WorldWideScience

Sample records for radio astronomical observatory

  1. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  2. La Plata Astronomical Observatory

    Science.gov (United States)

    Forte, Juan Carlos; Cora, Sofia A.

    La Plata, the current capital city of the province of Buenos Aires, was founded on 19 November 1882 by governor Dardo Rocha, and built on an innovative design giving emphasis to the quality of the public space, official and educational buildings. The Astronomical Observatory was one of the first inhabitants of the main park of the city; its construction started in 1883 including two telescopes that ranked among the largest in the southern hemisphere at that time and also several instruments devoted to positional astronomy (e.g. a meridian circle and a zenith telescope). A dedicated effort has being invested during the last 15 years in order to recover some of the original instrumentation (kept in a small museum) as well as the distinctive architectural values. In 1905, the Observatory, the School of Agriculture and the Museum of Natural Sciences (one of the most important museums in South America) became part of the backbone of La Plata National University, an institution with a strong and distinctive profile in exact and natural sciences. The First School for Astronomy and Related Sciences had been harboured by the Observatory since 1935, and became the current Faculty of Astronomical and Geophysical Sciences in 1983. This last institution carries PhD programs and also a number of teaching activities at different levels. These activities are the roots of a strong connection of the Observatory with the city.

  3. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  4. Lunar astronomical observatories - Design studies

    Science.gov (United States)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  5. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  6. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  7. Torun Radio Astronomy Observatory

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  8. Global Ionosphere Radio Observatory

    Science.gov (United States)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  9. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  10. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  11. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  12. The Virtual Astronomical Observatory Users Forum

    Science.gov (United States)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual

    2013-01-01

    We present the online forum astrobabel.com, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  13. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    Science.gov (United States)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  14. Astronomical analysis of the taosi observatory site

    Science.gov (United States)

    Liu, C. Y.

    2009-01-01

    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  15. A possible Harappan Astronomical Observatory at Dholavira

    CERN Document Server

    Vahia, Mayank N

    2013-01-01

    Astronomy arises very early in a civilization and evolves as the civilization advances. It is therefore reasonable to assume that a vibrant knowledge of astronomy would have been a feature of a civilization the size of the Harappan Civilization. We suggest that structures dedicated to astronomy existed in every major Harappan city. One such city was Dholavira, an important trading port that was located on an island in what is now the Rann of Kutch during the peak of the Harappan Civilization. We have analyzed an unusual structure at Dholavira that includes two circular rooms. Upon assuming strategically-placed holes in their ceilings we examine the internal movement of sunlight within these rooms and suggest that the larger structure of which they formed a part could have functioned as an astronomical observatory.

  16. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  17. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  18. Astronomical Data Integration Beyond the Virtual Observatory

    Science.gov (United States)

    Lemson, G.; Laurino, O.

    2015-09-01

    "Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort

  19. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    OpenAIRE

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J; McGlynn, T. A.; Plante, R.

    2015-01-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within ...

  20. Radio-Astronomical Instruments Observations (Selected Articles),

    Science.gov (United States)

    1982-08-02

    etc. merged into this translation were extracted from the best quality copy available. iii DOC = 82056401 PAGE 1 RADIO-ASTRONOMICAL INSTRUMENTS...itself the series/row of the positive qualities : the possibility of tracking the observed object and the accumulation of signal, the possibility of...L-intoduc ;j~i.a~r DC 82056409 PAGE the installation of quasi-zero mode/conditions this attenuator has remote contril . I’ DOC =82056409 PAGE NA 4 ly

  1. Virtual Observatories: the Future of Astronomical Information

    Science.gov (United States)

    Quinn, Peter J.

    There are currently several funded international efforts on the design and initial deployment of virtual observatories. The Astrophysical Virtual Observatory (AVO) project is an EC supported, three year Phase-A study of a VO for European astronomy. The UK eScience ASTROGRID project is a member of the AVO consortium. Both European projects are affiliated with the US National Virtual Observatory and other international VO projects. I will outline the goals and objectives of these projects and their current status as well as key European and global milestones for the next three years.

  2. The Sensitization of French Observatory Directors to Astronomical Heritage

    Science.gov (United States)

    Le Guet Tully, Françoise; Davoigneau, Jean

    2012-09-01

    An inventory of the heritage of historical astronomical observatories was launched in the mid 1990s as part of a collaboration between the Ministry of Research and the Ministry of Culture. This has produced a significant body of knowledge not only on astronomical instruments, but also on the specificities of astronomical sites and on the architecture of observatories. Other major results of this operation are (i) the development of numerous works on the institutional history of observatories and (ii), at the request of a few directors, the protection as "historical monuments" of some buildings and of collections of instruments. Given that knowledge about astronomical heritage is a prerequisite for proper conservation and intelligent outreach, and given also that the protection of such heritage (as historical monuments) is a major asset that bolsters its cultural value, the long term sustainability of such heritage depends on political decisions and the search for financial support. We shall describe the complex administrative situation of French observatories and outline the various actions undertaken recently to sensitize their directors to astronomical heritage issues.

  3. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  4. The University of Jaén Astronomical Observatory

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L.; García-Hernández, María T.

    2017-01-01

    We present a description and instrumental characterization of the photometric equipment of the Astronomical Observatory of the University of Jaén. The observatory hosts a 41 cm automated telescope inside a 4 m dome located at the university main campus, in the outskirts of the city of Jaén (Spain). This facility is used for educational, outreach and occasional scientific research on bright stellar objects. Despite the observatory location in a light polluted urban area, its performance for differential photometry studies has proven to be very acceptable. The discovery of the Be star LS I +5979 as a peculiar eclipsing binary system is so far the most relevant achievement.

  5. Advantages of a Lunar Cryogenic Astronomical Observatory

    Science.gov (United States)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  6. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  7. A Needs Analysis Study of Amateur Astronomers As Regards To the National Virtual Observatory Outreach

    Science.gov (United States)

    Craig, N.; Price, A.; Mattei, J.; Mendez, B.; Hawkins, I.; UC Berkeley Team; AAVSO Collaboration

    2003-12-01

    Astronomy, more than any other science, benefits from the active contribution of Amateur Astronomers, who bring to this field a high degree of skill and dedication. Amateur Astronomers make direct contributions to informal and public education: they present public lectures and courses; organize star parties, international Astronomy Day programs, and special displays in libraries and shopping malls; they write articles and books and produce radio and television programs; they lobby for planetariums, science centers, public observatories, and even NASA satellites. Above all, amateur astronomers convey their enthusiasm for science with dedication and devotion. They represent a unique and exceptional way in which ordinary citizens can support science and education at the grass-roots level. We have conducted a needs analysis survey, with collaboration of The American Association of Variable Star Observers (AAVSO) to identify areas in which the National Virtual Observatory (NVO) Education & Public Outreach efforts can best address the astronomical needs and interest of the amateur astronomical community. We found that above all amateurs want access to the same data the professionals use and in a format that allows them to use the data in their own personal manner. We will discuss the further results of this qualitative and quantitative survey. This study is supported by Science Education Gateway (SEGway) Project, a NASA SR&T (Supporting Research and Technology) Program.

  8. The organization and management of the Virtual Astronomical Observatory

    OpenAIRE

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular co...

  9. The Organization and Management of the Virtual Astronomical Observatory

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  10. The Research Tools of the Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  11. Digitizer of astronomical plates at Shanghai Astronomical Observatory and its performance test

    Science.gov (United States)

    Yu, Yong; Zhao, Jian-Hai; Tang, Zheng-Hong; Shang, Zheng-Jun

    2017-02-01

    Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of digitizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer’s hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image processing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 µm and the repeatability of digitized brightness is better than 0.01 instrumental magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera linear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300mm × 300mm, which was digitized at different angles, the conversion residuals of positions of common stars on different images were investigated. The results show that the standard deviations of the residuals are better than 0.9 µm and the residual distribution is almost

  12. The Astronomical Virtual Observatory: Lessons Learned, Looking Forward

    Science.gov (United States)

    Genova, F.

    2012-09-01

    The astronomical Virtual Observatory (VO) aims at providing seamless access to the wealth of the discipline's on-line resources, hence at developing global interoperability between them. This is coordinated by the International Virtual Observatory Alliance (IVOA). The paper summarizes the VO history and current evolution. During the first period of VO development, a huge amount of work has been devoted to the development of basic interoperability standards, to set up the VO framework for publication of data and for tools interoperability. This has proven to be a major asset for seamless usage of data. Now the VO is in operation, and the emphasis on supporting the take-up by astronomers and data providers, as well as on outreach, is increasing. A census of European astronomical data centres performed in 2009/2010 shows a large interest in the VO, and a wide diversity of sizes and organisations, in the data centre community. The different strands of work of an operational VO, and the challenges ahead are described, taking in particular the example of the European VO. The European implementation of the VO has been moulded by the specific organisation of European astronomy, with complementary roles of the national and European levels. Local and national projects contribute to the VO development and implementation in their domains of interest and expertise. Several projects supported by the European Commission have helped to shape Euro-VO, with a strong emphasis on coordination of national and intergovernmental agency projects, with actions towards astronomers, data centres and VO developers, including during the last period of outreach towards education and the public. The Astronet Infrastructure Roadmap for European astronomy (2009) has recognized data and the VO as one of the infrastructures of astronomy. The way forward in this context is discussed. In conclusion, the astronomical data infrastructure is put in perspective with the general trends around scientific

  13. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    Science.gov (United States)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  14. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  15. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    Science.gov (United States)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  16. Managing distributed software development in the Virtual Astronomical Observatory

    Science.gov (United States)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  17. Twenty five years National Astronomical Observatory: Publications and dissertations

    Science.gov (United States)

    Iliev, Ilian

    The idea to estimate the merits and to measure the impact of the National Astronomical Observatory of Bulgaria by creating the list with all publications and dissertations based fully or in part on the data collected during last 25 years with its telescopes is presented. The process of compiling the list is described. Its last version contains complete bibliographical data about more than 1000 publications with total volume of about 5500 journal pages. All of them are printed out in 1980--2005. The accumulated impact-factor exceeds 1000, the number of citations is expected to be between 3000 and 5000. The number of successful dissertations is close to 40, while the bachelor and master theses are near 100.

  18. The caracol tower at chichen itza: an ancient astronomical observatory?

    Science.gov (United States)

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    the front of the structure. It may be astronomically significant that the Yucatecan towers fronted in approximately the same direction. Andrews (34) reports the existence of a curious circular building located at Puerto Rico, Campeche, near Xpujil. His crosssectional view of the tower bears a close resemblance to Ruppert's sketch (6, figure 293) of a horizontal section taken through the windows remaining at the top of the Caracol. Hartung (12) has suggested a possible astronomical use for the Puerto Rico tower, but no analysis of the orientation of its "windows," which are much smaller than those of the Caracol, has yet been conducted. Other circular buildings are reported at Ake (20, p. 113) and Isla Cozumel (35, p. 557). We hope that future investigations of the remains of Yucatecan towers will shed further light upon the significance and use of the Caracol as an astronomical observatory.

  19. Radio Recombination Lines as Tools for Astronomers and Physicists

    Science.gov (United States)

    Gordon, M. A.

    2008-10-01

    Described by simple atomic theory published in 1913 by Niels Bohr, spectral lines in the radio range arising from transitions between large principal quantum numbers of atoms have proved to be useful tools for astronomers and physicists. Called ``radio recombination lines'' because of the wavelength range where most are observed, they are usually easy to detect, give unique information about astronomical objects, and facilitate the study of physical effects in environments that cannot be created in terrestrial laboratories. Observations have revealed unexpected results regarding thermodynamic populations of the principal quantum levels and about pressure broadening in astronomical environments. Detections of large-n lines, such as the n = 1006-->1010 absorption line of interstellar carbon, show the existence of atoms with classical diameters of about 0.1 mm, the thickness of a sheet of typing paper. This paper briefly discusses observations of Stark broadening reported by Bell et al. in 2002.

  20. Recollections of Tucson Operations The Millimeter-Wave Observatory of the National Radio Astronomy Observatory

    CERN Document Server

    Gordon, M A

    2005-01-01

    This book is a personal account of the evolution of millimeter-wave astronomy at the National Radio Astronomy Observatory. It begins with the construction of the hugely successful, but flawed, 36 ft radio telescope on Kitt Peak, Arizona, and continues through the funding of its ultimate successor, the Atacama Large Millimeter-wave Array (ALMA), being constructed on a 5.000 m (16.500 ft) site in northern Chile. The book describes the behind-the-scene activities of the NRAO Tucson staff. These include the identification and solution of technical problems, the scheduling and support of visiting astronomers, and the preparations and the politics of the proposal to replace the 36 ft telescope with a 25 m telescope on Mauna Kea, Hawaii. The book also describes the installation of a new 12 m surface and the involvement of the Tucson staff in the ALMA project. Finally, it describes events leading to the closing of the 36 ft telescope and, eventually, of the NRAO offices in Tucson.

  1. Radio Recombination Lines. Their Physics and Astronomical Applications

    Science.gov (United States)

    Gordon, M. A.; Sorochenko, R. L.

    2002-11-01

    This book is a comprehensive guide to the physics and observations of Radio Recombination Lines from astronomical sources, written for astronomers, physicists, and graduate students. It serves as a graduate-level textbook. It includes the history of RRL detections, the astrophysics underlying their intensities and line shapes including topics like departures from LTE and Stark broadening, the maximum possible size of an atom, as well as detailed descriptions of the astronomical topics for which RRLs have proved to be effective tools. The text includes more than 250 equations and 110 illustrations. It also contains hundreds of specific references to the astronomical literature to enable readers to explore additional details. The appendix includes supplementary information such as the detailed physics underlying the Bohr atomic model, tables of RRL frequencies including fine structure components, techniques for calculating hydrogenic oscillator strengths, FORTRAN code for calculating departure coefficients, and a discussion with formulas for converting observational (telescope) intensity units to astrophysical ones. Link: http://www.wkap.nl/prod/b/1-4020-1016-8

  2. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  3. Remote observatories for amateur astronomers using high-powered telescopes from home

    CERN Document Server

    Hubbell, Gerald R; Billard, Linda M

    2015-01-01

    Amateur astronomers who want to enhance their capabilities to contribute to science need look no farther than this guide to using remote observatories.  The contributors cover how to build your own remote observatory as well as the existing infrastructure of commercial networks of remote observatories that are available to the amateur. They provide specific advice on which programs to use based on your project objectives and offer practical project suggestions. Remotely controlled observatories have many advantages—the most obvious that the observer does not have to be physically present to carry out observations. Such an observatory can also be used more fully because its time can be scheduled and usefully shared among several astronomers working on different observing projects. More and more professional-level observatories are open to use by amateurs in this way via the Internet, and more advanced amateur astronomers can even build their own remote observatories for sharing among members of a society ...

  4. A New Astronomical Facility for Peru: Converting a Telecommunication's 32 Meter Parabolic Antenna into a Radio Telescope

    Science.gov (United States)

    Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.

    2006-08-01

    In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.

  5. Searching Minor Planets and Photometric Quality of 60cm Reflector in Gimhae Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Sang Hyun Lee

    2007-09-01

    Full Text Available In this paper, we have presented the observational result for the photometric quality of main telescopes in Gimhae Astronomical Observatory. Also we performed the observation of searching new minor planets as competitive work in public observatories. The observation was carried out using 60cm telescope of Gimhae Astronomical Observatory on 2007 January 13. And, Schüler BVI filters and 1K CCD camera (AP8p were used. To define the quality of CCD photometry, we observed the region of well-known standard stars in the open cluster M67. From observed data, The transformation coefficients and airmass coefficients were obtained, and the accuracy of CCD photometry was investigated. From PSF photometry, we obtained the color-magnitude diagram of M67, and considered the useful magnitude limit and the physical properties of M67. This method can be successfully used to confirm the photometric quality of main telescope in public observatories. To investigate the detection possibility of unknown object as astroid, we observed the near area of the opposition in the ecliptic plane. And we discussed the result. Our result show that it can be possible to detect minor planets in solar system brighter than V ˜18.3mag. and it can carry out photometric study brighter than V~16mag. in Gimhae Astronomical Observatory. These results imply that the public observatories can make the research work.

  6. The Astronomical Observatory of the University of Coimbra (1772--1799): its Instruments and Scientific Activity

    Science.gov (United States)

    Figueiredo, Fernando B.

    2012-09-01

    The establishment of scientific education at the University of Coimbra was one of the most important features of the Reform of the University in 1772. One of the best examples is the creation of the Faculty Mathematics and of the Astronomical Observatory (OAUC) - it was here that Alexandre Gouveia (1731--1808), who would be bishop of Beijing (1785--1808), obtained his degree in Mathematics. The foundation of the OAUC was fundamental in the institutionalization of astronomical science in Portugal, during a period when astronomy, supported by the great theoretical advances of the celestial mechanics and applied mathematics, could finally provide some important solutions to the most prominent scientific problems since Newton (questions about celestial mechanics, navigation, geodesy, etc.). Such questions were also central in the conception and planning of OAUC - the first Portuguese university-based astronomical observatory, although with aspects of a National Observatory. Jose Monteiro da Rocha (1734--1819) was the central personality in the conception, planning and construction of OAUC, as well in its instrument's provision (purchased and assembled throughout the 1780s) and posterior scientific activity. The construction of the OAUC was originally planned for the site of the Castle of the city of Coimbra. In 1775, when only the first floor of the Observatory was built, the construction stopped. However, to fulfill the teaching needs a small provisional Observatory was built inside the courtyard of the University. This provisional Observatory would eventually run for about 15 years! The definitive OAUC was built between the years 1790--99. In this communication we pretend to study the establishment of the OAUC and its primary astronomical collection (a transit instrument, a portable quadrant, a sector, several telescopes, etc.) and how that collection was responsible for the construction plan of the OAUC and the establishment of its Astronomical Ephemeris (1803).

  7. The BOOTES-5 telescope at San Pedro Martir National Astronomical Observatory, Mexico

    Science.gov (United States)

    Hiriart, D.; Valdez, J.; Martínez, B.; García, B.; Cordova, A.; Colorado, E.; Guisa, G.; Ochoa, J. L.; Nuñez, J. M.; Ceseña, U.; Cunniffe, R.; Murphy, D.; Lee, W.; Park, Il H.; Castro-Tirado, A. J.

    2016-12-01

    BOOTES-5 is the fifth robotic observatory of the international network of robotic telescopes BOOTES (Burst Observer and Optical Transient Exploring Optical System). It is located at the National Astronomical Observatory at Sierra San Pedro Martir, Baja California, Mexico. It was dedicated on November 26, 2015 and it is in the process of testing. Its main scientific objective is the observation and monitoring of the optic counterparts of gamma-ray bursts as quickly as possible once they have been detected from space or other ground-based observatories. BOOTES-5 fue nombrado Telescopio Javier Gorosabel en memoria del astrónomo español Javier Gorosabel Urkia.

  8. Making Press Release Astronomical Images Compliant with the National Virtual Observatory

    Science.gov (United States)

    Frattare, L. M.; Levay, Z. G.; Summers, F. J.; Bandara, K.

    2005-12-01

    The beauty and splendour of astronomical images has made an enormously positive impact with the media and public alike. As a leading provider of astronomical imagery and a major contributor of Hubble Space Telescope press release images, the outreach division of the Space Telescope Science Institute (STScI) recognizes the importance of making press release images compliant with Virtual Observatory standards for inclusion in databases and repositories. A small working group has been formed to define and evaluate the procedures for making outreach images accessible by Virtual Observatory applications, and more specifically, to establish a World Coordinate System (WCS) for these images, which so far have none. We report on the status of various software techniques that can be used to transform coordinates on images easily and accurately, using reference images and astronomical star catalogues when available.

  9. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    Science.gov (United States)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  10. Science and Antenna Array Trade Studies for Low Frequency Radio Observatories on the Lunar Surface

    Science.gov (United States)

    MacDowall, R. J.; Burns, J. O.

    2017-10-01

    A "low-frequency" radio astronomy observatory on the lunar surface would serve to address science goals that cannot be achieved by ground-based observatories. We describe status and plans for such an observatory.

  11. Realization of the Vilnius photometric system for CCD-observations of selected sky areas at the Andrushivka Astronomical Observatory

    Science.gov (United States)

    Andruk, V.; Butenko, G.; Gerashchenko, O.; Ivashchenko, Yu.; Kovalchuk, G.; Lokot', V.; Samoylov, V.

    2005-06-01

    We describe a set of glass UPXYZVS filters of the Vilnius photometric system of the Andrushivka Astronomical Observatory in Zhytomyr Region (Ukraine) [7]. They are installed at the Zeiss-600 Cassegrain reflector together with the 15-bit 1024×1024 CCD-camera S1C-017. The response curves of instrumental photometric systems are presented and a comparison of them with a standard system are analysed. Test observations in the Vilnius system of the star cluster IC 4665 with the Andrushivka filters were carried out in May--June 2003. The MIDAS/ROMAFOT and ASTROIMAGE software is adapted for digital processing of CCD-images of stellar fields. Comprehensive ground-based observations are being planned to design a catalogue of primary UPXYZVS CCD-standards in selected areas of the sky where are with radio sources, globular and open clusters, etc.

  12. Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories

    Science.gov (United States)

    Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.

    2016-12-01

    We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.

  13. Building a pipeline of talent for operating radio observatories

    Science.gov (United States)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  14. Protection of Hawaii’s observatories from light pollution and radio frequency interference

    Science.gov (United States)

    Wainscoat, Richard

    2015-08-01

    The island of Hawaii is home to Maunakea Observatory, the largest collection of optical and infrared telescopes in the world. Haleakala Observatory on Maui is also an excellent observing site, and is home to the Pan-STARRS telescopes, the Faulkes Telescope North, solar telescopes, and military telescopes.The dark night sky over Maunakea has been well protected by a strong lighting ordinance, and remains very dark. The National Park Service night sky team recently visited Maunakea, and found it to have a darker night sky than any of the US National Parks that they have visited.Haleakala is more threatened, because Maui has a weaker lighting ordinance, and it is a smaller island, meaning that people live and work closer to the telescopes. Haleakala is also closer to Honolulu, and the urban glow from Honolulu contributes to an artificially bright sky in the northwest direction. Although there is no astronomical research done on the island of Kauai, it has some of the best lighting in the world, because endangered birds on Kauai become confused and disoriented by unshielded lights.The county and state lighting regulations will be described in detail. Enforcement issues will also be discussed.The efforts that have been made to protect Maunakea observatory from radio frequency interference, and to reduce radio frequency interference on Haleakala will also be described.

  15. Observations of Low Frequency Solar Radio Bursts from the Rosse Solar-Terrestrial Observatory

    Science.gov (United States)

    Zucca, P.; Carley, E. P.; McCauley, J.; Gallagher, P. T.; Monstein, C.; McAteer, R. T. J.

    2012-10-01

    The Rosse Solar-Terrestrial Observatory (RSTO; http://www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53°05'38.9″, 7°55'12.7″) in 2010 to study solar radio bursts and the response of the Earth's ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range of 10 - 870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range of 10 - 400 MHz are obtained with four sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of samples of type II, III and IV radio bursts. In particular, we describe the fine-scale structure observed in type II bursts, including band splitting and rapidly varying herringbone features.

  16. The Role of the Virtual Astronomical Observatory in the Era of Big Data

    Science.gov (United States)

    Berriman, G. B.; Hanisch, R. J.; Lazio, T. J.

    2013-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. The rapid growth in the size and complexity of data sets is transforming the computing landscape in astronomy. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of an information backbone that responds to this growth. Such a backbone will, when complete, provide innovative mechanisms for fast discovery of, and access to, massive data sets, and services that enable distributed storage, publication processing of large datasets. All these services will be built so that new projects can incorporate them as part of their data management and processing plans. Services under development to date include a general purpose indexing scheme for fast access to data sets, a cross-comparison engine that operate on catalogs of 1 billion records or more, and an interface for managing distributed data sets and connecting them to data discovery and analysis tools. The VAO advises projects on technology solutions for their data access and processing needs, and recently advised the Sagan Workshop on using cloud computing to support hands-on data analysis sessions for 150+ participants. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  17. Comparison of Superconducting and Spring Gravimeters at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan

    Science.gov (United States)

    Miura, Satoshi; Ikeda, Hiroshi; Kim, Tae-Hee; Tamura, Yoshiaki

    2017-04-01

    Continuous microgravity monitoring is utilized to gain new insights into changes in the subsurface distribution of magma and/or fluid that commonly occur beneath active volcanoes. Rather new superconducting and spring gravimeters, iGrav#003 and gPhone#136 are collocated with a superconducting gravimeter, TT#70 at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan, since the end of September, 2016 in order to evaluate those performances before field deployment planned in 2017. Calibration of iGrav#003 was carried out by collocation with an absolute gravimeter FG5 of the Earthquake Research Institute, University of Tokyo (Okubo, 2016, personal comm.) at a Fundamental Gravity Station in Sendai in July, 2016. Based on the scale factors of iGrav#003 obtained by the calibration and of gPhone#136 provided by the manufacturer (Micro-g LaCoste, Inc.), tidal analyses are performed by means of BAYTAP-G (Tamura et al., 1991, GJI). Amplitudes and phases of each major tidal constituent mutually agree well within ±4 % and ±3 degrees, respectively. The instrumental drift rate of iGrav#003 is very low, about 5 micro-Gal/month, whereas that of gPhone#136 is very high, about 500 micro-Gal/month. The high drift rate of gPhone#136, however, is well approximated by a quadratic function at present and can be removed. The detrended time series of gPhone#136 shows good agreement with iGrav#003 time series in the overall feature: gravity fluctuations with amplitudes of about a few micro-Gal and with durations of a few days, which may be due to variations in the moisture content of the topmost unsaturated sedimentary layer and the water table height. It suggests that both instruments may capture volcanic signals associated with pressure changes in magma chambers, dike intrusion/withdrawing, and so on. iGrav#003 will be installed in the Zao volcanological observatory of Tohoku University located at about 3 km from the summit crater, and gPhone#136 will be

  18. New Az/El mount for Haystack Observatory's Small Radio Telescope kit

    Science.gov (United States)

    Cobb, M. L.

    2005-12-01

    The Small Radio Telescope (SRT) kit was designed by Haystack Observatory as part of their educational outreach effort. The SRT uses a custom designed FFT based radio spectrometer receiver with a controller to position a 2.3m dish to make various radio astronomy observations including the 21 cm spin flip line of atomic hydrogen. Because there is no sizable commercial market for a two dimensional mount for dishes of this size, finding an appropriate provider as been a recurring problem for the project. Originally, the kit used a modified motor mount from Kaultronics called the H180. Two of these motors were combined by a specially designed adaptor to allow motion in azimuth and elevation. When Kaultronics was bought out by California Amplifier they discontinued production of the H180. The next iteration used a compact unit called the alfa-spid which was made in Germany and imported through Canada. The alfa-spid was designed to point various ham radio antennas and proved problematic with 2.3m dishes. Most recently the CASSI (Custom Astronomical Support Services, Inc.) corporation has designed and certified a robust Az/El mount capable of supporting dishes up to 12 feet (3.6m) with 100 MPH wind loads. This paper presents the design and operating characteristics of the new CASSI mount. The CASSI mount is now shipped with the SRT kit and should serve the project well for the foreseeable future.

  19. TESELA: a new Virtual Observatory tool to determine blank fields for astronomical observations

    Science.gov (United States)

    Cardiel, N.; Jiménez-Esteban, F. M.; Alacid, J. M.; Solano, E.; Aberasturi, M.

    2011-11-01

    The observation of blank fields, regions of the sky devoid of stars down to a given threshold magnitude, constitutes one of the typical important calibration procedures required for the proper reduction of astronomical data obtained in imaging mode. This work describes a method, based on the use of the Delaunay triangulation on the surface of a sphere, that allows for easy generation of blank-field catalogues. In addition to that, a new tool named TESELA, accessible through the Internet, has been created to facilitate the user to retrieve, and visualize using the Virtual Observatory tool ALADIN, the blank fields available near a given position in the sky.

  20. Preventing Rape of the Observatory: Thoughts on the Urgency of Preserving Historic Astronomical Artifacts

    Science.gov (United States)

    Bell, T. E.

    2005-12-01

    "What good is this century-old monster refractor? Sell it and use the money to buy a brand new go-to reflector useful for teaching students and advancing astronomy." So argues logic that is endangering an increasing number of university observatories around the U.S. (if not the rest of the world), even up to the Yerkes Observatory and its 40-inch Clark, world's largest refractor by the acknowledged world's best lens-makers. While most non-historians readily accept the value of preserving our cultural heritage in rare and precious documents (such as the Declaration of Independence), artifacts (such as Stradivarius violins), and institutions (such as the birthplaces of U.S. Presidents), they tend not to think of astronomical observatories as part of cultural heritage-with a result that history is crumbling apace to the wrecking ball. In early October, the Antique Telescope Society convened a special 60-minute session discussing philosophical why's and practical how's of preserving astronomical assets (including historically significant telescopes, observatory buildings, auxiliary equipment used to make observations or calculate results, and libraries of books and papers). This paper will summarize the discussion's key insights - including the assessing and assigning of value to old vs. new telescopes, and the roles of politics, funding and fund-raising, publicity (positive and negative), education, use as a form of preservation, innovative solutions by private collectors (including "half-way houses" for homeless instruments), restoration vs. renovation, special problems facing very large telescopes, and lessons learned from both failures and success.

  1. From Amateur Astronomer to Observatory Director: The Curious Case of R. T. A. Innes

    Science.gov (United States)

    Orchiston, Wayne

    Robert Innes was one of a select band of amateur astronomers who made the transition to professional ranks towards the end of the nineteenth century. Initially he had a passion for mathematical astronomy, but after settling in Sydney he developed a taste for observational astronomy, specialising in the search for new double stars. He quickly became known for his success in this field and for his publications on solar system perturbations, and with John Tebbutt's patronage managed to secure a clerical position at the Royal Observatory, Cape of Good Hope. Once there he continued to observe in his spare time and to publish, and, with strong support from Sir David Gill, was appointed founding Director of the Transvaal Observatory. By the time he died in 1933, Innes had received an honorary D.Sc. from Leiden University, and had established an international reputation as a positional astronomer. This paper provides an interesting case study of a well-known `amateur-turned-professional', and an example of the ways in which patronage played a key role in nineteenth and early twentieth century Australian and South African astronomy.

  2. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Directory of Open Access Journals (Sweden)

    Frédéric P. A. Vogt

    2017-06-01

    Full Text Available Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF on Unit Telescope 4 (UT4 of the Very Large Telescope (VLT, we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R≅3000 of the uplink laser beams over the wavelength range of 4750 Å–9350 Å. We report the first detection of laser-induced Raman scattering by N_{2}, O_{2}, CO_{2}, H_{2}O, and (tentatively CH_{4} molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT. At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam

  3. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Science.gov (United States)

    Vogt, Frédéric P. A.; Bonaccini Calia, Domenico; Hackenberg, Wolfgang; Opitom, Cyrielle; Comin, Mauro; Schmidtobreik, Linda; Smoker, Jonathan; Blanchard, Israel; Espinoza Contreras, Marcela; Aranda, Ivan; Milli, Julien; Jaffe, Yara L.; Selman, Fernando; Kolb, Johann; Hibon, Pascale; Kuntschner, Harald; Madec, Pierre-Yves

    2017-04-01

    Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on Unit Telescope 4 (UT4) of the Very Large Telescope (VLT), we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R ≅3000 of the uplink laser beams over the wavelength range of 4750 Å-9350 Å. We report the first detection of laser-induced Raman scattering by N2 , O2 , CO2 , H2O , and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT). At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional

  4. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    Science.gov (United States)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  5. History of the astronomical almanacs, yarbooks and calendars, the particapation of the Kyiv University Observatory in their creation

    Science.gov (United States)

    Kazantseva, L. V.

    2017-05-01

    Astronomical Ephemeris, information about the circumstances of apparition various celestial objects long been used for professionals as well as amateur astronomy. The story of annual reference books with similar information was studied not well. In publications sometimes appear inconsistent and incomplete data. In particular, little known facts about participation of Kyiv astronomers in the creation of such publications, it was since the nineteenth century. The analysis of archival sources and funds Astronomical Museum allow drawing conclusions about the significant contribution the University Observatory to ephemeris service

  6. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  7. Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekott, I.; Allison, P.; Docters, W.; Messina, S.; Scholten, O.; van den Berg, A.

    2016-01-01

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the

  8. Autoguiding system for the 2-m RCC telescope of the Rozhen National Astronomical Observatory

    Science.gov (United States)

    Bonev, Tanyu; Lukarski, Hristo; Parov, Ivan; Neykov, Svetoslav; Marinkov, Valeri; Yaramov, Krassimir

    This paper describes the design, the parameters, and the basics of operation of the autoguider for the 2-meter telescope of the Rozhen National Astronomical Observatory. The results of tests are presented which aimed the characterization the response of the telescope against short-time corrections. Special attention is devoted to particular details of the system which were included in order to assure correct operation of the autoguider in case of sporadic displacements from the nominal telescope tracking. First tests of long exposure observations obtained with autoguiding show a substantial increase of the imaging quality in the Ritchey-Chretien focus of the 2-m telescope. The autoguiding system was designed and manufactured with financial support by UNESCO - Regional Bureau for Science and Culture Europe (BRESCE).

  9. Ultraviolet television data from the orbiting astronomical observatory. II - Stellar ultraviolet colors and interstellar extinction

    Science.gov (United States)

    Peytremann, E.; Davis, R. J.

    1974-01-01

    The results from the Celescope Catalog of Ultraviolet Stellar Observations (Davis, Deutschman, and Haramundanis 1973) are studied, emphasizing statistical groups and subgroups of stars. In spite of the rather large observational errors, the great number of Celescope observations make it possible to do that kind of study with reasonable accuracy. Some stars have ultraviolet colors that differ significantly from those of the group to which they have been assigned on the basis of ground-based observations. An attempt is made to describe the general properties of the ultraviolet colors of the stars as observed by the Celescope experiment on board NASA's Orbiting Astronomical Observatory (OAO-2). Besides the direct applicability of these results to the general study of stellar atmospheres and of interstellar extinction, they are also considered as a frame of reference for further studies of individual stars and groups of stars.

  10. Four criteria to find an optimal location in Colombia for a millimeter wave astronomical observatory

    Science.gov (United States)

    Ramírez Suárez, O. L.; Martínez Mercado, A. M.; Restrepo Gaitán, O. A.; Chaparro Molano, G.

    2017-07-01

    To find an optimal location for a mm-wave astronomical observatory, all factors that directly or indirectly affect the water vapor column density should be considered. After estimating a weighted classification of these factors to obtain a range of acceptable values, places satisfying as many of these suitability conditions can be proposed as candidates. Here we analyze data from NASA and IDEAM to find places satisfying the best conditions to build a mm-wave astronomical observatory in Colombia, according to seven variables grouped into four classes. From NASA, we analyze the satellite data of: (i) relative humidity and (ii) cloud coverage/direct normal radiation, averaged monthly from 1983 to 2005. From IDEAM, we analyze data of relative humidity, sunshine, and (iii) precipitation/number of days with rain, averaged yearly over each month from 1981 to 2010. The data has been obtained in-situ by 2046 weather monitoring stations across Colombia, for which their (iv) altitude is known. For each quantity, we do a Principal Component Analysis, reducing the dimensionality of the yearly-averaged data to 2 components covering >90% of the variance. After this, we make a classification of the reduced-dimension data using a 4 cluster Gaussian Mixture Model (GMM), identifying similar geographic and climatological patterns. After selecting clusters of stations sharing optimal conditions (i.e. high altitude, low rain, etc.), we group and look for geographical clusters by applying a GMM on a Monte Carlo sampling of latitude, longitude, and altitude data in order to correct for biases. This method allows us to find regions of interest where further in-situ measurements of atmospheric absorption of mm-wave should be carried out in the future.

  11. Measuring light pollution in Beijing and effects on Xinglong Station of National Astronomical Observatory

    Science.gov (United States)

    LU, Ligen; ZHANG, Baozhou; AI, Mingze; LIU, Jian; ZENG, Shanshan

    2015-08-01

    A light pollution survey in Beijing has been carried on to assess the quality of the night sky. To measure the absolute luminance of night sky directly, a portable night-sky luminance meter was developed specially for this survey. With a 2-degree field of view, the meter is sensitive only to a narrow cone of the sky and capable of detecting the minimum luminance of 10-6 cd/m2 (equivalent to 27.4 mag/arcsec2). The night-sky brightness was measured at seven sites, of which six are almost in line but with different distances from the city center. The Xinglong Station of National Astronomical Observatory was included to study the impacts of city lightings on an astronomical observatory. The survey shows that night skies at later time (from 0:00 to 3:00) keep mostly unchanged and are evidently darker than earlier time (e.g. the night-sky at 23:00 is about 40% brighter than midnight), which can be attributed to substantial artificial lightings for human activities being turned off after midnight. Moreover, zenith luminance of the night sky decreases with increasing distance from the city center. Compared with the night-sky luminance (21.50 mag/arcsec2) at Lingshan observation site which is closer to the city center, the night-sky brightness at Xinglong Station is a litter brighter (21.37 mag/arcsec2). This indicates that night sky at Xinglong Station has been brightened by outdoor lighting of the county town of Xinglong. The survey shows that either the luminance of zenith dark sky or the average luminance of skies at 45 degree altitude in all directions could be considered as a reasonable indicator of light pollution.

  12. The fading star of the Paris Observatory in the nineteenth century: astronomers' urban culture of circulation and observation

    Science.gov (United States)

    Aubin, David

    Engulfing the Observatoire de Paris around 1860, the modernizing city clashed with the increasing precision required by astronomy. Suggestions to transfer the observatory to the suburbs gave rise to intense debates; these provide an enlightening standpoint for studying changes in observation and circulation regimes central to the mutations of both urban cultures and astronomical scientific practices. Moreover, these regime changes took place in a context of constant interaction between the city and the observatory. At practical levels, the changing experience of circulation and observation led to a parceling of the various tasks previously filled by the Paris Observatory and gave rise to an epistemology reminiscent of Latour's network theory.

  13. Milan Popović - from the stationary clerk of Belgrade Astronomical Observatory to the great man of Serbian surrealism

    Science.gov (United States)

    Dimitrijević, Milan S.

    2002-04-01

    We present in this work the personality of Milan Popović (6 May 1905, Surdulica - April 1969) the great Serbian surrealistic painter, which from 21 January 1949 up to 31 May 1949 worked at the Belgrade Astronomical Observatory as senior stationary clerk.

  14. The 2-Meter Telescope of the National Astronomical Observatory Rozhen: Opportunities for GAIA-FUN-SSO

    Science.gov (United States)

    Bonev, T.

    2011-06-01

    The 2 meter reflector of the National Astronomical Observatory (NAO) Rozhen offers two main modi of observations: imaging in the Ritchey-Chretien (RC) focus and spectroscopy in the Coude focus. Images can be obtained with two spatial scales: 0.25 arcsec/px or 0.89 arcsec/px. High signal-to-noise, high resolution (up to 35000) spectra are obtained with the Coudé spectrograph. Upgrades of the 2 meter telescope performed in the last years are presented: autoguiding system in 2007, recoating of the optics in 2008, installation of a new telescope control system in 2009. The performance of the 2-m telescope after these upgrades will be illustrated by a sample of observations and the capabilities for observations of Gaia follow-up of SSO will be discussed. Some of the characteristics of the telescope presented here and many more, can be found on the web-site of the National Observatory: www.naorozhen.org.

  15. Low Frequency Radio Astronomical Antennas for the Lunar Environment

    Science.gov (United States)

    Burns, Jack O.; Lazio, J.; ROLSS DALI Teams

    2009-01-01

    Low radio frequencies (∼100 MHz) represent the last of the relatively unexplored wavebands in the electromagnetic spectrum for astrophysics. Such observations are very challenging from the surface of the Earth because of an abundance of human-made radio interference (e.g., FM bands, TV channels) and because of ionospheric refraction. The lunar farside presents a unique opportunity to fully open this cosmic window because of the demonstrated radio-quiet environment. The ultimate science goal of a lunar farside low frequency telescope is to explore a new frontier in cosmology, the so-called Dark Ages. This era occurs between Recombination (at z 1100) when the universe first becomes transparent (producing what we observe today as the CMB) and Reionization when the first stars and galaxies form (at z 10-20). During the Dark Ages, the universe was unlit by any star and the only detectable signal is likely to arise from neutral hydrogen absorption against the CMB (from the collapse of the first structures). Observing this absorption signal would be a powerful probe of fundamental cosmology. During the Dark Ages (z 20 - 150), when the 21-cm (1.4 GHz) neutral hydrogen line is redshifted into the low frequency radio band (10-30 MHz, 10-30 m), the absorption signal has the potential to be the richest of all cosmological data sets. In this poster, we will discuss the opportunities and options for low frequency radio antennas in both lunar orbit and on the lunar surface. We are investigating a novel concept to deploy a large number of low-mass antennas deposited on sheets of polyimide film. We will also describe results of laboratory vacuum testing at U. Colorado on polyimide film cycled between -150 C and 100 C, and exposed to far-ultraviolet light, with conditions like those on the lunar surface.

  16. Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept

    Science.gov (United States)

    Tanarro, I.; Alemán, B.; de Vicente, P.; Gallego, J. D.; Pardo, J. R.; Santoro, G.; Lauwaet, K.; Tercero, F.; Díaz-Pulido, A.; Moreno, E.; Agúndez, M.; Goicoechea, J. R.; Sobrado, J. M.; López, J. A.; Martínez, L.; Doménech, J. L.; Herrero, V. J.; Hernández, J. M.; Peláez, R. J.; López-Pérez, J. A.; Gómez-González, J.; Alonso, J. L.; Jiménez, E.; Teyssier, D.; Makasheva, K.; Castellanos, M.; Joblin, C.; Martín-Gago, J. A.; Cernicharo, J.

    2018-01-01

    We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (http://www.aanda.org

  17. An automated extinction and sky brightness monitor for the Indian Astronomical Observatory, Hanle

    Science.gov (United States)

    Sharma, Tarun Kumar; Parihar, Padmakar; Banyal, R. K.; Dar, Ajaz Ahmad; Kemkar, P. M. M.; Stanzin, Urgain; Anupama, G. C.

    2017-09-01

    We have developed a simple and portable device that makes precise and automated measurements of night sky extinction. Our instrument uses a commercially available telephoto lens for light collection, which is retrofitted to a custom-built telescope mount, a thermoelectrically cooled CCD for imaging, and a compact enclosure with electronic control to facilitate remote observations. The instrument is also capable of measuring the sky brightness and detecting the presence of thin clouds that otherwise would remain unnoticed. The measurements of sky brightness made by our simple device are more accurate than those made using a large telescope. Another capability of the device is that it can provide an instantaneous measurement of atmospheric extinction, which is extremely useful for exploring the nature of short-term extinction variation. The instrument was designed and developed primarily in order to characterize and investigate thoroughly the Indian Astronomical Observatory (IAO), Hanle for the establishment of India's future large-telescope project. The device was installed at the IAO, Hanle in 2014 May. In this paper, we present the instrument details and discuss the results of extinction data collected for about 250 nights.

  18. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  19. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    Science.gov (United States)

    2000-08-01

    of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities

  20. The Sardinia Radio Telescope . From a technological project to a radio observatory

    Science.gov (United States)

    Prandoni, I.; Murgia, M.; Tarchi, A.; Burgay, M.; Castangia, P.; Egron, E.; Govoni, F.; Pellizzoni, A.; Ricci, R.; Righini, S.; Bartolini, M.; Casu, S.; Corongiu, A.; Iacolina, M. N.; Melis, A.; Nasir, F. T.; Orlati, A.; Perrodin, D.; Poppi, S.; Trois, A.; Vacca, V.; Zanichelli, A.; Bachetti, M.; Buttu, M.; Comoretto, G.; Concu, R.; Fara, A.; Gaudiomonte, F.; Loi, F.; Migoni, C.; Orfei, A.; Pilia, M.; Bolli, P.; Carretti, E.; D'Amico, N.; Guidetti, D.; Loru, S.; Massi, F.; Pisanu, T.; Porceddu, I.; Ridolfi, A.; Serra, G.; Stanghellini, C.; Tiburzi, C.; Tingay, S.; Valente, G.

    2017-12-01

    Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as

  1. Observations and analysis of NOAA AR 11429 at KSU-Astronomical Observatory

    Science.gov (United States)

    Elmhamdi, Abouazza; Kordi, A. S.; Al-Trabulsy, H. A.; El-Nawawy, M.; Ibrahim, A. A.; Ben Nessib, N.; Abdel-Sabour, M. A.; Al-Mostafa, Z. A.

    2013-10-01

    We study the evolution of the sunspots in the recent super active region NOAA 11429, which spawned a powerful X5.4/3B flare on March 07, 2012 (2nd on record occurred since 2010), associated with a wide and fast Coronal Mass Ejection (CME; Halo/070036) and a large proton flux event (6530 p.f.u). The sunspot group consists a rare example of "Island Delta" in βγδ- magnetic configuration. This active region dominated the Solar activities on the northern hemisphere during the period March 03-15, 2012, of the present Solar Cycle 24, erupting 2 X-class flares, 13 M-class flares, and about 32 C-class flares. We analyze white-light images, wavelengths around 540 nm, observed at the Astronomical Observatory of King Saud University (AOKSU). The observations are part of a campaign conducted locally since early 2012, for monitoring Solar activities on a daily basis. The observations and data reduction are presented and discussed. We examine the main properties of AR 11429 (i.e. structure, growth and decay) by computing its daily "area" and "tilt- & trend-" angles, and infer information about its development and dynamics. The area curve is found to show three distinguishable phases, nicely fitted adopting double-Gaussian distribution. A close relation between sunspot group area and tilt-angle with the major March 07 powerful flare can be noticed from the current results, that certainly necessitates deep and careful inspections through studying large sample of events. The follow-up of the sunspot group the period it inhabits the Solar photosphere, permits exploiting the proper motion of four long-lived individual spots, as well as tracing the local surface differential rotation, found to be consistent with empirical results.

  2. RFI profiles of prime candidate sites for the first radio astronomical telescope in Malaysia

    Science.gov (United States)

    Abidin, Zamri Zainal; Bahari Ramadzan Syed Adnan, Syed; Ibrahim, Zainol Abidin

    2010-03-01

    Radio astronomy is a very young research field in South East Asia. There has not been a research-grade radio telescope built in this part of the world yet. A plan has been proposed by the University of Malaya's Radio Cosmology Research Laboratory to build a medium-sized radio telescope in order to eventually join the global projects of the Very Long Baseline Interferometry (VLBI) Network and Square Kilometer Array (SKA). Main parameters taken into consideration in finding the main prime candidate sites involves features that produce Radio Frequency Interference (RFI). These features are mainly telecommunication and satellite navigation signals and population density. Other important features considered are rainfall level, land contour and availability for future collaboration with institutions at the chosen sites. In this paper we described the experimental procedure and the RFI measurement on our five prime candidate's sites in Malaysia, covering frequency band from 1 MHz to 2000 MHz. The levels and sources of RFI on these sites were monitored and analyzed. The RFI level in Langkawi showed the lowest average of -100.33dBm(4.4×106Jy). These RFI have been found to fluctuate relatively lowly (between 1 dB m and 2 dB m). This site is also ideally located close to the Langkawi National Observatory and we recommend that this site as the best site to build the first research-grade radio telescope in this region.

  3. Spatial dependent systematic error correction and colour coefficients for the 2-m telescope of theRozhen National Astronomical Observatory

    Science.gov (United States)

    Mihov, Boyko M.; Slavcheva-Mihova, Lyuba S.

    2017-07-01

    Spatial dependent systematic error of the instrumental magnitudes on the CCD frames taken at the 2-m telescope of the Rozhen National Astronomical Observatory due to scattered light was present till mid-June 2009. We derive and discuss (U)BVRI spatial dependent systematic error correction, together with colour coefficients, on the basis of archival data. The simultaneous estimation of the two types of coefficients - spatial and colour, ensures the detachment of the two effects, and, accordingly, the higher accuracy in the coefficient estimates. The application of the spatial dependent systematic error correction to the data in the period discussed would increase photometry accuracy.

  4. Making waves the story of Ruby Payne-Scott : Australian pioneer radio astronomer

    CERN Document Server

    Goss, M

    2013-01-01

    This book is an abbreviated, partly re-written version of "Under the Radar - The First Woman in Radio Astronomy: Ruby Payne-Scott." It addresses a general readership interested in historical and sociological aspects of astronomy and presents the biography of Ruby Payne-Scott (1912 – 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II. These radars were used by military personnel from Australia, the United States and New Zealand. From a sociological perspective, her career offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs, this book offers fascinating...

  5. Astronomical Research at the U.S. Air Force Academy Observatory

    Science.gov (United States)

    Della-Rose, Devin J.; Carlson, Randall E.; Chun, Francis K.; Giblin, Timothy W.; Novotny, Steven J.; Polsgrove, Daniel E.

    2018-01-01

    The U.S. Air Force Academy (USAFA) Observatory houses 61-cm and 41-cm Ritchey-Chrétien (RC) reflecting telescopes, and serves as the hub for a world-wide network of 50-cm RC reflectors known as the Falcon Telescope Network (FTN). Since the 1970s, the USAFA Observatory has hosted a wide range of student and faculty research projects including variable star photometry, exoplanet light curve and radial velocity studies, near-Earth object astrometry, and “lucky imaging” of manmade spacecraft. Further, the FTN has been used extensively for LEO through GEO satellite photometry and spectroscopy, and for exoplanet photometry. Future capabilities of our observatory complex include fielding several new FTN observatory sites and the acquisition of a 1-meter RC fast-tracking telescope at the USAFA Observatory.

  6. Look to the Stars - The APUS Observatory: An Innovative Robotic Telescope for Online Astronomical Education and Research

    Science.gov (United States)

    Albin, Edward

    2018-01-01

    We report on the American Public University System’s new robotic telescope, located in Charles Town, WV -- an innovative observatory deployed in an online institution of higher education. The instrument is operated by the Department of Space Studies and is situated atop the university’s new Information Technology building. At the heart of the observatory is a Planewave CDK24 telescope, equipped with a SBIG STX-16803 CCD camera. The telescope is a key technological component in the Department's new undergraduate / graduate astronomy concentration. Since the university is a dedicated online educational institution, the acquisition of a fully remote controlled telescope ties closely into the program's philosophy of quality online instruction. Our robotic observatory is intimately integrated into our astronomy curriculum, with the telescope being utilized for original astronomical education and research purposes. For instance, not only is imagery used in the classroom and for laboratory instruction, graduate students in our MS degree program have an opportunity to collect original telescopic data for research / thesis projects. Examples of ongoing investigations with the telescope include observations of exoplanet transits and variable star photometry. When not in use for specific observing projects, the telescope is scripted to conduct autonomous supernova searches by patrolling dozens of galaxies throughout the night. Our goal is to have the instrument scheduled for continuous observing of the heavens throughout the year on all clear evenings.

  7. Astronomical Observatory at Kolonicke Sedlo and its Results in Variable Stars Observing

    Science.gov (United States)

    Kudzej, I.; Karetnikov, V. G.; Dubovsky, P. A.; Paulin, L. S.; Fashchevskyi, N. N.; Ryabov, A. V.; Dorokhova, T. N.; Dorokhov, N. I.; Koshkin, N. I.; Vadila, M.; Parimucha, S.

    There is presented a brief report of the actual equipments in the Astronomical Observa tory at the Kolonicke Sedlo. Description of Vihorlat National Telescope of 1 meter diameter equipped with the two-star high-speed photoelectric photometer and autoguiding system as well as various small telescopes capabilities are included. The results of CCD and PMT observations are presented. The future observational programs are presented as well.

  8. ASTRONOMICAL OBSERVATORY AT KOLONICKE SEDLO AND ITS RESULTS IN VARIABLE STARS OBSERVING

    OpenAIRE

    Kudzej, I.; Karetnikov, V. G.; Dubovsky, P. A.; Paulin, L. S.; Fashchevskyi, N. N.; Ryabov, A. V.; Dorokhova, T. N.; Dorokhov, N.I.; Koshkin, N. I.; Vadila, M.; Parimucha, S.

    2007-01-01

    There is presented a brief report of the actual equipments in the Astronomical Observa tory at the Kolonicke Sedlo. Description of Vihorlat National Telescope of 1 meter diameter equipped with the two-star high-speed photoelectric photometer and autoguiding system as well as various small telescopes capabilities are included. The results of CCD and PMT observations are presented. The future observational programs are presented as well.

  9. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. Chirinos; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D-H; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Charrier, D.; Denis, L.; Hilgers, G.; Mohrmann, L.; Philipps, B.; Seeger, O.; Martin, L.

    2012-01-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA

  10. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    Science.gov (United States)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  11. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    Science.gov (United States)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  12. Laboratory measurements of super-resolving Toraldo pupils for radio astronomical applications

    Science.gov (United States)

    Olmi, Luca; Bolli, Pietro; Cresci, Luca; D'Agostino, Francesco; Migliozzi, Massimo; Mugnai, Daniela; Natale, Enzo; Nesti, Renzo; Panella, Dario; Stefani, Lorenzo

    2017-06-01

    The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. Although several techniques to narrow the central lobe of the illumination Point Spread Function have been developed in optical microscopy, most of these methods cannot be implemented on astronomical telescopes. A possible exception is represented by the variable transmittance filters, also known as "Toraldo Pupils" (TPs) since they were introduced for the first time by G. Toraldo di Francia in 1952 (Toraldo di Francia, Il Nuovo Cimento (Suppl.) 9, 426, 1952). In the microwave range, the first successful laboratory test of TPs was performed in 2003 (Mugnai et al. Phys. Lett. A 311, 77-81, 2003). These first results suggested that TPs could represent a viable approach to achieve super-resolution in Radio Astronomy. We have therefore started a project devoted to a more exhaustive analysis of TPs, in order to assess their potential usefulness to achieve super-resolution on a radio telescope, as well as to determine their drawbacks. In the present work we report on the results of extensive microwave measurements, using TPs with different geometrical shapes, which confirm the correctness of the first experiments in 2003. We have also extended the original investigation to carry out full-wave electromagnetic numerical simulations and also to perform planar scanning of the near-field and transform the results into the far-field.

  13. A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory

    Science.gov (United States)

    Price, A.; Cohen, L.; Mattei, J. A.; Craig, N.

    2006-12-01

    Through a combination of qualitative and quantitative processes, a survey was conducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the Science Education Gateway (SEGway) Project at The Center for Science Education at The UC Berkeley Space Sciences Laboratory.

  14. Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy—corrected for geometrical effects—is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

  15. Radio-controlled xenon flashers for atmospheric monitoring at the HiRes cosmic ray observatory

    CERN Document Server

    Wiencke, L R; Al-Seady, M; Belov, K; Bird, D J; Boyer, J; Chen, G F; Clay, R W; Dai, H Y; Dawson, B R; Denholm, P; Gloyn, J; He, D; Ho, Y; Huang, M A; Jui, C C H; Kidd, M J; Kieda, D B; Knapp, B; Ko, S; Larson, K; Loh, E C; Mannel, E J; Matthews, J N; Meyer, J R; Salman, A; Simpson, K M; Smith, J D; Sokolsky, P; Steenblik, D; Tang, J K K; Taylor, S; Thomas, S B; Wilkinson, C R

    1999-01-01

    Stable, robust ultraviolet light sources for atmospheric monitoring and calibration pose a challenge for experiments that measure air fluorescence from cosmic ray air showers. One type of light source in use at the High Resolution Fly's Eye (HiRes) cosmic ray observatory features a xenon flashbulb at the focal point of a spherical mirror to produce a 1 mu s pulse of collimated light that includes a strong UV component. A computer-controlled touch tone radio system provides remote operation of bulb triggering and window heating. These devices, dubbed 'flashers', feature stand-alone operation, +-5% shot-to-shot stability, weather proof construction and are well suited for long-term field use. This paper describes the flashers, the radio control system, and a 12-unit array in operation at the HiRes cosmic ray observatory

  16. Walter Baade, Dynamical Astronomer at Goettingen, Hamburg, Mount Wilson, and Palomar Observatories

    Science.gov (United States)

    Osterbrock, D. E.

    2002-09-01

    Walter Baade, famous for his astrophysical discoveries, also made many contributions in dynamical astronomy. His thesis at Goettingen University on the spectroscopic orbit of β Lyrae was based on spectrograms his teacher, Johannes Hartmann, had taken at Potsdam years earlier. Immediately on receiving his Ph.D. in 1919, Baade joined the Hamburg Bergedorf Observatory staff, and soon was the sole observer with its 1-m reflector, the largest telescope in Europe. Under its director, Richard Schorr, Baade's main job at first was to obtain direct plates of asteroids and comets for positional measurements. As an incidental part of this observing he discovered many asteroids, eight of which were eventually named, including 966 Muschi (his wife's nickname), 944 Hidalgo, with large orbital semi-major axis, eccentricity, and inclination, and 1036 Ganymed, whose orbit extends inside that of Mars. Baade also discovered a new comet, 1922 II. During the close approach of Eros in 1930 Baade measured its period of light variation, its color, and its mean magnitude. After Pluto was discovered in 1930 he measured its position assiduously, following it as far from opposition as he could. In 1931 Baade moved to Mount Wilson, where he concentrated almost entirely on globular-cluster, supernova, and galaxy research. He saw many asteroid trails on his long exposures but did not report them except for one, 7448 (still not named), which showed a very long trail on a 3-hr exposure of the Crab nebula. At Palomar, using the 48-in Schmidt soon after it went into operation, he dicovered and reported 1566 Icarus, with a very small perihelion distance, and later his second comet, 1955 VI.

  17. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    Directory of Open Access Journals (Sweden)

    Torben Schüler

    2015-07-01

    Full Text Available Geodetic Very Long Baseline Interferometry (VLBI uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1, the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate.

  18. Results of astrometrical observations of the Sun and major planets at the mountain astronomical station of the Pulkovo Observatory

    Science.gov (United States)

    Devyatkin, A. V.; Gnevysheva, K. G.; Baturina, G. D.

    2009-12-01

    A series of daytime observations of the Sun and major planets are obtained at the mountain astronomical station of the Pulkovo Observatory using the Ertel-Struve meridian instruments. A series of declinations of Solar System bodies and major planets includes 4057 positions and that of right ascensions of Solar System bodies comprising 2057 positions. Based on the joint processing of observations of the Sun, Mercury, Venus, and Mars obtained with the Ertel-Struve vertical circle and large transit instrument, the orientation elements of the DE200/LE200 dynamic coordinate system, namely, a correction for the right ascensions of FK5 stars Δ A = +0.127″ ± 0.033″, a correction for declinations of FK5 stars Δ D = +0.056″ ± 0.011″, a correction for the ecliptic inclination Δɛ = -0.044″ ± 0.012″, and a correction for the average longitude of the Sun Δ L = -0.083″±0.035″, are determined with respect to the stellar coordinate system.

  19. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    Science.gov (United States)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  20. RadioAstron and millimetron space observatories: Multiverse models and the search for life

    Science.gov (United States)

    Kardashev, N. S.

    2017-04-01

    The transition from the radio to the millimeter and submillimeter ranges is very promising for studies of galactic nuclei, as well as detailed studies of processes related to supermassive black holes, wormholes, and possible manifestations of multi-element Universe (Multiverse) models. This is shown by observations with the largest interferometer available—RadioAstron observatory—that will be used for the scientific program forMillimetron observatory. Observations have also shown the promise of this range for studies of the formation and evolution of planetary systems and searches for manifestations of intelligent life. This is caused by the requirements to use a large amount of condensedmatter and energy in large-scale technological activities. This range can also be used efficiently in the organisation of optimal channels for the transmission of information.

  1. Calibrating the Auger Engineering Radio Array at the Pierre Auger Observatory using an Octocopter

    Energy Technology Data Exchange (ETDEWEB)

    Briechle, Florian; Erdmann, Martin; Krause, Raphael [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    With the Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory radio emission of extensive air showers induced by ultra high energy cosmic rays is observed. Characteristics of the primary cosmic ray, e.g., arrival direction, mass or energy, can be measured this way. To produce high quality data, the detector needs to be well understood and calibrated. A useful tool for calibration campaigns is an octocopter. With it, a calibration source can be placed above the array, which makes this a very flexible method useful for different types of calibrations. Special focus is put on the position reconstruction and the position accuracy of the octocopter during the calibration flights. A new optical method using two cameras for these position reconstructions is presented. Results of a measurement campaign in spring 2015 are presented. In this campaign, the sensitivity of the AERA stations as well as timing characteristics were measured. The results of the sensitivity measurement are compared to simulations.

  2. The astronomer Friedrich Viktor Schembor and the Vienna Urania Observatory (The history of the Vienna Urania Observatory from its foundation to its re-opening (1897-1957) / Friedrich Viktor Schembor - a life for astronomy). (German Title: Der Astronom Friedrich Viktor Schembor und die Wiener Urania-Sternwarte (Die Geschichte der Wiener Urania-Sternwarte von ihrer Gründung bis zu ihrer Wiedereröffnung (1897-1957) / Friedrich Viktor Schembor - ein Leben für die Astronomie))

    Science.gov (United States)

    Schembor, Friedrich Wilhelm

    The Urania Observatory in Vienna and the life and workings of the Viennese astronomer Friedrich Viktor Schembor are the topics of this volume. The first part deals with the history of the Urania Observatory and its significance as the oldest popular observatory in Vienna for the education of adults. After a short digression on the development of popular educational activities in the 19th century, the efforts are traced that led to the establishment of the Urania Observatory. The second part deals with the biography of the astronomer Friedrich Viktor Schembor (1898-1942). Already at an early age he committed himself as a volunteer for popular education in astronomy. In his time as director of the Urania Observatory, he was able to guide the “Astronomische Gemeinde” (Astronomical Congregation) to scientifically useful results. Because of a vicious disease, he was given only a short time of scientific work at the Vienna University Observatory.

  3. Measurement of cosmic ray air showers using MHz radio-detection techniques at the Pierre Auger Observatory

    Science.gov (United States)

    Kleifges, M.

    2013-08-01

    The measurement of radio signals from air showers is studied in detail with the Auger Engineering Radio Array (AERA) at the site of the Pierre Auger Observatory in Argentina. The first stage of AERA is in operation since March 2011 and consists of 24 autonomous radio detector stations. The design of the stations including the radio antennas, the electronics system and the communications system is presented. In the next 12 months AERA will grow to a size of 125 stations covering an area of about 16 km2. First results and improvements for this next stage of AERA will be discussed.

  4. Terrestrial Laser Scanner Two-Face Measurements for Analyzing the Elevation-Dependent Deformation of the Onsala Space Observatory 20-m Radio Telescope's Main Reflector in a Bundle Adjustment.

    Science.gov (United States)

    Holst, Christoph; Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner

    2017-08-09

    For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.

  5. Terrestrial Laser Scanner Two-Face Measurements for Analyzing the Elevation-Dependent Deformation of the Onsala Space Observatory 20-m Radio Telescope’s Main Reflector in a Bundle Adjustment

    Science.gov (United States)

    Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner

    2017-01-01

    For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes’ main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85∘ to 5∘ elevation angle. Further local deformations of the main reflector are not detected. PMID:28792449

  6. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  7. EFFICIENT COMPUTATION OF PROLATE SPHEROIDAL WAVE FUNCTIONS IN RADIO ASTRONOMICAL SOURCE MODELING

    NARCIS (Netherlands)

    Noorishad, Parisa; Yatawatta, Sarod

    2011-01-01

    The application of orthonormal basis functions such as Prolate Spheroidal Wave Functions (PSWF) for accurate source modeling in radio astronomy has been comprehensively studied. They are of great importance for high fidelity, high dynamic range imaging with new radio telescopes as well as

  8. Blind Astronomers

    Science.gov (United States)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  9. Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes

    Science.gov (United States)

    Chaparro Molano, Germán; Ramírez Suárez, Oscar Leonardo; Restrepo Gaitán, Oscar Alberto; Marcial Martínez Mercado, Alexander

    2017-10-01

    We set out to evaluate the potential of the Colombian Andes for millimeter-wave astronomical observations. Previous studies for astronomical site testing in this region have suggested that nighttime humidity and cloud cover conditions make most sites unsuitable for professional visible-light observations. Millimeter observations can be done during the day, but require that the precipitable water vapor column above a site stays below ∼10 mm. Due to a lack of direct radiometric or radiosonde measurements, we present a method for correlating climate data from weather stations to sites with a low precipitable water vapor column. We use unsupervised learning techniques to low dimensionally embed climate data (precipitation, rain days, relative humidity, and sunshine duration) in order to group together stations with similar long-term climate behavior. The data were taken over a period of 30 years by 2046 weather stations across the Colombian territory. We find six regions with unusually dry, clear-sky conditions, ranging in elevations from 2200 to 3800 masl. We evaluate the suitability of each region using a quality index derived from a Bayesian probabilistic analysis of the station type and elevation distributions. Two of these regions show a high probability of having an exceptionally low precipitable water vapor column. We compared our results with global precipitable water vapor maps and find a plausible geographical correlation with regions with low water vapor columns (∼10 mm) at an accuracy of ∼20 km. Our methods can be applied to similar data sets taken in other countries as a first step toward astronomical site evaluation.

  10. Educational Programs for Graduate Level Learners and Professionals - National Radio Astronomy Observatory National and International Non-Traditional Exchange Program

    Science.gov (United States)

    Wingate, Lory Mitchell

    2017-01-01

    The National Radio Astronomy Observatory’s (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering to chosen participants within a nine-week program held at NRAO in New Mexico. Participants are typically graduate level students or professionals. Participation in the NINE Program is through a competitive process. The program includes a hands-on service project designed to increase the participants knowledge of radio astronomy. The approach demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal science results.The NINE teaches participants important sustainable skills associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners are expected to return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  11. The Ilgarijiri Project: A collaboration between Aboriginal communities and radio astronomers in the Murchison Region of Western Australia

    Science.gov (United States)

    Goldsmith, John

    2014-07-01

    The international radio astronomy initiative known as the Square Kilometre Array is a cutting-edge science project, aimed atdramatically expanding our vision and understanding of the Universe. The $2billion+ international project is being shared between Southern Africa and Australia. The Australian component, centred in the Murchison region of Western Australia, is based upon collaboration with Aboriginal communities. A collaborative project called "Ilgarijiri- Things Belonging to the Sky" shared scientific and Aboriginal knowledge of the night sky. Through a series of collaborative meetings and knowledge sharing, the Ilgarijiri project developed and showcased Aboriginal knowledge of the night sky, via an international touring Aboriginal art exhibition, in Australia, South Africa, the USA and Europe. The Aboriginal art exhibition presents Aboriginal stories relating to the night sky, which prominently feature the 'Seven Sisters' and the 'Emu', as well as the collaborative experience with radio astronomers. The success of the Ilgarijiri collaborative project is based upon several principles, which can help to inform and guide future cultural collaborative projects.

  12. Super-Resolving Toraldo Pupils for Radio Astronomical Applications: Current Status and Future Prospects

    Science.gov (United States)

    Olmi, Luca

    2017-11-01

    More than half a century ago, in 1952, Giuliano Toraldo di Francia suggested that the resolving power of an optical instrument could be improved using a filter consisting of finite-width concentric coronae of different amplitude and phase transmittance, now known as Toraldo Pupils (TPs). The concept of 'super- resolution' was born, and in the cur- rent literature it is generally associated with various meth- ods for improving the angular resolution of an optical imag- ing system beyond the classical diffraction limit. In the mi- crowave range, the first successful laboratory test of TPs was performed in 2003. These first results suggested that TPs could represent a viable approach to achieve super- resolution in Radio Astronomy. We have therefore started a project devoted to an exhaustive study of TPs and how they could be implemented on a radio telescope. In this work we present a summary of the status of this project, and then we will describe our future plans.

  13. Multi-arm spectrometer for parallel frequency analysis of radio-wave signals oriented to astronomical observations

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo

    2017-08-01

    We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.

  14. Union catalogue of printed books of 15th, 16th and 17th centuries in European astronomical observatories.

    Science.gov (United States)

    Grassi, G.

    This catalogue deals with the scientific subjects of that historical period such as astronomy, astrology, chemistry, mathematics, physics, historia naturalis and so forth, and contains extremely rare volumes such as the first printed editions of the eminent Arab, Latin, Greek and Persian scientists Albumasar, Albohazen Aly, Aristoteles, Ptolemaeus, Pliny the Elder and Ulugh Beig. In addition the catalogue contains the first works of such great astronomers of the 16th and 17th centuries as Copernicus, Kepler, Clavius, Regiomontanus, Sacrobosco, Mercator, Newton, Gassendi, Galilei and Hevelius, just to quote the most representative ones. The catalogue is followed by a chronological index and an index of printers and publishers.

  15. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel

    2014-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  16. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  17. Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-10-01

    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA) . The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4+0.9-0.3% and 10.3+2.8-1.7% respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8+2.1-1.3% in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60°.

  18. Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander; et al.

    2017-02-05

    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 9.4^{+1.5}_{-1.6} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\\deg}.

  19. The Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  20. Development of the radio astronomical method of cosmic particle detection for extremely high-energy cosmic ray physics and neutrino astronomy

    Directory of Open Access Journals (Sweden)

    Zheleznykh Igor

    2017-01-01

    Full Text Available The proposal to use ground based radio telescopes for detection of Askaryan radio pulses from particle cascades arising when extremely high-energy (EHE > 1020 eV cosmic rays (including neutrinos interact with the lunar regolith of multi gigaton mass was made at the end of 1980s in the framework of the Russian (Soviet DUMAND Program. During more than a quarter of century a number of lunar experiments were carried out mainly in the 1–3 GHz frequency range using the large radio telescopes of Australia, USA, Russia and other countries but these experiments only put upper limits to the EHE cosmic rays fluxes. For this reason, it would be of great interest to search for nanosecond radio pulses from the Moon in a wider interval of frequencies (including lower ones of 100–350 MHz with larger radio detectors – for example the giant radio telescope SKA (Square Kilometer Array which is constructed in Australia, New Zealand and South Africa. In this paper possibilities are discussed to use one of the most sensitive meter-wavelength (∼ 110 MHz Large Phased Array (LPA of 187 × 384 m2 and the wide field of view meter-wavelength array of the Pushchino Radio Astronomy Observatory as prototypes of low frequency radio detectors for lunar experiments. The new scheme for fast simulation of ultrahigh and extremely high-energy cascades in dense media is also suggested. This scheme will be used later for calculations of radio emission of cascades in the lunar regolith with energies up to 1020 eV and higher in the wide frequency band of 0.1− a few GHz.

  1. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  2. Industrial interference and radio astronomy

    Science.gov (United States)

    Jessner, A.

    2013-07-01

    The interferer - victim scenario is described for the case of industrial interference affecting radio astronomical observatories. The sensitivity of radio astronomical receivers and their interference limits are outlined. EMC above 30 MHz is a serious problem for Radio Astronomy. Interferer (CISPR) and victim (ITU-R RA 769) standards are not harmonised. The emissions from the interferer and their spectral characteristics are not defined sufficiently well by CISPR standards. The required minimum coupling losses (MCL) between an industrial device and radio astronomical antenna depends on device properties but is shown to exceed 140 dB in most cases. Spatial separation of a few km is insufficient on its own, the terrain must shield > 30-40 dB, additional mitigations such as extra shielding or suppression of high frequency emissions may be necessary. A case by case compatibility analysis and tailored EMC measures are required for individual installations. Aggregation of many weak rfi emitters can become serious problem. If deployment densities are high enough, the emission constraints can even exceed those for a single interferer at a short distance from the radio observatory. Compatibility studies must account not only for the single interferer but also for many widely distributed interference sources.

  3. Astronomers Discover Spectacular Structure in Distant Galaxy

    Science.gov (United States)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  4. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  5. John Flamsteed and the turn of the screw: mechanical uncertainty, the skilful astronomer and the burden of seeing correctly at the Royal Observatory, Greenwich.

    Science.gov (United States)

    Spiegel, Richard J

    2015-03-01

    Centring on John Flamsteed (1646-1719), the first Astronomer Royal, this paper investigates the ways in which astronomers of the late seventeenth century worked to build and maintain their reputations by demonstrating, for their peers and for posterity, their proficiency in managing visual technologies. By looking at his correspondence and by offering a graphic and textual analysis of the preface to his posthumous Historia Coelestis Britannica (1725), I argue that Flamsteed based the legitimacy of his life's work on his capacity to serve as a skilful astronomer who could coordinate the production and proper use of astronomical sighting instruments. Technological advances in astrometry were, for Flamsteed, a necessary but not a sufficient condition for the advancement of astronomy. Technological resources needed to be used by the right person. The work of the skilful astronomer was a necessary precondition for the mobilization and proper management of astronomical technologies. Flamsteed's understanding of the astronomer as a skilled actor importantly shifted the emphasis in precision astronomical work away from the individual observer's ability to see well and toward the astronomer's ability to ensure that instruments guaranteed accurate vision.

  6. On Tokugawa Bakufu's astronomical officials

    Science.gov (United States)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  7. Multi-criteria decision analysis integrated with GIS for radio ...

    African Journals Online (AJOL)

    Multi-criteria decision analysis integrated with GIS for radio astronomical observatory site selection in peninsular of Malaysia. R Umar, Z.Z. Abidin, Z.A. Ibrahim, M.K.A. Kamarudin, S.N. Hazmin, A Endut, H Juahir ...

  8. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2011-01-01

    Roč. 635, č. 1 (2011), s. 92-102 ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) LA08016; GA AV ČR KJB100100904; GA AV ČR KJB300100801 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * radio detection * analysis software * detector simulation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011

  9. American West Tephras – Geomagnetic polarity events redefined through calibration of radio-isotopic and astronomical time

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael

    calibration. Although this geomagnetic event is not part of the most recent geologic timescale, refined ages on short-lived excursions could hold importance to understanding time scales for the wavering nature of Earth’s magnetic field. We propose a new 40Ar/39Ar age for the Quaternary mineral dating standard....... Using an astronomically calibrated age for the monitor mineral Fish Canyon sanidine (FCs;28.201 ± 0.046 Ma, Kuiper, et al., 2008), ages of Pleistocene geomagnetic polarity events are reexamined. Of particular interest, the Quaternary mineral dating standard Alder Creek sandine (ACs) is the type locality...... ACs that reflects the astronomical calibration of FCs and age of the Cobb Mountain polarity event. It is suggested that this 40Ar/39Ar age replace that of Renne, et al. (1998) when using ACs as the monitor in argon age determinations. The research leading to these results has received funding from...

  10. Session 21.3 - Radio and Optical Site Protection

    Science.gov (United States)

    Sefako, Ramotholo

    2016-10-01

    Advancement in radio technology means that radio astronomy has to share the radio spectrum with many other non-astronomical activities, majority of which increase radio frequency interference (RFI), and therefore detrimentally affecting the radio observations at the observatory sites. Major radio facilities such as the SKA, in both South Africa and Australia, and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China will be very sensitive, and therefore require protection against RFI. In the case of optical astronomy, the growing urbanisation and industrialisation led to optical astronomy becoming impossible near major cities due to light and dust pollution. Major optical and IR observatories are forced to be far away in remote areas, where light pollution is not yet extreme. The same is true for radio observatories, which have to be sited away from highly RFI affected areas near populated regions and major cities. In this review, based on the Focus Meeting 21 (FM21) oral presentations at the IAU General Assembly on 11 August 2015, we give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, successes (e.g at 21 cm HI line), defeats and challenges at other parts of the spectrum. We discuss the available legislative initiatives to protect the radio astronomy sites for large projects like SKA (in Australia and South Africa), and FAST against the RFI. For optical protection, we look at light pollution with examples of its effect at Xinglong observing station of the National Astronomical Observatories of China (NAOC), Ali Observatory in Tibet, and Asiago Observatory in Italy, as well as the effect of conversion from low pressure sodium lighting to LEDs in the County of Hawaii.

  11. The Legacy of the Georgetown College Observatory (D.C.)

    Science.gov (United States)

    Caron, Laura; Maglieri, Grace; Seitzer, Patrick

    2018-01-01

    Founded in 1841 as part of a nascent worldwide network of Jesuit-run astronomical observatories, the Georgetown College Observatory of Georgetown University in Washington, D.C. has been home to more than 125 years of astronomical research, from Father Curley’s calculations of the latitude and longitude of D.C. to Father McNally’s award-winning solar eclipse photography. But the impact of the Georgetown astronomy program was not limited to the observatory itself: it reached much further, into the local community and schools, and into the lives of everyone involved. This was never more apparent than under the directorship of Father Francis J Heyden, S.J., who arrived at Georgetown after World War II and stayed for almost three decades. He started a graduate program with over 90 graduates, hosting student researchers from local high schools and colleges, teaching graduate and undergraduate astronomy courses, and speaking at schools in the area, all while simultaneously managing Georgetown’s student radio station and hosting astronomical conferences on campus. Father Heyden’s research focused mainly on solar eclipses for geodetic purposes and planetary spectroscopy. But perhaps even more than research, Father Heyden dedicated his time and energy to the astronomy students, the notable of which include Vera Rubin, John P. Hagen of Project Vanguard, and a generation of Jesuit astronomers including Martin McCarthy, George Coyne, and Richard Boyle. Following the closure of the astronomy department in 1972, Father Heyden returned to Manila, where he had begun his astronomical career, to become Chief of the Solar Division at the Manila Observatory. His dedication to his work and to students serves as an inspiration for academic researchers across fields, and for the Georgetown University Astronomical Society, which, even in the absence of a formal astronomy program at Georgetown, continues his work in education and outreach today. In 1987, almost 150 years after its

  12. The Astronomical Society of New York

    Science.gov (United States)

    Philip, A. G. D.

    2000-05-01

    The New York Astronomical Corporation was formed in 1968 by astronomers at New York State universities, colleges and observatories with the aim of building a large telescope for the use of astronomers in the state. Hawaii was selected as a possible site for a 150-in telescope and for a period of five years a vigorous effort was made at fund raising. A grant was received from the New York State Science and Technology Foundation to help in the organization of the group. By 1973 it was decided to stop plans for a New York Telescope since we had no success in the fund raising. However our group was already involved in holding meetings at the member institutions and staff and students would give reports on their work. In 1973 we formally set up the Astronomical Society of New York. Meetings are held twice a year. The Fall meeting is held at Union College or RPI and at this time the business meeting of NYAC is held. The Spring meeting is held at the other member institutions, from Alfred University in the west and the State University of New York at Stony Brook, in the east. The proceedings of the meetings are published in the News Letter of the Astronomical Society of New York. Prizes are awarded for the best graduate and the best undergraduate papers submitted to the Prize Committee. The winners give invited talks at a meeting following the award. Travel grants are awarded to both graduate and undergraduate students who are granted time to observe on optical or radio telescopes. ASNY has provided a good platform for students to give their first papers and by awarding the prizes and travel grants ASNY has been able to support student research. The meetings help to maintain good contacts among New York astronomers.

  13. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  14. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    Science.gov (United States)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  15. pwkit: Astronomical utilities in Python

    Science.gov (United States)

    Williams, Peter K. G.; Clavel, Maïca; Newton, Elisabeth; Ryzhkov, Denis

    2017-04-01

    pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

  16. Gravitational Redshift Experiment with the Space Radio Telescope RadioAstron

    CERN Document Server

    Litvinov, D; Belousov, K; Bietenholz, M; Biriukov, A; Fionov, A; Gusev, A; Kauts, V; Kovalenko, A; Kulagin, V; Poraiko, N; Rudenko, V

    2015-01-01

    A unique test of general relativity is possible with the space radio telescope RadioAstron. The ultra-stable on-board hydrogen maser frequency standard and the highly eccentric orbit make RadioAstron an ideal instrument for probing the gravitational redshift effect. Large gravitational potential variation, occurring on the time scale of $\\sim$24 hr, causes large variation of the on-board H-maser clock rate, which can be detected via comparison with frequency standards installed at various ground radio astronomical observatories. The experiment requires specific on-board hardware operating modes and support from ground radio telescopes capable of tracking the spacecraft continuously and equipped with 8.4 or 15 GHz receivers. Our preliminary estimates show that $\\sim$30 hr of the space radio telescope's observational time are required to reach $\\sim 2\\times10^{-5}$ accuracy in the test, which would constitute a factor of 10 improvement over the currently achieved best result.

  17. The International Virtual Observatory: Summary of the first decade

    Science.gov (United States)

    Malkov, O. Yu.

    2012-01-01

    International Virtual Observatory is a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that will combine existing databases from ground-based and space-born observatories and make them easily accessible to researchers. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies have been compiled from observations in a variety of wavelengths: optical, radio, infrared, gamma ray, X-ray and more. Each wavelength can provide different information about a celestial event or object, but also requires a special expertise to interpret. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. The International Virtual Observatory Alliance (IVOA) represents 20 national and international projects working in coordination to realize the essential technologies and interoperability standards necessary to create a new research infrastructure. Russian Virtual Observatory is one of the founders and important members of the IVOA. The International Virtual Observatory project was launched about ten years ago, and its major achievements in science and technology in recent years are discussed in this paper. Standards for accessing large astronomical data sets were developed. Such data sets can accommodate the full range of wavelengths and observational techniques for all types of astronomical data: catalogues, images, spectra and time series. The described standards include standards for metadata, data formats, query language, etc. Services for the federation of massive, distributed data sets, regardless of the wavelength, resolution and type of data were

  18. Internet Resources for Radio Astronomy

    Science.gov (United States)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  19. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  20. Report on the decade of un/esa workshops on basic space science: the international perspective from small astronomical telescopes to the world space observatory

    Science.gov (United States)

    Haubold, H.; Wamsteker, W.

    The UN/ESA Workshops on Basic Space Science is a long-term effort for the development of astronomy and regional and international cooperation in this field on a world wide basis, particularly in developing nations. The first four workshops in this series (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, and Egypt 1994) addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia, respectively. One major recommendation that emanated from the first four workshops was that small astronomical facilities should be established in developing nations for research and education programmes at the university level and that such facilities should be networked. Subsequently, material for teaching and observational programmes for small optical telescopes were developed or recommended and astronomical telescope facilities have been inaugurated at UN/ESA Workshops on Basic Space Science in Sri Lanka (1995), Honduras (1997), and Jordan (1999). Elements of the Workshops, focusing on teaching, observing programmes, and the Japanese donation programme for small astronomical telescopes are briefly summarized in the first part of this paper. A report on the recent UN/ESA Workshop on Basic Space Science, held at CONAE of Argentina in 2002, and a full report on achievements of the UN/ESA Workshops on Basic Space Science for the period of time from 1991 to 2002 is contained in the second part of this paper. Since 1991, similar reports, issued for each of the UN/ESA Workshops on Basic Space Science, have been brought to the attention of UN Member States on an annual basis with the objective to gain more support for the world wide development of astronomy. WWW: http://www.seas.columbia.edu/~ah297/un-esa/

  1. Monitoring Radio Frequency Interference in Southwest Virginia

    Science.gov (United States)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  2. Long Baseline Observatory (LBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  3. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  4. Capabilities and Present Status of The Sicaya Radio Telescope in Peru

    Science.gov (United States)

    Ishitsuka, J. K.; Kobayashi, H.; Miyoshi, M.

    2017-07-01

    The private telephone company, Telefónica del Perú, stopped operations of the Sicaya Intelsat Station in 2000, we knew that they were looking for some institution to own the Station in 2002 and begun conversations. Finally in 2008, the whole communications station with a 32-meters parabolic antenna was donated to the Geophysical Institute of Peru. Many things have happened since that, but finally we are almost ready to have a radio telescope. National Astronomical Observatory of Japan contributed enormously to set up the radio telescope. Initially as a single dish radio telescope, it will observe methanol maser at 6.7 GHz of young stellar objects. In the near future, equipping for VLBI observations is in the scope. Sicaya is situated on the central part of Peru at 3,370 meters of altitude and the weather is benign for radio astronomical observations, also humidity is low and allows have radio telescopes free of rust.

  5. An example of operation for a partly manned Antarctic geomagnetic observatory and the development of a radio link for data transmission

    Directory of Open Access Journals (Sweden)

    Joan L. Pijoan

    2009-06-01

    Full Text Available The experience acquired from more than ten years of operation of an Antarctic geomagnetic observatory is described
    along with the development of data transmission facilities. The observatory was deployed at the Spanish Antarctic
    Station in 1996. The main instrument was an Overhauser magnetometer deployed in dual axis Helmholtz coils, a
    δD/δI configuration. The site is only manned during the summer, with the magnetometer left recording throughout
    the rest of the year. During the 2007-2008 survey the observatory instrumentation has been upgraded with a DMI
    suspended triaxial fluxgate magnetometer, new sampling hardware and data logging software. Both sampling and
    timing are carried out under the control of a PIC based microcontroller and GPS receiver. Data presentation, transmission
    and archiving are performed under the control of a low power embedded PC. For real time access to the data
    two options have been provided and rigorously tested during the last 10 years: METEOSAT and GOES Data Collection
    Systems, and recently, a high frequency (HF digital radio-link, using ionospheric propagation between
    Antarctica and Spain, has been developed. This latest transmission system is being continuously upgraded, and it
    would be possible to extend its application to other remote stations. Measurements have been made during the last
    four years in order to determine the channel characteristics and its variability, mainly the multipath and Doppler
    spread and the link availability for a given SNR in the receiver. These measurements are being used to design the
    physical layer of a radiomodem intended to maximize the link capacity keeping the emitted power low.

  6. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures

    CERN Document Server

    Greve, Albert

    2010-01-01

    Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the t...

  7. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    -Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of

  8. Education and public engagement in observatory operations

    Science.gov (United States)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  9. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter

    2009-01-01

    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  10. Korean Astronomical Calendar, Chiljeongsan

    Science.gov (United States)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  11. Space Research in Baldone Observatory

    Directory of Open Access Journals (Sweden)

    Eglitis, I.

    2017-01-01

    Full Text Available The Baldone observatory deals with the U-, B-, V-, R-, I-photometry and low resolution spectroscopy of carbon stars, the monitoring of small bodies of Solar system, and with the digitizing and processing of 24 300 plates from the Schmidt wide field telescope archive. The astronomers from the observatory are working to popularize astronomy.

  12. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  13. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    Teamwork between gamma-ray and radio astronomers has produced a breakthrough in finding natural cosmic tools needed to make the first direct detections of the long-elusive gravitational waves predicted by Albert Einstein nearly a century ago. An orbiting gamma-ray telescope has pointed radio astronomers to specific locations in the sky where they can discover new millisecond pulsars. Millisecond pulsars, rapidly-spinning superdense neutron stars, can serve as extremely precise and stable natural clocks. Astronomers hope to detect gravitational waves by measuring tiny changes in the pulsars' rotation caused by the passage of the gravitational waves. To do this, they need a multitude of millisecond pulsars dispersed widely throughout the sky. However, nearly three decades after the discovery of the first millisecond pulsar, only about 150 of them had been found, some 90 of those clumped tightly in globular star clusters and thus unusable for detecting gravitational waves. The problem was that millisecond pulsars could only be discovered through arduous, computing-intensive searches of small portions of sky. "We've probably found far less than one percent of the millisecond pulsars in the Milky Way Galaxy," said Scott Ransom of the National Radio Astronomy Observatory (NRAO). The breakthrough came when an instrument aboard NASA's Fermi Gamma-Ray Space Telescope began surveying the sky in 2008. This instrument located hundreds of gamma-ray-emitting objects throughout our Galaxy, and astronomers suspected many of these could be millisecond pulsars. Paul Ray of the Naval Research Laboratory initiated an international collaboration to use radio telescopes to confirm the identity of these objects as millisecond pulsars. "The data from Fermi were like a buried-treasure map," Ransom said. "Using our radio telescopes to study the objects located by Fermi, we found 17 millisecond pulsars in three months. Large-scale searches had taken 10-15 years to find that many," Ransom

  14. Optical Photometric and Radio Monitoring of Gamma-ray Loud Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Crimean Astrophysical Observatory, Crimea, Ukraine. Special Astrophysical Observatory of Russian Academy of Sciences, Nizhny Arkhyz, Russia. Radio Observatory Metsahovi, Helsinki University of Technology, Kylmälä, Finland. Radio Observatory of Michigan University, Ann Arbor, USA.

  15. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E

    2013-01-01

    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  16. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J

    1988-01-01

    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  17. Arecibo Observatory for All

    Science.gov (United States)

    Isidro, Gloria M.; Pantoja, C. A.; Bartus, P.; La Rosa, C.

    2006-12-01

    We describe new materials available at Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, some basic terms used in radio astronomy and frequently asked questions. We have also designed a tactile model of the telescope. We are interested that blind visitors can participate of the excitement of the visit to the worlds largest radio telescope. We would like to thank the "Fundacion Comunitaria de Puerto Rico" for the scholarship that allowed GMI to work on this project. We would like to express our gratitude to the Arecibo Observatory/NAIC for their support.

  18. Euler: Genius Blind Astronomer Mathematician

    OpenAIRE

    Musielak, Dora

    2014-01-01

    Leonhard Euler, the most prolific mathematician in history, contributed to advance a wide spectrum of topics in celestial mechanics. At the Saint Petersburg Observatory, Euler observed sunspots and tracked the movements of the Moon. Combining astronomical observations with his own mathematical genius, he determined the orbits of planets and comets. Euler laid the foundations of the methods of planetary perturbations and solved many of the Newtonian mechanics problems of the eighteenth century...

  19. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L

    2006-01-01

    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  20. Observatoriya imeni russkogo astronoma v dalekoj Brazilii. K 100-letiyu so diya rozhdeniya Aleksandra Ivanovicha Postoeva (1900 - 1976) %t An observatory in distant Brazil named after a Russian astronomer (dedicated to Alexander Postoyev (1900 - 1976) centennial anniversary

    Science.gov (United States)

    Marques Dos Santos, P.; Matsuura, O. T.

    This is a biographical note on the life of Dr. Alexander Postoyev, a victim of Stalin's purge of Soviet astronomers in 1936 - 1937. Together with his family, he left the Soviet Union in 1943 and lived in Germany as a refugee and a "displaced person" until 1952, when he moved to Brazil. There, he started the second part of his professional career. Thanks to his efforts, the Astronomical and Geophysical Institute (IAG) of the University of Sao Paulo (USP) was for the first time included in programs of international cooperation, thus contributing to the institutional consolidation of IAG/USP as a leading center of astronomical research and teaching in Brazil now.

  1. The invisible universe the story of radio astronomy

    CERN Document Server

    Verschuur, Gerrit

    2015-01-01

    Hidden from human view, accessible only to sensitive receivers attached to huge radio telescopes, the invisible universe beyond our senses continues to fascinate and intrigue our imaginations. Closer to home, in the Milky Way galaxy, radio astronomers listen patiently to the ticking of pulsars that tell of star death and states of matter of awesome densities. All of this happens out there in the universe hidden from our eyes, even when aided by the Hubble Space Telescope. This is the story of radio astronomy, of how radio waves are generated by stars, supernova, quasars, colliding galaxies and by the very beginnings of the universe itself. The author discusses what radio astronomers are doing in the New Mexico desert, in a remote valley in Puerto Rico, and in the green Pocahontas Valley in West Virginia, as well as dozens of other remote sites around the world. With each of these observatories, the scientists collect and analyze their data, "listening" to the radio signals from space in order to learn what, ...

  2. Cosmic Blasts Much More Common, Astronomers Discover

    Science.gov (United States)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  3. Astronomers Unveiling Life's Cosmic Origins

    Science.gov (United States)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  4. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  5. 195-Year History of Mykolayiv Observatory: Events and People

    Directory of Open Access Journals (Sweden)

    Shulga, O.V.

    2017-01-01

    Full Text Available The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  6. 195-year history of Mykolayiv Observatory: events and people

    Science.gov (United States)

    Shulga, O. V.; Yanishevska, L. M.

    2017-02-01

    The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  7. 195-Year History of Mykolayiv Observatory: Events and People

    OpenAIRE

    Shulga, O.V.; Yanishevska, L.M.

    2017-01-01

    The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  8. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  9. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  10. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  11. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  12. Preservation and maintenance of the astronomical sites in Armenia

    Science.gov (United States)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  13. Astronomers Find Enormous Hole in the Universe

    Science.gov (United States)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  14. Radio Search for Alien Space Probes

    Science.gov (United States)

    Arkhipov, A. V.

    It is shown that the search for alien space probes by occasional interceptions of their radio communication beams appears to be a promising task not beyond the ability of amateur radio astronomers and all-sky monitoring systems.

  15. Ukrainian Virtual Observatory: Current Status and Perspectives of Development of Joint Archives of Observations

    Science.gov (United States)

    Vavilova, I. B.; Pakuliak, L. K.; Protsyuk, Yu. I.; Virun, N. V.; Kashuba, S. G.; Pikhun, A. I.; Andrievsky, S. M.; Mazhaev, A. E.; Kazantseva, L. V.; Shlyapnikov, A. A.; Shulga, A. V.; Zolotukhina, A. V.; Sergeeva, T. P.; Miroshnichenko, A. P.; Andronov, I. L.; Breus, V. V; Virnina, N. A.

    2011-07-01

    The current state of the observational data archives of seven observatories of Ukraine which were created from 1898 to 2010 is considered in respect to their suitability for including into the Ukrainian Virtual Observatory (UkrVO) database. In accordance with a current UkrVO conception approved by the Ukrainian Astronomical Association, the database of astro negatives is the main scientific component of the UkrVO. The database will include all the photo plates accumulated in Ukraine and combine them into the Joint Digitized Archive (JDA). This will provide for a user an easy access to textual data and images using web interface and a corresponding search engine. The data archives obtained from CCD and radio observations in Ukraine are also discussed as scientific components of the UkrVO. Some prospects of the JDA development are formulated.

  16. Astronomical Network for Teachers in Thailand

    Science.gov (United States)

    Kramer (Hutawarakorn), Busaba; Soonthornthum, Boonraksar; Poshyachinda, Saran

    We report the latest development of a pilot project in establishing the astronomical network for teachers in Thailand. The project has been recently granted by the Institute for the Promotion of Teaching Science and Technology Thailand and operated by Sirindhorn Observatory Chiangmai University. The objectives of the project are (1) to establish a16-inch semi-robotic telescope which can be accessed from schools nationwide; and (2) to establish an educational website in Thai language which contains electronic textbook of astronomy online encyclopedia of astronomy observing projects astronomical database and links to other educational websites worldwide. The network will play important role in the development of teaching and learning astronomy in Thailand.

  17. Construction of a Radio-Telescope Prototype in the 12 GHz Band

    Science.gov (United States)

    Ordóñez, J.; Quijano, A.; Luna, A.

    2017-07-01

    Radio astronomy is important in the branch of the Astronomy that studies the celestial bodies through their emissions in the domain of the radio waves, to obtain information of these bodies, astronomers must design new types of telescopes that can capture radiation at different wavelengths, including radio telescopes. This paper presents the construction of a prototype of an educational radio telescope, which is made using materials that are easily accessible and inexpensive. The construction of a radio telescope, will allow to carry out research in the field of radio astronomy, since at present it has not been possible to penetrate this branch due to the lack of an adequate equipment in the University of Nariño. The issues that are addressed in the construction of this instrument, its use and the analysis of the data, are very varied and with a high content of multidiciplinariety, gathering basic topics in areas such as astrophysics, physics, electronics, computing, mechanics, which are necessary for Concrete the efficient use of this instrument. For the development of the project, it counts with the advice of the director and researcher of the astronomical observatory of the University of Nariño MSc. Alberto Quijano Vodniza and Dr. Abraham Luna Castellanos of the National Institute of Astrophysics, Optics and Electronics INAOE. In addition to the construction of radiotelescope the final phase consists of the storage and analysis of data obtained with the observation of some celestial bodies that comply with The range in the 12 GHz band for study.

  18. Olfar: orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  19. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  20. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  1. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  2. Griffith Observatory: Hollywood's Celestial Theater

    Science.gov (United States)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  3. The Perugia University Automatic Observatory

    Science.gov (United States)

    Tosti, Gino; Pascolini, Sergio; Fiorucci, Massimo

    1996-08-01

    In this paper we describe the hardware and software architecture of the Automatic Imaging Telescope (AIT), recently developed at the Perugia University Observatory. It is based on an existing 0.4 m telescope which was transformed into an automatic device. During the night, all the observatory functions are controlled by two PCs in an unattended mode. The system is equipped with an autoguider and the software was designed to allow the automatic reduction of the data at the end of the night. Since October 1994 the AIT has been collecting a large amount of BVR_cI_c data for about 30 blazars. (SECTION: Astronomical Instrumentation)

  4. Dynamic Characteristics of the Main Indexes of Space Weather and Their Application to the Analysis Monitoring Observations Flux Densities of Power Radio Sources on RT URAN-4>

    Science.gov (United States)

    Guglya, L.; Ryabov, M.; Panishko, S.; Suharev, A.

    On radio telescope "URAN-4" of the Odessa observatory of Radio-astronomical Institute during twenty five years (since 1987 till present) monitoring of power galactic and extragalactic radio sources on frequencies 25 and 20MHz has been carried out. Data of the observation was spent in a current of the 22-23th cycles of solar activity and in the beginning of the 24th cycle. Long-term variations density fluxes of radio sources connection with change of a condition of ionosphere in a cycle of solar activity are considered. Means Fourier and Wavelet analysis determine dynamics of changes of the main indexes of space weather and the basic periods of activity are revealed. The obtained data will be used for interpretation of the observation changes flux of radio sources for during all investigated cycle of activity and periods of extreme developments of space weather.

  5. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B

    1973-01-01

    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...

  6. The Bateson Legacy: Variable Stars Research at the Auckland Observatory

    Science.gov (United States)

    Christie, Grant

    2005-03-01

    Frank Bateson's advice to the Auckland Astronomical Society's members looking for projects for their new Auckland Observatory has stood the test of time. Decades later the observation of variable stars is still the mainstay of Auckland's research programmes.

  7. The Bateson legacy: variable star research at the Auckland Observatory

    Science.gov (United States)

    Christie, Grant

    2005-03-01

    Frank Bateson's advice to the Auckland Astronomical Society's members looking for projects for their new Auckland Observatory has stood the test of time. Decades later the observation of variable stars is still the mainstay of Auckland's research programmes.

  8. Utrecht and Galactic Radio Astronomy

    NARCIS (Netherlands)

    van Woerden, H.

    Important roles in early Dutch Galactic radio astronomy were played by several Utrecht astronomers: Van de Hulst, Minnaert and Houtgast. The poster announcing the conference contained a number of pictures referring to scientific achievements of the Astronomical Institute Utrecht. One of these

  9. Astronomical Polarimeters and Features of Polarimetric Observations

    Science.gov (United States)

    Morozhenko, A. V.; Vid'machenko, A. P.

    2005-01-01

    We present a general description of ground-based astronomical polarimeters, and provide a detailed description of the spectropolarimeter of the Main astronomical observatory (MAO) of a National Academy of Sciences of Ukraine (NASU). Using a polarization modulator of a rotating quarter-wave phase plate (FP) allows us to measure the parameters of linear and circular polarization simultaneously. In 1983 O. I. Bugaenko with the colleagues from MAO of NASU produced an automatic astronomical spectropolarimeter (ASP), which used a continuous rotation of polarizer with frequency of 61 Hz. Observations in two beam modes allowed it to accommodate changes of transparency of the Earth's atmosphere, air mass the of observational object, inexactness of guiding and displacement from an optical axis because of atmospheric turbulence. In 1995 the spectropolarimeter was upgraded and its spectral interval expanded to 1 micron. Sources of errors and methods of their elimination are described.

  10. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    Science.gov (United States)

    2002-12-01

    introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual

  11. Ultimate precision in cosmic-ray radio detection — the SKA

    Science.gov (United States)

    Huege, Tim; Bray, Justin D.; Buitink, Stijn; Butler, David; Dallier, Richard; Ekers, Ron D.; Enßlin, Torsten; Falcke, Heino; Haungs, Andreas; James, Clancy W.; Martin, Lilian; Mitra, Pragati; Mulrey, Katharine; Nelles, Anna; Revenu, Benoît; Scholten, Olaf; Schröder, Frank G.; Tingay, Steven; Winchen, Tobias; Zilles, Anne

    2017-03-01

    As of 2023, the low-frequency part of the Square Kilometre Array will go online in Australia. It will constitute the largest and most powerful low-frequency radio-astronomical observatory to date, and will facilitate a rich science programme in astronomy and astrophysics. With modest engineering changes, it will also be able to measure cosmic rays via the radio emission from extensive air showers. The extreme antenna density and the homogeneous coverage provided by more than 60,000 antennas within an area of one km2 will push radio detection of cosmic rays in the energy range around 1017 eV to ultimate precision, with superior capabilities in the reconstruction of arrival direction, energy, and an expected depth-of-shower-maximum resolution of < 10 g/cm2.

  12. Ultimate precision in cosmic-ray radio detection — the SKA

    Directory of Open Access Journals (Sweden)

    Huege Tim

    2017-01-01

    Full Text Available As of 2023, the low-frequency part of the Square Kilometre Array will go online in Australia. It will constitute the largest and most powerful low-frequency radio-astronomical observatory to date, and will facilitate a rich science programme in astronomy and astrophysics. With modest engineering changes, it will also be able to measure cosmic rays via the radio emission from extensive air showers. The extreme antenna density and the homogeneous coverage provided by more than 60,000 antennas within an area of one km2 will push radio detection of cosmic rays in the energy range around 1017 eV to ultimate precision, with superior capabilities in the reconstruction of arrival direction, energy, and an expected depth-of-shower-maximum resolution of < 10 g/cm2.

  13. Are opthalmic hydrophobic coatings useful for astronomical optics?

    Science.gov (United States)

    Schwab, Christian; Phillips, Andrew C.

    2010-07-01

    Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.

  14. Early Dutch radio astronomy (1940-1970) : the people and the politics

    NARCIS (Netherlands)

    Elbers, Astrid

    2015-01-01

    Radio astronomy was born during the Second World War. The early post-war radio astronomy group in the Netherlands was one of the most important radio astronomy groups in the world. There are several reasons for this. Firstly: Dutch radio astronomers were trained as (optical) astronomers, while in

  15. Reengineering observatory operations for the time domain

    Science.gov (United States)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  16. Nicolaus Copernicus Astronomical Center

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  17. National and international astronomical activities in Chile 1849--2002

    Science.gov (United States)

    Duerbeck, H. W.

    2003-03-01

    At all times and in many ways, Chilean astronomy has been influenced externally, either by astronomical expeditions from other parts of the world, or by astronomers that immigrated from other countries. We outline the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere, over its directors Moesta, Vergara, Obrecht, Ristenpart to the middle of the 20th century, as well as the astronomical development at the Universidad Católica. In addition, various international expeditions, which aimed at observations of solar eclipses, the Venus transit of 1882, and the Mars opposition of 1907, were carried out. While a major photometric project of Harvard Observatory was active for only six weeks in the north of Chile, the spectroscopic Mills expedition of Lick Observatory in Santiago lasted several decades, and the solar observatory of the Smithsonian Astrophysical Observatory near Calama even longer. Finally we give a brief overview of the evolution and the actual state of the international observatories Cerro Tololo, La Silla, Paranal, and Las Campanas.

  18. Enthusiastic Little Astronomers

    Science.gov (United States)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  19. Astronomers' Do-It-Yourself Project Opening A New Window on the Universe

    Science.gov (United States)

    1999-05-01

    Rolling up their sleeves to build and install new equipment for the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope, a team of astronomers has opened a new window on the universe, revealing tantalizing new information about the explosions of massive stars, the workings of galaxies with supermassive black holes at their centers, and clusters of galaxies. "We're going back to the region of wavelengths where Karl Jansky started radio astronomy in 1932," said Namir Kassim, of the Naval Research Laboratory (NRL), in Washington, D.C. "This is one of the most poorly explored regions of the electromagnetic spectrum, yet it offers tremendous potential to learn exciting new information about everything from the Sun and planets to galaxy clusters and the universe itself," Kassim said. Kassim, along with Rick Perley of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; William Erickson, a professor emeritus at the University of Maryland; and Joseph Lazio, also of NRL, presented results of their observations with the new VLA system at the American Astronomical Society's meeting in Chicago. The new system uses the 27 dish antennas of the VLA, each 25 meters (82 feet) in diameter, to receive cosmic radio emissions at a frequency of 74 MHz, or a wavelength of about four meters. This frequency, lower than that of the FM broadcast band, is far below the usual frequencies, 1- 50 GHz, used for radio astronomy. "Though the region of 15-150 MHz is where Jansky and Grote Reber did the first radio-astronomy work in the 1930s and 1940s, it has long been neglected because of technical difficulties of working in that region," said Perley. Still, the astronomers said, there is much to be learned by studying the universe at these wavelengths. "There are phenomena associated with the Sun and planets, with other objects in our own Milky Way Galaxy, and with other galaxies and clusters of galaxies, and potentially ancient emission from the Universe itself

  20. Enabling Virtual Access to Latin-American Southern Observatories

    Science.gov (United States)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  1. Genetic programming applied to RFI mitigation in radio astronomy

    Science.gov (United States)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  2. Astronomers to Mark 20th Anniversary of the Very Large Array

    Science.gov (United States)

    2000-07-01

    On August 23, scientists will mark the 20th anniversary of the National Science Foundation's Very Large Array (VLA), the most powerful, flexible and widely-used radio telescope in the world. "Twenty years ago, the VLA brought dramatic new observing capabilities to the world's astronomers, and today there is hardly a branch of astronomy that has not been profoundly impacted by the prolific research output of this radio telescope," said Dr. Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO). The anniversary will be marked in a ceremony at NRAO's Array Operations Center in Socorro, NM. The keynote speaker for this ceremony will be U.S. Senator Pete V. Domenici, R-NM. Also speaking will be Dr. Rita Colwell, NSF Director; Dr. Anneila Sargent, president-elect of the American Astronomical Society; Vanden Bout; Dr. Riccardo Giacconi, president of Associated Universities, Inc. (AUI); Dr. Paul Martin, chairman of the AUI board of trustees; and Dr. Miller Goss, NRAO's director of VLA/VLBA operations. "More than 2,200 researchers from hundreds of institutions around the world have used the VLA for more than 10,000 observing projects," said Vanden Bout. "Research conducted at the VLA has had a major impact across the entire breadth of astronomy, from nearby objects such as the Sun and planets of our own Solar System, to forming galaxies and quasars billions of light-years away in the farthest reaches of the Universe," Vanden Bout added. Major discoveries made by the VLA have ranged from the surprising detection of water ice on Mercury, the nearest planet to the Sun, to the first detection of radio emission from a Gamma Ray Burster in 1997. The VLA also discovered the first "Einstein Ring" gravitational lens in 1987, and the first "microquasar" within our own Milky Way Galaxy in 1994. Over the past two decades, the VLA also has made major contributions to our understanding of active regions on the Sun, the physics of superfast "cosmic jets" of material

  3. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    2. National Centre for Radio Astrophysics, Post Bag No. 3, Ganeshkind, Pune 411 007, India. International Centre for Radio Astronomical Research, University of Western Australia, Perth, Western Australia, Australia.

  4. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    Science.gov (United States)

    2007-07-01

    size. The book reprints internal memos, reports, and recollections of astronomers who were there, as the initial elation turned to frustration when the 140 Foot Telescope project became mired in technical difficulties, plans for larger dishes were put on hold, and the scientific staff of the fledgling Observatory struggled to create a National Observatory with inadequate equipment in a very remote location. Articles by David Heeschen and John Findlay tell the story of the creation of the 300 Foot Telescope, at that time the largest in the world, which went from initial concept to full operation in only 23 months, and began a rich life of research that put the NRAO on the world scientific map. The 300 Foot Telescope was originally intended to be an interim instrument, but as documented in the book, demand for its use was so high that it was kept in operation long after its initial planned retirement, with regular upgrades and new generations of electronics. The sudden collapse of the 300 Foot Telescope on a calm evening after 26 years of operation shocked the astronomical community. But it was Fun... features dramatic first-hand accounts by the people who were there that night: the telescope operator who found himself under a falling structure; the Observatory staff who at first could not believe what happened, and those who worked during the night and into the next day to secure the area, preserve information on what happened, and deal with the rush of publicity. The book includes extensive photographs and the Executive Summary Report of the panel which was commissioned to investigate the collapse and its implication for the design of other large radio telescopes. But it was Fun... will appeal to a variety of audiences. Historians of science will be interested in the articles by David Heeschen, Gerald Tape, and Hugh van Horn, on the evolution of the concept of a National Observatory, and the difficulties of putting the concepts into practice in Green Bank. Those

  5. The creation of the International Astronomical Union as a result of scientific diplomacy

    Science.gov (United States)

    Saint-Martin, Arnaud

    2011-06-01

    After World War I, the foundation of the International Astronomical Union delimited a space for a new form of internationality, which led to a rapid change in the way astronomical research had previously been pursued. This structure was to be a sort of parliament of astronomical nations which planned to supervise scientific programs and to rationalise inter-observatory cooperation. In this article, I will discuss the sociological aspects of this institutional process and introduce the idea of `scientific diplomacy'.

  6. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  7. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  8. Protection of Existing and Potential Astronomical Sites in Chile - an Update.

    Science.gov (United States)

    Smith, M. G.; Sanhueza, P.; Norman, D.; Schwarz, H.; Orellana, D.

    2002-12-01

    The IAU's Working Group on Controlling Light Pollution (iauwg) has declared Mauna Kea and a wide strip of Northern Chile between Antofagasta and Chajnanator as top priorities for its efforts to protect existing and potential sites in the Northern and Southern hemispheres respectively. This report provides an update on the iauwg's co-ordinated efforts to protect areas around the major international optical observatories in Chile, as well as the "Chilean Special Zone" (CSZ) mentioned above. This zone is of current and potential interest for the installation of extremely large optical telescopes and includes the ALMA radio-astronomy site. The CSZ is potentially vulnerable to adverse effects of mining in the region. Progess has been made in demonstrating to local mining interests within the CSZ the economic advantages of quality lighting. Educational and outreach activities to a variety of target audiences are building on legislation covering dark skies - itself part of work by the Chilean government to protect the natural heritage of Chile. Substantial good will was generated by an international, bilingual conference held last March in Chile. Just in the region around AURA's Observatory in Chile (Gemini South, CTIO and SOAR), a portable planetarium has been used to reach out to over 600 teachers and 65,000 pupils in the RedLaSer schools network within the last three years. This has attracted the direct interest of Chile's Ministry of Education. Videoconferencing over Internet2 is being used for educational purposes between Chile and various sites in the US. The NSF- initiated Mamalluca municipal observatory now receives more visitors than all the international observatories in Chile combined and is the focus of an expanding local industry of astronomical eco-tourism. Most of this work was supported by funding from, or via, the US NSF through CTIO and Gemini, and from ESO, OCIW, CONAMA and the IDA.

  9. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    Science.gov (United States)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  10. The amateur astronomer

    CERN Document Server

    Moore, Patrick

    2006-01-01

    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  11. ALMA Observatory Equipped with its First Antenna

    Science.gov (United States)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  12. A website for astronomical news in Spanish

    Science.gov (United States)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  13. Light pollution around Tonantzintla Observatory

    Science.gov (United States)

    Vázquez-Mata, José A.; Hernández-Toledo, Héctor M.; Martínez-Vázquez, Luis A.; Pani-Cielo, Atanacio

    2011-06-01

    Being close to the cities of Puebla to east and Cholula to the north, both having potential for large growth, the National Astronomical Observatory in Tonantzintla (OAN-Tonantzintla) faces the danger of deteriorating its sky conditions even more. In order to maintain competitiveness for education and scientific programs, it is important to preserve the sky brightness conditions. through: 1) our awareness of the night sky characteristics in continuous monitoring campaigns, doing more measurements over the next years to monitor changes and 2) encouraging local authorities about the need to regulate public lighting at the same time, showing them the benefits of such initiatives when well planed and correctly implemented.

  14. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James

    2013-01-01

    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  15. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  16. Radio Telescopes "Save the Day," Produce Data on Titan's Winds

    Science.gov (United States)

    2005-02-01

    eventually provide a three-dimensional record of motion for the Huygens Probe during its mission at Titan. Huygens was built by the European Space Agency. The radio astronomy support of the Huygens mission is coordinated by JIVE and JPL and involves the National Radio Astronomy Observatory (Green Bank, WV and Socorro, NM), the Netherlands Foundation for Research in Astronomy (ASTRON, The Netherlands), the University of Bonn (Germany), Helsinki University of Technology (Espoo, Finland), the MERLIN National Facility (Jodrell Bank, UK), the Onsala Space Observatory (Sweden), the NASA Jet Propulsion Laboratory (Pasadena, CA), the CSIRO Australia Telescope National Facility (ATNF, Sydney, Australia), the University of Tasmania (Hobart, Australia), the National Astronomical Observatories of China, the Shanghai Astronomical Observatory (Shanghai and Urumqi, China) and the National Institute of Information and Communications Technologies (Kashima Space Research Center, Japan). The Joint Institute for VLBI in Europe is hosted by ASTRON and funded by the national research councils, national facilities and institutes of The Netherlands (NOW), the United Kingdom (PPARC), Italy (CNR), Sweden (Onsala Space Observatory, National Facility), Spain (IGN) and Germany (MPIfR). The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The Cassini-Huygens mission is a cooperation between NASA, ESA and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA's Office of Space Science, Washington DC. JPL designed, developed and assembled the Cassini orbiter while ESA operated the Huygens atmospheric probe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  17. OLFAR - Orbiting low frequency antennas for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high

  18. Ice Observatory

    Science.gov (United States)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  19. Magdalena Ridge Observatory: the start-up of a new observatory

    Science.gov (United States)

    Bakker, Eric J.; Westpfahl, David; Loos, Gary

    2008-07-01

    This paper discusses the challenges faced in designing and building a new astronomical observatory. Which factors drive an organization (e.g. university) to invest considerable funding and human resources, and experience considerable risk to establish a new research facility? We identify four main drivers for establishing a new observatory: support for education, research, economic development, and technology development. For public observatories, research is generally the main driver. For nonpublic observatories, the situation is more complex and is for each situation different. A detailed description is presented on the drivers and opportunities that resulted in establishing the Magdalena Ridge Observatory. Three main opportunities are identified: a developed site, surplus equipment, and economic development of the Socorro area.

  20. Building a Roll-Off Roof Observatory A Complete Guide for Design and Construction

    CERN Document Server

    Hicks, John

    2009-01-01

    Almost every practical astronomer who takes the pursuit to its second level aspires to a fixed, permanent housing for his telescope, permitting its rapid and comfortable use and avoiding hours of setting-up time for each observing session. A roll-off roof observatory is the simplest and by far the most popular observatory design for today’s practical astronomers. Building a Roll-off Roof Observatory will help you decide whether to embark on the venture and will certainly provoke your enthusiasm for the project. The author, both an amateur astronomer and professional landscape architect, answers many of the common questions asked around observatory construction covering the following topics: Site planning, zoning, and by-law requirements common to most states, towns and municipalities Opportunities for locating the observatory Tailoring the observatory for your particular use Tools and structural components required to build it Variations in footing design to suit your soil conditions Variations possible in ...

  1. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, V. A. R. M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Russo, P. [EU Universe Awareness, Leiden Observatory, Leiden University, PO 9513 Leiden, 2300 RA (Netherlands); Cárdenas-Avendaño, A., E-mail: vribeiro@ast.uct.ac.za, E-mail: russo@strw.leidenuniv.nl [Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No 26-85, Edificio Gutierréz, Bogotá, DC (Colombia)

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  2. An Astronomical Life Salted by Pure Chance

    Science.gov (United States)

    Kraft, Robert P.

    2009-09-01

    My childhood upbringing in no way suggested that I would become an astronomer, but accidents of fate pushed me in the direction of science, and I have benefited greatly from being in the right place at the right time. I grew up in Seattle, earned B.S. and M.S. degrees in mathematics at the University of Washington, and eventually a Ph.D. in astronomy from the University of California, Berkeley. I was a postdoc at the Mt. Wilson Observatory, an assistant professor at Indiana University, later the Yerkes Observatory (University of Chicago), and still later I became a staff member of the Mt. Wilson and Palomar Observatories. After several years, I returned to the University of California, this time with the Lick Observatory staff at its new academic home on the Santa Cruz campus, where I have been ever since. My research has focused on the relation of Cepheids and RR Lyrae stars to problems of Galactic structure, the binary nature of cataclysmic variables, the decay of angular momentum of solar type stars, and the chemical history of the Galaxy as revealed by the abundances of very old stars in globular clusters and the Galactic halo field. None of this work would have been possible without the help of excellent teachers and mentors, great colleagues, and superb postdocs and graduate students. Most of all, I am grateful for the educational opportunities afforded me by state-supported public Universities.

  3. Serbian Astronomers in Science Citation Index in the XX Century

    Science.gov (United States)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  4. A refined Astronomically Calibrated 40AR/39Ar age for Fish Canyon Sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.F.

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision

  5. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  6. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    National Research Council Canada - National Science Library

    Evans, Charles

    2003-01-01

    ... is a 4.2-meter aperture telescope employing state-of-the-art technologies to deliver high-resolution images, which are limited only by the excellent seeing conditions of its site on Cerro Pachon in northern Chile. It is designed to operate from the near-ultraviolet through the.

  7. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    Science.gov (United States)

    2003-03-21

    technologies to deliver high-resolution images that are limited only by the excellent seeing conditions of this site on Cerro Pachon in northern Chile. SOAR is...on Cerro Pachon in Chile 2 Figure 2: The SOAR facility during construction 3 Figure 3: The SOAR site from ground level 4 Figure 4: Aerial view of...on Cerro Pachon in northern Chile. It is designed to operate from the near-ultraviolet through the near-infrared (λλ0.33 – 2.5µm). SOAR is a joint

  8. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  9. Jan Hendrik Oort – A Complete Astronomer (1900 –1992)

    Indian Academy of Sciences (India)

    IAS Admin

    therefore makes our vision shortsighted. The radio map revealed spiral arms of our Galaxy, and showed that the Milky Way was similar in appearance to other spiral galaxies. Oort is remembered not only as the father of Dutch astronomy, but also as a major figure in spearheading astronomical research in Europe, and in ...

  10. The CAPRI Project: Coordinates for Astronomical Press Release Images

    Science.gov (United States)

    Frattare, Lisa M.; Ferguson, B. A.; Summers, F.; Levay, Z. G.

    2009-01-01

    The beauty and splendor of astronomical press release images has made an enormously positive impact with the media and public alike. As a leading provider of astronomical imagery and a major contributor of Hubble Space Telescope press release images, the outreach division of Space Telescope Science Institute (STScI) recognizes the importance of making press release images compliant with virtual observatory standards for inclusion in databases and repositories. Our goal is to make outreach images accessible by virtual observatory applications by calculating World Coordinate System (WCS) data for these images. We provide updated and improved software that allows observatories to easily and accurately transform coordinates on their astronomical press release images, using reference FITS files. The resultant metadata conforms to the Simple Image Access (SIA) protocol established by the International Virtual Observatory Alliance and has been used by popular end users such as Google Sky and World Wide Telescope. Several hundred images from the STScI Office of Public Outreach NewsCenter database have been processed, and their coordinates and other relevant metadata are accessible through an SIA-compliant web service.

  11. Eminent Astronomers - Odessa University Graduates - In European Astronomy

    Science.gov (United States)

    Volyanskaya, M. Yu.

    1998-09-01

    A brief description of scientific activity of some eminent astronomers - graduates of the Odessa University named after I.I. Mechnikov (earlier - Novorossiiski University) in European astronomy is given: * Stratonov V.V. (1869-1938), professor, wellknown specialist in stellar astronomy, who was exiled abroad in 1992 among many scientists and writers, lived in Germany and Prague, where died; * Gansky A.P. (1870-1908) - famous investagator of the Sun, worked at the Meudon Observatory, ascended 9 times to Mount Blanc to make observations, was awarded by P.Z.C. Jansen medal of the Paris Academy of Sciences; * Donitch N.N. (1874-1956) - wellknown investigator of the Solar system, one of the first Romanian astronomers, a brilliant personality of the astronomical community of his time, a honorary member of the Romanian Academy of Sciences, died in Nice (France); * Zalesky Bogdan (1887-1927), specialist in astrometry, which became a wellknown astronomer in Poland. One of the founders and the first director of the University Observatory in Poznan; * Witkowsky Josef (1892- 1976) - specialist in astrometry, practical astronomy, and tidal phenomena studies, history of astronomy. Professor, Director of the Astronomical Centre in Poznan; *Stoiko N.M. ((1894-1976) - investigator of the irregularities of the Earth's rotation, the Earth's poles motions and the universal time determination. A member of many scientific societies. He was awarded by prizes of the Paris Academy of Sciences, of the French astronomical society, of the Royal Academy of Belgium. He worked at the Paris Observatory and was one of the Directors of the International Time Service; * Jardecky (Zhardecky) Vietcheslaw (1896-1962), worked at the Department of Mathematics of the Beograd University; eminent specialist in the field of Mechanics of Fluids; After the Second World War he emmigrated to the USA, Professor of Geophysics at the Columbia Univeristy (New York), where died.

  12. Beyond the Observatory: Reflections on the Centennial

    Science.gov (United States)

    Devorkin, D. H.

    1999-05-01

    One of the many unexpected side-benefits of acting as editor of the AAS centennial volume was the chance to take a fresh look at some of the personalities who helped to shape the American Astronomical Society. A common characteristic of these people was their energy, compassion and drive to go "Beyond the Observatory," to borrow a phrase from Harlow Shapley. But what did going `beyond the observatory' mean to Shapley, or to the others who shaped and maintained the Society in its first one hundred years of life? Just as the discipline of astronomy has changed in profound ways in the past century, so has the American Astronomical Society changed, along with the people who have been its leaders and its sustainers and the culture that has fostered it. The Centennial meeting of the Society offers a chance to reflect on the people who have given American astronomy its sense of community identity.

  13. Grid Based Chinese Virtual Observatory System Design

    Science.gov (United States)

    Cui, Chenzhou; Zhao, Yongheng

    Chinese Virtual Observatory (China-VO) project is a consortium initiated by Chinese National Astronomical Observatory and Large Sky Area Multi-Object Fiber Spectroscopic Telescope project. A three-layer architecture of the China-VO is described which depends upon the Open Grid Services Architecture being developed by the Global Grid Forum. The fabric layer mainly consists of astronomical datasets with corresponding metadate and data access services. The resource layer includes a large scale of services for grid resource management data interoperation data mining security logical name space and so on. The application layer consists of user interfaces and other client services. In the China-VO system all the functional components are SOAP Grid service implementations. Chinese National Grid (CNGrid) will be the testbed for the China-VO. How to interact with other CNGrid components is also discussed.

  14. Lightning Detection at the Pierre Auger Observatory

    OpenAIRE

    Rautenberg, Julian; Filipčič, Andrej; Kukec Mezek, Gašper; Saleh, Ahmed; Stanič, Samo; Trini, Marta; Veberič, Darko; Vorobiov, Serguei; Yang, Lili; Zavrtanik, Danilo; Zavrtanik, Marko

    2016-01-01

    The Auger Engineering Radio Array, an extension of the Pierre Auger Observatory with antennas in the MHz range, requires to monitor the atmospheric conditions, which have a large influence on the radio emission of air showers. In particular, amplified signals up to an order of magnitude have been detected as an affect of thunderstorms. For a more detailed investigation and more generally, for detecting thunderstorms, a new lightning detection system has been install...

  15. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Community College Class Devoted to Astronomical Research

    Science.gov (United States)

    Genet, R. M.; Genet, C. L.

    2002-05-01

    A class at a small community college, Central Arizona College, was dedicated to astronomical research. Although hands-on research is usually reserved for professionals or graduate students, and occasionally individual undergraduate seniors, we decided to introduce community college students to science by devoting an entire class to research. Nine students were formed into three closely cooperating teams. The class as a whole decided that all three teams would observe Cepheid stars photometrically using a robotic telescope at the Fairborn Observatory. Speaker-phone conference calls were made to Kenneth E. Kissell for help on Cepheid selection, Michael A. Seeds for instructions on the use of the Phoenix-10 robotic telescope, and Douglas S. Hall for assitance in selecting appropriate comparison and check stars. The students obtained critical references on past observations from Konkoly Observatory via airmail. They spent several long night sessions at our apartment compiling the data, making phase calculations, and creating graphs. Finally, the students wrote up their results for publication in a forthcoming special issue of the international journal on stellar photometry, the IAPPP Communication. We concluded that conducting team research is an excellent way to introduce community college students to science, that a class devoted to cooperation as opposed to competition was refreshing, and that group student conference calls with working astronomers were inspiring. A semester, however, is a rather short time to initiate and complete research projects. The students were Sally Baldwin, Cory Bushnell, Bryan Dehart, Pamela Frantz, Carl Fugate, Mike Grill, Jessica Harger, Klay Lapa, and Diane Wiseman. We are pleased to acknowledge the assistance provided by the astronomers mentioned above, James Stuckey (Campus Dean), and our Union Institute and University doctoral committee members Florence Pittman Matusky, Donald S. Hayes, and Karen S. Grove.

  17. The Spectrum Landscape: Prospects for Terrestrial Radio Astronomy

    Science.gov (United States)

    Liszt, Harvey Steven

    2018-01-01

    Radio astronomers work within broad constraints imposed by commercial and other non-astronomical uses of the radio spectrum, somewhat modified to accommodate astronomy’s particular needs through the provision of radio quiet zones, radio frequency allocations, coordination agreements and other devices of spectrum management. As radio astronomers increase the instantaneous bandwidth, frequency coverage and sensitivity of their instruments, these external constraints, and not the limitations of their own instruments, will increasingly be the greatest obstacles to radio astronomy’s ability to observe the cosmos from the surface of the Earth. Therefore, prospects for future radio astronomy operations are contingent on situational awareness and planning for the impact of non-astronomical uses of the radio frequency spectrum. New radio astronomy instruments will have to incorporate adaptive reactions to external developments, and radio astronomers should be encouraged to think in untraditional ways. Increased attention to spectrum management is one of these. In this talk I’ll recap some recent developments such as the proliferation of 76 – 81 GHz car radar and orbiting earth-mapping radars, either of which can burn out a radio astronomy receiver. I’ll summarize present trends for non-astronomical radio spectrum use that will be coming to fruition in the next decade or so, categorized into terrestrial fixed and mobile, airborne and space-borne uses, sub-divided by waveband from the cm to the sub-mm. I’ll discuss how they will impact terrestrial radio astronomy and the various ways in which radio astronomy should be prepared to react. Protective developments must occur both within radio astronomy’s own domain – designing, siting and constructing its instruments and mitigating unavoidable RFI – and facing outward toward the community of other spectrum users. Engagement with spectrum management is no panacea but it is an important means, and perhaps the only

  18. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  19. Despite Appearances, Cosmic Explosions Have Common Origin, Astronomers Discover

    Science.gov (United States)

    2003-11-01

    A Fourth of July fireworks display features bright explosions that light the sky with different colors, yet all have the same cause. They just put their explosive energy into different colors of light. Similarly, astronomers have discovered, a variety of bright cosmic explosions all have the same origin and the same amount of total energy. This is the conclusion of an international team of astronomers that used the National Science Foundation's Very Large Array (VLA) radio telescope to study the closest known gamma-ray burst earlier this year. Artist's conception of burst Artist's Conception of Twin Jets in Energetic Cosmic Explosion CREDIT: Dana Berry, SkyWorks Digital (Click on Image for Larger Version) "For some reason we don't yet understand, these explosions put greatly varying percentages of their explosive energy into the gamma-ray portion of their output," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. That means, he said, that both strong and weak gamma-ray bursts, along with X-ray flashes, which emit almost no gamma rays, are just different forms of the same cosmic beast. The research team reported their results in the November 13 issue of the scientific journal Nature. The scientists trained the VLA on a gamma-ray burst discovered using NASA's HETE-2 satellite last March 29. This burst, dubbed GRB 030329, was the closest such burst yet seen, about 2.6 billion light-years from Earth. Because of this relative proximity, the burst was bright, with visible light from its explosion reaching a level that could be seen in amateur telescopes. As the burst faded, astronomers noted an underlying distinctive signature of a supernova explosion, confirming that the event was associated with the death of a massive star. Since 1999, astronomers have known that the strong outbursts of gamma rays, X-rays, visible light and radio waves from these bursts form beams, like those from a flashlight, rather than spreading in all directions

  20. CCD Astrometry of Selected Compact Extragalactic Radio Sources

    Science.gov (United States)

    Fedorov, P.; Velichko, F.; Filonenko, V.; Myznikov, A.; Sergeev, V.

    The 64 optical positions relative to the Catalog of Astrometric Standards (USNO-A2.0) and 9 optical positions relative to the Extragalactic Reference Link Catalog (de Vegt at al., 2001) had been obtained for the optical counterparts of 50 northern compact extragalactic radio sources (CERS). These positions were determined at the Kharkov Astronomical Observatory with use the CCD-camera ST-6 of the 0.7-m telescope AZT-8. More than 325 CCD-images of field 10.5' × 8' with optical counterparts of selected CERS had been obtained during 1997-2001. Positions of reference stars (from 6 to 12 stars for each CERS) were obtained from USNO-A2.0 catalogue, Extragalactic Reference Link Catalog and Nikolayev AMC catalogue (Pinigin & Shulga, 1999). The mean internal formal errors of the optical positions of these CERS are 100 mas in right ascension and 70 mas in declination. A comparison with VLBI radio positions for these sources is presented. The mean differences between radio and optical positions from our observations are not significantly differing from zero on the 0.05 significance level. The optical data which we obtained is potentially useful to possibly improve the current link of the Hipparcos reference frame to the ICRS. References de Vegt, C., Hindsley, R., Zacharias, N., Winter, L. 2001, AJ, 2815 Pinigin, G.I., Shulga A.V., 1999, Proc. JOURNESS 1999 & IX. Lohrmann-Kolloquium, Dresden (Germany), 64

  1. New Radio Interferometers and Data Access: Investigations of Star Formation

    Science.gov (United States)

    Richards, A. M. S.; Laing, R. A.

    2005-10-01

    There are many natural sources of radio waves in the cosmos, from magnetised plasmas to molecular gas. These have two things in common; their emission can penetrate dust and clouds which block out optical light, and it can be studied using interferometry giving unparallelled angular resolution. This is invaluable for the study of star formation in our own and other galaxies and its place in stellar and cosmological evolution. Interferometric data comes at a price of complex data processing and very high data rates. The volume of radio astronomy data will increase over a thousandfold in the next few years as optical fibres are used to link ambitious new arrays. Fortunately the results will become more accessible thanks to the development of Virtual Observatories giving remote access not only to data but to data handling tools. Internationally agreed standards for describing images, spectra, catalogues and other data products allow astronomers to extract and compare results from the radio to the X-ray domain and beyond, without leaving their desks. These developments are illustrated by application to two problems; classification of young stellar objects in the Milky Way and the relationship between active galactic nuclei and starburst activity at high redshift.

  2. Great Belt of Megalithic Observatories and Problem of History of the Pole of the World

    OpenAIRE

    Chechelnitsky, A. M.

    2001-01-01

    The problem of localization of megalithic memorials on the Earth surface is investigated. It is pointed on existence of Great Belt of megalithic observatories - of con- centration of astronomically significant objects near geographical latitude 51 grad. N. The latent fundamental (and astronomical) sense is discussed of this phenomenon- the tendency to functional and architectural simplisity, to simmetry of megali- thic observatories (in view of the Symmetric Mandale. It is pointed on possibil...

  3. Next VLT Instrument Ready for the Astronomers

    Science.gov (United States)

    2000-02-01

    -years away. It is one of the largest known star-forming regions in the Local Group of Galaxies. It was first catalogued as a star, but then recognized to be a nebula by the French astronomer A. Lacaille in 1751-52. The Tarantula Nebula is the only extra-galactic nebula which can be seen with the unaided eye. It contains in the centre the open stellar cluster R 136 with many of the largest, hottest, and most massive stars known. Radio Galaxy Centaurus A ESO Press Photo 05b/00 ESO Press Photo 05b/00 [Preview; JPEG: 400 x 448; 40k] [Normal; JPEG: 800 x 896; 110k] [Full-Res; JPEG: 2048 x 2293; 2.0Mb] The radio galaxy Centarus A , as obtained with FORS2 at KUEYEN during the recent Commissioning period. It was taken during the night of January 31 - February 1, 2000. It is a composite of three exposures in B (300 sec exposure, image quality 0.60 arcsec; here rendered in blue colour), V (240 sec, 0.60 arcsec; green) and R (240 sec, 0.55 arcsec; red). The full-resolution version of this photo retains the orginal pixels. ESO Press Photo 05c/00 ESO Press Photo 05c/00 [Preview; JPEG: 400 x 446; 52k] [Normal; JPEG: 801 x 894; 112k] An area, north-west of the centre of Centaurus A with a detailed view of the dust lane and clusters of luminous blue stars. The normal version of this photo retains the orginal pixels. The new FORS2 image of Centaurus A , also known as NGC 5128 , is an example of how frontier science can be combined with esthetic aspects. This galaxy is a most interesting object for the present attempts to understand active galaxies . It is being investigated by means of observations in all spectral regions, from radio via infrared and optical wavelengths to X- and gamma-rays. It is one of the most extensively studied objects in the southern sky. FORS2 , with its large field-of-view and excellent optical resolution, makes it possible to study the global context of the active region in Centaurus A in great detail. Note for instance the great number of massive and luminous blue

  4. The Expansion of the Astronomical Photographic Data Archive at PARI

    Science.gov (United States)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael

    2017-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  5. Preserving Dark Skies: Do Astronomers Care?

    Science.gov (United States)

    Davis, D. R.; Crawford, D. L.

    2001-12-01

    Ground based telescopes are, even in this era of planetary missions and space telescopes, the dominant source of data on solar system objects. Yet many of the premier observing sites in the world are threatened by increasing artificial light that is scattered into the sky - light pollution. World class observing sites such as Mt. Wilson have long since lost the ability to do cutting edge faint object science and observatories in Southern Arizona have been recently threatened - the Canoa Ranch development being the most recent example. Yet there are actions that can be taken to preserve dark skies, not only for astronomy, but also for the benefit of all humanity. Lead by astronomers, effective outdoor lighting codes have been produced and adopted by many jurisdictional authorities. Advocacy organizations such as the International Dark-sky Association (IDA) distribute educational material on how to preserve dark skies through good outdoor lighting practices. Other institutions, such as the National Park Service, are realizing that dark skies are an integral part of the wilderness experience and are taking steps to preserve the quality of their skies. However, the primary beneficaries of dark sky preservation efforts, namely the ground based astronomical community, have largely failed to become involved in efforts to preserve dark skies. For example, only a few percent of the membership of the American Astronomical Society is active in light pollution work or is even a member of IDA. In this presentation, Iwe will outline what is being done locally to preserve dark skies througout the world. In addition, some observations on the level of support from the astronomical community will be offered.

  6. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  7. Ancient Egyptian Astronomical Calander

    Science.gov (United States)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  8. Managing Reprints and Preprints in an Observatory Library.

    Science.gov (United States)

    Martin, Sarah S.

    An on-going project of cross-referencing reprint and preprint series distributed by observatories to the collection of the National Radio Astronomy Observatory is described. Reprints available in the library's journal collection were removed after cross-indexing and referencing was accomplished. If the reprint was not available through the journal…

  9. Experiences with the Design and Construction of Astronomical Instrumentation using CASPER: The Digital Backend System

    Science.gov (United States)

    Prestage, Richard M.; Bloss, M.; Brandt, J.; Creager, R.; Demorest, P.; Ford, J.; Jones, G.; Luo, J.; McCullough, R.; Ransom, S. M.; Ray, J.; Watts, G.; Whitehead, M.

    2014-01-01

    NRAO recently designed and built a state-of-the-art backend system for the Shanghai Astronomical Observatory's (SHAO) 65 meter radio telescope. The machine, called the Digital Backend System (DIBAS), was created from the design of the VErsatile GBT Astronomical Spectrometer (VEGAS) by adding nine incoherent pulsar search modes and eight coherent dedispersion timing modes to complement the 29 VEGAS spectral line modes. Together these modes cover all of the anticipated science requirements for the 65 meter except for VLBI. The VEGAS multi-beam spectrometer was recently designed and built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. The VEGAS spectrometer is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and x86-64 CPUs. Working together, the hardware in this system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs, at bandwidths of up to 1.25 GHz per input. An aggregate of up to 10 GHz of bandwidth, dual polarization, may be simultaneously processed with the VEGAS spectrometer. As capable as this spectrometer is, it has no advanced pulsar capabilities such as were needed for DIBAS. To create DIBAS, VEGAS was augmented with new FPGA designs based on those built for the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) some five years ago. GUPPI was built on earlier generations of FPGA hardware designed by the CASPER project at Berkeley. Porting the old GUPPI designs to modern hardware and wider bandwidths was a good test case to determine the portability of the FPGA designs and the utility of the toolset to help move designs between generations of FPGA chips, as well as the degree of reuse that could be obtained from the VEGAS project. This paper will explore the unique aspects of the DIBAS project, including

  10. Astronomers Discover Most Massive Neutron Star Yet Known

    Science.gov (United States)

    2010-10-01

    Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered the most massive neutron star yet found, a discovery with strong and wide-ranging impacts across several fields of physics and astrophysics. "This neutron star is twice as massive as our Sun. This is surprising, and that much mass means that several theoretical models for the internal composition of neutron stars now are ruled out," said Paul Demorest, of the National Radio Astronomy Observatory (NRAO). "This mass measurement also has implications for our understanding of all matter at extremely high densities and many details of nuclear physics," he added. Neutron stars are the superdense "corpses" of massive stars that have exploded as supernovae. With all their mass packed into a sphere the size of a small city, their protons and electrons are crushed together into neutrons. A neutron star can be several times more dense than an atomic nucleus, and a thimbleful of neutron-star material would weigh more than 500 million tons. This tremendous density makes neutron stars an ideal natural "laboratory" for studying the most dense and exotic states of matter known to physics. The scientists used an effect of Albert Einstein's theory of General Relativity to measure the mass of the neutron star and its orbiting companion, a white dwarf star. The neutron star is a pulsar, emitting lighthouse-like beams of radio waves that sweep through space as it rotates. This pulsar, called PSR J1614-2230, spins 317 times per second, and the companion completes an orbit in just under nine days. The pair, some 3,000 light-years distant, are in an orbit seen almost exactly edge-on from Earth. That orientation was the key to making the mass measurement. As the orbit carries the white dwarf directly in front of the pulsar, the radio waves from the pulsar that reach Earth must travel very close to the white dwarf. This close passage causes them to be delayed in their arrival by the distortion of

  11. Development of solar tower observatories

    Science.gov (United States)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  12. A component based astronomical visualization tool for instrument control

    Science.gov (United States)

    Briegel, Florian; Berwein, Jürgen; Kittmann, Frank; Pavlov, Alexey

    2008-07-01

    For various astronomical instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,...) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionalities for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt,1 the modern middleware Internet Communications Engine 2 from ZeroC and the template based SOA developer framework for astronomical instrumentation - NICE.3 The display tool is used on the Calar Alto Observatory, Spain) as a guider, for a wide field imager and guider at the Wise Observatory (Israel; for the LBT interferometer Linc-Nirvana, USA).

  13. Heavens Open Up for UK Astronomers

    Science.gov (United States)

    2002-07-01

    A significant milestone for British and European science occurred today (July 8, 2002) when the Council of the European Southern Observatory (ESO) met in London. At this historical meeting, the United Kingdom was formally welcomed into ESO by the nine other member states. The UK, one of the leading nations in astronomical research, now joins one of the world's major astronomical organisations. UK astronomers will now be able to use the four 8.2-metre and several 1.8-metre telescopes that comprise the Very Large Telescope (VLT) facility located at the Paranal Observatory in the northern part of the Atacama desert in Chile, as well as two 4-m class telescopes and several smaller ones at the ESO La Silla Observatory further south. The UK will also benefit from increased involvement in the design and construction of the Atacama Large Millimetre Array (ALMA), a network of 64 twelve-metre telescopes also sited in Chile, and play a defining role in ESO's 100-metre Overwhelmingly Large Telescope (OWL). Sir Martin Rees , The Astronomer Royal, said, "Joining ESO is good for UK science, and I think good for Europe as well. It offers us access to the VLT's 8-m class telescopes and restores the UK's full competitiveness in optical astronomy. We're now guaranteed full involvement in ALMA and in the next generation of giant optical instruments - projects that will be at the forefront of the research in the next decade and beyond. Moreover, our commitment to ESO should enhance its chances of forging ahead of the US in these technically challenging and high profile scientific projects. UK membership of ESO is a significant and welcome outcome of this government's increasing investment in science". Prof. Ian Halliday , Chief Executive of the Particle Physics and Astronomy Research Council (PPARC), the UK's strategic science investment agency said, "The United Kingdom already participates in Europe's flagship particle physics research and the space science research programmes through

  14. The Contribution of the Division of Radiophysics Murraybank Field Station to International Radio Astronomy

    Science.gov (United States)

    Wendt, Harry; Orchiston, Wayne; Slee, Bruce

    During the 1950s Australia was one of the world's foremost astronomical nations owing primarily to the work of the dynamic radio astronomy group within the Commonwealth Scientific and Industrial Research Organisation's Division of Radiophysics. Most of the observations were made at the network of field stations maintained by the Division in or near Sydney, and one of these field stations was Murraybank in the north-western suburbs of Sydney. GVaucouleursDe1954Language="En">The Magellanic Clouds and the GalaxyThe Observatory7423311954Obs....74...23DDe Vaucouleurs, G., 1954a. The Magellanic Clouds and the Galaxy. The Observatory, 74, 23-31. GVaucouleursDe1954Language="En">The Magellanic Clouds and the Galaxy, IIThe Observatory741581641954Obs....74..158DDe Vaucouleurs, G., 1954b. The Magellanic Clouds and the Galaxy, II. The Observatory, 74, 158-164. GVaucouleursDe1961Language="En">Classification and radial velocities of bright southern galaxiesMemoirs of the Royal Astronomical Society6869871961MmRAS..68...69DDe Vaucouleurs, G., 1961. Classification and radial velocities of bright southern galaxies. Memoirs of the Royal Astronomical Society, 68, 69-87. JDeane2006Vacuum Tube SupercomputerSydneyScience Foundation for Physics and the Australian Computer Museum SocietyDeane, J., 2006. Vacuum Tube Supercomputer. Sydney, Science Foundation for Physics and the Australian Computer Museum Society. NHDeiter1965Language="En">Neutral hydrogen near the galactic polesAstErickson, W.C., Helfer, H.L., and Tatel, H.E., 1959. A survey of neutral hydrogen at high galactic latitudes. In Bracewell, 390-397. MWFeastADThackerayAJWesselink1957Language="En">Radial velocities of southern B stars determined at the Radcliffe Observatory (Paper II) (summary)Monthly Notices of the Royal Astronomical Society1175791957MNRAS.117..579FFeast, M.W., Thackeray, A.D., and Wesselink, A.J., 1957. Radial velocities of southern B stars determined at the Radcliffe Observatory (Paper II) (summary). Monthly

  15. Observatories of Sawai Jai Singh II

    Science.gov (United States)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  16. La mujer en la astronomía: pasado y presente

    Science.gov (United States)

    Dubner, G.

    There exists a long and honorable tradition of participation of women in astronomy, affording many significant contributions to the field. Historically, however, many of these contributions have remained ignored, or recorded under the names of husbands, brothers or bosses. The present report includes an historical perspective, summarizing some of the most signicant contributions done along the last three centuries by female astronomers. Briefly: Catherina Hevelius (1646-1693), author of the largest and last stars catalog made without the aid of a telescope; Nicole-Reine Lepaute (1723-1788) extraordinary mathematician who predicted the path of Halley's Comet in 1757; Caroline Herschel (1750-1848) assistant of her brother William, discovered 8 comets, reduced the positions to a common epoch and published the catalog of 2500 nebulae observed by her brother, was elected honorary member of the Royal Astronomical Society (RAS); Maria Mitchell (1818-1889), professor of astronomy and director of the Vassar College Observatory, dedicated her life to women's education; Williamina Fleming (1857-1911)discovered 94 of the 107 Wolf-Rayet stars known at her time, the bulk of the first HD catalog was based on her spectral types classification; Annie Cannon (1863-1941) examined and classified nearly 500.000 stars, rearranged Fleming's spectral system, defining the OBAFGKM series; Henrietta Swan Leavitt (1868-1921) worked cataloging variable stars, discovered the period-luminosity relations in Cepheids; Cecilia Payne-Gaposhkin combined observations with theory to obtain a temperature scale for Cannon's spectral types; Ruby Payne-Scott (1912-1981), the first female radioastronomer in the world, developed the theory of aperture synthesis, in which most of the larger radio interferometers are based. The present trends are analized based on statistics of the International Astronomical Union (IAU): women represent 11.8% of the total of IAU members; in Argentina the percentage is 33

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal

    2017-01-01

    The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.

  19. Building a roll-off roof or dome observatory a complete guide for design and construction

    CERN Document Server

    Hicks, John Stephen

    2016-01-01

    Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design.  Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design. Building a Roll-Off or Dome Observatory will help you decide whether to embark on the venture and will certainly increase your enthusiasm for the project. The author, both an amateur astronomer and a professional landscape architect, answers many of the common questions asked about observatory construction, covering the following topics: • Zoning, and by-law requirements common to most states, towns and municipalities • Where to locate the observatory • How to tailor the observatory for your particular needs • Tools and structural components required • Possible variations in de...

  20. The Arecibo Observatory as an MST radar

    Science.gov (United States)

    Woodman, R. F.

    1983-01-01

    The radars and other systems at the Arecibo Observatory were designed and built, originally, for incoherent-scatter and radio-astronomy research. More recently, important additions have been made for planetary radar and artificial RF heating of the ionosphere. Although designed and built for a different application, these systems have shown to be very powerful tools for tropospheric, stratospheric and mesospheric research. The Observatory at present has two main radars: one at 430 and the other at 2380 MHz. In addition, 50-MHz MST radar work has been done using portable transmitters brought to the Observatory for this purpose. This capability will become permanent with the recent acquisition of a transmitter at this frequency. Furthermore, control and data processing systems have been developed to use the powerful HF transmitter and antennas of the HF-heating facility as an HF bistatic radar. A brief description of the four radars available at the Observatory is presented.

  1. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  2. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    collapses violently, rebounding in a cataclysmic blast that spews most of its material into interstellar space. What remains is either a neutron star, with its material compressed to the density of an atomic nucleus, or a black hole, with its matter compressed so tightly that its gravitational pull is so strong that not even light can escape it. A team of scientists studied a supernova called SN 1986J in a galaxy known as NGC 891. The supernova was discovered in 1986, but astronomers believe the explosion actually occurred about three years before. Using the National Science Foundation's Very Long Baseline Array (VLBA), Robert C. Byrd Green Bank Telescope (GBT), and Very Large Array (VLA), along with radio telescopes from the European VLBI Network, they made images that showed fine details of how the explosion evolves over time. "SN 1986J has shown a brightly-emitting object at its center that only became visible recently. This is the first time such a thing has been seen in any supernova," said Michael Bietenholz, of York University in Toronto, Ontario. Bietenholz worked with Norbert Bartel, also of York University, and Michael Rupen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, on the project. The scientists reported their findings in the June 10 edition of Science Express. "A supernova is likely the most energetic single event in the Universe after the Big Bang. It is just fascinating to see how the smoke from the explosion is blown away and how now after all these years the fiery center is unveiled. It is a textbook story, now witnessed for the first time," Bartel said. Analysis of the bright central object shows that its characteristics are different from the outer shell of explosion debris in the supernova. "We can't yet tell if this bright object at the center is caused by material being sucked into a black hole or if it results from the action of a young pulsar, or neutron star," said Rupen. "It's very exciting because it's either the

  3. Research Note - Absolute UBV Photometry at the Zacatecas Observatory

    Science.gov (United States)

    Schuster, W. J.; Parrao, L.; Gonazlez-Bedolla, S. F.; Rios-Herrera, M.; Berumen, M. R.

    1985-12-01

    Atmospheric extinction data, color coefficients, errors of observation and a list of standard and comparison stars are given for UB V photometry at the Astronomical Observatory in Zacatecas. Our observing and reduction procedures are discussed briefly, and our extinction coefficients and observing errors compared with previous values. The uses of these results are mentioned.

  4. Conceiving and Marketing NASA's Great Observatories

    Science.gov (United States)

    Harwit, Martin

    2009-01-01

    In late 1984, Dr. Charles P. (Charlie) Pellerin Jr., director of the Astrophysics Division of NASA's Office of Space Science and Applications (OSSA) faced a dilemma. Congress and the White House had given approval to work that would lead to the launch of the Gamma Ray Observatory and the Hubble Space Telescope, but competing segments of the astronomical community were clamoring for two additional missions, the Space Infrared Telescope Facility (SIRTF) and the Advanced X-ray Astrophysics Facility (AXAF). Pellerin knew that Congress would not countenance a request for another costly astronomical space observatory so soon after approving GRO and HST. He also foresaw that if he arbitrarily assigned priority to either AXAF or SIRTF he would split the astronomical community. The losing faction would be up on Capitol Hill, lobbying Congress to reverse the decision; and Congress would do what it always does with split communities --- nothing. Pellerin called a meeting of leading astrophysicists to see how a persuasive argument could be made for both these new observatories and to market them as vital to a first comprehensive inventory of the universe conducted across all wavelength ranges. The group provided Pellerin a rotating membership of astrophysicists, who could debate and resolve issues so that decisions he reached would have solid community support. It also helped him to market his ideas in Congress. Ultimately, the concept of the Great Observatories came to be accepted; but its implementation faced myriad difficulties. False starts, political alliances that never worked out, and dramatic changes of direction necessitated by the Challenger disaster of early 1986 continually kept progress off balance. My paper follows these twists and turns from late 1984 to the announcement, on February 1, 1988, that President Reagan's FY89 budget proposal to Congress had designated AXAF for a new start.

  5. IYL Blog: Astronomers travel in time and space with light

    Science.gov (United States)

    Mather, John C.

    2015-01-01

    also using light to find out whether we are alone in the universe. The Kepler observatory showed that thousands of stars blink a little when their orbiting planets pass between us and them, and other observatories use light to measure the wobble of stars as their planets pull on them. Eventually, we will find out whether planets like Earth have atmospheres like Earth's too - with water, carbon dioxide, oxygen, methane, and other gases that would be evidence of photosynthetic life. I think in a few decades we will have evidence that some planets do have life, and it will be done using light for remote chemical analysis. Also, astronomers at the SETI project are using light (long wavelength light we can pick up with radio telescopes) to look for signals from intelligent civilizations. That's a harder project because we don't know what to look for. But if we wanted to send signals all the way across the Milky Way, we could do it with laser beams, and if somebody over there knew what to look for, he or she could decode the message. On with the search! Dr. John C. Mather is a Senior Astrophysicist and is the Senior Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, MD. His research centers on infrared astronomy and cosmology. With the Cosmic Background Explorer (COBE) team, he showed that the cosmic microwave background radiation has a blackbody spectrum within 50 parts per million, confirming the expanding universe model (aka the Big Bang Theory) to extraordinary accuracy, and initiating the study of cosmology as a precision science. The COBE team also made the first map of the hot and cold spots in the background radiation. The COBE maps have been confirmed and improved by two succeeding space missions, the Wilkinson Microwave Anisotropy Probe (WMAP, built by GSFC with Princeton University), and the Planck mission built by ESA. Based on these maps, astronomers have now developed a "standard model" of cosmology and have

  6. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  7. Young astronomer in Denmark 1946 to 1958

    CERN Document Server

    Høg, Erik

    2015-01-01

    This is a personal account of how I became an astronomer. Fascinated by the stars and planets in the dark sky over Lolland, an island 100 km south of Copenhagen, the interest in astronomy was growing. Encouraged by my teachers, I polished mirrors and built telescopes with generous help from the local blacksmith and I observed light curves of variable stars. Studies at the Copenhagen University from 1950 gradually led me deeper into astronomy, especially astrometry (the astronomy of positions), guided by professor Bengt Str\\"omgren and my mentor dr. phil. Peter Naur. I was lucky to take part in the buildup of the new observatory at Brorfelde during the first difficult years and the ideas I gathered there have contributed to the two astrometry satellites Hipparcos and Gaia launched by the European Space Agency (ESA) in respectively 1989 and 2013.

  8. A Star Formation/ISM Astronomical Database

    Science.gov (United States)

    Molinari, Sergio; Ali, Babar; Good, John; Noriega-Crespo, Alberto

    2003-02-01

    The Star Formation/ISM Astronomical Database (hereafter SFD) will be a set of on-line services adding value to existing data archives and published journals, along the lines of the very successful NASA/IPAC Extragalactic Database (NED) and SIMBAD projects but with a focus on star formation an the interstellar medium (ISM) within the Milky Way. Unlike NED and SIMBAD, however, the SFD must deal with multi-wavelength measurements of extended regions and cross-correlative relationships between disparate measurements. The SFD will rely heavily on existing databases, primarily adding data content and connectivity between datasets around the world, and custom tailoring of existing tools to provide interfaces (programming API, Web, and JAVA GUI) specific to this application. We consider the SFD as a valuable component in the broader context of a future Virtual Observatory.

  9. Thirty years of astronomical discovery with UKIRT

    CERN Document Server

    Davies, John; Robson, Ian; The Scientific Achievement of the United Kingdom InfraRed Telescope

    2013-01-01

    These are the proceedings of an international meeting hosted by the Royal Observatory, Edinburgh, to commemorate the 30th anniversary of the dedication of the UKIRT, the United Kingdom InfraRed Telescope. The volume comprises 31 professional level papers. The first part of the book has 10 thorough reviews of the conception, design and build of the telescope, as well as accounts of some its key instruments such as IRCAM (the common-user infrared camera), CGS4 (the fourth Cooled Grating Spectrometer) and the Wide Field Camera. The second part of the book comprises 14 reviews of scientific achievements during its twenty years of visitor mode operations. The final part of the book is a series of 7 reviews of the results from the multiple surveys being done as part of UKIDSS (UKIRT Infrared Deep Sky Survey). The authors are all experts in their respective fields, for example instrument scientists, operations staff and leading astronomers.

  10. Integral Programme of Basic Astronomic Literacy Development

    Science.gov (United States)

    Tignanelli, H.

    2009-05-01

    We discuss the development and optimization of an ongoing educational project involving the whole population of the province of San Luis, Argentina. The core of the project includes activities and resources that capture formal curricular aspects directed towards all levels of teaching. The educational activities related to this project have been benefited by the acquisition of two planetariums made in Argentina, a MEADE 16'' telescope to be operated by remote control from any school-room in San Luis, and a naked-eye observatory with more than 30 pre-telescopic instruments, and other didactic tools specially designed for the teaching of Astronomy. Furthermore, an Internet site to upload all the astronomical activities suggested that has been developed along with a number of didactic and general-interest publications.

  11. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  12. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    Science.gov (United States)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  13. ESO's First Observatory Celebrates 40th Anniversary

    Science.gov (United States)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  14. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    Science.gov (United States)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  15. Collaborative visual analytics of radio surveys in the Big Data era

    Science.gov (United States)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  16. Alexander Tomov (1930-2009: A Founder of the Astronomical Photoelectric Photometry in Bulgaria [In Bulgarian

    Directory of Open Access Journals (Sweden)

    N. Tomov

    2011-08-01

    Full Text Available This paper describes the work of Dr. Alexander Tomov on establishment and equipment of the Astronomical Observatory of Belogradchik. Tomov’s research activity in that observatory is commented as well. The official opening of the observatory took place on July 21st, 1965. During the period 1966-1969 a monitoring program for determining the orbits of artificial satellites was successfully realized. Constructing a new building expanded later observatory. In mid-1969 the observatory was supplied by 60 cm reflector optical system ‘Cassegrain’, produced by Carl Zeiss in Germany; it was the biggest telescope in Bulgaria at that time. In the period 1970-1973 a modern single-channel photoelectric UBV photometer was constructed and put in operation. In 1976 the Belogradchik observatory joined with the Institute of Astronomy of the Bulgarian Academy of Sciences. In the second half of seventies and early eighties hundreds of galaxies were studied.

  17. East Asian astronomical records

    Science.gov (United States)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  18. Extending the ICRF to higher radio frequencies: Initial global astrometric results

    Science.gov (United States)

    Jacobs, C. S.; Charlot, P.; Gordon, D.; Lanyi, G. E.; Ma, C.; Naudet, C. J.; Sovers, O. J.; Zhang, L. D.; K-Q VLBI Survey Collaboration

    2002-12-01

    Astrometric observations of distant active galactic nuclei (AGN) have been used to construct quasi-inertial global reference frames, most notably the International Celestial Reference Frame (ICRF) which now forms the basis for all astrometry including deep space navigation. The ICRF frame was defined using X- (8.4 GHz) and S-band (2.3 GHz) observations over the past 20+ years. There are several motivations for extending this work to higher radio frequencies, namely, to construct a more stable frame based on more compact sources, to provide calibrators for phase referencing, and to support spacecraft navigation at higher frequencies. As a first step toward these goals, in 2002 we began a series of survey observations using the Very Long Baseline Array (VLBA) of ten radio telescopes at K-band (24 GHz) and Q-band (43 GHz). Each session covers the full 24 hours of right ascension and covers declinations down to the VLBA's southern limit (approx. -30 deg). Preliminary analysis of the first session produced a full sky catalog of 65 sources with formal position uncertainties of about 0.5 mas. Group delay residuals were an excellent 15-20 psec WRMS. We will present evidence from an external comparison to the S/X-band ICRF that shows zonal errors at several times the level of the formal precision. We expect these errors to be reduced as futher sessions are added to the analysis thereby strengthening the observation geometry. --- The research described in this paper was in part performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, Goddard Space Flight Center, U.S. Naval Observatory, National Radio Astronomical Observatory, and Bordeaux Observatory.

  19. Solar Dynamics Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...

  20. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  1. The Radio Sky and How to Observe It

    CERN Document Server

    Lashley, Jeff

    2010-01-01

    Radio astronomy is far from being beyond the scope of amateurs astronomers, and this practical, self-contained guide for the newcomer to practical radio astronomy is an ideal introduction. This guide is a must for anyone who wants to join the growing ranks of 21st Century backyard radio astronomers. The first part of the book provides background material and explains (in a non-mathematical way) our present knowledge of the stronger radio sources - those observable by amateurs - including the Sun, Jupiter, Meteors, Galactic and extra-galactic sources. The second part of the book deals not only

  2. OLFAR - Orbiting Low Frequency Antennas for Radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Verhoeven, Chris; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. Huge efforts are currently made to establish low frequency Earthbound

  3. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  4. Donald Menzel: His Founding and Funding of Solar Observatories.

    Science.gov (United States)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  5. Setting-up a small observatory from concept to construction

    CERN Document Server

    Arditti, David

    2008-01-01

    Every amateur astronomer who is considering a purpose-built observatory will find this book absolutely invaluable during both the planning and the construction stages. Drawing on David Arditti’s practical experience and that of many other amateur astronomers, it gives invaluable help in making all the important decisions. To begin with, Setting up a Small Observatory addresses what you really need from an observatory, whether to build or buy, what designs you should consider, and where you should site it. Uniquely, it also considers the aesthetics of an amateur observatory: how to make it fit in with your home, garden, and yard, even disguising it as a more common garden building if necessary. There’s also a wealth of practical details for constructing and equipping your small observatory – everything from satisfying local planning laws and building codes through to making sure that your completed observatory is well-equipped, convenient, and comfortable to use. Whether you are considering a simple low-...

  6. Young Astronomers and Astronomy teaching in Moldavia

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Curricular Astronomy is taught in Moldavia , except Transnistria and Gagauzia, in the final (11th class) of the secondary schools and gymnasiums, and in the 12th class of the lyceums. The program takes 35 academic hours. The basic book is by Vorontsov-Veliaminov, used in the former USSR, but the Romanian one is also used, in spite of many criticisms addressed to both by our astronomy teachers. In Transinstria (on the left of the Dniester river)astronomy is taught 17 hours. Extracurricular activities develop at the Real Lyceum, where students and amateur astronomers carry out regular observations. Particularly, photographs of the comet Hale-Bopp have been realized using a Cassegrain 450 mm telescope by young astronomers under supervision of S. Luca and D. Gorodetzky (Gorodetchi). Except the telescope from the Real Lyceum other few telescopes are in construction. Unfortunately, no planetarium exists now in Chisinau, since the old one was returned to church. Astronomy courses are taught at the physical and mathematical departments of the Pedagogical University, Transnistrian Moldavian University in Tiraspol and the State University of |Moldavia. Many efforts were made by the State University lecturers and scientists to popularize Astronomy and Astrophysics in the books and in the press, at the radio and TV. No astronomy is taught at the Gagauzian National University in Comrat. No astronomiucal departments exist in Universities of |Moldavia.

  7. Harvey Butcher: a passion for astronomical instrumentation

    Science.gov (United States)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  8. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    Science.gov (United States)

    2004-12-01

    telescopes in Parkes, Mopra, and Ceduna, Australia; Hobart, Tasmania; Urumqi and Shanghai, China; and Kashima, Japan. The positional measurements are a project led by JIVE and involving ESA, the Netherlands Foundation for Research in Astronomy, the University of Bonn, Helsinki University of Technology, JPL, the Australia Telescope National Facility, the National Astronomical Observatories of China, the Shanghai Astronomical Observatory, and the National Institute for Communication Technologies in Kashima, Japan. The Joint Institute for VLBI in Europe is funded by the national research councils, national facilities and institutes of The Netherlands (NWO and ASTRON), the United Kingdom (PPARC), Italy (CNR), Sweden (Onsala Space Observatory, National Facility), Spain (IGN) and Germany (MPIfR). The European VLBI Network is a joint facility of European, Chinese, South African and other radio astronomy institutes funded by their national research councils. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. A Calendar Observatory for the 21st Century

    Science.gov (United States)

    Steinrücken, B.; Morawe, T.; Vanscheidt, R.

    In ancient times the calibration of astronomical observations with respect to the local physical horizon provided the possibility to adjust calendar data with high accuracy according to the apparent movement of the sun, the moon and the stars. To reanimate the lost tradition of 'visual horizon-astronomy', enforcing pedagogical purposes in astronomical teaching and sharpening the public mind for the relationship and interaction of natural cycles, a design study is proposed to build a non-profit and alltime-open calendar observatory for the general public in the northern part of the Ruhrgebiet near Recklinghausen/Herten, Germany. A technical description of the project is given in a poster presentation at this conference (Steinrücken, B. et al.). Besides educational aspects, practical research in archaeoastronomy may be established at the site. Of astronomical relevance are empirical tests to determine the exact position of the lunar standstill without any knowledge of the heliocentric paths, nodes, and time of declination maximum. A revision of statistical arguments (Thom 1958) is mandatory due to large variations of astronomical refraction near the horizon (Schaefer & Liller 1990). Guided by historical paragons we discuss adequate foresight constructions in order to detect stellar precessional motion within a decade by naked eye observation only. A recently discovered prehistoric observatory in Westphalia, Germany will be introduced linking the idea of a modern calendar observatory to the work of our predecessors.

  10. Pulsating stars and the Virtual Observatory

    Science.gov (United States)

    Suárez, Juan Carlos

    2017-09-01

    Virtual Observatory is one of the most used internet-based protocols in astronomy. It has become somewhat natural to find, manage, compare, visualize and download observations from very different archives of astronomical observations with no effort. The VO technology beyond that is now being a reality for asteroseismology, not only for observations but also for theoretical models. Here I give a brief description of the most important VO tools related with asteroseismology, as well as a rough outline of the current development in this field.

  11. Data standards for the international virtual observatory

    Directory of Open Access Journals (Sweden)

    R J Hanisch

    2006-11-01

    Full Text Available A primary goal of the International Virtual Observatory Alliance, which brings together Virtual Observatory Projects from 16 national and international development projects, is to develop, evaluate, test, and agree upon standards for astronomical data formatting, data discovery, and data delivery. In the three years that the IVOA has been in existence, substantial progress has been made on standards for tabular data, imaging data, spectroscopic data, and large-scale databases and on managing the metadata that describe data collections and data access services. In this paper, I describe how the IVOA operates and give my views as to why such a broadly based international collaboration has been able to make such rapid progress.

  12. Why choosing the Virtual Observatory in Geodesy and Earth

    Science.gov (United States)

    Deleflie, F.; Lambert, S.; Collilieux, X.; Berthier, J.; Barache, C.; Coulot, D.; Gontier, A.-M.; Exertier, P.

    2009-04-01

    This poster presents the context of the astronomical Virtual Observatory (VO), an ambitious international proposal to provide uniform, convenient access to disparate, geographically dispersed archives of astronomical data from software which runs on the computer on the astronomer's desktop. The VO could be of interest for the geodetic community: we present here some of our efforts in this direction that we have recently achieved. Astronomers using that Virtual Observatory are now organized within an international association called the International Virtual Observatory Alliance (IVOA). As noted on the IVOA website (http://www.ivoa.net/), IVOA was formed in June 2002 with a mission to "facilitate the international coordination and collaboration necessary for the development and deployment of the tools, systems and organizational structures necessary to enable the international utilization of astronomical archives as an integrated and interoperating virtual observatory." The "Groupe de Recherche de Géodésie Spatiale (GRGS)" now routinely delivers geodetic products to most of the space geodetic services of the International Association of Geodesy (IAG): IERS, IGS, ILRS, IVS, and IDS. Some of these products are now natively built and archived following the data format recommended by IVOA, the VO-Table format. We present this format, which is based on the XML format, and we list the reasons why we chose to use it. We also enumerate the list of geodetic products actually published with this format, with the associated available Webservices, and we show how easy it is to compare time series obtained by various analysis centers. We finally give as well an example of such a comparison.

  13. A new archival infrastructure for highly-structured astronomical data

    Science.gov (United States)

    Dovgan, Erik; Knapic, Cristina; Sponza, Massimo; Smareglia, Riccardo

    2018-01-01

    With the advent of the 2020 Radio Astronomy Telescopes era, the amount and format of the radioastronomical data is becoming a massive and performance-critical challenge. Such an evolution of data models and data formats require new data archiving techniques that allow massive and fast storage of data that are at the same time also efficiently processed. A useful expertise for efficient archiviation has been obtained through data archiving of Medicina and Noto Radio Telescopes. The presented archival infrastructure named the Radio Archive stores and handles various formats, such as FITS, MBFITS, and VLBI's XML, which includes description and ancillary files. The modeling and architecture of the archive fulfill all the requirements of both data persistence and easy data discovery and exploitation. The presented archive already complies with the Virtual Observatory directives, therefore future service implementations will also be VO compliant. This article presents the Radio Archive services and tools, from the data acquisition to the end-user data utilization.

  14. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  15. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  16. Astronomical Significance of Ancient Monuments

    Science.gov (United States)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  17. Annotations of a Public Astronomer

    Science.gov (United States)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  18. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  19. The Cape Observatory: all Categories of Heritage

    Science.gov (United States)

    Glass, Ian S.

    2012-09-01

    In this presentation I will give an outline of the various types of heritage related to the Royal Observatory, Cape of Good Hope, established in 1820 and now the headquarters campus of the South African Astronomical Observatory, located quite close to downtown Cape Town. In terms of tangible, fixed heritage, the campus itself, the domes and the various other buildings are obviously relevant. This category includes the Classical Revival Main Building of 1828 and the McClean dome of 1895 by the leading colonial architect Herbert Baker as well as many other buildings and even the graves of two directors. Tangible movable items include, in principle, the telescopes, the accessory instruments and many pieces of apparatus that have been preserved. In addition, extensive collections of antique paintings, drawings, furniture and books add to the site's cultural significance. Many of the Observatory's archives are still kept locally. The intangible heritage of the Observatory consists for example of its history, its major discoveries, its interaction with the City, its central role in the history of science in South Africa and its appeal as a living cultural institution. Especially notable were the observations by Henderson (ca 1831) leading to the distance of a Cen and the early sky survey known as the Cape Photographic Durchmusterung.

  20. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  1. Eighth Scientific Meeting of the Spanish Astronomical Society

    CERN Document Server

    Diego, Jose M; González-Serrano, J. Ignacio; Gorgas, Javier; Highlights of Spanish Astrophysics V

    2010-01-01

    This volume collects the invited contributions and plenary sessions presented at the Eighth Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de Astronomía, SEA) held on July 7-11, 2008 in Santander. These contributions cover all fields of astronomy and astrophysics, i.e., the Sun and solar system, the galaxy and its components, galaxies and cosmology, observatories and instrumentation, as well as astronomy teaching and dissemination. Further plenary sessions were devoted to selected hot topics, including the exploration of the solar system, gravitational lensing, exoplanets, X-ray binaries, solar magnetism, gravitational waves, the ALHAMBRA collaboration, and the OSIRIS instrument on the new 10-m GTC. Abstracts of the contributions presented at the parallels sessions and posters are also included in the book. Complete versions of those papers are available online.

  2. Radio Frequency Interference Site Survey for Thai Radio Telescopes

    Science.gov (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.

    2017-09-01

    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  3. Radio Journalism.

    Science.gov (United States)

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  4. Williamstown Observatory and the Development of Professional Astronomy in Australia

    Science.gov (United States)

    Andropoulos, Jenny; Orchiston, W.; Clark, B.

    2011-01-01

    During the early 1850s the colony of Victoria was enjoying a succession of gold rushes, and as the population of the fledgling settlement of Melbourne rapidly grew, an urgent need arose for an accurate local time service. Thus, Williamstown Observatory was founded at the port of Williamstown in 1853. Under the dynamic direction of Robert Ellery, the Williamstown Observatory quickly added meteorological and tidal observations, geodetic surveying and non-meridian astronomical observations to its portfolio, and by the time it closed in 1863 it had already played a key role in the early development of professional astronomy in Australia. Ellery went on to direct Melbourne Observatory_Williamstown's successor_and in the process build an international reputation in astronomy, meteorology and scientific entrepeneurship. In this paper we will discuss the founding and chequered history of the Williamstown Observatory, its scientific instruments and the ways in which they were used to contribute to Australian and international astronomy.

  5. A Mythological, Philosophical and Astronomical approach of our solar system

    Science.gov (United States)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  6. Geographic Information Processings for Astronomical Site Survey

    Science.gov (United States)

    Wu, N.; Liu, Y.; Zhao, M. Y.

    2015-01-01

    The geographic information is of great importance for the site survey of ground-based telescopes. Especially, an effective utilization of the geographic information system (GIS) has been one of the most significant methods for the remote analysis of modern site survey. The astronomical site survey should give consideration to the following geographical conditions: a large relative fall, convenient traffic conditions, and far away from populated areas. Taking into account of the convenience of construction and maintenance of the observatories as well as the living conditions of the scientists-in-residence, the optimum candidate locations may meet the conditions to be at a altitude between 3000 m and 5000 m and within one-hour drive from villages/towns. In this paper, as an example, we take the regions of the Great Baicao mountain ridge at Dayao county in Yunnan province to research the role of the GIS for site survey task. The results indicate that the GIS can provide accurate and intuitive data for us to understand the three dimensional landforms, rivers, roads, villages, and the distributions of the electric power as well as to forecast the tendency of the population and city development around. According to the analysis based on the GIS, we find that the top of the Great Baicao mountain ridge is flat and droughty. There are few inhabitants to distribute around the place while the traffic conditions are convenient. Moreover, it is a natural conservation area protected by the local government, and no industry with pollution sources exists in this region. Its top is 1500 m higher than the nearby village 10 km away, and 1800 m higher than the town center 50 km away. The Great Baicao mountain ridge is definitely an isolated peak in the area of the Yi nationality of Yunnan. Therefore, the GIS data analysis is a very useful for the remote investigation stage for site survey, and the GIS is the indispensable source for modern astronomical site survey.

  7. The New Amateur Astronomer

    Science.gov (United States)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as possible. A poor

  8. Urania in the Marketplace: Observatories as Holiday Destinations

    Science.gov (United States)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  9. Anomalous astronomical time-latitude residuals: a potential earthquake precursor

    Science.gov (United States)

    Hu, Hui; Su, You-Jin; Gao, Yi-Fei; Wang, Rui

    2016-09-01

    The geophysical mechanism behind astronomical time-latitude residuals (ATLR) are discussed. The photoelectric astrolabe at Yunnan Observatory (YO) observed apparent synchronous anomalous ATLR before the Wenchuan M8.0 earthquake (EQ) in May 12, 2008 and the Lushan M7.0 EQ n April 20, 2013. We compared the ATLR from the YO photoelectric astrolabe and EQ data since 1976. Anomalous ATLR was observed before several strong EQs in the Yunnan Province. We believe the photoelectric astrolabe can be used to predict strong EQs and the anomalous ATLR are a potential EQ precursor.

  10. The Lowell Observatory Predoctoral Scholar Program

    Science.gov (United States)

    Prato, Lisa; Nofi, Larissa

    2018-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its tenth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. Strong collaborations, the new Ph.D. program at Northern Arizona University, and cooperative links across the greater Flagstaff astronomical community create a powerful multi-institutional locus in northern Arizona. Lowell Observatory's new 4.3 meter Discovery Channel Telescope is operating at full science capacity and boasts some of the most cutting-edge and exciting capabilities available in optical/infrared astronomy. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2018 are due by May 1, 2018; alternate application dates will be considered on an individual basis.

  11. Searching the Heavens and the Earth: This History of Jesuit Observatories

    Science.gov (United States)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  12. Radio and Optical Spectra of Objects from Two Complete Samples of Radio Sources

    OpenAIRE

    Chavushyan, V.; Mujica, R.; Gorshkov, A. G.; Konnikova, V. K.; Mingaliev, M.G.; Valdez, J. R.

    2003-01-01

    We present optical identifications and radio spectra for ten radio sources from two flux-density-complete samples. Radio variability characteristics are presented for four objects. The observations were obtained on the RATAN-600 radio telescope at 0.97-21.7 GHz and the 2.1 m telescope of the Haro Observatory in Cananea, Mexico at 4200-9000 =C5. Among the ten objects studied, three are quasars, four are BL Lac objects, two are radio galaxies, and one is a Sy 1 galaxy. Two of the sources identi...

  13. Recollections of life as a student and a young astronomer in Germany in the 1920s

    Science.gov (United States)

    Brück, Hermann A.; Brück, Mary T.

    2000-12-01

    The author of this essay, Hermann Alexander Brück, Emeritus Professor of Astronomy at the University of Edinburgh and former Astronomer Royal for Scotland, died on 4 March 2000 in his 95th year. He was the last of his generation of astronomers in both Germany and Britain, and among the oldest members, if not the oldest, of the Royal Astronomical Society and of the Astronomische Gesellschaft. Hermann Brück was born in Berlin in 1905 and, as he recounts below, received his education at the Universities of Kiel, Bonn and Munich in 1924-1928. To the end of his life he looked back on his student days in Munich as the most profitable and exciting he ever experienced. From Munich he began his astronomical career at the Potsdam Astrophysical Observatory. These, too, were happy days, destined, however, to be blighted within a few years by the rise of Nazism. In 1936 Brück left Germany, and obtained a temporary Research Assistantship at the Vatican Observatory. From there he went a year later to Cambridge, rising to the rank of John Couch Adams Astronomer and Assistant Director of the Observatory. In 1947, in response to an invitation from Eamon de Valera, then Taoiseach (Prime Minister) of Ireland, he moved to Dublin where he undertook the task of re-founding the defunct Dunsink Observatory under the auspices of the Dublin Institute for Advanced Studies. He moved from Dublin to the Royal Observatory Edinburgh in 1957, taking up the combined post of Astronomer Royal for Scotland and Regius Professor of Astronomy in the University of Edinburgh. He retired in 1975 at the age of 70. Always interested in history, he occupied himself in his retirement with various historical projects. These included writing the histories of the Royal Observatory Edinburgh (The Story of Astronomy in Edinburgh, Edinburgh 1983) and of the earlier Dun Echt Observatory in Aberdeenshire (Lord Crawford's Observatory at Dun Echt 1872-1892, Vistas in Astronomy 35, 1992) as well as a record of his own

  14. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William

    2013-01-01

    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  15. The brightness and spatial distributions of terrestrial radio sources

    NARCIS (Netherlands)

    Offringa, A.R.; de Bruyn, A.G.; Zaroubi, S.; Koopmans, L.V.E; Wijnholds, S.J.; Abdalla, F.B.; Brouw, W.N.; Ciardi, B.; Iliev, I.T.; Harker, G.J.A.; Mellema, G.; Bernardi, G.; Zarka, P.; Ghosh, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I.M.; Beck, R.; Bell, M.E.; Bentum, Marinus Jan

    2013-01-01

    Faint undetected sources of radio-frequency interference (RFI) might become visible in long radio observations when they are consistently present over time. Thereby, they might obstruct the detection of the weak astronomical signals of interest. This issue is especially important for Epoch of

  16. The Top Ten Astronomical 'breakthroughs' of the 20th century

    Directory of Open Access Journals (Sweden)

    Hughes, D. W.

    2007-10-01

    Full Text Available Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein’s E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also startedwandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical “breakthroughs” abounded. We have asked astronomers to select their “top ten” and these are listed and discussed in this paper.

  17. The Russian Virtual Observatory as the National Information Resource

    Science.gov (United States)

    Vitkovskij, V. V.; Zhelenkova, O. P.; Kajsina, E. I.; Kalinina, N. A.; Mal'Kova, G. A.; Chernenkov, V. N.; Shergin, V. S.

    As the base for creation of the Russian Virtual Observatory (RVO) we consider the uniting available information in observational archives, data centers and the telescopes. A prossess of implementation of science research is regarded as a whole, from making task production to getting necessary information and obtaining science result. For realization of the project we intend to working out the next components: the internet portal as a main RVO exit and a manage system, the information hub of CAD INASAN, a remote access system to information and technical resources of telescopes. We include to principal components RVO: centers of astronomical data, automated telescopes and acquisition systems, computing facilities and/or a system of access to supercomputer centers, system of remote access to information and technical resources, system of the resources planning, scheduling, support and control of observations similarly to present-day practice of space missions, Internet portal "The Russian Virtual Observatory", Open Virtual Medium of the astronomical education.

  18. The Einstein Observatory: A New Public/Private Observatory Complex for Community Education and Scientific Research

    Science.gov (United States)

    Sowell, J.

    1999-12-01

    The Development Authority of Cherokee County (Georgia) is leading a public/private partnership of business/industry professionals, educators, and university scientists that seeks to develop a national prototype educational and scientific research facility for grades K-12, as well as college-level research, that will inspire our youth to become literate in science and technology. In particular, the goal is to make this complex a science, math, and engineering magnet learning facility and to raise the average SAT scores of local area students by 100 points. A dark-site mountain, nestled on the foothills of the Blue Ridge Mountains at the northern-most edge of Atlanta, will become the home for the "Einstein" Observatory. The complex will have four telescopes: one 50-inch, one 24-inch, and two 16-inch telescopes. Each telescope will have digital cameras and an optic-fiber feed to a single, medium-resolution spectroscope. All four telescopes will be electronically accessible from local schools. Professional astronomers will establish suitable observational research projects and will lead K-12 and college students in the acquisition and analysis of data. Astronomers will also assist the local area schoolteachers in methods for nurturing children's scientific inquiry. The observatory mountain will have 100 platform locations for individual viewing by visiting families, school groups, and amateur astronomers. The Atlanta Astronomer Club will provide numerous evening programs and viewing opportunities for the general public. An accompanying Planetarium & Science Center will be located on the nearby campus of Reinhardt College. The Planetarium & Science Center will be integrated with Reinhardt College's theme of learning focused upon studying the past and present as a basis for projecting the future.

  19. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    Science.gov (United States)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  20. Radio Jove: Citizen Science for Jupiter Radio Astronomy

    Science.gov (United States)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2016-12-01

    The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  1. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    ; Observatoire Astronomique de Marseille Provence), the Laboratoire d'Astrophysique de Grenoble (LAOG/INSU/CNRS, Université Joseph Fourier; Observatoire des Sciences de l'Univers de Grenoble), and the Observatoire de Haute Provence (OHP/INSU/CNRS; Observatoire Astronomique de Marseille Provence). OCam and the CCD220 are the result of five years work, financed by the European commission, ESO and CNRS-INSU, within the OPTICON project of the 6th Research and Development Framework Programme of the European Union. The development of the CCD220, supervised by ESO, was undertaken by the British company e2v technologies, one of the world leaders in the manufacture of scientific detectors. The corresponding OPTICON activity was led by the Laboratoire d'Astrophysique de Grenoble, France. The OCam camera was built by a team of French engineers from the Laboratoire d'Astrophysique de Marseille, the Laboratoire d'Astrophysique de Grenoble and the Observatoire de Haute Provence. In order to secure the continuation of this successful project a new OPTICON project started in June 2009 as part of the 7th Research and Development Framework Programme of the European Union with the same partners, with the aim of developing a detector and camera with even more powerful functionality for use with an artificial laser star. This development is necessary to ensure the image quality of the future 42-metre European Extremely Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a

  2. Cultural Heritage of Observatories and Instruments - From Classical Astronomy to Modern Astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    Until the middle of the 19th century positioal astronomy with meridian circles played the dominant role. Pulkovo Observatory, St. Petersburg, was the leading institution for this kind of research. The design of this observatory was a model for the construction of observatories in the 19th century. In addition, in Hamburg Observatory and in some other observatories near the coast, time keeping and teaching of navigation were important tasks for astronomers. Around 1860 astronomy underwent a revolution. Astronomers began to investigate the properties of celestial bodies with physical and chemical methods. In the context of “classical astronomy”, only the direction of star light was studied. In the 1860s quantity and quality of radiation were studied for the first time. This was the beginning of modern “astrophysics”, a notion coined in 1865 by the Leipzig astronomer Karl Friedrich Zöllner (1834-1882). It is remarkable that many amateurs started this new astrophysics in private observatories but not in the established observatories like Greenwich, Paris or Pulkovo. In Germany this development started in Bothkamp Observatory near Kiel, with Hermann Carl Vogel (1841-1907), strongly influenced by Zöllner. An important enterprise was the foundation of the Astrophysical Observatory in Potsdam, near Berlin, in 1874 as the first observatory in the world dedicated to astrophysics - a foundation that inspired others. Important innovations and discoveries were made in Potsdam. The new field of astrophysics caused, and was caused by, new instrumentation: spectrographs, instruments for astrophotography, photometers and solar physics instruments. In particular, the glass mirror reflecting telescope was recognised as a more important instrument than a large refractor; for the new observatory in Hamburg-Bergedorf a 1-m reflector, the fourth largest in the world, made by Zeiss of Jena, was acquired in 1911. Another change was made in the architecture, the idea of a park

  3. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    Science.gov (United States)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  4. Astronomical Interlibrary Cooperation: The Long and Difficult Plan for Coordinated Acquisition of Journals -- the Italian Case

    Science.gov (United States)

    Gasperini, A.; Abrami, L.; Olostro Cirella, E.

    2007-10-01

    Until 2002, the Italian astronomical observatories were independent research institutes. Their libraries, though different in their origins and history, shared common bibliographical materials, users and aims. This situation prompted a first experience of unofficial cooperation between astronomical observatory libraries, which produced outstanding results, in particular a detailed survey of the nature, cost and use of scientific journals. Starting from 2002, when the 12 observatories merged into a single institution, the National Institute for Astrophysics (INAF), the experience of cooperation between the libraries became official. The INAF headquarters, in fact, has recently established the Library Documentary and Archive Service of the National Institute for Astrophysics (SBDA-INAF) in order to have a centralized astronomical bibliographical service and to promote cooperation among libraries. At the end of 2004, following the INAF rearrangement, 5 Institutes of the National Research Council (CNR) joined the still new organization introducing further complications. In this work we explain all the problems faced by a working group to elaborate an efficient plan of coordinated acquisition of journals: the difficulties in coordinating 17 different sites distributed over the whole national territory, the not so easy negotiation with the publishers, the choice between e-only or print & online and, last but not least, the psychological impact on the scientific community. The cooperation among Italian astronomical libraries was a plan begun many years ago and has continued through various events over the years. This presentation takes into consideration the various stages of our project focusing on some crucial aspects.

  5. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  6. On AIPS++, A New Astronomical Information Processing System

    Science.gov (United States)

    Croes, G. A.

    1993-01-01

    The AIPS system that has served the needs of the radio astronomical community remarkably well during the last 15 years, is showing signs of age, and is being replaced by a more modern system, AIPS++. As the name implies AIPS++ will be developed in an object-oriented fashion, and use C++ as its main programming language. The work is being done by a consortium of seven organizations, with coordinated activities worldwide. After a review of the history of the project to this date, from management, astronomical and technical viewpoints and the current state of the project, the paper concentrates on the tradeoffs implied by the choice of implementation style, and the lessons we have learned, good and bad.

  7. Unveiling galaxies the role of images in astronomical discovery

    CERN Document Server

    Roy, Jean-René

    2017-01-01

    Galaxies are known as the building blocks of the universe, but arriving at this understanding has been a thousand-year odyssey. This journey is told through the lens of the evolving use of images as investigative tools. Initial chapters explore how early insights developed in line with new methods of scientific imaging, particularly photography. The volume then explores the impact of optical, radio and x-ray imaging techniques. The final part of the story discusses the importance of atlases of galaxies; how astronomers organised images in ways that educated, promoted ideas and pushed for new knowledge. Images that created confusion as well as advanced knowledge are included to demonstrate the challenges faced by astronomers and the long road to understanding galaxies. By examining developments in imaging, this text places the study of galaxies in its broader historical context, contributing to both astronomy and the history of science.

  8. Astronomical Observations by Speckle Interferometry.

    Science.gov (United States)

    1986-06-12

    NUMBER ORGANIZATION O osf appi)81-061 %A mc’S z &I -- St ADRES (ft, Stat. &WCode) 10. SOURCE OF FUNDING NUMBERS C1X1’Z"/A~N ~ ~rf.. PROGRAM IPROJECT...34Masses and Luminosities of the Giant Spectroscopic/Speckle Interferometric Binaries Gamma Persei and Phi Cygni" H.A. McAlister, THE ASTRONOMICAL JOURNAL...Topical Meeting on Information Processing in Astronomy and Optics sponsored by the American Astronomical Society and the Optical Society of America, St

  9. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  10. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    Science.gov (United States)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  11. Spatial Statistical Analysis of Large Astronomical Datasets

    Science.gov (United States)

    Szapudi, Istvan

    2002-12-01

    The future of astronomy will be dominated with large and complex data bases. Megapixel CMB maps, joint analyses of surveys across several wavelengths, as envisioned in the planned National Virtual Observatory (NVO), TByte/day data rate of future surveys (Pan-STARRS) put stringent constraints on future data analysis methods: they have to achieve at least N log N scaling to be viable in the long term. This warrants special attention to computational requirements, which were ignored during the initial development of current analysis tools in favor of statistical optimality. Even an optimal measurement, however, has residual errors due to statistical sample variance. Hence a suboptimal technique with significantly smaller measurement errors than the unavoidable sample variance produces results which are nearly identical to that of a statistically optimal technique. For instance, for analyzing CMB maps, I present a suboptimal alternative, indistinguishable from the standard optimal method with N3 scaling, that can be rendered N log N with a hierarchical representation of the data; a speed up of a trillion times compared to other methods. In this spirit I will present a set of novel algorithms and methods for spatial statistical analyses of future large astronomical data bases, such as galaxy catalogs, megapixel CMB maps, or any point source catalog.

  12. A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the FishCanyon sanidine (FCs) neutron fluence monitor,

  13. Radio Mariackie

    OpenAIRE

    Tytko, Marek Mariusz

    1993-01-01

    Tekst dotyczy początków katolickiego Radia Mariackiego w Krakowie w 1993 r. The text concerns the begining of the Mariackie Radio [The Mariackie Broadcasting, the Maria's Radio Station, the Maria's Broadcasting, the Maria's Radio) in Cracow 1993.

  14. Revisiting J.M. Gilliss' astronomical expedition to Chile in 1849‒1852

    Science.gov (United States)

    Hermosilla, Germán Hidalgo

    2017-08-01

    Between 1849 and 1852 the U.S. astronomer J.M. Gilliss led an expedition to Santiago, Chile, aimed at improving the accepted value for the solar parallax. Although this particular research project was not a success, the astronomers did make other useful astronomical contributions, and the expedition was the catalyst that led directly to the founding of the Chilean National Observatory. Meanwhile, Gilliss later went on to achieve further prominence as Superintendent of the U.S. Naval Observatory in Washington, D.C. The results of the Chilean expedition were published by Gilliss in a six-volume work titled The U.S. Naval Astronomical Expedition to the Southern Hemisphere during the Years 1849-50-51-52 that was issued over a 40-year period. In Volume I (published in 1855) Gilliss presented a 'warts-and-all' account of Chile, its politics and its people, which at the time—and subsequently—created considerable controversy. In this paper, after briefly reviewing Gilliss' Southern Hemisphere expedition we focus on the extensive non-astronomical narrative that Gilliss presents in this first volume.

  15. The Paris Observatory has 350 years

    Science.gov (United States)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  16. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  17. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...

  18. Orbit Modeller - Virtual Astronomical Laboratory

    Science.gov (United States)

    Avdyushev, V. A.; Banshchikova, M. A.; Bordovitsyna, T. V.; Chuvashov, I. N.; Ryabova, G. O.

    2017-09-01

    We present a virtual astronomical laboratory project - "Orbit Modeller" (OM). This should be an interactive web-tool enabling one to simulate numerically the orbital motion of any celestial body within or beyond the solar system. Another function of OM is a repository of old observations and documents.

  19. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  20. OAdM robotic observatory: solutions for an unattended small-class observatory

    Science.gov (United States)

    Colomé, J.; Ribas, I.; Fernández, D.; Francisco, X.; Isern, J.; Palau, X.; Torra, J.

    2008-07-01

    The Montsec Astronomical Observatory (OAdM) is a small-class observatory working on a completely unattended control, due to the isolation of the site. Robotic operation is, then, mandatory for its routine use. The level of robotization of an observatory is given by the confidence reached to respond to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. There are key problems to solve when a robotic control is envisaged. Learned lessons and solutions to these issues at the OAdM are discussed here. We present a description of the general control software (SW) and several SW packages developed. The general control SW specially protects the system at the identified single points of failure and makes a distributed control of any subsystem, which are able to respond independently when an alarm is triggered on thanks to a top-down control flow. Specific SW packages developed are: an environment monitoring SW, a set of alarm routines, a pipeline for calibration and analysis of the images taken, and an observation scheduler. All together compose a SW suite designed to reach the complete robotization of an observatory.

  1. A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the Fish Canyon sanidine (FCs) neutron fluence...... monitor, by multi-collector noble gas mass spectrometry, through cross-calibration with A1 tephra sanidines (A1Ts) of the direct astronomically tuned Faneromeni section (Crete). The astronomically intercalibrated 40Ar/39Ar age of FCs of 28.172±0.028 Ma (2σ, external errors) is within the uncertainty of......, but more precise (±0.10%) than, the previous 40Ar/39Ar age determined by intercalibration with astronomically tuned tephras from the Melilla Basin (Morocco). Using this proposed age for FCs, combined with measurements using the A1Ts as the neutron fluence monitor, a weighted mean Bishop Tuff 40Ar/39Ar...

  2. Self-scanned photodiode array - High performance operation in high dispersion astronomical spectrophotometry

    Science.gov (United States)

    Vogt, S. S.; Tull, R. G.; Kelton, P.

    1978-01-01

    A multichannel spectrophotometric detector system has been developed using a 1024 element self-scanned silicon photodiode array, which is now in routine operation with the high-dispersion coude spectrograph of the University of Texas McDonald Observatory 2.7-m telescope. Operational considerations in the use of such arrays for high precision and low light level spectrophotometry are discussed. A detailed description of the system is presented. Performance of the detector as measured in the laboratory and on astronomical program objects is described, and it is shown that these arrays are highly effective detectors for high dispersion astronomical spectroscopy.

  3. Astronomical phenomena in Dresden codex

    Directory of Open Access Journals (Sweden)

    Böhm V.

    2013-01-01

    Full Text Available The relationship between Maya and our calendar is expressed by a coefficient known as ‘correlation’ which is a number of days that we have to add to the Mayan Long Count date to get Julian Date used in astronomy. There is surprisingly large uncertainty in the value of the correlation, yielding a shift between both calendars (and thus between the history of Maya and of our world to typically several hundred years. There are more than 50 diverse values of the correlation, some of them derived from historical, other by astronomical data. We test here (among others the well established Goodman-Martínez-Thompson correlation (GMT, based on historical data, and the Böhms’ one (B&B, based on astronomical data decoded from the Dresden Codex (DC; this correlation differs by about +104 years from the GMT. In our previous works we used several astronomical phenomena as recorded in the DC for a check. We clearly demonstrated that (i the GMT was not capable to predict these phenomena that really happened in nature and (ii that the GMT predicts them on the days when they did not occur. The phenomena used till now in the test are, however, short-periodic and the test then may suffer from ambiguity. Therefore, we add long-periodic astronomical phenomena, decoded successfully from the DC, to the testing. These are (i a synchrony of Venusian heliacal risings with the solar eclipses, (ii a synchrony of Venus and Mars conjunctions with the eclipses, (iii conjunctions of Jupiter and Saturn repeated in a rare way, and (iv a synchrony of synodic and sideric periods of Mercury with the tropical year. Based on our analysis, we find that the B&B correlation yields the best agreement with the astronomical phenomena observed by the Maya. Therefore we recommend to reject the GMT and support the B&B correlation.

  4. DART, a New Solution to Deploy and Access Astronomical Data

    Science.gov (United States)

    Paioro, L.; Chiappetti, L.; Garilli, B.; Franzetti, P.; Fumana, M.; Scodeggio, M.

    2008-08-01

    We present a new software solution, based on Java, which allows to deploy and access astronomical catalogs in relational database form, with their associated data products. It is already used to provide the public VVDS data via VO and manage zCosmos data within the Italian COSMOS community; it is also used as the second generation Web interface to the XMM-LSS master catalog. DART (Database Access and Retrieval Tool) supplies a Web interface which allows to query catalogs, filter data by conditions on the columns values (even complex expressions), view the results and export them in private user files; it is also possible to make simple plots or retrieve the related data products. The software supports access to more than one catalog at a time (e.g. for multi-band usage) either in parallel, or as a couple linked by pre-built correlation tables, or even viewing the result of an identification among several catalogs as a single virtual table. DART has been designed as a general tool capable of accessing any collection of astronomical database tables and related products. It is highly (and easily) customizable editing simple configuration files and (for an increased flexibility specially concerning data product access) populating appropriately a few administrative database tables. It supports ConeSearch, SSA and SIA Virtual Observatory protocols. DART will be soon released to the astronomical community from the PANDORA Web site (http://cosmos.iasf-milano.inaf.it/pandora/dart.html).

  5. Breakthrough! 100 astronomical images that changed the world

    CERN Document Server

    Gendler, Robert

    2015-01-01

    This unique volume by two renowned astrophotographers unveils the science and history behind 100 of the most significant astronomical images of all time. The authors have carefully selected their list of images from across time and technology to bring to the reader the most relevant photographic images spanning all eras of modern astronomical history.    Based on scientific evidence today we have a basic notion of how Earth and the universe came to be. The road to this knowledge was paved with 175 years of astronomical images acquired by the coupling of two revolutionary technologies – the camera and telescope. With ingenuity and determination humankind would quickly embrace these technologies to tell the story of the cosmos and unravel its mysteries.   This book presents in pictures and words a photographic chronology of our aspiration to understand the universe. From the first fledgling attempts to photograph the Moon, planets, and stars to the marvels of orbiting observatories that record the cosmos a...

  6. Latin American astronomers and the International Astronomical Union

    Science.gov (United States)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  7. Global Health Observatory (GHO)

    Science.gov (United States)

    ... International Health Regulations (2005) Monitoring Framework 2.2 Child malnutrition Stunting, wasting and overweight in children 6.1 ... Reports Map gallery Country health data systems Country statistics Regional Health Observatories Africa Americas South-East Asia ...

  8. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  9. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  10. Education and Outreach Opportunities in New Astronomical Facilities

    Science.gov (United States)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  11. Engaging Students through Astronomically Inspired Music

    Science.gov (United States)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  12. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose

    2009-01-01

    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  13. The Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10{sup 19} eV and with equal exposures for the northern and southern skies.

  14. Lowell Observatory enters the twentieth century - in the 1950s

    Science.gov (United States)

    Tenn, Joseph

    2007-03-01

    By the 1950s the Lowell Observatory was stagnant. The three senior astronomers had been there for decades, and they were no longer doing much research or publishing. Yet they jealously guarded the telescopes and prevented younger colleagues from using them effectively. V.M. Slipher, Director since 1916, had been a very productive astronomer in his youth, when he was guided by founder Percival Lowell, but now he devoted his remaining energies to his many business interests. The Observatory's sole Trustee, a nephew of the founder, was busy with his business and politics in Massachusetts and slow to exert authority in Flagstaff, Arizona. Finally, after C.O. Lampland died and V.M. and E.C. Slipher were in their seventies, the Trustee decided that he had to make a change. He brought in mathematician Albert Wilson, who had been leading the Palomar Sky Survey for Caltech. One of Wilson's qualifications seems to be that he was acceptable to the Slipher brothers. Wilson started the Observatory on the road to modernity but ran into personal problems as well as difficulty managing Observatory personnel, and he resigned after a little more than two years. John Hall became Director in 1958, just as the American reaction to Sputnik made abundant Federal resources available to science. In his nineteen years as Director Hall completely revived the historic institution and brought it into the late twentieth century.

  15. Radio Telescope Reflectors

    Science.gov (United States)

    Baars, Jacob W. M.; Kärcher, Hans J.

    2017-11-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering solutions applied to the development of radio telescope reflectors and ground station antennas for satellite communication and space research. The book will also be of interest to historians of science and engineering with an inclination to astronomy.

  16. America's First Carl Sagan: Ormsby MacKnight Mitchel, Pre-Civil War Astronomer and Lecturer on the Cosmos

    Science.gov (United States)

    Osterbrock, D. E.

    2002-12-01

    In the years before television, videos, radio. movies, or even loudspeakers, Ormsby MacKnight Mitchel (1809-1862) was the best-known popularizer of astronomy and the scientific study of the universe in nineteenth-century America. Each winter he traveled the country by railroad, steamer, and stagecoach, speaking to large paying crowds in principal cities from Boston, New York, and Philadelphia through Cincinnati to New Orleans on the cosmos and our place in it, with special attention to possible inhabitants of planers orbiting other stars. Mitchel had much the same attraction as Sagan did in our time, and awakened many people's interest in astronomy through the human angle, as Carl did. His argument was simple, and according to Frank Triplett goes back thousands of years: other stars are suns, our sun has planets with people on one of them, why should not other stars also have populated planets? But first Mitchel, like Sagan, always explained clearly the discoveries of astronomy that fleshed out this argument with facts. He emphasized the ``clockwork universe", governed by gravity, that Newton, Herschel, and Laplace had investigated and found to be stable. There were many other similarities between these two great popularizers. Mitchel's base was the Cincinnati Observatory, which he had founded, raising the funds for it himself in small contributions from hundreds of ``members", which he publicised as far more democratic than support from European kings and lords. He went abroad to get a telescope, and finally found his ``Great [12-inch] Refractor" in Munich, with help from John Quincy Adams, Astronomer Royal George Biddle Airy, and Paris Observatory Director Fracois Arago, in spite of a rebuff by President John Tyler. These episodes have similarities in Sagan's lobbying NASA for close-up images of Mars. Views of other American professional astronomers on life on other worlds will also be described briefly, from Denison Olmsted, Elias Loomis, Charles A. Young (who

  17. The Virtual Observatory for the Python Programmer

    Science.gov (United States)

    Plante, Raymond L.; Fitzpatrick, M. J.; Graham, M.; Tody, D.; Virtual Astronomical Observatory, US

    2014-01-01

    The web of astronomical data centers that we refer to as the virtual observatory (VO) has led to the development of a variety of web and desktop applications that can discover and download data from most archives around the world. These are made possible by standard interfaces which archives provide and the applications understand that provide a common way to search for information and retrieve discovered datasets. For some applications, retrieving data through the VO is simply an extra feature that enhances the main purpose of the tool. Despite the accessibility to VO data provided by such tools, the VO offers greater flexibility to developers that access the standard services directly within their own software. This applies not only to those who build tools but also to research astronomers that create highly-customized scripts for data analysis. One of the goals of the US Virtual Astronomical Observatory (VAO) project is to make the VO more accessible to both tool developers and astronomer-programmers. To this end, we announce the release of two products with a special focus on supporting access to the VO via Python. PyVO (http://dev.usvao.org/pyvo) is a pure Python library built on Astropy (astropy.org) that can be used to discover data in the VO. In particular, one can search the registry for archives with data, search archives for images and spectra, and query remote catalogs and spectral line databases. While it provides full support for the VO standards, its API is designed to make processing the most common types of queries simple without requiring knowledge about the underlying standards. It also makes available the full power of Astropy for processing tabular information. VOClient (http://dev.usvao.org/voclient), which provides scripting and programming libraries for a variety of languages, also supports Python programming. While the two products share a common API, VOClient provides higher level interfaces that assist with managing data from many

  18. The plasma processes of some solar radio burst and their fine structures on the time

    Science.gov (United States)

    Ning, Z.-J.; Lu, Q.-K.; Fu, Q.-J.; Yan, Y.

    2003-04-01

    We present three special solar radio bursts or fine structures on the frequency band of 1.00-7.60Ghz. Firstly, we study the type III burst pair, which was recorded by spectrometer 1.00-2.00GHz at National Astronomical Observatory of China on Jan. 05, 1994. A plausible model might be thought that this event could be the observational evidence of two electron beams traveling bi-directions simultanuously due to the acceleration of magnetic reconnection in the corona. Secondly, a fine structure of microwave type IV bursts is microwave type M-burst on May 03 1999. Partial N-burst, which is a fine structure of solar III-V bursts recorded on August 251999 by both separated spectrometers 4.50-7.50 GHz at Purple Mountain observatory and 5.20-7.60GHz at NAO respectively, is the third phenomenon studied here. As the N-burst documented before, the last two fine structures are thought to the new observational evidences of electron beam reflected by magnetic mirror in the corona.

  19. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  20. 125th Colloquium of the International Astronomical Union

    CERN Document Server

    Sorochenko, R

    1990-01-01

    Text no 1 Radio Recombination Lines (RRLs), discovered in the USSR in 1964, have become a powerful research tool for astronomers. Available throughout the radio spectrum, these lines carry information regarding the density, temperature, turbulence and velocity of thermal plasmas. Their very existance shows the presence of thermal gas. They also can carry information regarding magnetic fields if Zeeman splitting were to be detected. Containing the proceedings of an IAU Colloquium celebrating the 25th anniversary of their detection, this volume tells us what has happened since. It contains the story of the detection of RRLs and reviews of many areas of physics of the interstellargas from which stars form, HII regions excited by newly formed stars, planetary nebulae involving dying stars, and the structure of our Milky Way and other galaxies reflecting the large-scale morphology of the star formation process. In addition there is an article describing modern laboratory studies of Rydberg atoms to probe the basic...

  1. THE VOLATILE COMPOSITION OF COMET C/2003 K4 (LINEAR) AT NEAR-IR WAVELENGTHS—COMPARISONS WITH RESULTS FROM THE NANÇAY RADIO TELESCOPE AND FROM THE ODIN, SPITZER, AND SOHO SPACE OBSERVATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P., E-mail: lucas.paganini@nasa.gov [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States)

    2015-07-20

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  2. Creating Griffith Observatory

    Science.gov (United States)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  3. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  4. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  5. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  6. Representations of astronomers in literature.

    Science.gov (United States)

    Haynes, R. D.

    The depiction of astronomers as characters in fiction during the last four centuries provides a useful historical indication of the changing popular perception of astronomy and its practitioners. It is apparent that lay attitudes to astronomy, even in any given period, are complex. On the one hand there is the continuing, innate attraction which the spectacle of the night sky has for people of all ages, the sense of wonder it generates and the preception of astronomy as a "pure" science, free from military and environmentally damaging spin-offs. But, on the other hand, astronomy poses particular and radical challenges to the humanist tradition and these have elicited from many writers not only expressions of anguish and confusion but, at times, a personal attack on the astronomers who were considered responsible for the unwelcome views.

  7. Anaximandro : astronomía

    OpenAIRE

    Alonso Bernal, Sonsoles

    2009-01-01

    Anaximander successfully speculated about the origin of the cosmos: an initial explosion which condensated fragments form the stars. He also worked as an empirical astronomer who observed with a helioscope the Sun’s gaseous surface and its protuberances. He observed Solar and Lunar expectrums of light, probably working with certain set of pinhole cameras that he could optimize with fitted mirrors. Anaximandro especuló acertadamente sobre el origen del cosmos: describe una explosión inicial...

  8. Random Numbers from Astronomical Imaging

    OpenAIRE

    Pimbblet, Kevin A.; Bulmer, Michael

    2004-01-01

    This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

  9. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques

    2011-01-01

    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity...... of each magnetochron from C32r.2r to C29n are inferred by cycle counting. Astronomical calibrations of Maastrichtian sedimentary series are proposed, based on the 405 ka eccentricity variation according to the most recent astronomical solution La2010a. Two different ages are suggested for the K...

  10. Application of Astronomic Time-latitude Residuals in Earthquake Prediction

    Science.gov (United States)

    Yanben, Han; Lihua, Ma; Hui, Hu; Rui, Wang; Youjin, Su

    2007-04-01

    After the earthquake (Ms = 6.1) occurred in Luquan county of Yunnan province on April 18, 1985, the relationship between major earthquakes and astronomical time-latitude residuals (ATLR) of a photoelectric astrolabe in Yunnan Observatory was analyzed. ATLR are the rest after deducting the effects of Earth’s whole motion from the observations of time and latitude. It was found that there appeared the anomalies of the ATLR before earthquakes which happened in and around Yunnan, a seismic active region. The reason of the anomalies is possibly from change of the plumb line due to the motion of the groundmass before earthquakes. Afterwards, using studies of the anomalous characters and laws of ATLR, we tried to provide the warning information prior to the occurrence of a few major earthquakes in the region. The significant synchronous anomalies of ATLR of the observatory appeared before the earthquake of magnitude 6.2 in Dayao county of Yunnan province, on July 21, 2003. It has been again verified that the anomalies possibly provide the prediction information for strong earthquakes around the observatory.

  11. Application of Information Technologies on Astronomy: Japanese Virtual Observatory (JVO Portal

    Directory of Open Access Journals (Sweden)

    Y Shirasaki

    2010-02-01

    Full Text Available The Japanese Virtual Observatory (JVO is a web portal to various kinds of astronomical resources distributed all over the world. We have started its official operation of the JVO portal since March 2008. The JVO provides seamless access to the Virtual Observatory (VO compliant data services, and also access to the reduced data observed with Subaru telescope and on-line data reduction system for Suprime-Cam instrument of the Subaru telescope. The system implements standards of the International Virtual Observatory Alliance (IVOA to communicate with the VO components in the world.

  12. The third generation of gravitational wave observatories and their science reach

    Energy Technology Data Exchange (ETDEWEB)

    Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton s0171BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Chassande Mottin, E [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice-Sophia-Antipolis, CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw (Poland) and Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock (PL); Inst. of Astronomy 65-265 Zielona Gora (Poland)

    2010-04-21

    Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third-generation observatories in more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the possible science reaches and the technological progress needed to realize a third-generation observatory are discussed in this paper. The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, will be reported.

  13. A continued program of planetary study at the University of Texas McDonald Observatory

    Science.gov (United States)

    Trafton, L.

    1991-01-01

    The program conducts solar system research in support of NASA missions and of general astronomical interest. Investigations of composition, physical characteristics and changes in solar system bodies are conducted primarily using the facilities of McDonald Observatory. Progress, accomplishments, and projected accomplishments are discussed.

  14. Virtual Observatory: From Concept to Implementation

    Science.gov (United States)

    Djorgovski, S. G.; Williams, R.

    2005-12-01

    We review the origins of the Virtual Observatory (VO) concept, and the current status of the efforts in this field. VO is the response of the astronomical community to the challenges posed by the modern massive and complex data sets. It is a framework in which information technology is harnessed to organize, maintain, and explore the rich information content of the exponentially growing data sets, and to enable a qualitatively new science to be done with them. VO will become a complete, open, distributed, web-based framework for astronomy of the early 21st century. A number of significant efforts worldwide are now striving to convert this vision into reality. The technological and methodological challenges posed by the information-rich astronomy are also common to many other fields. We see a fundamental change in the way all science is done, driven by the information technology revolution.

  15. Were megalithic tombs solar observatories?

    Science.gov (United States)

    Hänel, Andreas

    The orientations of the entrances of several hundred neolithic tombs in Northwest Germany, the Netherlands, Bretagne (Brittany) and the eastern Pyrenees (Roussillon and Catalunya) have been measured with a compass. Comparing these measurements with other authors, we could determine systematic errors and combine the measurements. The results are presented as polar coordinate histograms. The passage graves of Northwest Germany and the Netherlands are oriented east-west. For some of the tombs, entrances are preserved always on the southern side. We assume therefore, that all tombs had entrances on the southern side and we conclude that they are mainly oriented to the south, the direction where celestial objects, and especially the sun, reach their highest position in the sky. Similar results were found by Hamel (1985) for tombs in Mecklenburg-Vorpommern. The tombs in Brittany show a different orientation to the southeast, the azimuth of the rising sun on winter solstice. Tombs in the eastern Pyrenees have a similar orientation, as has also been found by other authors for several regions in southern France and the Iberian peninsula (Iund 2002, Chevalier 1999, Hoskin 2002). But in the eastern Pyrenees and from there north to the Provence and on the Balearic Islands exists a group of tombs that are oriented towards the southwest, where the winter sun sets (Chevalier 1999). But most of the entrances of the tombs are oriented towards the sun. The tombs certainly were no precise astronomical observatories, but their orientations might have had a ritual reason and the course of the sun in the sky was well known at that time.

  16. Urania in the Marketplace: Astronomical Imagery in Early Twentieth-Century Advertizing

    Science.gov (United States)

    Rumstay, Kenneth S.

    2010-01-01

    The pages of popular magazines such as Sky and Telescope and Astronomy are filled with advertisements for telescopes and other equipment. However, during the past century astronomical imagery has been widely used to promote distinctly non-astronomical products and services. One of the earliest and most famous examples is the 1893 Chicago newspaper advertisement for Kirk's Soap, which was inspired by the opening of the Yerkes Observatory. A survey of popular magazines published in America during the first half of the twentieth century suggests that these advertisements fall into four categories: 1) Astronomy is universally regarded as an exact and precise science. Manufacturers of mechanical devices may employ images of telescopes or astronomers at work to suggest that their products meet these same standards of quality. This was primarily the case with makers of automobiles and automotive products, although the Longines Watch Company ran an extensive series of ads featuring observatories. 2) The heavens induce a sense of wonder in most people, and advertisers may locate their products in an a celestial setting to give them an otherworldly flavor. 3) Astronomical observatories themselves are viewed as exotic settings, and have provided backgrounds for automotive and travel ads. They may also appear in advertisements for products used in their construction. 4) Finally, newsworthy astronomical events will inspire advertisers to associate their products with that event, in order to capitalize upon the publicity. This was particularly true in the case of the 1910 passage of Halley's Comet and the 1948 opening of the 200-inch Hale telescope at Mt. Palomar. Examples of magazine advertisements from each category are presented for comparison. This work was supported by a faculty development grant from Valdosta State University.

  17. Wendelstein Observatory control software

    Science.gov (United States)

    Snigula, Jan M.; Gössl, Claus; Kodric, Mihael; Riffeser, Arno; Wegner, Michael; Schlichter, Jörg

    2016-07-01

    LMU Munchen operates an astrophysical observatory on Mt. Wendelstein1. The 2m Fraunhofer telescope2, 3 is equipped with a 0.5 x 0.5 square degree field-of-view wide field camera4 and a 3 channel optical/NIR camera5, 6. Two fiber coupled spectrographs7-9 and a wavefront sensor will be added in the near future. The observatory hosts a multitude of supporting hardware, i.e. allsky cameras, webcams, meteostation, air conditioning etc. All scientific hardware can be controlled through a single, central "Master Control Program" (MCP). At the last SPIE astronomy venue we presented the overall Wendelstein Observatory software concept10. Here we explain concept and implementation of the MCP as a multi-threaded Python daemon in the area of conflict between debuggability and Don't Repeat Yourself (DRY).

  18. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Koliadin, V.; Kalinichenko, N.; Stanislavsky, A.; Dorovskyy, V.; Shepelev, V.; Bubnov, I.; Yerin, S.; Melnik, V.; Koval, A.; Shevchuk, N.; Vasylieva, I.; Mylostna, K.; Shevtsova, A.; Skoryk, A.; Kravtsov, I.; Volvach, Y.; Plakhov, M.; Vasilenko, N.; Vasylkivskyi, Y.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Ryabov, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshyn, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.

    2016-03-01

    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here, we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.

  19. "Zhizneopisanie" astronomia N. N. Pavlova, im samim napisannoe %t Astronomer N. N. Pavlov's autobiography

    Science.gov (United States)

    Zhukov, V. Yu.

    This document called by the author "the life story" is written for the human resources department. It is a document intended for the official departmental purposes. At the same time there is something facinating about this documentary testimony about the epoch and the man. This short autobiography describes the early years of the Pulkovo astronomer N. N. Pavlov that fell on hard times of the Civil War. In the years between the World War I and the World War II he was awarded Mendeleyev Prize. He defended his doctorate dissertation after the evacuation from Leningrad. He was one fo the first Pulkovo astronomers to return to Leningrad in order to start reconstruction of the observatory that had been completely ruined during the war. Astronomer N. N. Pavlov renewed the Time Service in the city. N. N. Pavlov was a successful scientist and an outstanding person, all his life was devoted to science.

  20. Long-term Periodicity Analysis of Polarization Variation for Radio ...

    Indian Academy of Sciences (India)

    Abstract. We use the database of University of Michigan Radio As- tronomy Observatory (UMRAO) at three radio bands (4.8, 8 and 14.5. GHz) to analyse the long-term polarization variation in search of the pos- sible periodicity. Using the power spectral analysis method (PSA), the. Jurkevich method and the discrete ...

  1. Reliability centered maintenance in astronomical infrastructure facilities

    Science.gov (United States)

    Ansorge, W. R.

    2006-06-01

    Hundreds of mirror segment, thousands of high precision actuators, highly complex mechanical, hydraulic, electrical and other technology subsystems, and highly sophisticated control systems: an ELT system consists of millions of individual parts and components, each of them may fail and lead to a partial or complete system breakdown. The traditional maintenance concepts characterized by predefined preventive maintenance activities and rigid schedules are not suitable for handling this large number of potential failures and malfunctions and the extreme maintenance workload. New maintenance strategies have to be found suitable to increase reliability while reducing the cost of needless maintenance services. The Reliability Centred Maintenance (RCM) methodology is already used extensively by airlines, and in industrial and marine facilities and even by scientific institutions like NASA. Its application increases the operational reliability while reducing the cost of unnecessary maintenance activities and is certainly also a solution for current and future ELT facilities. RCM is a concept of developing a maintenance scheme based on the reliability of the various components of a system by using "feedback loops between instrument / system performance monitoring and preventive/corrective maintenance cycles." Ideally RCM has to be designed within a system and should be located in the requirement definition, the preliminary and final design phases of new equipment and complicated systems. However, under certain conditions, an implementation of RCM into the maintenance management strategy of already existing astronomical infrastructure facilities is also possible. This presentation outlines the principles of the RCM methodology, explains the advantages, and highlights necessary changes in the observatory development, operation and maintenance philosophies. Presently, it is the right time to implement RCM into current and future ELT projects and to save up to 50% maintenance

  2. Yellowstone Volcano Observatory

    Science.gov (United States)

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  3. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Science.gov (United States)

    Sidorov, Roman; Soloviev, Anatoly; Krasnoperov, Roman; Kudin, Dmitry; Grudnev, Andrei; Kopytenko, Yury; Kotikov, Andrei; Sergushin, Pavel

    2017-11-01

    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) - the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  4. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Directory of Open Access Journals (Sweden)

    R. Sidorov

    2017-11-01

    Full Text Available Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS – the Geophysical Center of RAS (GC RAS and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb. On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  5. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    Science.gov (United States)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  6. Different Categories of Astronomical Heritage: Issues and Challenges

    Science.gov (United States)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  7. Kepler's Supernova Studied Through the Combined Abilities of NASA's Great Observatories

    Science.gov (United States)

    2004-01-01

    Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, best known as the discoverer of the laws of planetary motion, were startled by the sudden appearance of a new star in the western sky, rivaling the brilliance of the nearby planets. Modern astronomers, using NASA's three orbiting Great Observatories, are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy. When a new star appeared Oct. 9, 1604, observers could use only their eyes to study it. The telescope would not be invented for another four years. A team of modern astronomers has the combined abilities of NASA's Great Observatories, the Spritzer Space Telescope (SST), Hubble Space Telescope (HST), and Chandra X-Ray Observatory (CXO), to analyze the remains in infrared radiation, visible light, and X-rays. Visible-light images from Hubble's Advanced Camera for Surveys reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The astronomers used the SST to probe for material that radiates in infrared light, which shows heated microscopic dust particles that have been swept up by the supernova shock wave. The CXO data show regions of very hot gas. The combined image unveils a bubble-shaped shroud of gas and dust, 14 light-years wide and expanding at 4 million mph. There have been six known supernovas in our Milky Way over the past 1,000 years. Kepler's is the only one in which astronomers do not know what type of star exploded. By combining information from all three Great Observatories, astronomers may find the clues they need. Project management for both the HST and CXO programs is the responsibility of NASA's Marshall Space Flight Center in Huntsville, Alabama.

  8. New Roles for the Librarian of Bosscha Observatory: Review of Tasks in Library over Two Decades

    Science.gov (United States)

    Sulistialie, E.

    2015-04-01

    Mr. K. A. R Bosscha, a Dutch tea planter and successful businessman, has become a legendary figure in Indonesia for his various concerns to society. Through his generous support, he helped to found the observatory in 1920. The site of the observatory is in Lembang, West Java, and a suitable place for southern hemisphere observation. The library of Bosscha Observatory was built to support and facilitate research activities of Indonesian astronomers. The core of the library's collection consisted of a donation from Professor H.G. van de Sande Bakhuiyzen, the retired director of Leiden Observatory. Various national and international institutions have contributed to the development of the library. Today, information technology is a major influence on Bosscha Observatory and its librarian.

  9. The Lowell Observatory Navajo-Hopi Astronomy Outreach Program

    Science.gov (United States)

    Herrmann, K. A.; Hunter, D. A.; Bosh, A. S.; Johnson, M.; Schindler, K.

    2012-08-01

    We present an overview of the Lowell Observatory Navajo-Hopi Astronomy Outreach Program, which is modeled after the ASP's Project ASTRO (Richter & Fraknoi 1994). Since 1996, our missions have been (1) to use the inherent excitement about the night sky to help teachers get Navajo and Hopi students excited about science and education, and (2) to help teachers of Navajo and Hopi students learn about astronomy and hands-on activities so that they will be better able to incorporate astronomy in their classrooms. Lowell astronomers pair up for a school year with an elementary or middle school (5th-8th grade) teacher and make numerous visits to their teachers' classes, partnering with the educators in leading discussions linked with hands-on activities. Lowell staff also work with educators and amateur astronomers to offer evening star parties that involve the family members of the students as well as the general community. Toward the end of the school year, teachers bring their classes to Lowell Observatory. The classes spend some time exploring the Steele Visitor Center and participating in tours and programs. They also voyage to Lowell's research facility in the evening to observe at two of Lowell's research telescopes. Furthermore, we offer biennial teacher workshops in Flagstaff to provide teachers with tools, curricula materials, and personalized training so that they are able to include astronomy in their classrooms. We also work with tribal educators to incorporate traditional astronomical knowledge. Funding for the program comes from many different sources.

  10. Unesco's Global Ethics Observatory.

    NARCIS (Netherlands)

    Have, H.A.M.J. ten; Ang, T.W.

    2007-01-01

    The Global Ethics Observatory, launched by the United Nations Educational, Scientific, and Cultural Organization in December 2005, is a system of databases in the ethics of science and technology. It presents data on experts in ethics, on institutions (university departments and centres,

  11. Madras and Kodaikanal Observatories

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 8. Madras and Kodaikanal Observatories: A Brief History. Rajesh Kochhar. General Article Volume 7 Issue 8 August 2002 pp 16-28. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/08/0016-0028 ...

  12. Astronomical measurement a concise guide

    CERN Document Server

    Lawrence, Andy

    2014-01-01

    This book on astronomical measurement takes a fresh approach to teaching the subject. After discussing some general principles, it follows the chain of measurement through atmosphere, imaging, detection, spectroscopy, timing, and hypothesis testing. The various wavelength regimes are covered in each section, emphasising what is the same, and what is different. The author concentrates on the physics of detection and the principles of measurement, aiming to make this logically coherent. The book is based on a short self contained lecture course for advanced undergraduate students developed and taught by the author over several years.

  13. Database-Driven Analyses of Astronomical Spectra

    Science.gov (United States)

    Cami, Jan

    2012-03-01

    Spectroscopy is one of the most powerful tools to study the physical properties and chemical composition of very diverse astrophysical environments. In principle, each nuclide has a unique set of spectral features; thus, establishing the presence of a specific material at astronomical distances requires no more than finding a laboratory spectrum of the right material that perfectly matches the astronomical observations. Once the presence of a substance is established, a careful analysis of the observational characteristics (wavelengths or frequencies, intensities, and line profiles) allows one to determine many physical parameters of the environment in which the substance resides, such as temperature, density, velocity, and so on. Because of this great diagnostic potential, ground-based and space-borne astronomical observatories often include instruments to carry out spectroscopic analyses of various celestial objects and events. Of particular interest is molecular spectroscopy at infrared wavelengths. From the spectroscopic point of view, molecules differ from atoms in their ability to vibrate and rotate, and quantum physics inevitably causes those motions to be quantized. The energies required to excite vibrations or rotations are such that vibrational transitions generally occur at infrared wavelengths, whereas pure rotational transitions typically occur at sub-mm wavelengths. Molecular vibration and rotation are coupled though, and thus at infrared wavelengths, one commonly observes a multitude of ro-vibrational transitions (see Figure 13.1). At lower spectral resolution, all transitions blend into one broad ro-vibrational molecular band. The isotope. Molecular spectroscopy thus allows us to see a difference of one neutron in an atomic nucleus that is located at astronomical distances! Since the detection of the first interstellar molecules (the CH [21] and CN [14] radicals), more than 150 species have been detected in space, ranging in size from diatomic

  14. Remote observing with the Nickel Telescope at Lick Observatory

    Science.gov (United States)

    Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert

    2008-07-01

    We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.

  15. OpenROCS: a software tool to control robotic observatories

    Science.gov (United States)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  16. Site Protection Program and Progress Report of Ali Observatory, Tibet

    Science.gov (United States)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  17. ACE Observatory Control System - 16 years of remote intercontinental observing

    Science.gov (United States)

    Mack, Peter

    2011-03-01

    The ACE Observatory Control System has been used for remote control since 1995. The system was designed for use at isolated observatories with no-one present on the mountain-top. The software provides complete diagnostic feedback to the astronomer and is supplemented by live audio-visual. Accessories include environmental sensors (weather station, all-sky camera, constellation cameras), automated mirror covers and remote power control. This gives the astronomer the same experience as being present at the observatory. The system is installed on 30 telescopes and many of them are used for routine nightly intercontinental observations, such as Taejeon (S. Korea) to Mt. Lemmon (Arizona) and southeast USA to KPNO and CTIO. The system has fully integrated autoguider acquisition and science camera control. We describe the building blocks of the system and the accessories including automated mirror covers, weather station, all sky camera, remote power control and dome control. Future plans are presented for a fully autonomous platform-independent scheduler and robot for use on multiple telescopes.

  18. Observation on the Radio Telescope Uran-4 Of Radio Sources, Connected with the Coronal Mass Ejection on the Sun

    Science.gov (United States)

    Galanin, V. V.; Derevjagin, V. G.; Kravetz, R. O.

    In 2012 and 2013 the observations of radio sources covering by the solar corona was conducted on the radio telescope URAN-4. In obtained data there was fixed the records of the strong radio sources, which had flow level comparable with the 3c461 source. As a result of information analysis from miscellaneous observatories about the solar activity conditions there is done the conclusion that they are connected with the coronal mass ejections which was took place that time.

  19. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  20. The paraboloidal reflector antenna in radio astronomy and communication theory and practice

    CERN Document Server

    Baars, Jacob W M

    2007-01-01

    Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. The Paraboloidal Reflector Antenna in Radio Astronomy and Communication: Theory and Practice takes a practical approach to the characterization of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his/her own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers, and finally, graduate students in radio astronomy and communication technology.

  1. LGBT Workplace Issues for Astronomers

    Science.gov (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  2. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  3. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy

    Science.gov (United States)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Klenke, Christopher; Weigand, Denise

    2017-01-01

    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a prototype observatory for measuring spectroscopic radial velocities. The primary goal of MICRONERVA is to demonstrate that an array of 8-inch CPC Celestron telescopes can be used at a lower cost in place of a single, larger telescope. The equivalent light gathering power of the larger telescope is achieved by sending the starlight from each of the eight-inch telescopes down single mode fibers and combining the fiber output at a single entrance slit to a multi-object high resolution spectrograph. All of the hardware from the system is automated using Python programs, ASCOM and MaximDL drivers. The detection of exoplanets using the techniques of MICRONERVA opens the door to reducing costs for astronomical spectroscopy.

  4. Progresos recientes en Astronomía de Rayos Gamma

    Science.gov (United States)

    Romero, G. E.

    Tras la exitosa misión del Compton Gamma-Ray Observatory durante los años 1990, la astronomía de rayos gamma ha entrado en una etapa de madurez, convirtiéndose en una de las principales herramientas para el estudio de procesos relativistas en el universo. En este reporte, presentaré una revisión de los principales tópicos abordados a través de estudios con rayos gamma en los últimos años, con particular énfasis en los intentos más recientes por establecer la naturaleza de las fuentes de rayos gamma no identificadas, detectadas por el instrumento EGRET.

  5. Storing Astronomical Information on the Romanian Territory

    Science.gov (United States)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  6. Astronomical Symbolism in Australian Aboriginal Rock Art

    CERN Document Server

    Norris, Ray P

    2010-01-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  7. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Wolf, J.

    2004-05-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, will carry a 3-meter-class telescope onboard a Boeing 747SP aircraft to altitudes of 41,000 to 45,000 ft, above most of the atmosphere's IR-absorbing water vapor. The telescope was developed and built in Germany and has been delivered to the U.S. in September 2002. The integration into the B747SP has been com- pleted and functional tests are under way in Waco, Texas. In early 2005 flight-testing of the observatory will initially be dedi-cated to the re-certification of the modified aircraft, then performance tests of the telescope and the electronics and data systems will commence. Later in 2005 after transferring to its home base, NASA's Ames Research Center in Moffett Field, California, SOFIA will start astrophysical observations. A suite of specialized infrared cameras and spectrometers covering wave-lengths between 1 and 600 ?m is being developed by U.S. and German science institutions. In addition to the infrared instruments, a high-speed visible range CCD camera will use the airborne observatory to chase the shadows of celestial bodies during occultations. Once SOFIA will be in routine operations with a planned observing schedule of up to 960 hours at altitude per year, it might also be available as a platform to serendipitous observations not using the main telescope, such as recordings of meteor streams or the search for extra-solar planets transiting their central stars. These are areas of research in which amateur astronomers with relatively small telescopes and state-of-the-art imaging equipment can contribute.

  8. Protection of Hawaii's Observatories from Light Pollution

    Science.gov (United States)

    Wainscoat, Richard J.

    2018-01-01

    Maunakea Observatory, located on the island of Hawaii, is among the world darkest sites for astronomy. Strong efforts to preserve the dark night sky over the last forty years have proven successful. Artificial light presently adds only approximately 2% to the natural night sky brightness. The techniques being used to protect Maunakea from light pollution will be described, along with the challenges that are now being faced.Haleakala Observatory, located on the island of Maui, is also an excellent observing site, and is among the best sites in the United States. Lighting restrictions in Maui County are much weaker, and consequently, the night sky above Haleakala is less well protected. Haleakala is closer to Honolulu and the island of Oahu (population approximately 1 million), and the glow from Oahu makes the northwestern sky brighter.Much of the lighting across most of the United States, including Hawaii, is presently being converted to LED lighting. This provides an opportunity to replace existing poorly shielded lights with properly shielded LED fixtures, but careful spectral management is essential. It is critically important to only use LED lighting that is deficient in blue and green light. LED lighting also is easy to dim. Dimming of lights later at night, when there is no need for brighter lighting, is an important tool for reducing light pollution.Techniques used to protect astronomical observatories from light pollution are similar to the techniques that must be used to protect animals that are affected by light at night, such as endangered birds and turtles. These same techniques are compatible with recent human health related lighting recommendations from the American Medical Association.

  9. The First 50 Years of Konkoly Observatory

    Science.gov (United States)

    Balazs, Lajos G.; Vargha, Magda; Zsoldos, Endre

    The second half of the 19th century experienced a revolution in astronomy. It coincided with a new start of professional astronomy in Hungary through the work of Miklós Konkoly Thege (1842-1916) who is considered as a pioneer of current astrophysical activity in our country. He played an outstanding role in organizing scientific life and institutions, too. He started observations in his newly founded Observatory at Ógyalla in 1871. Sunspots were regularly observed in the observatory from 1872. In 1874 Konkoly began regular spectroscopic observations of comets and emphasized the importance of parallel laboratory works. An important field of Konkoly's astronomical activity was the observation of surface patterns of planets, particularly that of Jupiter and Mars. Spectroscopic observations of stars were also a significant part of the activity of Ógyalla Observatory. In the last period of the Konkoly era (starting in 1899) stellar photometry became the main field of research. At the end of WW I the institute was moved to Budapest Ógyalla and started a new life based on a completely new infrastructure: “... all era are followed by a new one, with its new tasks, in which the scope of activity changes correspondingly, in which enthusiasm is mostly manifested. It was different in the forties when our nation found itself following the word of the founder of our Academy, it was different in the fifties and sixties when we have to defend our nation against foreign aggression, and it became different since the sixties when, our existence being guarantied, we also have to make an effort, beside strengthening it, to get as distinguished a position among the civilized nations as possible.”

  10. Science Data Mining Resources for the National Virtual Observatory (NVO)

    Science.gov (United States)

    Borne, K. D.; Cheung, C. Y.

    2001-12-01

    NASA's Astronomical Data Center (ADC) has established a researcher's guide to Data Mining Resources for Space Science (http://adc.gsfc.nasa.gov/adc/adc_datamining.html). Data mining is defined as ``an information extraction activity whose goal is to discover hidden facts contained in databases.'' Application of data mining tools and techniques will enable the data-intensive scientific discovery capabilities that will be required of the new envisioned National Virtual Observatory (NVO). The ADC's resource guide includes extensive reference material for the NVO and large astronomical surveys, as well as for related computer information technologies (e.g., XML and the GRID). Examples of several data mining techniques and related NVO science research scenarios will be presented. Of particular interest are data mining techniques of two types: (1) visual data mining, which includes graphical browse displays of statistical data; and (2) temporal data mining, with direct application to large time series databases, such as that generated by the MACHO project. Data mining challenges will also be presented, including: (a) distributed data mining across multiple data sources (i.e., the NVO); (b) data mining across multiple data types (e.g, fusion of search results from astronomical catalog and image databases); and (c) education and public outreach possibilities (e.g., search for incoming asteroids, or new comets, or new types of variable stars within the new huge astronomical survey databases). A possible ``NVO@Home'' implementation would naturally employ a combination of visual and temporal data mining techniques.

  11. Archaeo-astronomical characteristics of the Kokino archaeological site

    Science.gov (United States)

    Cenev, Gjore

    In the North-East part of Macedonia, near to the peak Tatikjev Kamen, an archaeological site with vast quantity of artifacts, dated in the Bronze Age, was discovered in 2001. For the first time in Republic of Macedonia (FYROM), comprehensive archaeo-astronomical analysis of this site, providing extraordinary important results, was performed in 2002. The site contains a lot of materials typical for a megalithic observatory, 3800 years old. Three stone markers, pointing out the places of the sunrise on the days of the summer and winter solstice, as well as the vernal and autumn equinoxes, were found there. Four stone markers, indicating the places of the full Moon rise above the horizon, are recognized too. They are used in the days when the Moon has maximum or minimum declination - two of them in the summer and two of them - in the winter. There are also two other stone markers used for measuring the length of the lunar month in winter - when it has 29 days, and in summer - when it has 30 days. These markers give clear evidences that the ancient Balkan inhabitants used the observatory not only to monitor the movement of the Moon, but also to develop the lunar calendar with 19-year cycle. The archaeo-astronomical analysis presents also an evidence for the existence of one very characteristic stone marker, used for pointing out the sunrise position in a very important ritual day. This is the day when special ceremonies related to the end of the harvest, as well as to the ritual unification of the community leader with the God Sun, were performed. (Colour versions of the illustrations are presented as Appendix on the site of the journal.)

  12. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  13. History of the Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory

    Science.gov (United States)

    Soffel, H. C.

    2015-07-01

    The Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory is one of the observatories with the longest recordings of the geomagnetic field. It started with hourly measurements on 1 August 1840. The founder of the observatory in Munich was Johann von Lamont (1805-1879), the Director of the Royal Bavarian Astronomical Observatory. He had been stimulated to build his own observatory by the initiative of the Göttingen Magnetic Union founded in 1834 by Alexander von Humboldt (1769-1859) and Carl Friedrich Gauss (1777-1855). Before 1840 fewer than five observatories existed; the most prominent ones were those in London and Paris. At the beginning Lamont used equipment delivered by Gauss in Göttingen, but soon started to build instruments of his own design. Among them was a nonmagnetic theodolite which allowed precise geomagnetic measurements to be made also in the field. During the 1850s Lamont carried out geomagnetic surveys and produced geomagnetic maps for Germany and many other European countries. At the end of the nineteenth century accurate geomagnetic measurements in Munich became more and more disturbed by the magnetic stray fields from electric tramways and industry. During this period the quality of the data suffered and the measurements had to be interrupted several times. After a provisional solution in Maisach, a village 25 km west of Munich, a final solution could be found in the vicinity of the nearby city of Fürstenfeldbruck. Here the measurements started again on 1 January 1939. Since the 1980s the observatory has been part of INTERMAGNET, an organization providing almost real-time geomagnetic data of the highest quality.

  14. Critical factors for a successful astronomical research program in a developing country

    Science.gov (United States)

    Hearnshaw, John B.

    I discuss the critical conditions for undertaking a successful research program in a developing country. There are many important factors, all or most of which have to be satisfied: funding, library holdings, computing access, Internet access (e-mail, WWW, ftp, telnet), collaboration with astronomers in developed countries, provision of proper offices for staff, supply of graduate students, access to travel for conferences, ability to publish in international journals, critical mass of researchers, access to a telescope (for observational astronomers), support from and interaction with national electronics, optics and precision engineering industries, a scientific culture backed by a national scientific academy, and lack of inter-institutional rivalry. I make a list of a total of 15 key factors and rank them in order of importance, and discuss the use of an astronomical research index (ARI) suitable for measuring the research potential of a given country or institution. I also discuss whether astronomers in developing countries in principle fare better in a university or in the environment of a government national observatory or research institution, and topics such as the effect of the cost of page charges and journal subscriptions on developing countries. Finally I present some statistics on astronomy in developing countries and relate the numbers of astronomers to the size of the economy and population in each country.

  15. An MF/HF radio array for radio and radar imaging of the ionosphere

    Science.gov (United States)

    Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence

    2016-07-01

    The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.

  16. Radio VLBI and the quantum interference paradox

    CERN Document Server

    Singal, Ashok K

    2016-01-01

    We address here the question of interference of radio signals from astronomical sources like distant quasars, in a very long baseline interferometer (VLBI), where two (or more) distantly located radio telescopes (apertures), receive simultaneous signal from the sky. In an equivalent optical two-slit experiment, it is generally argued that for the photons involved in the interference pattern on the screen, it is not possible, even in principle, to ascertain which of the two slits a particular photon went through. It is argued that any procedure to ascertain this destroys the interference pattern. But in the case of the modern radio VLBI, it is a routine matter to record the phase and amplitude of the voltage outputs from the two radio antennas on a recording media separately and then do the correlation between the two recorded signals later in an offline manner. Does this not violate the quantum interference principle? We provide a resolution of this problem here.

  17. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  18. Authentic Astronomical Discovery in Planetariums: Bringing Data to Domes

    Science.gov (United States)

    Wyatt, Ryan Jason; Subbarao, Mark; Christensen, Lars; Emmons, Ben; Hurt, Robert

    2018-01-01

    Planetariums offer a unique opportunity to disseminate astronomical discoveries using data visualization at all levels of complexity: the technical infrastructure to display data and a sizeable cohort of enthusiastic educators to interpret results. “Data to Dome” is an initiative the International Planetarium Society to develop our community’s capacity to integrate data in fulldome planetarium systems—including via open source software platforms such as WorldWide Telescope and OpenSpace. We are cultivating a network of planetarium professionals who integrate data into their presentations and share their content with others. Furthermore, we propose to shorten the delay between discovery and dissemination in planetariums. Currently, the “latest science” is often presented days or weeks after discoveries are announced, and we can shorten this to hours or even minutes. The Data2Dome (D2D) initiative, led by the European Southern Observatory, proposes technical infrastructure and data standards that will streamline content flow from research institutions to planetariums, offering audiences a unique opportunity to access to the latest astronomical data in near real time.

  19. Radio Astronomy in the Undergraduate Curriculum

    Science.gov (United States)

    Payne, J. E.; Brown, J. L.; Walter, D. K.

    2003-12-01

    We summarize the results of a three year program to incorporate radio astronomy into undergraduate research and coursework at South Carolina State University (SCSU). A series of small and inexpensive radio telescopes have been constructed by faculty members with undergraduate student assistance. The telescopes range from a Radio Jove dipole antenna, to a dual frequency alt-az mount solar antenna to a 4.6 meter commercially-built radio telescope operated at 1.42 GHz. SCSU students and faculty have access to larger radio telescopes through a partnership with the Pisgah Astronomical Research Institute (PARI) near Rosman, North Carolina. Projects to date include three years of monitoring solar activity, participation in coordinated observing sessions of Jovian radio bursts and mapping the distribution of galactic neutral hydrogen. Future work will include combined optical and radio observations of stellar radio sources such as RS CVn stars and Algol-type binaries. Support for this work has been provided to SCSU through NASA's PAIR program under NCC 5-454.

  20. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  1. US Astronomers Access to SIMBAD in Strasbourg, France

    Science.gov (United States)

    Eichhorn, G.; Oliverson, Ronald J. (Technical Monitor)

    2003-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4300 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers. We continue this collaboration in order to provide better services to both the US and European astronomical community. This collaboration is even more important in light of the developments for the Virtual Observatory projects in the different countries.

  2. Megalithic observatory Kokino

    Science.gov (United States)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  3. Site Protection Efforts at the AURA Observatory in Chile

    Science.gov (United States)

    Smith, R. Chris; Smith, Malcolm G.; Sanhueza, Pedro

    2015-08-01

    The AURA Observatory (AURA-O) was the first of the major international observatories to be established in northern Chile to exploit the optimal astronomical conditions available there. The site was originally established in 1962 to host the Cerro Tololo Inter-American Observatory (CTIO). It now hosts more than 20 operational telescopes, including some of the leading U.S. and international astronomical facilities in the southern hemisphere, such as the Blanco 4m telescope on Cerro Tololo and the Gemini-South and SOAR telescopes on Cerro Pachón. Construction of the next generation facility, the Large Synoptic Survey Telescope (LSST), has recently begun on Cerro Pachón, while additional smaller telescopes continue to be added to the complement on Cerro Tololo.While the site has become a major platform for international astronomical facilities over the last 50 years, development in the region has led to an ever-increasing threat of light pollution around the site. AURA-O has worked closely with local, regional, and national authorities and institutions (in particular with the Chilean Ministries of Environment and Foreign Relations) in an effort to protect the site so that future generations of telescopes, as well as future generations of Chileans, can benefit from the dark skies in the region. We will summarize our efforts over the past 15 years to highlight the importance of dark sky protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.

  4. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  5. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  6. Christopher Clavius astronomer and mathematician

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    The Jesuit scientist Christopher Clavius (1538-1612) has been the most influential teacher of the renaissance. His contributions to algebra, geometry, astronomy and cartography are enormous. He paved the way, with his texts and his teaching for 40 years in the the Collegio Romano, to the development of these sciences and their fruitful spread all around the World, along the commercial paths of Portugal, which become also the missionary paths for the Jesuits. The books of Clavius were translated into Chinese, by one of his students Matteo Ricci "Li Madou" (1562-1610), and his influence for the development of science in China was crucial. The Jesuits become skilled astronomers, cartographers and mathematicians thanks to the example and the impulse given by Clavius. This success was possible also thanks to the contribution of Clavius in the definition of the Ratio Studiorum, the program of studies, in the Jesuit colleges, so influential for the whole history of modern Europe and all western World.

  7. Ancient Astronomical Monuments of Athens

    Science.gov (United States)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  8. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  9. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  10. Novel Algorithms for Astronomical Plate Analyses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness ...

  11. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  12. Indexing data cubes for content-based searches in radio astronomy

    Science.gov (United States)

    Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.

    2016-01-01

    Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that

  13. Astronomical site selection for Turkey using GIS techniques

    Science.gov (United States)

    Aksaker, N.; Yerli, S. K.; Erdoğan, M. A.; Erdi, E.; Kaba, K.; Ak, T.; Aslan, Z.; Bakış, V.; Demircan, O.; Evren, S.; Keskin, V.; Küçük, İ.; Özdemir, T.; Özışık, T.; Selam, S. O.

    2015-10-01

    A site selection of potential observatory locations in Turkey have been carried out by using Multi-Criteria Decision Analysis (MCDA) coupled with Geographical Information Systems (GIS) and satellite imagery which in turn reduced cost and time and increased the accuracy of the final outcome. The layers of cloud cover, digital elevation model, artificial lights, precipitable water vapor, aerosol optical thickness and wind speed were studied in the GIS system. In conclusion of MCDA, the most suitable regions were found to be located in a strip crossing from southwest to northeast including also a diverted region in southeast of Turkey. These regions are thus our prime candidate locations for future on-site testing. In addition to this major outcome, this study has also been applied to locations of major observatories sites. Since no goal is set for the best, the results of this study is limited with a list of positions. Therefore, the list has to be further confirmed with on-site tests. A national funding has been awarded to produce a prototype of an on-site test unit (to measure both astronomical and meteorological parameters) which might be used in this list of locations.

  14. Identified usage of the virtual observatory: beyond the WWW

    Science.gov (United States)

    Rixon, Guy T.; Walton, Nicholas A.

    2002-12-01

    Current astronomical facilities on the WWW support anonymous access to public-domain resources with very limited workflows. To meet even current aspirations, the Virtual Observatory needs to operate extensive workflows that also include access to restricted resources. AstroGrid (see http://www.astrogrid.org/), a UK eScience project with collaborating groups drawn from the major UK data archive centres, is currently creating the UK's virtual observatory (Lawrence, 2002, these proceedings). We present use cases from AstroGrid's survey of requirements that show a need for a pervasive infrastructure for identifying users and controlling access to facilities and data. We describe in outline AstroGrid's architecture for this infrastructure.

  15. Remote observing experiments at Kitt Peak National Observatory

    Science.gov (United States)

    Robinson, W. G.; Schechter, P. L.; Janes, C. C.

    1982-10-01

    The results of trial runs using telephone links to the Kitt Peak Observatory to permit astronomers to make use of the instrumentation from remote sites are reported. Three lines permit voice communication with the telescope operator, interfacing with the telescope computer, and television hook-up to the telescope image acquisition system. One complete picture frame is furnished every 34 sec over the modem. A commercial direct-dial long distance line was found to have a relatively acceptable noise level. The best operation was performed using the intensified image dissector scanner on a 2.1 m telescope. Satisfactory operation and controllability was reported from a user located over a thousand miles away. Further attempts will be made to add a CCD system and a Fourier transform spectrometer to the equipment that can be remotely operated. An expansion in the communications equipment and collaborative programs with other observatories are recommended in order to expand the program to more users.

  16. The Einstein Telescope: a third-generation gravitational wave observatory

    Energy Technology Data Exchange (ETDEWEB)

    Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw, Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock, Inst. of Astronomy 65-265 Zielona Gora (Poland)

    2010-10-07

    Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

  17. Lightning Detection at the Pierre-Auger-Observatory

    OpenAIRE

    Niemietz, Lukas

    2017-01-01

    The Pierre Auger Observatory in Argentina is the world largest detector for cosmic rays at the highest energies. It is realized as a hybrid detector, combining the detection of secondary particles at ground level with an array of 1660 water-Cherenkov detectors deployed over an area of about 3000 km² and the detection of emitted florescence light with 27 florescence telescopes at four sites around the array. For the Auger Engineering Radio Array, an extension of the Pierre Auger Observator...

  18. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    Science.gov (United States)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  19. High-Redshift Radio Galaxies from Deep Fields C. H. Ishwara ...

    Indian Academy of Sciences (India)

    2International Centre for Radio Astronomical Research, University of Western Australia,. Perth, Western Australia, Australia. ∗ e-mail: ishwar@ncra.tifr.res.in. Abstract. Most of the radio ... cating that the known HzRGs represent the tip of the ice-berg in luminosity. There are, potentially, a large number of HzRGs yet to be ...

  20. CHIME and probing the origin of fast radio bursts

    Science.gov (United States)

    Connor, Liam Dean

    The time-variable long-wavelength sky harbours a number of known but unsolved astrophysical problems, and surely many more undiscovered phenomena. With modern tools such problems will become tractable, and new classes of astronomical objects will be revealed. These tools include digital telescopes made from powerful computing clusters, and improved theoretical methods. In this thesis we employ such devices to understand better several puzzles in the time-domain radio sky. Our primary focus is on the origin of fast radio bursts (FRBs), a new class of transients of which there seem to be thousands per sky per day. We offer a model in which FRBs are extragalactic but non-cosmological pulsars in young supernova remnants. Since this theoretical work was done, observations have corroborated the picture of FRBs as young rotating neutron stars, including the non-Poissonian repetition of FRB 121102. We also present statistical arguments regarding the nature and location of FRBs. These include reinstituting the classic V/Vmax-test to measure the brightness distribution of FRBs, i.e., constraining ∂log N/∂log S. We find consistency with a Euclidean distribution. This means current observations cannot distinguish between a cosmological population and a more local uniform population, unless added assumptions are made. We also showed that the rate of FRBs at low frequencies is consistent with the rate at 1.4 GHz, which is promising for upcoming high-impact experiments. One of these is the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We outline this instrument and its three back-ends: a cosmology experiment whose goal is to measure dark energy through 21 cm intensity mapping, a pulsar back-end, and an FRB project that is expected to be by far the fastest survey in the foreseeable future. We describe the creation of a digital beamforming back-end on the CHIME Pathfinder, which acts as a test-bed for the three final experiments just described. We also discuss the

  1. Astronomers Reveal Extinct Extra-Terrestrial Fusion Reactor

    Science.gov (United States)

    2004-06-01

    An international team of astronomers, studying the left-over remnants of stars like our own Sun, have found a remarkable object where the nuclear reactor that once powered it has only just shut down. This star, the hottest known white dwarf, H1504+65, seems to have been stripped of its entire outer regions during its death throes leaving behind the core that formed its power plant. Scientists from the United Kingdom, Germany and the USA focused two of NASA's space telescopes, the Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE), onto H1504+65 to probe its composition and measure its temperature. The data revealed that the stellar surface is extremely hot, 200,000 degrees, and is virtually free of hydrogen and helium, something never before observed in any star. Instead, the surface is composed mainly of carbon and oxygen, the 'ashes' of the fusion of helium in a nuclear reactor. An important question we must answer is why has this unique star lost the hydrogen and helium, which usually hide the stellar interior from our view? Professor Martin Barstow (University of Leicester) said. 'Studying the nature of the ashes of dead stars give us important clues as to how stars like the Sun live their lives and eventually die. The nuclear waste of carbon and oxygen produced in the process are essential elements for life and are eventually recycled into interstellar space to form new stars, planets and, possibly, living beings.' Professor Klaus Werner (University of Tübingen) said. 'We realized that this star has, on astronomical time scales, only very recently shut down nuclear fusion (about a hundred years ago). We clearly see the bare, now extinct reactor that once powered a bright giant star.' Dr Jeffrey Kruk (Johns Hopkins University) said: 'Astronomers have long predicted that many stars would have carbon-oxygen cores near the end of their lives, but I never expected we would actually be able to see one. This is a wonderful opportunity to

  2. Astronomical Polarimetry : new concepts, new instruments, new measurements & observations

    NARCIS (Netherlands)

    Snik, F.

    2009-01-01

    All astronomical sources are polarized to some degree. Polarimetry is therefore a powerful astronomical technique. It furnishes unique diagnostics of e.g. magnetic fields and scattering media. This thesis presents new polarimetric concepts, instruments, and measurements targeting astronomical

  3. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  4. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  5. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    Science.gov (United States)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  6. OAdM Observatory: Towards Fully Unattended Control

    Science.gov (United States)

    Colomé, J.; Ribas, I.; Fernández, D.; Francisco, X.; Isern, J.; Palau, X.; Torra, J.; Colomé, J.; Ribas, I.; Fernández, D.; Isern, J.

    The Montsec Astronomical Observatory (OAdM) is a small-class observatory working on a completely unattended control, due to the isolation of the site. Robotic operation is, then, mandatory for its routine use. The level of robotization of an observatory is given by the confidence reached to respond to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. There are key problems to solve when a robotic control is envisaged. Learned lessons and solutions to these issues at the OAdM are discussed here. We present a description of the general control software (SW) and several SW packages developed. They specially protect the system at the identified single points of failure and constitute a distributed control of any subsystem, which is able to respond independently when an alarm is triggered thanks to a top-down control flow. All together this composes a SW suite designed to reach the complete robotization of an observatory.

  7. Current Status of Carl Sagan Observatory in Mexico

    Science.gov (United States)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  8. The TJO-OAdM Robotic Observatory: the scheduler

    Science.gov (United States)

    Colomé, Josep; Casteels, Kevin; Ribas, Ignasi; Francisco, Xavier

    2010-07-01

    The Joan Oró Telescope at the Montsec Astronomical Observatory (TJO - OAdM) is a small-class observatory working under completely unattended control, due to the isolation of the site. Robotic operation is mandatory for its routine use. The level of robotization of an observatory is given by its reliability in responding to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. But there is another key point when deciding how the system performs as a robot: the capability to adapt the scheduled observation to actual conditions. The scheduler represents a fundamental element to fully achieve an intelligent response at any time. Its main task is the mid- and short-term time optimization and it has a direct effect on the scientific return achieved by the observatory. We present a description of the scheduler developed for the TJO - OAdM, which is separated in two parts. Firstly, a pre-scheduler that makes a temporary selection of objects from the available projects according to their possibility of observation. This process is carried out before the beginning of the night following different selection criteria. Secondly, a dynamic scheduler that is executed any time a target observation is complete and a new one must be scheduled. The latter enables the selection of the best target in real time according to actual environment conditions and the set of priorities.

  9. Astronomical observation devices CIAO and COMICS for Telescope Subaru; Sugbaru boenkyo kansoku sochi CIAO/COMICS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    Described herein are astronomical observation devices, a coronagraph imaging device (CIAO) and intermediate-infrared imaging spectrometer (COMICS), delivered to National Astronomical Observatory in October 1999. These devices are for the focal section of Telescope Subaru, completed in Hawaii in 1999 (devices for the first stage project), to observe various celestial objects by imaging and spectroscopically processing the infrared ray data collected by the telescope. This company has developed these devices jointly with National Astronomical Observatory as the orderer. They have been in service since December 1999 when they were set in the telescope (the attached photograph shows COMICS). Its major specifications are dimensions: 2,000 mm long, 2,000 mm wide and 1900 mm high, weight: 1,300 kg (CIAO) and 1640 kg (COMICS), and detector temperature: 35K (-238 degrees C) for CIAO and 5K (-268 degrees C) for COMICS. They are featured by the infrared sensor and optical system cooled by a system which uses a refrigerator to prevent heat radiation (infrared ray) from the ambient; and the optical system being insulated and supported by a tension strap structure to keep its performance unaffected by cooling or slanting ({+-}70 degrees). (translated by NEDO)

  10. Bayesian estimation for ionospheric calibration in radio astronomy

    NARCIS (Netherlands)

    Van der Tol, S.

    2009-01-01

    Radio astronomical observations at low frequencies (< 250 MHz), can be severely distorted by fluctuations in electron density in the ionosphere. The free electrons cause a phase change of electromagnetic waves traveling through the ionosphere. This effect increases for lower frequencies. For this

  11. Astronomical background of global huge earthquakes

    Science.gov (United States)

    Hu, Hui; Han, Yan-Ben

    2006-03-01

    This paper analyzes the astronomical background of the global huge earthquakes with M≥8.5. The result shows that most of the earthquakes has occurred in the seismic belts (regions) where is being corresponding seismic active period with the lunar path, solar active falling period and accelerating period of earth rotation. This is as for the variation of long period of astronomical factors. For the variation of short period of astronomical factors, whether for local time or local sidereal time and lunar phase there is the phenomenon of occurrence of concentrating a interval time for the earthquakes. For the short variation of earth rotation this phenomenon is clear; either the earthquakes occur in most fast or in lowest of earth rotation. The above-mentioned results indicate that the eartquakes occurrence is affected by astronomical factors. The astronomical factors are one of motive force causing earthquake from external world. The astronomical factors with long period may act as modulation for the earthquake-pregnant process. And the astronomical factors with short period will causing huge fluctuations of the system and earthquake occur when it act on seismic structure of away from balance state.

  12. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  13. Digitale radio

    NARCIS (Netherlands)

    Schiphorst, Roelof; Zondervan, L.

    2007-01-01

    Als eerste in Europa heeft Nederland begin december 2006 de omschakeling van analoge naar digitale ethertelevisie gemaakt. Voor de analoge FM-radio is er ook een digitale variant, T-DAB. T-DAB staat voor 'Terrestrial Digital Audio Broadcasting'. Dit artikel gaat verder in op deze techniek en de

  14. Astronomical Knowledge in Holy Books

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books: Ancient Egyptian Religion (Pyramid Texts), Zoroastrianism (Avesta), Hinduism (Vedas), Buddhism (Tipitaka), Confucianism (Five Classics), Sikhism (Guru Granth Sahib), Christianity (Bible), Islam (Quran), Druidism (Mabinogion) and Maya Religion (Popol Vuh). These books include various information on the creation of the Universe, Sun and Moon, the age of the Universe, Cosmic sizes, understanding about the planets, stars, Milky Way and description of the Heavens in different religions. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  15. Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters

    Science.gov (United States)

    2008-10-01

    (Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the

  16. The Conrad Observatory Research Facility

    Science.gov (United States)

    Lenhardt, W.; Melichar, P.

    2009-04-01

    The Conrad Observatory in Austria belongs to the group of most modern geophysical observatories worldwide. The observatory is situated 55 km SW of Vienna in the Eastern Alps. Since 2002 - when the observatory was officially opened - several research tasks, projects, training courses and workshops were carried out at this venue. The site is also magnetically very quiet - one of the requirements for establishing the second part of the observatory, which will serve as the magnetic base observatory for Austria in the future. So far, a tunnel of 145 m length equipped with seismometers, 3 boreholes of 100 m depth and one borehole of 50 m depth, as well as a laboratory, where the gravity is continuously moni-tored, are in operation. In addition an outside station has been built according to Austrian standards for reasons of comparison. Refraction profiles and borehole seismic was used to describe the subsurface conditions for H/V measurements and other scientific tasks. The underground observatory provides ex-cellent conditions to test seismometers under controlled conditions, and a newly developed calibration table assists in the determination of the generator constants of seismometers. Internet connection is available together with a re-distributed GPS-timing signal in the observatory. The NERIES Transnational Access activity TA-5 has attracted already project teams from Germany, Slovenia and The Netherlands to conduct specific instrument tests and comparisons between sensors. See also www.zamg.ac.at/conrad_observatory.

  17. Astronomical problems an introductory course in astronomy

    CERN Document Server

    Vorontsov-Vel'Yaminov, B A

    1969-01-01

    Astronomical Problems: An Introductory Course in Astronomy covers astronomical problems, together with a summary of the theory and the formula to be exercised. The book discusses the types of problems solved with the help of the celestial globe and how to solve astronomical problems. The text tackles problems on interpolation, the celestial sphere, systems of celestial coordinates, and culmination. Problems about the rising and setting of a heavenly body, precession, planetary movement, and parallax and aberration are also considered. The book presents problems about refraction, the apparent m

  18. The challenges and frustrations of a veteran astronomical optician: Robert Lundin, 1880-1962

    Science.gov (United States)

    Briggs, John W.; Osterbrock, Donald E.

    1998-12-01

    Robert Lundin, apprenticed in nineteenth century optical craftsmanship but employed in twenty century fabrication and engineering, suffered many frustrations during a nonetheless productive career. Son of Carl A.R. Lundin, a senior optician at the famous American firm of Alvan Clark & Sons, Robert grew up building telescopes. As a teenager, he assisted with projects including the 1-m [40-inch] objective for Yerkes Observatory. After his father's death in 1915, he became manager of the Clark Corporation and was responsible for many smaller, successful refractors and reflectors. Lundin also completed major projects, including a highly praised 50.8-cm achromat for Van Vleck Observatory, as well as a successful 33-cm astrograph used at Lowell to discover Pluto. In 1929, a dispute with the owners of the Clark Corporation led to Lundin's resignation and his creation of a new business, "C.A. Robert Lundin and Associates." This short-lived firm built several observatory refractors, including a 26.7 cm for E.W. Rice, the retired chairman of General Electric. But none was entirely successful, and the Great Depression finished off the company. In 1933, Lundin took a job as head of Warner & Swasey's new optical shop, only to experience his greatest disasters. The 2.08-m [82-inch] reflector for McDonald Observatory was delayed for years until astronomers uncovered an error in Lundin's procedure for testing the primary mirror. A 38.1-cm photographic lens for the Naval Observatory was a complete failure. Under pressure to complete a 61-cm Schmidt camera, Lundin seems to have attempted to deceive visiting astronomers. After retirement in the mid 1940s, Lundin moved to Austin, Texas, the home of his daughter, where he died. His difficulties should not obscure his success with many instruments that continue to serve as important research and education tools.

  19. The UK Virtual Observatory - Adding Planetary Data

    Science.gov (United States)

    Allan, Peter

    The UK has built a virtual observatory called AstroGrid. Using this facility, scientists can already get access to a wide range of data on traditional astronomy, the Sun and solar-terrestrial physics (STP). This paper describes the AstroGrid system and what would be involved in adding access to planetary data to those already on offer. In recent years, there have been activities in several countries to create what are known as virtual observatories. The idea is that you should be able to easily get to all of the astronomical data that exist from your desktop computer. You do not need to know that specific data exist and you do not need to know where these data reside. In order to make this possible, it is essential that data archives and software that accesses those archives is built around a set of internationally agreed standards. These standards have been developed by the International Virtual Observatory Alliance (IVOA). A data archive that adheres to these standards can publish data on the internet to registries of resources that client software can search. The AstroGrid software developed in the UK adheres to these standards and provides a comprehensive set of services for data archives to provide dataset access, registries of data holdings, virtual file stores, communities of users, workflow for execution of complex grid applications and an environment into which pre-existing data processing applications can be plugged. There is also client software for searching registries and remote data archives, accessing the remote data, and a basic set of tools for displaying and analysing those data. AstroGrid is unique amongst virtual observatories in that it includes major data sources on the Sun and solar-terrestrial physics as well as more traditional astronomy. The need to support these very different types of data has led to the development of tools that can handle very different coordinate systems and display data in a variety of ways. For example, we have a

  20. Radio Telescopes to Keep Sharp Eye on Mars Lander

    Science.gov (United States)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  1. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    Science.gov (United States)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  2. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we will develop and deliver the focal plane array (FPA) - a...

  3. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  4. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L

    2002-01-01

    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  5. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  6. The Solar Dynamics Observatory

    CERN Document Server

    Pesnell, William; Thompson, Barbara

    2012-01-01

    This volume is dedicated to the Solar Dynamics Observatory (SDO), which was launched 11 February 2010.  The articles focus on the spacecraft and its instruments: the Atmospheric Imaging Assembly (AIA), the Extreme Ultraviolet Variability Experiment (EVE), and the Helioseismic and Magnetic Imager (HMI). Articles within also describe calibration results and data processing pipelines that are critical to understanding the data and products, concluding with a description of the successful Education and Public Outreach activities.  This book is geared towards anyone interested in using the unprecedented data from SDO, whether for fundamental heliophysics research, space weather modeling and forecasting, or educational purposes. Previously published in Solar Physics journal, Vol. 275/1-2, 2012.

  7. The Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Bellerive, A., E-mail: alainb@physics.carleton.ca [Ottawa–Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Klein, J.R., E-mail: jrk@hep.upenn.edu [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); McDonald, A.B., E-mail: art@snolab.ca [Department of Physics, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Noble, A.J., E-mail: potato@snolab.ca [Department of Physics, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Poon, A.W.P., E-mail: awpoon@lbl.gov [Institute for Nuclear and Particle Astrophysics, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-07-15

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from {sup 8}B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  8. Hanohano: Hawaiian antineutrino observatory

    Science.gov (United States)

    Maricic, Jelena; Hanohano Collaboration

    2010-01-01

    Design studies are underway for the deep ocean antineutrino observatory Hanohano. The 10 kton monolitic underwater detector will be able to make precision measurement of neutrino mixing parameters (including θ13 and neutrino mass hierarchy) if stationed around 60 km offshore, from the nuclear reactor. Hanohano will be a mobile detector and placing it in a mid-Pacific location will provide the first ever flux measurement of geoneutrinos (antineutrinos emitted in the radioactive decay series of uranium and thorium), coming from the Earth's mantle and perform a sensitivity search for a hypothetical natural fission reactor in the Earth's core. Additional deployment at a different mid-ocean location will lead to tests of lateral heterogeneity of uranium and thorium in the Earth's mantle. These measurements would provide an important insight into deep-Earth geophysics, mantle composition and understanding of the Earth's heat flow and sources of energy inside the Earth.

  9. LCOGT network observatory operations

    Science.gov (United States)

    Pickles, Andrew; Hjelstrom, Annie; Boroson, Todd; Burleson, Ben; Conway, Patrick; De Vera, Jon; Elphick, Mark; Haworth, Brian; Rosing, Wayne; Saunders, Eric; Thomas, Doug; White, Gary; Willis, Mark; Walker, Zach

    2014-08-01

    We describe the operational capabilities of the Las Cumbres Observatory Global Telescope Network. We summarize our hardware and software for maintaining and monitoring network health. We focus on methodologies to utilize the automated system to monitor availability of sites, instruments and telescopes, to monitor performance, permit automatic recovery, and provide automatic error reporting. The same jTCS control system is used on telescopes of apertures 0.4m, 0.8m, 1m and 2m, and for multiple instruments on each. We describe our network operational model, including workloads, and illustrate our current tools, and operational performance indicators, including telemetry and metrics reporting from on-site reductions. The system was conceived and designed to establish effective, reliable autonomous operations, with automatic monitoring and recovery - minimizing human intervention while maintaining quality. We illustrate how far we have been able to achieve that.

  10. Interconnecting astronomical networks: evolving from single networks to meta-networks

    Science.gov (United States)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  11. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  12. Astronomical technology - the past and the future

    OpenAIRE

    Appenzeller, Immo

    2017-01-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be ...

  13. Recent Development in Astronomic Position Determinations.

    Science.gov (United States)

    1984-10-25

    community. The comparison of astronomic position determinations using the DanJon and the VUGTK astrolabes published by the German Geodetic Commission...these tests indicated that astrolabes were capable of precision and accuracy surpassing those obtainable with astronomic theodolites, even though some...the urgent need to replace the base instrument with a precise astrolable designed for.maximum optical efficiency with the CID eyepiece. An astrolabe

  14. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James

    2012-01-01

    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  15. Rolloff Roof Observatory Construction (Abstract)

    Science.gov (United States)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  16. Astronomical Alignments of the Sun Temple site in Mesa Verde National Park

    CERN Document Server

    Towers, Sherry

    2016-01-01

    Summer 2015 marked the 100th anniversary of the excavation by J.W. Fewkes of the Sun Temple in Mesa Verde National Park, Colorado; an ancient ceremonial complex of unknown purpose, prominently located atop a mesa, constructed by the Pueblo Indians approximately 1000 years ago. In this analysis we perform a digital survey of the site, and examine the possibility that four key tower-like elements of the complex were used for observation of the rise or set of celestial bodies known to be sacred to the Pueblo Indians. We find statistically significant evidence that the site was used for astronomical observation of the rise and/or set of nearly all such bodies. The Sun Temple appears to represent the most comprehensive prehistoric astronomical observatory yet uncovered.

  17. Education partnerships at 41,000 feet: The stratospheric Observatory for Infrared Astronomy (SOFIA) education and outreach program

    Science.gov (United States)

    Devore, Edna

    The SOFIA Education and Public Outreach Program (E/PO) is under development as this unique astronomical observatory is being designed and constructed. SOFIA is an infrared astronomical observatory comprised of a 2.5-meter telescope mounted in a Boeing 747SP aircraft. By flying above the water vapor in Earth's atmosphere, SOFIA will observe the infrared universe, studying the birth place of stars, the formation of planets, and the ecology of galaxies. SOFIA is also the world's largest portable telescope, and will be used to observe events such as occultations that require the observatory be at a particular location on Earth. As an airborne observatory, SOFIA is accessible during research flights; SOFIA will carry on board a compliment of pilots, scientists and their graduate students, observatory staff, and visiting educators, members of the press, and other guests. Unique in the world of major observatories, SOFIA is being designed and constructed to accommodate guests during the research process. Educators (teachers, college faculty, planetarium and museum staff, and others) will have the opportunity to partner with scientists as a part of the E/PO program for SOFIA. Participants will be selected to offer broad participation. Training will be provided, and participants will be supported beyond the immediate research flight experience as a network of Airborne Astronomy Ambassadors (AAA) in their schools, science centers, and communities. Other EPO activities include partnerships between scientists and educators at universities and research laboratories, internships and fellowships (1-2 years in duration) at the observatory. Research missions begin in late 2004 with AAA participation expected in 2005. SOFIA will be operated for NASA by Universities Space Research Association (USRA) with the USRA-led team: University of California, L3 Communications, United Airlines, Astronomical Society of the Pacific and the SETI Institute. SOFIA is a joint US-German project funded

  18. Data Triage of Astronomical Transients: A Machine Learning Approach

    Science.gov (United States)

    Rebbapragada, U.

    This talk presents real-time machine learning systems for triage of big data streams generated by photometric and image-differencing pipelines. Our first system is a transient event detection system in development for the Palomar Transient Factory (PTF), a fully-automated synoptic sky survey that has demonstrated real-time discovery of optical transient events. The system is tasked with discriminating between real astronomical objects and bogus objects, which are usually artifacts of the image differencing pipeline. We performed a machine learning forensics investigation on PTF’s initial system that led to training data improvements that decreased both false positive and negative rates. The second machine learning system is a real-time classification engine of transients and variables in development for the Australian Square Kilometre Array Pathfinder (ASKAP), an upcoming wide-field radio survey with unprecedented ability to investigate the radio transient sky. The goal of our system is to classify light curves into known classes with as few observations as possible in order to trigger follow-up on costlier assets. We discuss the violation of standard machine learning assumptions incurred by this task, and propose the use of ensemble and hierarchical machine learning classifiers that make predictions most robustly.

  19. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  20. Safeguarding Old and New Journal Tables for the VO: Status for Extragalactic and Radio Data

    Directory of Open Access Journals (Sweden)

    Heinz Andernach

    2009-03-01

    Full Text Available Independent of established data centers, and partly for my own research, since 1989 I have been collecting the tabular data from over 2600 articles concerned with radio sources and extragalactic objects in general. Optical character recognition (OCR was used to recover tables from 740 papers. Tables from only 41 percent of the 2600 articles are available in the CDS or CATS catalog collections, and only slightly better coverage is estimated for the NED database. This fraction is not better for articles published electronically since 2001. Both object databases (NED, SIMBAD, LEDA as well as catalog browsers (VizieR, CATS need to be consulted to obtain the most complete information on astronomical objects. More human resources at the data centers and better collaboration between authors, referees, editors, publishers, and data centers are required to improve data coverage and accessibility. The current efforts within the Virtual Observatory (VO project, to provide retrieval and analysis tools for different types of published and archival data stored at various sites, should be balanced by an equal effort to recover and include large amounts of published data not currently available in this way.

  1. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    Since 2007 I have been a Team Leader for the Tzec Maun Foundation, a non-profit foundation dedicated to providing free, research grade, Internet telescopes to students, teachers and researchers around the world. The name Tzec Maun (pronounced “Teh-Zeck-Moan”) comes from Mayan culture. Tzec Maun was the jovial messenger, laughed at adversity. Based on the challenges students, researchers and professional astronomers face with finances, equipment, and telescope access, the jovial mascot seems to fit. Hundreds of hours performing astronomical outreach as a NASA/JPL Solar System Ambassador and Astronomical League Master of outreach taught me that the best way to inspirationally teach astronomy and space science (and most subjects) is actually being at the eyepiece. I’m NOT a fan of the traditional planetarium experience as a teaching tool because it inhibits inspiration and the learning experience to a 2-D mat on a faux horizon with artificial representations. Once, a student at my dark sky observatory excitedly commented that the night sky was like a 3-D planetarium. I have hosted several classes at my own personal dark sky observatory, but this resource is impractical for all but a few lucky students. Experience has taught me that the next best thing to being at the eyepiece is to control a remote telescope via the Internet. Tzec Maun’s arsenal of telescopes is all research capable, linked to the Internet and positioned for round-the-clock dark skies. The final conditions described above, mean that I can enter an 8:30am science class, log onto the Tzec Maun telescope Portal and turn over control of an Australian system (where it is night) to a student or teacher. Working as a group, the class can either begin their investigations. My Tzec Maun science team (TARP) is engaged in searching for potentially hazardous asteroids (PHAs). PHA work excites student and teacher alike. Teaching from telescopes can unleash powerful attention-getting tools that enable

  2. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  3. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  4. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    Science.gov (United States)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, and estimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  5. Space-quality data from balloon-borne telescopes: the High Altitude Lensing Observatory (HALO)

    OpenAIRE

    Rhodes, Jason; Dobke, Benjamin; Booth, Jeffrey; Massey, Richard; Liewer, Kurt; Smith, Roger; Amara, Adam; Aldrich, Jack; Berge, Joel; Bezawada, Naidu; Brugarolas, Paul; Clark, Paul; Dubbeldam, Cornelis M.; Ellis, Richard; Frenk, Carlos

    2012-01-01

    We present a method for attaining sub-arcsecond pointing stability during sub-orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at ~1–2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermo-mechanical stability to match the pointing stability. This concept is motivated by a...

  6. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    Science.gov (United States)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, andestimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  7. The observatories and instruments of Tycho Brahe

    Science.gov (United States)

    Wolfschmidt, Gudrun

    Tycho Brahe (1546-1601) was the most important observational astronomer until the invention of the telescope in 1608. By construction new instruments and devising new observing methods, Tycho succeeded in significantly increasing measurement accuracy: He increased the size of his instruments (e.g. a large wooden quadrant of diameter 5.4 m and a mural quadrant); he used metal and masonry rather than wood; he modified construction techniques to achieve greater stability; to provide shelter from the wind, his instruments were in subterranean nooks; his instruments were permanently and solidly mounted; for better angular readings, he developed new subdivisions and diopters (Tycho used transversals to obtain the greatest possible angular resolution readings. His instrumental sights (diopters) were specially designed to minimize errors); he carefully analysed all the errors (Tycho's aim was to reduce thethe uncertainty to less than one minute of arc); he used fundamental stars for the first time; he preferred measuring equatorial coordinates directly instead of using the zodiacal system, i.e. using the equatorial armillary sphere instead of the zodiacal armillary sphere; he tried a new measuring method with clocks and his mural quadrant (1582) for determining the right ascension; he took atmospheric refraction into account. Most of his high-accuracy instruments have been distroyed. Only two sextants, made by Jost Bürgi and Erasmus Habermel around 1600, still exist in the Narodny Technicky Muzeum (NTM) [National Technical Museum] in Prague. A model of the wooden quadrant is in the old observatory in Copenhagen, in the round tower. But we have good descriptions of the instruments (half circles of 2.3 m radius, quadrants up to 2 m radius including the mural quadrant, sextants up to 1.6 m, armillary spheres of 1.5 m radius and the great equatorial armillary sphere of 2.7 m, triquetrum and celestial globe of 1.5 m) in Tycho's book Astronomiae instauratae mechanica

  8. Astronomers Use Moon in Effort to Corral Elusive Cosmic Particles

    Science.gov (United States)

    2010-11-01

    Seeking to detect mysterious, ultra-high-energy neutrinos from distant regions of space, a team of astronomers used the Moon as part of an innovative telescope system for the search. Their work gave new insight on the possible origin of the elusive subatomic particles and points the way to opening a new view of the Universe in the future. The team used special-purpose electronic equipment brought to the National Science Foundation's Very Large Array (VLA) radio telescope, and took advantage of new, more-sensitive radio receivers installed as part of the Expanded VLA (EVLA) project. Prior to their observations, they tested their system by flying a small, specialized transmitter over the VLA in a helium balloon. In 200 hours of observations, Ted Jaeger of the University of Iowa and the Naval Research Laboratory, and Robert Mutel and Kenneth Gayley of the University of Iowa did not detect any of the ultra-high-energy neutrinos they sought. This lack of detection placed a new limit on the amount of such particles arriving from space, and cast doubt on some theoretical models for how those neutrinos are produced. Neutrinos are fast-moving subatomic particles with no electrical charge that readily pass unimpeded through ordinary matter. Though plentiful in the Universe, they are notoriously difficult to detect. Experiments to detect neutrinos from the Sun and supernova explosions have used large volumes of material such as water or chlorine to capture the rare interactions of the particles with ordinary matter. The ultra-high-energy neutrinos the astronomers sought are postulated to be produced by the energetic, black-hole-powered cores of distant galaxies; massive stellar explosions; annihilation of dark matter; cosmic-ray particles interacting with photons of the Cosmic Microwave Background; tears in the fabric of space-time; and collisions of the ultra-high-energy neutrinos with lower-energy neutrinos left over from the Big Bang. Radio telescopes can't detect

  9. Automating sky object classification in astronomical survey images

    Science.gov (United States)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, Nicholas; Djorgovski, S. G.

    1992-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomer Observatory Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 10(exp 7) galaxies and 10(exp 8) stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. The size of this data set precludes manual analysis. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3* and O-BTree, two inductive learning techniques, learn classification decision trees from examples. These classifiers will be used to process the rest of the data. This paper gives an overview of the machine learning techniques used, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our approach is well-suited to the problem. The primary benefits of the approach are increased data reduction throughput and consistency of classification. The classification rules which are the product of the inductive learning techniques will form an object, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically cataloged

  10. Special Session 3 The Virtual Observatory in action: new science, new technology, and next generation facilities

    Science.gov (United States)

    Walton, Nicholas A.; Lawrence, Andrew; Williams, Roy

    2007-08-01

    The vision of the Virtual Observatory (VO) is to make access to astronomical databases as seamless and transparent as browsing the World Wide Web is today. It will federate the data flows from current and future facilities and large scale surveys, and the computational resources and new tools necessary to fully exploit them. This requires both technological developments and an international commitment to standardisation and working culture. Increasingly, it will alter the way that astronomers do science, and the way that future facilities and projects plan for their data management, and the scientific exploitation of their data. It will make an impact on a wide variety of astronomical topics, but especially those using very large databases, and those needing a multiwavelength approach, or more generally the use of multiple archives.

  11. A New Effort for Atmospherical Forecast: Meteorological Image Processing Software (MIPS) for Astronomical Observations

    Science.gov (United States)

    Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.

    2016-12-01

    We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.

  12. Report on Telemetry, Coding and Data Processing Systems for the Astronomical Orbiting Observatories Project

    Science.gov (United States)

    1960-01-01

    noise ratio. In order to write an expression for a frequency modulated signal, it is necessary to change the concept of frequency slightly. Normally...we write 1 for a cosine wave of frequency6) c, f (t) = cos&(t) = cos (W t +e o)C C 0 wherein &(t) is a linear time variant with constant derivative W...systems are used with pulse shaping circuits on the input; when this is done all the advatage of the strobing is lost since the "one" or "zero

  13. Ultraviolet photometry from the orbiting astronomical observatory. XXX - The Orion reflection nebulosity

    Science.gov (United States)

    Witt, A. N.; Lillie, C. F.

    1978-01-01

    Surface-brightness measurements are presented that cover the region of Orion in nine intermediate-width bandpasses ranging from 4250 to 1550 A. The existence of an extended ultraviolet reflection nebulosity in this area is confirmed, and the characteristics of its spectrum and spatial distribution are derived. The observations are consistent with a model in which the dense molecular cloud complex in Orion is illuminated by the foreground Orion aggregate of early-type stars. The interpretation is complicated by the fact that foreground dust may contribute to the observed scattered light. The scattering particles in the cloud appear to exhibit a wavelength-dependent albedo similar to that found for interstellar grains in general, with a strong indication that the phase function changes to a less forward-scattering form in the ultraviolet.

  14. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    Science.gov (United States)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  15. Under Connecticut Skies: Exploring 100 Years of Astronomy at Van Vleck Observatory in Middletown, Connecticut

    Science.gov (United States)

    Kilgard, Roy E.; Williams, Amrys; Erickson, Paul; Herbst, William; Redfield, Seth

    2017-01-01

    Under Connecticut Skies examines the history of astronomy at Van Vleck Observatory, located on the campus of Wesleyan University in Middletown, Connecticut. Since its dedication in June of 1916, Van Vleck has been an important site of astronomical research, teaching, and public outreach. Over a thousand visitors pass through the observatory each year, and regular public observing nights happen year-round in cooperation with the Astronomical Society of Greater Hartford. Our project explores the place-based nature of astronomical research, the scientific instruments, labor, and individuals that have connected places around the world in networks of observation, and the broader history of how observational astronomy has linked local people, amateur observers, professional astronomers, and the tools and objects that have facilitated their work under Connecticut’s skies over the past 100 years. Our research team has produced a historical exhibition to help commemorate the observatory’s centennial that opened to the public in May of 2016. Our work included collecting, documenting, and interpretting this history through objects, archival documents, oral histories, photographs, and more. The result is both a museum and a working history "laboratory" for use by student and professional researchers. In addition to the exhibit itself, we have engaged in new interpretive programs to help bring the history of astronomy to life. Future work will include digitization of documents and teaching slides, further collection of oral histories, and expanding the collection to the web for use by off-site researches.

  16. A Component Based Astronomical Visualization Tool for Instrument Control and Data Pipeline

    Science.gov (United States)

    Briegel, F.; Berwein, J.; Kittmann, F.

    2008-08-01

    For various instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,..) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionality for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt, the modern middleware Internet Communications Engine (ICE) from ZeroC and the template based SOA developer framework for astronomical instrumentation (NICE - see Abstract Juergen Berwein). The display tool is used on the Calar Alto Observatory (Spain) as a guider, for an wide field imager and guider at the Wise Observatory (Israel) and for LBTs interferometer Linc-Nirvana (USA).

  17. Interference testing methods of large astronomical mirrors base on lenses and CGH wavefront correctors

    Science.gov (United States)

    Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Patrikeev, Vladimir E.; Semenov, Alexandr P.

    2010-07-01

    Since last years and at present days LZOS, JSC has been producing a range of primary mirrors of astronomical telescopes with diameter more than 1m under contracts with foreign companies. Simultaneous testing of an aspherical surface figure by means of a lens corrector and CGH (computer generated hologram) corrector, testing of the corrector using the CGH allow challenging the task of definite testing of the mirrors surfaces figure. The results of successful figuring of the mirrors with diameter up to 4m like VISTA Project (Southern European Observatory), TNT (Thai National telescope, Australia - Thailand), LCO telescopes (Las Cumbres Observatory, USA; Russian national projects and meeting these mirrors specifications' requirements are all considered as the sufficient evidence.

  18. 16 years of airglow measurement with astronomical facilities

    Science.gov (United States)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a

  19. Snowstorm at the geomagnetic observatory

    Science.gov (United States)

    Čop, R.

    2015-08-01

    The Sinji Vrh Geomagnetic Observatory (hereinafter the Observatory) is situated on Gora above Ajdovščina, a highland karst plateau, in the southwestern part of Slovenia. The Observatory operates in exceptional geological and meteorological conditions due to its location. The very first measurements at the time of initial tests showed that weather fronts induce changes in the local magnetic field. The first measurements intended to determine the value of this influence were carried out at the end of summer 2011. In 2013 the first such measurements were carried out in January. This article presents the results of these measurements, showing how the snowstorm induced changes in Earth's magnetic field.

  20. A Virtual Field Trip to the Gemini Observatory

    Science.gov (United States)

    Fisher, R. Scott; Michaud, P. D.

    2010-01-01

    Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.