectric effect for Escherichia coli biofilms treated with gentamicin and with oxytetracycline, and we report a new bioelectric effect with a radio frequency alternating electric current (10 MHz) instead of the usual direct current. None of the proposed explanations (transport of ions within the biofilm, production of additional biocides by electrolysis, etc.) of the direct current bioelectric effect are applicable to the radio frequency bioelectric effect. We suggest that this new phenomenon may be due to a specific action of the radio frequency electromagnetic field upon the polar parts of the molecules forming the biofilm matrix. PMID:15561841

  19. Implementasi Simple Additive Weighting Untuk Monitoring Aktivitas Perkuliahan Dengan Menggunakan Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Ashari Darmawan

    2017-05-01

    Full Text Available Monitoring of learning activities has a very important role to improve the quality of education in University. The research  aims to develop a monitoring system of learning activities in real time by using simple additive weighting and radio frequency identification technology.A simple additive weighting method is used to determine the weighting of each criterion involved in the system, while radio frequency identification technology is used electronically to identify and store learning activity information. Monitoring system built using learning activities data in the room and lecturer activities using radio frequency identification tag in real time. The results of the system include the recording of monitoring data of lecturing activities that produce lecturer attendance reports on each class in real  time, thus making efficient the time, effort and cost. The system also produces a ranking of lecturer discipline on each of the criteria that gives the difference of outcomes among the consistent lecturers present on schedule with inconsistent lecturers present on schedule. The results of monitoring of lecture activities can be used for university leaders as a decision-making material quickly based on actual data in real time to improve the quality of the learning process.

  20. Penerapan Metode Economical Order Quantity Untuk Sistem Stok Barang Penggudangan dengan menggunakan teknologi Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Teddy Istanto

    2017-05-01

    Full Text Available The application of Economical Order Quantity method to stock warehouse system by using Radio Frequency Identification technology can provide information that can minimize stock availability in real time.  The research aims to develop the stock system using the methods of Economical Order Quantity, Reorder Point and Radio Frequency Identification technology. Computation of Economical Order Quantity is used per month with variables covering amount of raw material, ordering cost and storage cost. Reorder Point computation using lead time variable, raw material usage and safety stock. Safety stock is used if there is a delay in delivery of goods from suppliers, so it does not run out of raw materials and the company can still operate. The inventory data is obtained from transactions of incoming and outgoing goods which are recorded automatically when passing through Radio Frequency Identification reader. The computation of Economical Order Quantity, Reorder Point produces safety stock as output stock system. With the stock of goods in accordance with the fulfillment of Safety stock, then there is no delay in the delivery of goods from suppliers, so it does not run out of raw materials, after determination of the value of re-ordering.

  1. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  2. SPECTRAL CORRELATION METHOD IN THE IDENTIFICATION OF FREQUENCY-SELECTIVE FADING RADIO ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Weng Hong; Wang Hongyuan; Yu Guowen

    2006-01-01

    Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property. To exploit the underlying periodicity of the modulated signal in the real-time recognition scheme of radio environments, this letter introduces a spectral correlation method to identify the number and the direction of multi-path in the environment of frequency-selective fading channel. By simulation, the graphs of spatial spectra corresponding to a certain cycle frequency is presented to show the accuracy of spectral correlation method in multi-path environment recognition.

  3. Transmission of Moessbauer rays through ferromagnets in radio-frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dzyublik, A. Ya., E-mail: dzyublik@ukr.net [Institute for Nuclear Research (Ukraine); Sadykov, E. K. [Kazan (Volga region) Federal University (Russian Federation); Petrov, G. I. [Kazan State Power Engineering University (Russian Federation); Arinin, V. V.; Vagizov, F. G. [Kazan (Volga region) Federal University (Russian Federation); Spivak, V. Yu. [Institute for Nuclear Research (Ukraine)

    2013-08-15

    The transmission of Moessbauer radiation through a thick ferromagnetic crystal, exposed to a radio-frequency (rf) magnetic field, is studied. The quantum-mechanical dynamical scattering theory is developed, taking into account the periodical reversals of the magnetic field at the nuclei. The Moessbauer forward scattering (FS) spectra of the weak ferromagnet FeBO{sub 3} placed into rf field are measured. It is found that the coherent gamma wave in the crystal absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra.

  4. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  5. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    OpenAIRE

    Yi, H. R.; Zhang, Y; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N

    2000-01-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz(1/2) in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz(1/2) at 10 Hz) was present. Compute...

  6. Enhanced tissue integration of implantable electrodes for sensing, and stimulation, via radio frequency glow discharge

    Science.gov (United States)

    O'Connor, Laurie M.

    Biopotential electrodes are conductive materials that convert electronic currents to or from ionic currents for sensing, and stimulating specific tissue sites for medical applications. Implanted electrodes become "walled off" by the foreign body tissue reactions producing poorly attached scar capsules dominated by surrounding dense collagenous lamellae and source fibroblasts which are electrically resistive. The conductive interstitial fluid that is typical between an electrode and the resistive capsule allows spurious current paths. The insulating layer increases the distance between the electrode and the target sites and poor attachment often results in electrode migration within the host tissue. This investigation tested the hypothesis that surface-energy modulation of electrodes, via Radio Frequency Glow Discharge Treatment (RFGDT), can improve the performance of tissue-implantable electrodes by reducing the foreign body tissue reaction and enhancing interfacial bonding between the tissue and electrode material. Previously published findings were reproduced in a pilot study of explanted reference grade medical-grade methyl silicone (PDMS) and commercially pure titanium (cpTi) materials and their tissue capsules from 30-day subcutaneous exposures in Balb/C mice. The low-critical surface tension PDMS produced thick, dense, poorly attached scar capsules while the higher-surface-energy commercially pure titanium (cpTi) produced more cellular and strongly attached tissue layers difficult to delaminate from the biomaterial. For the main body of work, cpTi, capacitor-grade Tantalum (Ta), and synthetic heart valve-quality Pyrolytic Carbon (PyC) were evaluated, representative of potential high-surface-energy implant electrode materials. Their surface characteristics were determined as-manufactured and after Radio Frequency Glow Discharge Treatment (RFGDT) by Critical Surface Tension (CST) measurement, Scanning Electron Microscopy (SEM), Energy Dispersive X

  7. Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars with LOFAR

    CERN Document Server

    Pilia, M; Stappers, B W; Kondratiev, V I; Kramer, M; van Leeuwen, J; Weltevrede, P; Lyne, A G; Zagkouris, K; Hassall, T E; Bilous, A V; Breton, R P; Falcke, H; Grießmeier, J -M; Keane, E; Karastergiou, A; Kuniyoshi, M; Noutsos, A; Osłowski, S; Serylak, M; Sobey, C; ter Veen, S; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Ciardi, B; Corbel, S; de Geus, E; de Jong, A; Deller, A; Duscha, S; Eislöffel, J; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Hamaker, J P; Heald, G; Horneffer, A; Jonker, P; Juette, E; Kuper, G; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; Miller-Jones, J C A; Nelles, A; Paas, H; Pandey-Pommier, M; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Schwarz, D; Smirnov, O; Steinmetz, M; Stewart, A; Swinbank, J D; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, M C; van der Horst, A J; Vermeulen, R; Vocks, C; van Weeren, R J; Wijers, R A M J; Wijnands, R; Wijnholds, S J; Wucknitz, O; Zarka, P

    2015-01-01

    LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in abs...

  8. Digital coherent detection of multi-gigabit 40 GHz carrier frequency radio-over-fibre signals using photonic downconversion

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    Detection of high-speed radio signals is a challenge for next generation radio-over-fibre links, requiring high bandwidth and linearity in the receiver. By using photonic downconversion in a coherent receiver, detection of high bit-rate 16-QAM signals, up to 4 Gbit/s, at a 40 GHz carrier frequency...

  9. Radio astronomy with the Lunar Lander: opening up the last unexplored frequency regime

    CERN Document Server

    Wolt, Marc Klein; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino

    2012-01-01

    The active broadband (1 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the moon, that are essential for future lunar human and science exploration. In addition, the lunar South pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the south (or north) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the big bang and into the period where the first stars formed. A detection of the 21 cm line from the moon at these frequencies would allow for the first time a clue ...

  10. Multifrequency Magneto-optic Bragg Diffraction and Radio Frequency Signal Parallel Processing

    Institute of Scientific and Technical Information of China (English)

    SHANG Dan; WU Bao-jian; QIU Kun

    2008-01-01

    Magneto-optic(MO) coupling of guided optical waves with microwave magnetostatic waves(MSWs) simultaneously excited by multiple radio frequency(RF) signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(Des) are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region. In this paper, studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation, and obtained was the approximate analytical expression for principle diffraction efficiency(PDE). Also, put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction. By calculation and analysis, it is shown that the relative error is not more than 0.3 dB for the case of three RF signals within the frequency space of 60 MHz.

  11. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)

    CERN Document Server

    Bezyazeekov, P A; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Levinson, E; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Rühle, C; Schröder, F G; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pu...

  12. The Tunka Radio Extension: reconstruction of energy and shower maximum of the first year data (ICRC 2015)

    CERN Document Server

    ,

    2015-01-01

    Since its commissioning in autumn 2012, Tunka-Rex, the radio extension of the air-Cherenkov detector Tunka-133, performed three years of air shower measurements. Currently the detector consists of 44 antennas connected to air-Cherenkov and scintillator detectors, respectively, placed in the Tunka valley, Siberia. Triggered by these detectors, Tunka-Rex measures the radio signal up to EeV-scale air-showers. This configuration provides a unique possibility for cross-calibration between air-Cherenkov, radio and particle techniques. We present reconstruction methods for the energy and the shower maximum developed with CoREAS simulations, which allow for a precision competitive with the air-Cherenkov technique. We apply these methods to data acquired by Tunka-Rex in the first year which we use for cross-calibration, and we compare the results with the reconstruction of the energy and the shower maximum by Tunka-133, which provides also a reconstruction for the shower core used for the radio reconstruction. Our met...

  13. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC 4214 and Detection of a Distant Galaxy

    Indian Academy of Sciences (India)

    Shweta Srivastava; N. G. Kantharia; D. C. Srivastava

    2011-12-01

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by GALEX. The galaxy is undergoing continuous star formation which can explain the diffuse emission. We suggest that the diffuse radio continuum emission and X-ray emission detected in the northern part of NGC 4214 is associated with a background galaxy, 2MASX J12153795+3622218.

  14. A new approach to mitigation of radio frequency interference in interferometric data

    CERN Document Server

    Athreya, Ramana

    2009-01-01

    Radio frequency interference (RFI) is the principal factor limiting the sensitivities of radio telescopes, particularly at frequencies below 1 GHz. I present a conceptually new approach to mitigation of RFI in interferometric data. This has been used to develop a software tool (RfiX) to remove RFI from observations using the Giant Metrewave Radio Telescope, India. However, the concept can be used to excise RFI in any interferometer. Briefly, the fringe-stopped correlator output of an interferometer baseline oscillates with the fringe-stop period in the presence of RFI. RfiX works by identifying such a pattern and subtracting it from the data. It is perhaps the only purely software technique which can salvage the true visibility value from RFI-corrupted data. It neither requires high-speed hardware nor real-time processing and works best on normal correlator output integrated for 1-10s. It complements other mitigation schemes with its different approach and the regime it addresses. Its ability to work with dat...

  15. Space-based Radio Imaging at Frequencies below the Ionospheric Cutoff with SIRA

    Science.gov (United States)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Demaio, L. D.; Bale, S. D.; Howard, R. E.; Jones, D. L.; Kasper, J. C.; Reiner, M. J.; Weiler, K. W.

    2005-12-01

    No present or approved spacecraft mission has the capability to provide high angular resolution imaging of solar or magnetospheric radio bursts or of the celestial sphere at frequencies below the ionospheric cutoff. In this presentation, we review a MIDEX-class mission to perform such imaging in the frequency range 30 kHz to 15 MHz. The focus of the mission, the Solar Imaging Radio Array (SIRA), is solar and exploration-oriented, with emphasis on improved understanding and application of radio bursts associated with solar energetic particle (SEP) events and on tracking shocks and other components of coronal mass ejections (CMEs). SIRA will require 12 to 16 micro-satellites to establish a sufficient number of baselines with separations on the order of kilometers. The constellation consists of microsats located quasi-randomly on a spherical shell, initially of radius 5 km. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. The constellation will likely be placed at L1, which is the preferred location for full-time solar observations. Detailed mission science and technology goals will be reviewed.

  16. An Analysis of Near Field and Application of a New Comb-shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new comb-shaped antenna for radio frequency identification is proposed. The kind of antenna can replace some antenna array. So it is very convenient for omnidirectional identification. The test result proves this antenna is viable.

  17. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  18. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    Science.gov (United States)

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-03-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  19. High-Frequency Properties of Ultracool Dwarf Star Radio Transients, or The Little Dwarfs that Could

    Science.gov (United States)

    Ravi, Vikram; Hobbs, George; Keith, Michael; Champion, David; Ferrario, Lilia; Wickramasinghe, Dayal

    2009-07-01

    Radio transients are among the most intriguing phenomena in astronomy. Numerous flaring events, some periodic, have lately surfaced, with only few identified with known objects such as magnetic stars. Periodic, non-thermal, highly circularly-polarised pulses and unusually strong quiescence have been recently detected from three late-type quickly-rotating (~2hr periods) ultracool dwarf stars (>M7) at centimetric wavelengths. This violates empirical relations and quantifiers of dwarf-star surface activity. Measurements of dwarf-star kiloGauss magnetic fields have led to emission models based on dipole fields and incoherent gyrosynchrotron or coherent electron-cyclotron maser mechanisms. We propose to observe two such similar objects at 1cm and 7mm (LP944-20 and DENIS1048-3956) that are known to flare but without detected periodicities. No observations of high-frequency emission from any magnetic star have been published. The broadband capabilities of CABB will provide extraordinary frequency-synthesised sensitivity in a search for periodicity. The obtained spectral indices, along with possible high-frequency spectral cut-offs, will greatly help constrain emission models of magnetic stars. This is the first attempt to characterise the high-frequency transient radio sky, a key science project for future telescopes such as ASKAP and the SKA.

  20. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  1. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    Science.gov (United States)

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  2. Executive summary. [application of laser oriented and radio frequency techniques for space communication

    Science.gov (United States)

    1973-01-01

    The scope of Technology Forecasting for Space Communications is very wide, covering virtually every technology that can directly or indirectly affect space communications. The assigned effort, however, was directed toward a series of studies which individually examined important aspects of space communications and which collectively was interrelated. The contributions of the individual tasks and their interrelationship are indicated. The total effort of the tasks was fairly evenly divided between laser oriented and radio frequency tasks. The investigations show that laser communications have a current state of the art which would allow operational systems to be implemented in the 1975 to 1980 time frame. Further, these systems, when operated over ranges in the order of synchronous ranges (42,000 km)and transmitting data rates of 10 to the 8th power 10 to the 9th power bits per second will have a smaller total weight impact on a spacecraft than do radio systems.

  3. Radio Frequency Compatibility of an RFID Tag on Glideslope Navigation Receivers

    Science.gov (United States)

    Nguyen, Truong X.; Mielnik, John J.

    2008-01-01

    A process is demonstrated to show compatibility between a radio frequency identification (RFID) tag and an aircraft glideslope (GS) radio receiver. The particular tag chosen was previously shown to have significant peak spurious emission levels that far exceeded the emission limits in the GS aeronautical band. The spurious emissions are emulated in the study by capturing the RFID fundamental transmission and playing back the signal in the GS band. The signal capturing and playback are achieved with a vector signal generator and a spectrum analyzer that can output the in-phase and quadrature components (IQ). The simulated interference signal is combined with a desired GS signal before being injected into a GS receiver s antenna port for interference threshold determination. Minimum desired propagation loss values to avoid interference are then computed and compared against actual propagation losses for several aircraft.

  4. LOW-FREQUENCY RADIO OBSERVATIONS OF PICOFLARE CATEGORY ENERGY RELEASES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, R.; Sasikumar Raja, K.; Kathiravan, C.; Satya Narayanan, A., E-mail: ramesh@iiap.res.in [Indian Institute of Astrophysics, Bangalore 560 034 (India)

    2013-01-10

    We report low-frequency (80 MHz) radio observations of circularly polarized non-thermal type I radio bursts ({sup n}oise storms{sup )} in the solar corona whose estimated energy is {approx}10{sup 21} erg. These are the weakest energy release events reported to date in the solar atmosphere. The plot of the distribution of the number of bursts (dN) versus their corresponding peak flux density in the range S to S+dS shows a power-law behavior, i.e., dN {proportional_to} S {sup {gamma}} dS. The power-law index {gamma} is in the range -2.2 to -2.7 for the events reported in the present work. The present results provide independent observational evidence for the existence of picoflare category energy releases in the solar atmosphere which are yet to be explored.

  5. Radio frequency and microwave subsystems section. Dual-frequency feed cone assemblies for 34-meter antennas

    Science.gov (United States)

    Hartop, R. W.

    1978-01-01

    New Cassegrain cone assemblies were designed for the upgrade of three 26 meter-diameter antennas to 34 meter-diameter with improved performance. The new dual-frequency feed cone (SXD) provided both S- and X-band feed systems and traveling wave masers with a reflex reflector system to permit simultaneous operation analogous to the 64-meter antennas.

  6. MULTI-FREQUENCY STUDIES OF RADIO RELICS IN THE GALAXY CLUSTERS A4038, A1664, AND A786

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Ruta; Dwarakanath, K. S., E-mail: ruta@iucaa.ernet.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080 (India)

    2012-01-01

    We present a multi-frequency study of radio relics associated with the galaxy clusters A4038, A1664, and A786. Radio images, integrated spectra, spectral index maps, and fits to the integrated spectra in the framework of the adiabatic compression model are presented. Images of the relic in A4038 at 150, 240, and 606 MHz with the Giant Meterwave Radio Telescope have revealed extended ultra-steep spectrum ({alpha} {approx} -1.8 to -2.7) emission of extent 210 Multiplication-Sign 80 kpc{sup 2}. The model of passively evolving radio lobes compressed by a shock fits the integrated spectrum best. The relic with a circular morphology at the outskirts of the cluster A1664 has an integrated spectral index of {approx} - 1.10 {+-} 0.06 and is best fit by the model of radio lobes lurking for {approx}4 Multiplication-Sign 10{sup 7} yr. The relic near A786 has a curved spectrum and is best fit by a model of radio lobes lurking for {approx}3 Multiplication-Sign 10{sup 7} yr. At 4.7 GHz, a compact radio source, possibly the progenitor of the A786 relic, is detected near the center of the radio relic. The A786 radio relic is thus likely a lurking radio galaxy rather than a site of cosmological shock as has been considered in earlier studies.

  7. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  8. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    Science.gov (United States)

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  9. Overall performance evaluation using an equivalent circuit model for radio-frequency single-electron transistors

    Directory of Open Access Journals (Sweden)

    Saxon Liou

    2012-09-01

    Full Text Available Charge sensitivities of a radio-frequency single-electron transistor (RF-SET by using amplitude (AD and phase-shift detection (PSD of the reflected RF signals were experimentally studied. It was found that AD is most sensitive at the resonant frequency while PSD is most sensitive at a frequency slightly off the resonance. The best PSD sensitivity is better than the best AD one when the quality factor of a tank circuit is higher than 10; the higher Q-value is, the superior PSD. The maximal change in reflection amplitude and phase-shift were found proportional to the SET conductance change. The above experimental findings were confirmed by the calculation based on an equivalent circuit model.

  10. A Behavior Level Analytical Method of Electromagnetic Susceptibility for Radio Frequency Receiver

    Institute of Scientific and Technical Information of China (English)

    YAN Zhaowen; YU Xiaofeng; XIE Shuguo; LIU Yan

    2011-01-01

    Based on simplified Volterra model, a behavior-level simulation analysis approach of electromagnetic susceptibility (EMS) for radio frequency (RF) receiver is presented in this article. Third order simplified Volterra model is adopted to analyze receiver EMS. A general criterion for EMS is proposed according to EMS response characteristics in frequency domain, and then the simulation flow charts for calculating susceptibility thresholds are given. This approach is superior to the previous EMS analysis method on receiver, which mainly relies on experiments but lack simulation analysis. Take the dual frequency GPS receiver and zero IF receiver interfered by continue wave as examples for in-band and out-of-band susceptibility threshold calculation. Simulation results show that the proposed method is not only valid and effective, but also reduces the internal storage and simulation time, which is suitable to RF receiver EMS analysis and practical in engineering and technology field.

  11. A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    CERN Document Server

    Burningham, Ben; Nichols, J D; Casewell, S L; Littlefair, S P; Stark, C; Burleigh, M R; Metchev, S; Tannock, M E; van Weeren, R J; Williams, W L; Wynn, G A

    2016-01-01

    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5+093347, WISEPC J150649.97+702736.0, and WISEPA J174124.26+255319.5. We have placed robust 3-sigma upper limits on the flux density in the 111 - 169 MHz frequency range for these targets: WISE 1506: < 0.72 mJy; WISE 1741: < 0.87 mJy; SIMP 0136: < 0.66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources.

  12. On the application of radio frequency voltages to ion traps via helical resonators

    CERN Document Server

    Siverns, J D; Weidt, S; Hensinger, W K

    2011-01-01

    Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit.

  13. Radio-Frequency Silicon-on-Insulator Modeling Considering the Neutral-Body Effect

    Science.gov (United States)

    Wang, Sheng-Chun; Su, Pin; Chen, Kun-Ming; Lin, Chien-Ting; Liang, Victor; Huang, Guo-Wei

    2008-04-01

    This paper presents small-signal modeling for state-of-the-art radio-frequency (RF) silicon-on-insulator (SOI) metal-oxide-semiconductor field effect transistors (MOSFETs). Especially, we have incorporated the neutral-body effect in our RF SOI model. This effect is significant in both RF extrinsic and intrinsic modeling stages. In addition, we have developed a physically-accurate parameter extraction method based on our analytical expressions. Our modeling results agree well with the measured data and can capture the frequency dependences of both output conductance and capacitance in the GHz frequency region. The anomalous S22 and S21 behaviors as well as the output conductance rising effect observed in our measurements can be predicted and described using the proposed model.

  14. High-frequency radar observations of PMSE modulation by radio heating

    Science.gov (United States)

    Senior, Andrew; Rietveld, Michael; Mahmoudian, Alireza; La Hoz, Cesar; Kosch, Michael; Scales, Wayne; Pinedo, Henry

    The first observations using high-frequency (8 MHz) radar of modulation of polar mesospheric summer echoes (PMSE) by radio heating of the ionosphere are presented. The experiment was performed at the EISCAT facility near Tromsø, Norway. The observations are compared with simultaneous radar measurements at 224 MHz and with a model of the dusty plasma response to electron heating. Agreement between the model and observations is good considering technical limitations on the 8 MHz radar measurements. Predictions made about the response of high-frequency PMSE to heating where dust charging dominates over diffusion, opposite to the situation at very high-frequencies are confirmed. Suggestions are made about improving the 8 MHz observations to overcome the current limitations.

  15. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  16. The Cubesat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) Mission

    Science.gov (United States)

    Misra, S.; Johnson, J. T.; Ball, C.; Chen, C. C.; Smith, G.; McKelvey, C.; Andrews, M.; O'Brien, A.; Kocz, J.; Jarnot, R.; Brown, S. T.; Piepmeier, J. R.; Lucey, J.; Miles, L. R.; Bradley, D.; Mohammed, P.

    2016-12-01

    Passive microwave measurements made below 40GHz have experienced increased amounts of man-made radio frequency interference (RFI) over the past couple of decades. Such RFI has had a degenerative impact on various important geophysical retrievals such as soil-moisture, sea-surface salinity, atmospheric water vapor, precipitation etc. The commercial demand for spectrum allocation has increased over the past couple of years - infringing on frequencies traditionally reserved for scientific uses such as Earth observation at passive microwave frequencies. With the current trend in shared spectrum allocations, future microwave radiometers will have to co-exist with terrestrial RFI sources. The CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) mission is developing a 6U Cubesat system to demonstrate RFI detection and filtering technologies for future microwave radiometer remote sensing missions. CubeRRT will operate between 6-40GHz, and demonstrate on-board real-time RFI detection on Earth brightness temperatures tuned over 1GHz steps. The expected launch date for CubeRRT is early 2018. Digital subsystems for higher frequency microwave radiometry require a larger bandwidth, as well as more processing power and on-board operation capabilities for RFI filtering. Real-time and on-board RFI filtering technology development is critical for future missions to allow manageable downlink data volumes. The enabling CubeRRT technology is a digital FPGA-based spectrometer with a bandwidth of 1 GHz that is capable of implementing advanced RFI filtering algorithms that use the kurtosis and cross-frequency RFI detection methods in real-time on board the spacecraft. The CubeRRT payload consists of 3 subsystems: a wideband helical antenna, a tunable analog radiometer subsystem, and a digital backend. The following presentation will present an overview of the system and results from the latest integration and test.

  17. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    Science.gov (United States)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From

  18. High Frequency Cut-off and Changing of Radio Emission Mechanism in Pulsars

    CERN Document Server

    Kontorovich, V M

    2012-01-01

    Pulsars are the fast rotating neutron stars with strong magnetic field emitting over a wide frequency range. In spite of the efforts during 40 years after the discovery of pulsars, the mechanism of their radio emission remains to be unknown so far. We propose a new approach to solving this problem. The object of our study is a sample of pulsars with a high-frequency break of the spectrum from Pushchino catalogue. A theoretical explanation of the observed dependence of the high-frequency break from the pulsar period is given. The dependence of the break position from the magnetic field is predicted. This explanation is based on a new mechanism for electron emission in the inner polar gap. Radiation occurs when electrons are accelerated in the electric field rising from zero at the star surface. Acceleration passes through a maximum and tends to zero when the electron velocity approaches the velocity of light. The all radiated power is allocated to the radio band. The averaging over the polar cap, with some nat...

  19. Radio-Frequency (RF) Devices for Safeguards: Where We Are and Where We Need to Go

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Pickett, Chris A [ORNL; Whitaker, J Michael [ORNL

    2011-01-01

    Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and asset tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential

  20. A New Approach to Mitigation of Radio Frequency Interference in Interferometric Data

    Science.gov (United States)

    Athreya, Ramana

    2009-05-01

    Radio frequency interference (RFI) is the principal factor limiting the sensitivities of radio telescopes, particularly at frequencies below 1 GHz. I present a conceptually new approach to mitigation of RFI in interferometric data. This has been used to develop a software tool (RfiX) to remove RFI from observations using the Giant Metrewave Radio Telescope, India. However, the concept can be used to excise RFI in any interferometer. Briefly, the fringe-stopped correlator output of an interferometer baseline oscillates with the fringe-stop period in the presence of RFI. RfiX works by identifying such a pattern and subtracting it from the data. It is perhaps the only purely software technique which can salvage the true visibility value from RFI-corrupted data. It neither requires high-speed hardware nor real-time processing and works best on normal correlator output integrated for 1-10 s. It complements other mitigation schemes with its different approach and the regime it addresses. Its ability to work with data integrated over many seconds gives it an advantage while excising weak, persistent RFI unlike most other techniques which use high-speed sampling to localize RFI in time-frequency plane. RfiX is also different in that it does not require RFI-free data to identify corrupted sections. Some results from the application of RfiX are presented including an image at 240 MHz with a peak/noise ratio of 43,000, the highest till date at wavelengths greater than 1 m.

  1. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions

    Science.gov (United States)

    Ryabov, V. B.; Zarka, P.; Hess, S.; Konovalenko, A.; Litvinenko, G.; Zakharenko, V.; Shevchenko, V. A.; Cecconi, B.

    2014-08-01

    We present an analysis of several Jovian Io-related decametric radio storms recorded in 2004-2012 at the Ukrainian array UTR-2 using the new generation of baseband digital receivers. Continuous baseband sampling within sessions lasting for several hours enabled us to study the evolution of multiscale spectral patterns during the whole storm at varying time and frequency resolutions and trace the temporal transformation of burst structures in unprecedented detail. In addition to the well-known frequency drifting millisecond patterns known as S bursts we detected two other classes of events that often look like S bursts at low resolution but reveal a more complicated structure in high resolution dynamic spectra. The emissions of the first type (LS bursts, superposition of L and S type emissions) have a much lower frequency drift rate than the usual quasi linearly drifting S bursts (QS) and often occur within a frequency band where L emission is simultaneously present, suggesting that both LS and at least part of L emissions may come from the same source. The bursts of the second type (modulated S bursts called MS) are formed by a wideband frequency-modulated envelope that can mimic S bursts with very steep negative (or even positive) drift rates. Observed with insufficient time-frequency resolution, MS look like S bursts with complex shapes and varying drifts; MS patterns often occur in association with (i) narrowband emission; (ii) S burst trains; or (iii) sequences of fast drift shadow events. We propose a phenomenological description for various types of S emissions, that should include at least three components: high- and low-frequency limitation of the overall frequency band of the emission, fast frequency modulation of emission structures within this band, and emergence of elementary S burst substructures, that we call "forking" structures. All together, these three components can produce most of the observed spectral structures, including S bursts with

  2. Voluntary Movement Frequencies in Submaximal One- and Two-Legged Knee Extension Exercise and Pedaling.

    Science.gov (United States)

    Stang, Julie; Wiig, Håvard; Hermansen, Marte; Hansen, Ernst Albin

    2016-01-01

    Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n = 16, thereof eight women; 23.4 ± 2.7 years; 1.70 ± 0.11 m; 68.6 ± 11.2 kg). High and fair correlations (R-values of 0.99 and 0.75) occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95) occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence. The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs) of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs appeared

  3. Voluntary movement frequencies in submaximal one- and two-legged knee extension exercise and pedaling

    Directory of Open Access Journals (Sweden)

    Julie Sørbø Stang

    2016-02-01

    Full Text Available Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n=16, thereof 8 women; 23.4±2.7 years; 1.70±0.11 m; 68.6±11.2 kg.High and fair correlations (R-values of 0.99 and 0.75 occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95 occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence.The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs

  4. A Bar Code and Radio-Frequency Identification System for Transfusion Safety

    Institute of Scientific and Technical Information of China (English)

    Sandler SG; DiBandi L; Langeberg A; Gibble J; Wilson C; Feldman CF

    2006-01-01

    This presentation will describe a pilot study of radio-frequency (RF) identification tags ("chips") that was conducted in parallel with standard procedures for the collection and testing of Red Blood Cells (Greater Chesapeake and Potomac Region, American Red Cross Biomedical Services, Baltimore, MD) and transfusion (Georgetown University Hospital, Washington, DC). The purpose of the study was to evaluate whether multi-write RF chips could be attached to blood bags, programmed, and used to facilitate the collection of information from (1) a blood bag manufacturer to (2) a blood collection center and, subsequently, to (3) a hospital transfusion service.

  5. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  6. A novel radio frequency coil for veterinary magnetic resonance imaging system

    Science.gov (United States)

    Meng, Bin; Huang, Kai-Wen; Wang, Wei-Min

    2010-07-01

    In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.

  7. Epiphysiodesis Made with Radio Frequency Ablation: First Results from a Pilot Study

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Rahbek, Ole; Stødkilde-Jørgensen, Hans

    pigs were used. A control leg was randomly selected and the contralateral treated at two ablation sites (lateral and medial) identified at the proximal tibia growth plate using x-ray. Under general anesthesia, a probe was inserted and the ablation performed. T1, T2 and water content MR images were...... to the surrounding cartilage structures was found. The animals could walk normally after the anesthesia and no signs of pain or discomfort were presented during the follow-up period. Conclusions Epiphysiodesis using radio frequency ablation is an innovative technique that may represent an alternative way...

  8. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S., E-mail: shussain@uos.edu.pk, E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A. [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)

    2014-03-15

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  9. A 900-2400 MHz AC-DC Rectifier Circuit for Radio Frequency Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Rosli M.A.

    2016-01-01

    Full Text Available This paper presents a 900-2400 MHz AC-DC rectifier circuit for radio frequency (RF energy harvesting. The proposed circuit consists of a rectifier and charge pump. The multi-stage NMOS RF-DC rectifier circuit is designed to convert the AC signal to DC signal while the charge pump helps to amplify the DC amplitude. The proposed circuits are designed and simulated using CMOS 0.13-μm technology. The simulation results show that the proposed circuit able to produce 2.9 V DC voltage at 10 kΩ load with an input voltage of 150 mV.

  10. Integrated Common Radio Resource Management with Spectrum Aggregation over Non-Contiguous Frequency Bands

    DEFF Research Database (Denmark)

    Cabral, Orlando; Meucci, Filippo; Mihovska, Albena D.;

    2011-01-01

    This paper proposes an integrated Common Radio Resource Management (iCRRM). The iCRRM performs classic CRRM functionalities jointly with Spectrum Aggregation (SA), being able to switch users between non-contiguous frequency bands. The SA scheduling is obtained with an optimised General Multi......-Band Scheduling (GMBS) algorithm with the aim of cell throughput maximisation. In particular, we investigate the dependence of the throughput on the cell coverage distance for the allocation of users over the 2 and 5 GHz bands for a single operator scenario under a constant average Signal to Interference...

  11. Radio-Frequency Interference Identification Over Oceans for C- and X-Band AMSR2 Channels

    OpenAIRE

    Zabolotskikh, Elizaveta; Mitnik, Leonid M.; Chapron, Bertrand

    2015-01-01

    A new method for radio-frequency interference (RFI) contamination identification over open oceans for the two C-subbands and X-band of Advanced Microwave Scanning Radiometer 2 (AMSR2) channel measurements is suggested. The method is based both on the AMSR2 brightness temperature (T-B) modeling and on the analysis of AMSR2 measurements over oceans. The joint analysis of T-B spectral differences allowed to identify the relations between them and the limits of their variability, which are ensure...

  12. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  13. Electrical and thermal analyses for the radio-frequency circuit of ITER NBI ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zamengo, A. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy)], E-mail: andrea.zamengo@igi.cnr.it; Recchia, M. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy); Department of Electrical Engineering, University of Padua, Via Gradenigo 6/A, 35131 Padova (Italy); Kraus, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Bigi, M. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy); Martens, C. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Toigo, V. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti, 4, 35127 Padova (Italy)

    2009-06-15

    This paper covers specific electrical and thermal aspects of the radio-frequency (RF) circuit which supplies the ion source of the International Thermonuclear Experimental Reactor (ITER) Neutral Beam Injector (NBI). Firstly, a matching circuit for the RF Antennas is presented and a possible solution for the matching components discussed, in relation to the anticipated equivalent circuit parameters of the RF driven plasma. Secondly, the thermal behaviour of the RF transmission line is analyzed, utilising finite element tools, to evaluate the RF line overtemperature under the heaviest foreseen operating conditions.

  14. The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

    Indian Academy of Sciences (India)

    V Banerjee; Alok Chakrabarti; Arup Bandyopadhyay; T K Bhaumik; M Mondal; T K Chakraborty; H Pande; O Kamigaito; A Goto; Y Yano

    2002-12-01

    A radio frequency quadrupole LINAC has been designed for the VECC-RIB project for an input beam energy of 1.0 keV/u and / ≥ 1/16. The output energy will be about 90 keV/u for a 3.4 m long, 35 MHz structure. A half-scale cold model of the RFQ has been fabricated and tested for rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

  15. Improvement on control system of the JT-60 radio frequency heating system

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)

  16. Breakdown in hydrogen and deuterium gases in static and radio-frequency fields

    CERN Document Server

    Korolov, I

    2015-01-01

    We report the results of a combined experimental and modeling study of the electrical breakdown of hydrogen and deuterium in static (DC) and radio-frequency (RF, 13.56 MHz) electric fields. For the simulations of the breakdown events, simplified models are used and only electrons are traced by Monte Carlo simulation. The experimental DC Paschen curve of hydrogen is used for the determination of the effective secondary electron emission coefficient. A very good agreement between the experimental and the calculated RF breakdown characteristics for hydrogen is found. For deuterium, on the other hand, presently available cross section sets do not allow a reproduction of RF breakdown characteristics.

  17. High power continuous wave atomic Xe laser with radio frequency excitation

    Science.gov (United States)

    Vitruk, P. P.; Morley, R. J.; Baker, H. J.; Hall, D. R.

    1995-09-01

    Radio frequency discharges in Ar/He/Xe gas mixtures have been studied in the range 5-150 MHz, and the importance of the ion sheaths in Xe laser excitation has been recognized. The discharge data have been used to improve the cw Xe laser performance, and efficiencies up to 0.8% observed. Area scaling in the slab geometry has been studied for α discharge excitation at 49 MHz, and multimode cw laser power up to 5.5 W has been observed. High quality beams have been produced at 4.9 W using a hybrid waveguide/unstable resonator.

  18. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Science.gov (United States)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  19. Gold Nanoparticle-Based Sensors Activated by External Radio Frequency Fields

    DEFF Research Database (Denmark)

    Della Vedova, Paolo; Ilieva, Mirolyuba; Zhurbenko, Vitaliy

    2015-01-01

    A novel molecular beacon (a nanomachine) is constructed that can be actuated by a radio frequency (RF) field. The nanomachine consists of the following elements arranged in molecular beacon configuration: a gold nanoparticle that acts both as quencher for fluorescence and a localized heat source......; one reporter fluorochrome, and; a piece of DNA as a hinge and recognition sequence. When the nanomachines are irradiated with a 3 GHz RF field the fluorescence signal increases due to melting of the stem of the molecular beacon. A control experiment, performed using molecular beacons synthesized...

  20. Radio Frequency Surface Impedance Characterization System for Superconducting Samples at 7.5 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Binping Xiao, Charles Reece, Michael Kelley, Larry Phillips, Rongli Geng, Haipeng Wang, Frank Marhauser

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a sapphire-loaded Nb cavity operating at 7.5 GHz has been fabricated to measure the RF surface impedance of flat superconducting samples. Currently, the SIC system can make direct calorimetric surface impedance measurements in the central 0.8 cm2 area of 5 cm diameter disk samples in a temperature range from 2 to 20 K, exposed to a magnetic flux density of up to 14 mT. As an application, we present the measurement results for a bulk Nb sample.