WorldWideScience

Sample records for radical damage induced

  1. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  2. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  3. Scavenging capacity of medicinal plants against free radical-induced cellular damage by radiation and photoactivation

    Energy Technology Data Exchange (ETDEWEB)

    Gadkar, Shalaka [Ruia College, Mumbai (India); Mohan, H [Chemistry Group, Bhabha Atomic Research Centre, Mumbai (India); Kamat, J P [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2004-01-01

    The scavenging capacity of medicinal plants. Andrographis paniculata (Ap) and Swertia chirata (Sc) was examined against cellular damage, induced by radiation and photo-activation in sub-cellular membranes. The results demonstrated significant radical scavenging capacity of the extracts. The rate constants as evaluated by deoxyribose degradation studies and the pulse radiolysis studies carried in presence of ABTS radical well supported the antioxidant properties of the extracts. (author)

  4. Kombucha Tea Ameliorates Trichloroethylene Induced Hepatic Damages in Rats via Inhibition of Oxidative Stress and Free Radicals Induction

    International Nuclear Information System (INIS)

    Gharib, O.A.; Gharib, M.A.

    2008-01-01

    Kombucha Tea (KT) is reported to exhibit a wide variety of biological effects, including antioxidant. Evidence shows the important role of oxidative stress in the hepatic damage. The aim of this study is to investigate the possible protective effects of oral administration of KT in rats with trichloroethylene (TCE)-induced damage for ten consecutive days. Hepatic damage was evaluated by measuring total free radicals levels, biochemical and histological examinations. Serum gamma glutamyl transferase (GGT) activity (the hepatic damage marker), total protein, albumin and globulin as well as malonaldehyde (MDA), glutathione (GSH) content, nitric oxide (NO) concentration were evaluated in liver tissue homogenates. Total free radicals concentration in blood was examined by electron spin resonance (ESR). Total protein, DNA concentration, cell number and cell size in liver tissues were also examined. The rats orally administrated with TCE for ten days indicates hepatic damage changes, an increase in blood total free radicals concentration was observed, serum GGT activity, liver MDA, NO levels, total protein and decreased GSH content, DNA concentration and cell number. This accompanied with an increase in cell size of liver tissues, whereas KT reversed these effects. Furthermore, KT inhibits the concentration of total free radicals in blood and decreasing the increment of MDA and NO concentration. Histological studies reveal partial healing in those rats treated by KT after oral administration with TCE. The present results suggest that KT ameliorates TCE induced hepatic damage in rats probably due to its content of glucuronic, acetic acid and B vitamins via inhibition of oxidative stress and total free radicals

  5. Modification by cystamine of radiation-induced free radical damages to biomolecules in tissues of mouse organs

    International Nuclear Information System (INIS)

    Svistunenko, D.A.; Gudtsova, K.V.

    1989-01-01

    The method of low-temperature ESR-spectroscopy was used to study a modifying effect of cystamine on the yield of radiation-induced free radicals in different biomolecules of liver and spleen tissues of mice. Intraperitoneal administration of cystamine (150 mg/kg) 15 min before isolation and freezing of the tissues was shown to reduce by 11 per cent the yield of radicals of H-adducts of thymine DNA bases, to decrease by 23 per cent the yield of radicals of triacyglycerol and phospholipid radiolysis, and to increase by 24 per cent the yield of radicals of lipid fatty acid residues in splenic tissues. According to the criterion used, cystamine has no modyfying action on the yield of free-radical damages to liver biomolecules

  6. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  7. The role of proteins in damage induced by free radicals

    International Nuclear Information System (INIS)

    Gebicki, J.M.

    1996-01-01

    The initial consequence of oxidative stress in living organisms is chemical modification of cell components. Recently increasing attention in this area has been paid to the modification of proteins. A form of protein modification which has been studied in some detail only recently is peroxidation. In the last 8 years, we and our collaborators have shown that a range of isolated proteins acquire hydroperoxide groups when exposed to a range of biologically plausible oxidants. These include HO free radicals generated by radiation or in the Fenton reaction, peroxyl radicals, oxidants released by activated neutrophils, and peroxynitrite. In more complex systems, we also found protein peroxides in the apo B component of LDL treated with 20 μM Cu ++ , and in irradiated blood serum. These observations suggest that the formation of protein peroxides is a possible consequence of oxidative stress in vivo. A remarkable feature of the process of protein peroxidation is its high efficiency. This is most easily measured with proteins oxidized by radiation-generated free radicals. It was found that, for some proteins, peroxide yields reached 40% of the numbers of HO radicals generated. Thus in effect, almost half of these radicals can be converted to the much more long-lived protein peroxide groups. If they, in turn, have the capacity to damage other molecules, the major oxidative pathway in vivo may have the sequence: free radical ? protein peroxide ? another oxidized molecule. This hypothesis was tested by studying the ability of protein peroxides to react with selected molecules and the results are briefly discussed. Clearly, these effects are specific to individual proteins. More generally, amino acid and protein peroxides were found to be a potential source of a range of free radicals when reduced by Fe ++ . If this turns out to be a common phenomenon, protein peroxides may prove to be a major source of oxidative damage

  8. The role of proteins in damage induced by free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gebicki, J.M. [Macquarie Univ., North Ryde, NSW (Australia). School of Biological Sciences

    1996-12-31

    The initial consequence of oxidative stress in living organisms is chemical modification of cell components. Recently increasing attention in this area has been paid to the modification of proteins. A form of protein modification which has been studied in some detail only recently is peroxidation. In the last 8 years, we and our collaborators have shown that a range of isolated proteins acquire hydroperoxide groups when exposed to a range of biologically plausible oxidants. These include HO free radicals generated by radiation or in the Fenton reaction, peroxyl radicals, oxidants released by activated neutrophils, and peroxynitrite. In more complex systems, we also found protein peroxides in the apo B component of LDL treated with 20 {mu}M Cu{sup ++}, and in irradiated blood serum. These observations suggest that the formation of protein peroxides is a possible consequence of oxidative stress in vivo. A remarkable feature of the process of protein peroxidation is its high efficiency. This is most easily measured with proteins oxidized by radiation-generated free radicals. It was found that, for some proteins, peroxide yields reached 40% of the numbers of HO radicals generated. Thus in effect, almost half of these radicals can be converted to the much more long-lived protein peroxide groups. If they, in turn, have the capacity to damage other molecules, the major oxidative pathway in vivo may have the sequence: free radical ? protein peroxide ? another oxidized molecule. This hypothesis was tested by studying the ability of protein peroxides to react with selected molecules and the results are briefly discussed. Clearly, these effects are specific to individual proteins. More generally, amino acid and protein peroxides were found to be a potential source of a range of free radicals when reduced by Fe{sup ++}. If this turns out to be a common phenomenon, protein peroxides may prove to be a major source of oxidative damage.

  9. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Hoshi, Akio; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Akatsuka, Akira; Usui, Yukio; Terachi, Toshiro

    2008-06-15

    Postoperative damage of the urethral rhabdosphincter (URS) and neurovascular bundle (NVB) is a major operative complication of radical prostatectomy. It is generally recognized to be caused by unavoidable surgical damage to the muscle-nerve-blood vessel units around the urethra. We attempted to treat this damage using skeletal muscle-derived stem cells, which are able to reconstitute muscle-nerve-blood vessel units. Cells were enzymatically extracted and sorted by flow cytometry as CD34/45 (Sk-34) and CD34/45 (Sk-DN) cells from green fluorescent protein transgenic mice and rats. URS-NVB damage was induced by manually removing one-third of the total URS and unilateral invasion of NVB in wild-type Sprague-Dawley and node rats. Freshly isolated Sk-34, Sk-34+Sk-DN cells, and cultured Sk-DN cells were directly transplanted into the damaged portion. At 4 and 12 weeks after transplantation, urethral pressure profile by electrical stimulation through the sacral surface (L6-S1) was evaluated as functional recovery. The recovery ratio in the control and transplanted groups was 37.6% and 72.9%, at 4 weeks, and 41.6% and 78.4% at 12 weeks, respectively (Pcells differentiated into numerous skeletal muscle fibers having neuromuscular junctions (innervation) and nerve bundle-related Schwann cells and perineurium, and blood vessel-related endothelial cells and pericyte around the urethra. Thus, we conclude that transplantation of skeletal muscle-derived multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of postoperative damage of URS and NVB after radical prostatectomy.

  10. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  11. Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.

    Science.gov (United States)

    Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping

    Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.

  12. Evaluation of free radical scavenging capacity and antioxidative damage effect of resveratrol-nanostructured lipid carriers

    Science.gov (United States)

    Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  13. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy

    Directory of Open Access Journals (Sweden)

    Ming-Shuo Sun

    2018-01-01

    Full Text Available Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.

  14. Radiation-induced DNA damage as a function of DNA hydration

    International Nuclear Information System (INIS)

    Swarts, S.G.; Miao, L.; Wheeler, K.T.; Sevilla, M.D.; Becker, D.

    1995-01-01

    Radiation-induced DNA damage is produced from the sum of the radicals generated by the direct ionization of the DNA (direct effect) and by the reactions of the DNA with free radicals formed in the surrounding environment (indirect effect). The indirect effect has been believed to be the predominant contributor to radiation-induced intracellular DNA damage, mainly as the result of reactions of bulk water radicals (e.g., OH·) with DNA. However, recent evidence suggests that DNA damage, derived from the irradiation of water molecules that are tightly bound in the hydration layer, may occur as the result of the transfer of electron-loss centers (e.g. holes) and electrons from these water molecules to the DNA. Since this mechanism for damaging DNA more closely parallels that of the direct effect, the irradiation of these tightly bound water molecules may contribute to a quasi-direct effect. These water molecules comprise a large fraction of the water surrounding intracellular DNA and could account for a significant proportion of intracellular radiation-induced DNA damage. Consequently, the authors have attempted to characterize this quasi-direct effect to determine: (1) the extent of the DNA hydration layer that is involved with this effect, and (2) what influence this effect has on the types and quantities of radiation-induced DNA damage

  15. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  16. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  17. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    International Nuclear Information System (INIS)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous

  18. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells

    DEFF Research Database (Denmark)

    Farombi, E.O.; Moller, P.; Dragsted, L.O.

    2004-01-01

    at concentrations between 30-90 mumol/L and decreased H2O2-induced DNA strand breaks and oxidized bases. Neither alpha-tocopherol nor curcumin decreased H2O2-induced DNA damage in this assay. In lymphocytes incubated with Fe3+ /GSH, Fe3+ was reduced to Fe2+ by GSH initiating a free radical generating reaction which...

  19. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    Science.gov (United States)

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  20. DNA damage induced by radiation plasmodial mixed + gamma thermal neutrons in the presence and absence of free radical scavenger

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Gouveia, Andreia; Deppman, Airton

    2010-01-01

    In this work is quantified the damage in DNA plasmid induced by mixed radiation (thermal neutron and gamma rays) for first time. For the study was used the pBs KS+ plasmid of 2961 bp in aqueous solution of the 88 ng/μL with 0, 2 and 20 mmol/L of glycerol which acts as a free radicals scavenger. This plasmid changes its form of supercoiled to circular when a simple strand break is produced, and passes to a linear form when a double strand break is produced in the chain. Quantifying the fractions that exist in each of these forms is possible to estimate the effect of radiation on DNA. The irradiations were carried out in the radial channel 3 at IEA-R1 research reactor of the Instituto de Pesquisas Energeticas y Nucleares in Sao Paulo, Brazil. DNA forms were separated by agarose gel electrophoresis. For quantification the program GelAnalis was used. The values of the fractions of DNA in various forms were plotted as a function of dose and fitted to exponential and linear functions to obtaining the probabilities of simple and double strand breaks normalized by dose and molecular mass. The results showed the protective action of free radical scavenger against damage induced for radiation which corroborates the previous results found with other ionizing radiations. Yields of SSB and DSB will be of interest for the validation of the different models that attempt to reproduce the experimental results

  1. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  2. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.

    Science.gov (United States)

    Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun

    2002-02-01

    Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues.

  3. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  4. Radiation-induced damage in T4 bacteriophage: the effect of superoxid radicals and molecular oxygen. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The sensitivity of T4 bacteriophage towards γ irradiation has been studied in phosphate buffer suspensions. The spectrum of the water radicals was controlled by a careful choice of the appropriate saturating gas and the addition of radical scavengers. Thus, it was possible to distinguish between the effects of molecular oxygen and the superoxide radicals formed through its reactions. About 90 percent of the damage was caused by the water radicals formed in the bulk suspensions. These probably affected the phage proteins; only the remainder of the damage involved the viral DNA. The oxygen enhancement ratio observed was not connected in any way with the formation of the superoxide radicals. The results confirmed that the OH radicals are the reactive species, while e - /sub aq/ as well as the superoxide radical do not contribute to the radiodamage

  5. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    Science.gov (United States)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  6. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    Science.gov (United States)

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  7. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  8. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  9. Leghemoglobin-derived radicals. Evidence for multiple protein-derived radicals and the initiation of peribacteroid membrane damage

    DEFF Research Database (Denmark)

    Moreau, S; Davies, Michael Jonathan; Mathieu, C

    1996-01-01

    , with the consequent generation of lipid-derived radicals. The formation of such radicals may result in the depletion of membrane antioxidants and the initiation of lipid peroxidation. This transfer of damage from the heme center via the protein surface to neighboring membranes may be of considerable biological......-derived phenoxyl radical present at Tyr-133 in the soybean protein and Tyr-138 in the lupin protein. To obtain further information on these protein radicals and their potential interaction with the physiologically important peribacteroid membrane (which surrounds the microsymbiont in vivo), EPR spin trapping......); these radicals may be side chain- or alpha-carbon-derived, their exact sites have not been determined. Some of these radicals are on the protein surface and may be key intermediates in the formation of protein dimers. These radicals have been shown to be capable of reacting with peribacteroid membrane fractions...

  10. Differential modification of oxic and anoxic radiation damage by chemicals. I. Simulation of the action of caffeine by certain inorganic radical scavengers

    International Nuclear Information System (INIS)

    Kesavan, P.C.; Sharma, G.J.; Afzal, S.M.J.

    1978-01-01

    Caffeine affords partial radioprotection against oxic damage, but potentiates anoxic damage in dry as well as presoaked barley seeds. Since our earlier studies have implicated a physicochemical pathway of action for such differential modification by caffeine, the effect of inorganic substances, known to scavenge specific categories of free radicals, on the oxic and anoxic components of radiation damage was investigated. It is found that the radiation-induced oxic damage is significantly reduced by potassium permanganate, potassium iodide, potassium nitrate, and potassium ferrocyanide which scavenge predominantly .H + e - /sub aq/, .OH, e - /sub aq/, and .OH radicals, respectively. Each of these four substances, like caffeine, also potentiates anoxic damage in dry seeds, but the anoxic damage in presoaked seeds is potentiated only by potassium ferrocyanide. These results do not confirm the view in the literature that the anoxic sensitization is largely mediated by .OH radicals. A discussion of these observations and the validity of comparing our seed data with those derived from experiments with bacterial spores and ''naked'' DNA solutions is presented

  11. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  12. Radioprotective effects of Asparagus racemosus extracts against free radical damage in rat liver mitochondria

    International Nuclear Information System (INIS)

    Boloor, K.K.; Kamat, J.P.; Devasagayam, T.P.A.; Venkatachalam, S.R.

    2000-01-01

    The possible antioxidant effect of the extracts of Asparagus racemosus against membrane damage induced by free radicals generated during γ-radiation was examined in rat liver/brain mitochondria. These extracts displayed significant antioxidant properties in mitochondria against oxidation of both lipids and proteins as assessed by lipid peroxidation, protein oxidation and depletion of thiols. The inhibitory effect of the extracts, rich in polysaccharides like galactose, was more than that of the established antioxidants glutathione and ascorbic acid. (author)

  13. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ohshima, Hideki; Matsuda, Akira; Kuwabara, Mikinori; Iida, Yoshiharu.

    1996-01-01

    Aqueous DNA solutions with or without the spin trap α-phenyl-N-tert-butylnitrone (PBN) were exposed to γ-rays at 77 K. After thawing the solutions, three experiments were carried out to confirm the generation of OH radicals in the hydration layer of DNA and to examine whether they act as an inducer of DNA strand breaks and base alterations. Observation with the EZR-spin tapping method showed ESR signals from PBN-OH adducts in the solution containing PBN and DNA, but there were few signals in the solution containing PBN alone, suggesting that reactive OH radicals were produced in the hydration layer of γ-irradiated DNA and were effectively scavenged by PBN, and that unreactive OH radicals were produced in the free water layer of γ-irradiated DNA. Agarose gel electrophoresis of DNA proved that PBN had no effect on the formation of strand breaks, whereas examination with the high-performance liquid chromatography-eloctrochemical detection (HPLC-ECD) method showed that PBN suppressed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). From these results it was concluded that OH radicals generated in the hydration layer of γ-irradiated DNA did not induce DNA strand breaks but induced base alterations. (author)

  14. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  15. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  16. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  17. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage.

    Science.gov (United States)

    Chen, Liming; Liu, Yinghui; Dong, Liangliang; Chu, Xiaoxia

    2015-03-01

    Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p edaravone offers protection from radiation-induced cytogenetic alterations.

  18. REC-2006—A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  19. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  20. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  1. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    International Nuclear Information System (INIS)

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. (author)

  2. Radiation-induced radical ions in calcium sulfite

    Science.gov (United States)

    Bogushevich, S. E.

    2006-07-01

    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  3. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    Science.gov (United States)

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  4. Protective effects against H2O2-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica).

    Science.gov (United States)

    Park, Pyo-Jam; Kim, Eun-Kyung; Lee, Seung-Jae; Park, Sun-Young; Kang, Dong-Soo; Jung, Bok-Mi; Kim, Kui-Shik; Je, Jae-Young; Ahn, Chang-Bum

    2009-02-01

    Enzymatic hydrolysates of Laminaria japonica were evaluated for antioxidative activities using hydroxyl radical scavenging activity and protective effects against H(2)O(2)-induced DNA and cell damage. In addition, activities of antioxidative enzymes, including catalase, glutathione peroxidase, and glutathione S-transferase, of the enzymatic hydrolysates from L. japonica were also estimated. L. japonica was first enzymatically hydrolyzed by seven carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, and Celluclast [all from Novo Co., Novozyme Nordisk, Bagsvaerd, Denmark]) and five proteinases (Flavourzyme, Neutrase, Protamex, Alcalase [all from Novo Co.], and pancreatic trypsin). The hydroxyl radical scavenging activities of Promozyme and pancreatic trypsin hydrolysates from L. japonica were the highest as compared to those of the other carbohydrases and proteinases, and their 50% inhibitory concentration values were 1.67 and 317.49 mug/mL, respectively. The pancreatic trypsin hydrolysates of L. japonica exerted a protective effect on H(2)O(2)-induced DNA damage. We also evaluated the protective effect on hydroxyl radical-induced oxidative damage in PC12 cells via propidium iodide staining using a flow cytometer. The AMG and pancreatic trypsin hydrolysates of L. japonica dose-dependently protected PC12 cells against cell death caused by hydroxyl radical-induced oxidative damage. Additionally, we analyzed the activity of antioxidative enzymes such as catalase, glutathione peroxidase, and the phase II biotransformation enzyme glutathione S-transferase in L. japonica-treated cells. The activity of all antioxidative enzymes was higher in L. japonica-treated cells compared with the nontreated cells. These results indicate that enzymatic hydrolysates of L. japonica possess antioxidative activity.

  5. Effect of Azadirachta indica leaves extract on acetic acid-induced colitis in rats:Role of antioxidants, free radicals and myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Ghatule RR

    2012-10-01

    Full Text Available Objective: To evaluate the healing effects of extract of dried leaves of Azadirachta indica (Neem on acetic acid-induced colitis in rats. Neem tree is known as ‘arishtha ’ in Sanskrit, meaning ‘reliever of sicknesses ’. Methods: 50% ethanolic extract of Azadirachta indica leaves was administered orally, once daily for 14 days in rats after the induction of colitis with acetic acid and 500 mg/kg dose of extract was found to have an optimal effect against acetic acid-induced colonic damage score, weight and adhesions (Macroscopic. Effect of Azadirachta indica extract was then further studied on various physical (mucous/blood in stool, food and water intake and body weight changes, colonic mucosal damage and inflammation (microscopic, antibacterial and biochemical parameters viz. i antioxidants (superoxide dismutase, catalase and reduced glutathione and ii free radicals (nitric oxide and lipid peroxidation and myeloperoxidase (acute inflammatory marker activities in acetic acid-induced colitis. Results: Azadirachta indica extract decreased colonic mucosal damage and inflammation (macroscopic and microscopic, mucous/bloody diarrhea, fecal frequency and increased body weight. Azadirachta indica extract showed intestinal antibacterial activity and enhanced the antioxidants but decreased free radicals and myeloperoxidase activities. Acute toxicity study indicated no mortality or other ANS or CNS related adverse effects even with 5.0 g/kg dose (10 times of effective dose indicating its safety. Conclusions: Azadirachta indica seemed to be safe and effective in colitis by its predominant effect on promoting antioxidant status and decreasing intestinal bacterial load, free radicals and myeloperoxidase responsible for tissue damage and delayed healing.

  6. The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore

    International Nuclear Information System (INIS)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1985-01-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia. (author)

  7. The research progress of several kinds of free radical scavengers

    International Nuclear Information System (INIS)

    Qian Liren; Huang Yuecheng; Cai Jianming

    2009-01-01

    Ionization radiation can generate free radicals in biological system, which could induce lipid peroxi-dation, biomacromolecule and biomembrane damage, lost of cell function, cell cycle disturbance, genetic mutation and so on. The scavenging free radicals can protect organism from radiation damage. Many radio-protective agents, such as amylase, hydroxyl-benzene derivatives, hormone, vitamin, have great abilities to protect organism from radiation via scavenging free radicals. In this paper, we mainly review the free radical scavenging effects of several kinds of radio-protective agents. (authors)

  8. Analysis of radicals induced in irradiated foods

    International Nuclear Information System (INIS)

    Kishida, Keigo; Kaimori, Yoshihiko; Kawamura, Shoei; Sakamoto, Yuhki; Nakamura, Hideo; Ukai, Mitsuko; Kikuchi, Masahiro; Shimoyama, Yuhei; Kobayashi, Yasuhiko

    2012-01-01

    By electron spin resonance (ESR) spectroscopy, we revealed free radicals in γ-ray irradiated foods; black pepper, green coffee bean and ginseng. We also analyzed the decay behavior of radiation induced free radicals during storage of irradiated foods. The ESR spectrum of experimental irradiated foods consists of a sextet signal centered at g=2.0 and a singlet signal at the same g-value position and a singlet signal at g=4.0. The singlet signal at g=2.0 is originated from organic free radicals and its peak intensity showed the dependence of γ-ray irradiation dose levels. The signal intensity was decreased during storage. Only after 3 hours of radiation treatment the peak intensity was decreased fast and after that the intensity was decreased slowly. The relaxation times, T 1 and T 2 , of radiation induced free radicals showed the variations before and after irradiation. During long time storage period it was shown that T 1 was increased and T 2 was decreased. By analysis of decay process using the simulation methods based on the theory of reaction speed, it is considered that at least two kinds of radicals were induced in irradiated foods during long time storage. (author)

  9. Free radicals in wood induced by γ-radiation

    International Nuclear Information System (INIS)

    Xu Honglin; Zhang Wenhui

    1994-01-01

    The free radicals in wood induced by γ-radiation were studied by electron spin resonance. The fine structure of the ESR signal from sawdust samples irradiated could be resolved into various radicals. These free radicals have a very long lifetime. The major spectrum for the free radicals will exponentially increased along with the radiation dose according to Y 1-Exp(-α a D). The intensity of radiation radicals is dependent on tree species. The stronger the intensity of mechanic free radicals is, the stronger the intensity of radiation free radicals

  10. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  11. Hypochlorite-induced damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1998-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved...... in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios...... and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being...

  12. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  13. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Dongqing Yuan

    Full Text Available Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p. treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs damage was evaluated by recording the pattern electroretinogram (ERG. RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, and the levels of reactive oxygen species (ROS were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  14. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  15. Gamma-sterilization-induced radicals in biodegradable drug delivery systems

    International Nuclear Information System (INIS)

    Maeder, K.; Swartz, H.M.; Domb, A.

    1996-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (1.2 and 9.25 GHz, 25 o C) was used to characterize free radicals in gamma-ray sterilized biodegradable polymers of the type which are in clinical use. Free radicals were detected in all irradiated polymer samples. The temperature of irradiation (25 o vs dry ice temperature) had only a minor influence on the yield of radicals and the shape of the EPR spectra. In contrast, the composition of the polymers and the drugs incorporated in them did strongly influence the amount of radiation-induced free radicals and their reactivity. In general, polymers with high melting points and crystallinity had the highest yields of radicals observable at room temperature. We were able to use the free radicals induced by the usual sterilization procedures to follow the penetration of water and the degradation of the polymers in vitro and in vivo. The ability of in vivo EPR to follow drug delivery noninvasively and continuously in vivo, using the free radicals induced in the usual sterilization process indicates that this approach could be applied immediately for the characterization of these drug delivery systems in experimental animals and in the near future should be able to be used in human subjects. (author)

  16. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  17. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  18. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress and DNA damage

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Saxena, S.; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. DNA damage was evaluated in acellular system using pBR322 plasmid relaxation. Grape extract was able to effectively scavenge free radicals in vitro. It could significantly prevent radiation-induced DNA damage. Furthermore, the protective action of grape depends on the source of extract and type of the cultivars. (author)

  19. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  20. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  1. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  2. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  3. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  4. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    International Nuclear Information System (INIS)

    Oikawa, Shinji; Kobayashi, Hatasu; Tada-Oikawa, Saeko; Isono, Yoshiaki; Kawanishi, Shosuke

    2009-01-01

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H 2 O 2 )-resistant clone HP100 cells, suggesting the involvement of H 2 O 2 . In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using 32 P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H 2 O 2 with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis

  5. Free radicals induced archive paper by irradiation

    International Nuclear Information System (INIS)

    Cutrubinis, M.; Moise, I.V.; Negut, C.D.; Georgescu, R.; Suvaila, R.; Virgolici, M.; Manea, M.M.

    2011-01-01

    Complete text of publication follows. Irradiation of archive paper (document archives of institutions, companies etc. and library or museum collections of books and documents) can solve the problems related to the bio-deterioration and bio-contamination of paper and sometimes save valuable cultural heritage paper items. For valuable paper items care should be taken to the degradation induced instantly by the ionising radiation to the cellulosic support and also to the long term post-irradiation effects. The free radicals formed due to the irradiation treatment could contribute to instant degradation of paper. Part of them are also trapped for months and years after irradiation and they could be related to the post-irradiation effects in paper items. In this study, different sorts of cellulosic support samples (soft wood and hard wood cellulose, contemporary paper, paper from archives and from collections etc.) have been irradiated with dosis up to 100 kGy and the radiation induced free radicals have been measured by ESR spectrometry. The ESR signals have shown the type and quantity of radiation induced free radicals. Their study can be used for a realistic estimation of the degradative effect of the ionising radiation treatment of archive paper.

  6. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  7. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Waker, A.J.; Prestwich, W.V.

    1998-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in a cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3 x 10 9 dm 3 mol -1 s -1 . Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (orig.)

  8. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Hamm, R.N.; Waker, A.J.; Prestwich, W.V.

    1988-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3x10 9 dm 3 mol -1 s-1. Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (author)

  9. Protection of ionizing radiation-induced cytogenetic damage by hydroalcoholic extract of Cynodon dactylon in Chinese hamster lung fibroblast cells and human peripheral blood lymphocytes.

    Science.gov (United States)

    Rao, Bola Sadashiva Satish; Upadhya, Dinesh; Adiga, Satish Kumar

    2008-01-01

    The radiomodulatory potential of hydroalcoholic extract of a medicinal plant Cynodon dactylon (family: Poaceae) against radiation-induced cytogenetic damage was analyzed using Chinese hamster lung fibroblast (V79) cells and human peripheral blood lymphocytes (HPBLs) growing in vitro. Induction of micronuclei was used as an index of cytogenetic damage, evaluated in cytokinesis blocked binucleate cells. The hydroalcoholic Cynodon dactylon extract (CDE) rendered protection against the radiation-induced DNA damage, as evidenced by the significant (p<0.001) reduction in micronucleated binucleate cells (MNBNC%) after various doses of CDE treatment in V79 cells and HPBLs. The optimum dose of CDE (40 and 50 microg/ml in HPBLs and V79 cells, respectively) with the greatest reduction in micronuclei was further used in combination with various doses of gamma radiation (0.5, 1, 2, 3, and 4 Gy) exposed 1 h after CDE treatment. A linear dose-dependent MNBNC% increase in radiation alone group was observed, while 40/50 microg/ml CDE significantly resulted in the reduction of MNBNC%, compared to the respective radiation alone groups. CDE resulted in a dose-dependent increase in free radical scavenging ability against various free radicals, viz., 2, 2-diphenyl-2-picryl-hydrazyl (DPPH); 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); superoxide anion (O2*-); hydroxyl radical (OH*) and nitric oxide radical (NO*) generated in vitro. Also, an excellent (70%) inhibition of lipid peroxidation in vitro was observed at a dose of 300 microg/ml CDE, attaining the saturation point at higher doses. The present findings demonstrated the radioprotective effect of CDE, also rendering protection against radiation-induced genomic instability and DNA damage. The observed radioprotective effect may be partly attributed to the free radical scavenging and antilipid peroxidative potential of CDE.

  10. Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, Clare Louise; Rees, Martin D; Davies, Michael Jonathan

    2002-01-01

    Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), ......Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC...

  11. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    Science.gov (United States)

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  12. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    Science.gov (United States)

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. EPR study of N+-ion-induced free radical formation in antibiotic-producers

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Gao Juncheng; Zhang Peiling; Ying Hengfeng.

    1995-01-01

    Under the room temperature, electron paramagnetic resonance (EPR) spectrometer was used to study free radical formation in antibiotic-producers in order to investigate antibiotic-producer mutagenic breeding, which were induced by N + ion implanting into antibiotic-producers (e.g., Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus). The results show that a lot of free radicals can be induced by N + ion implanting into antibiotic-producers, and the yields of the free radicals increase with implanting dose. The death rate of antibiotic-producers rises due to the increase of N + -ion-induced free radical yields. (author)

  14. EPR spectral investigation of radiation-induced radicals of gallic acid.

    Science.gov (United States)

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  15. Gastroprotective, cytoprotective and antioxidant effects of Oleum cinnamomi on ethanol induced damage

    OpenAIRE

    Ozbayer, Cansu; Kurt, Hulyam; Ozdemir, Zeynep; Tuncel, Tunc; Moheb Saadat, Selva; Burukoglu, Dilek; Senturk, Hakan; Degirmenci, Irfan; Gunes, Hasan Veysi

    2013-01-01

    Peptic ulcer disease is a gastrointestinal disorder defined by mucosal damage and free oxygen radicals associated with peptic ulcer and gastritis. Cinnamon is a traditional herb used for many diseases and it has also effects as an antioxidant, anti-inflammatory, antispasmodic and anti-ulcerative. Our research is based on oxidative stress and effects of Oleum cinnamomi on stomach, liver and kidney disorders induced by ethanol. In our experiment, 2–3 month old male Sprague–Dawley rats were used...

  16. Hydroxyl-radical induced dechlorination of pentachlorophenol in water

    International Nuclear Information System (INIS)

    He Yongke; Wu Jilan; Fang Xingwang; Sonntag, C. von

    1998-01-01

    The hydroxyl-radical induced dechlorination of pentachlorophenol (PCP) in water has been investigated pulse radiolytically. Hydroxyl radicals react with PCP by both electron transfer and addition. The former process results in pentachlorophenoxyl radicals (PCP-O), the latter process followed by rapid HCl elimination gives birth to deprotonated hydroxytetrachlorophenoxyl radicals ( - O-TCP-O). These phenoxyl radicals exhibit maximum absorption around 452 nm, which hinders the proper estimation of the ratio of the two processes. However, these two processes cause different changes in conductivity. In basic solution, the electron transfer causes a conductivity increase due to the formation of OH - whereas an addition followed by HCl elimination results in a conductivity decrease. The concurrence of these two processes reduces the relative variation in conductivity, from which about 53% electron transfer is deduced

  17. Radical-induced oxidation of RAFT agents : a kinetic study

    NARCIS (Netherlands)

    Li, Changxi; He, Junpo; Zhou, Yanwu; Gu, Yuankai; Yang, Yuliang

    2011-01-01

    Radical-induced oxidn. of reversible addn.-fragmentation chain transfer (RAFT) agents is studied with respect to the effect of mol. structure on oxidn. rate. The radicals are generated by homolysis of either azobisisobutyronitrile or alkoxyamine and transformed in situ immediately into peroxy

  18. Analysis of radicals induced in irradiated cereal flour using ESR

    International Nuclear Information System (INIS)

    Kawamura, Shoei; Kishita, Keigo; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2013-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed radicals induced in cereal flour irradiated with gamma-ray or electron beam. Sample was wheat and rice. We detected a broad singlet signal at g = 2.0. It consists of a singlet signal and a triplet signal. It suggested that the singlet signal is originated from organic free radicals and the triplet signal is from 14 N. There were no differences of ESR spectra between irradiated wheat flour and rice flour. The signal intensity of radiation induced radical was tend to increase following with the increase of radiation dose level. After radiation treatment, relaxation time of radiation induced radical was changed during storage. T 1 was decreased and T 2 was increased. In this study, the relaxation time is calculated using the parameters obtained from the ESR signal. It is necessary to analyze the relaxation time directly with pulsed ESR spectroscopy in future. (author)

  19. Gastric injury induced by hemorrhage, local ischemia, and oxygen radical generation

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Perry, M.A.

    1987-01-01

    Gastric mucosal injury caused by local intra-arterial generation of oxygen-derived free radicals was compared with gastric injury caused by 30 min of hemorrhage-induced ischemia or local ischemia. The index of injury was the loss of 51 Cr-labeled red cells across the gastric mucosa. Generation of oxygen radicals in the celiac artery caused a rapid increase in mucosal blood loss during the period of radical generation, and this loss was maintained after radical production ceased. Local ischemia produced similar mucosal injury; however, this occurred after reperfusion of the stomach and not during the ischemic episode. Hemorrhage-induced ischemia produced a threefold greater mucosal blood loss than local ischemia. The results of this study indicate that (1) oxygen radicals generated enzymatically in the blood supply to the stomach cause mucosal bleeding of similar magnitude to that observed after local ischemia and (2) that gastric ischemia induced by systemic hypotension produces more severe gastric injury than the same level of local hypotension

  20. Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH anion radical production

    International Nuclear Information System (INIS)

    Allan, I.M.; Vaughan, A.T.M.; Milner, A.E.; Lunec, J.; Bacon, P.A.

    1988-01-01

    Normal human lymphocytes were exposed to OH anion radicals produced indirectly by exposure to H 2 O 2 or directly by gamma irradiation. Using a flow cytometry technique to measure changes in nucleoid size, it was found that generation of OH anion in each system produced a characteristic relaxation in nuclear supercoiling. Exposure of cells to H 2 O 2 produced a metal-dependent step-wise relaxation in extracted nucleoids, while gamma irradiation induced a gradual dose-dependent increase in nucleoid size. The site-specific metal-dependent changes produced in lymphocytes incubated in H 2 O 2 should also occur in gamma irradiated cells, but the characteristic effects on nuclear supercoiling would not be detected within the background of random DNA damage. The importance of metals in maintaining the supercoiled loop configuration of DNA within the protein matrix suggests that free radical damage at metal locations may be particularly toxic for the cell. (author)

  1. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    Science.gov (United States)

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  2. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    International Nuclear Information System (INIS)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-01-01

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75±1.55 μm versus after supplementation: 70.25±1.31 μm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels

  3. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  4. Radioprotective effect of methanolic root extract of Loeseneriella arnottiana on radiation induced DNA damage in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Prajna, P.S.

    2012-01-01

    Intense exposure to ionization radiation by accidental, occupational or therapeutical purpose causes cellular damage mainly by formation of excessive reactive oxygen species (ROS) or by free radicals. Humans are intentionally exposed to ionising radiation for diagnostic or therapeutic purposes. The use of ionising radiation in cancer therapy may lead to transient and/or permanent injury to normal tissues within the treatment field. To increase the therapeutic index of radiation therapy, various modes of radioprotection have been developed that selectively reduce cytotoxic effects to normal tissues. Because radiation-induced cellular damage is attributed primarily to the harmful effects of free radicals, molecules with radical scavenging properties are particularly promising as radioprotectors. Loeseneriella arnottiana, a member of family Hippocrateaceae, is a climbing shrub used by traditional medicine practitioners. To study the antioxidant activity and radioprotective effect of methanolic root extract of Loeseneriella arnottiana against electron beam radiation induced DNA damage in human lymphocytes. Loeseneriella arnottiana roots were dried and extracted using methanol by solvent extraction method. Antioxidant activity was measured by DPPH method. DNA damage was assessed by comet assay parameters. The lymphocytes were incubated for one hour with two different concentrations 10 μg and 50 μg of root extract before exposure to 2 Gy electron beam radiation. 30 μg of methanolic root extract of Loeseneriella arnottiana exhibited 96% radical scavenging activity comparable to 15 μg of ascorbic acid. In reducing power assay it showed dose dependent increase in absorbance indicating that extract is capable of donating hydrogen atoms. Pretreatment of lymphocytes with 10 μg and 50 μg of root extract before irradiation resulted in reduction in the Comet length, Olive tail moment, percentage of DNA in tail when compared to the radiation control group. Results of this

  5. Binding of radiation-induced phenylalanine radicals to DNA

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  6. Production of gamma induced reactive oxygen species and damage of DNA molecule in HaCaT cells under euoxic and hypoxic condition

    International Nuclear Information System (INIS)

    Joseph, P.; Bhat, N.N.; Copplestone, D.; Narayana, Y.

    2014-01-01

    The paper deals with the study of gamma radiation induced reactive oxygen species (ROS) generation in normal human keratinocytes (HaCaT) cells and quantification of subsequent damages induced on DNA molecules. The DNA damages induced in cells after gamma irradiation has been analyzed using Alkaline comet assay. The ROS produced in the cells were quantified by measuring fluorescence after loading the cells with 2', 7' dichlorofluorescin diacetate, a dye that is oxidized into a highly fluorescent form in the presence of peroxides. Studies reveal that in HaCaT cells radical generation occurs when exposed to ionizing radiation and it increases with dose. The induced DNA damages also increases with dose and ROS generation. The study clearly shows the importance of ROS in DNA damage induction and the cells possessing elevated levels of DNA damage after radiation exposure is due to the effect of increased levels of intracellular ROS. (author)

  7. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  8. Photoprotection of Buddleja cordata extract against UVB-induced skin damage in SKH-1 hairless mice.

    Science.gov (United States)

    Avila Acevedo, José Guillermo; Espinosa González, Adriana Montserrat; De Maria y Campos, Diana Matamoros; Benitez Flores, José del Carmen; Hernández Delgado, Tzasna; Flores Maya, Saul; Campos Contreras, Jorge; Muñoz López, José Luis; García Bores, Ana María

    2014-08-03

    In recent years, there has been considerable interest in using botanical agents to prevent skin damage resulting from solar UV-irradiation. Buddleja cordata is a plant that is known as "tepozan". Some people in Mexico use the leaves of this plant to treat tumours, abscesses, sores and burns. The purpose of this study is to investigate the photoprotective properties of Buddleja cordata methanolic extract (BCME) against UVB-induced skin damage in SKH-1 hairless mice at the macroscopic and histological levels. BCME was characterised to determine its spectroscopic, chromatographic and antioxidant (DPPH, superoxide and hydroxyl radicals) properties. To conduct the photoprotection studies, BCME was applied topically to the skin of SKH-1 mice before acute exposure to UVB for 10 minutes. The murine skin samples were used for macroscopic and histological studies to assess tissue damage. Penetration of active components of BCME into stratum corneum on the dorsal area of mice was investigated in vivo by the tape stripping method. Moreover, genotoxicity of BCME was evaluated in a Vicia faba cell root micronucleus model. BCME displayed absorbance over the entire UVB spectrum, and its principal components included verbascoside and linarin. BCME exhibited antioxidant activity and significantly scavenged hydroxyl radicals. BCME reduced erythema, sunburn cell production, vessel congestion and epidermal thickening of UVB irradiated mouse skin. BCME penetrate the skin of mice. BCME did not exhibit genotoxic activity in the micronucleus test. The topical administration of BCME protected against acute UVB-induced damage in mouse SKH-1 skin, and our results suggest that BCME may potentially prevent photodamage.

  9. EPR spectral investigation of radiation-induced radicals of gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, Hasan [Balikesir University, Department of Physics, Faculty of Art and Science, Balikesir (Turkey)

    2017-11-15

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH){sub 2}C{sub 6}H{sub 2}COOH radicals for both compounds. (orig.)

  10. EPR spectral investigation of radiation-induced radicals of gallic acid

    International Nuclear Information System (INIS)

    Tuner, Hasan

    2017-01-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden ''spin-flip'' transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, O(OH) 2 C 6 H 2 COOH radicals for both compounds. (orig.)

  11. Edaravone, a free radical scavenger, protects liver against valproic acid induced toxicity

    Directory of Open Access Journals (Sweden)

    Cakmak Neziha Hacihasanoglu

    2015-01-01

    Full Text Available Valproic acid (VPA, is a well established anticonvulsant drug that has been increasingly used in the treatment of many forms of generalized epilepsy. Edaravone (EDA; 3-methyl-1-phenyl-2-pyrazoline-5-one is a potent free radical scavenger. In this study, we aimed to investigate the effects of EDA on VPA-induced hepatic damage. Male Sprague Dawley rats were divided into four groups. Group I was control animals. Group II was control rats given valproic acid (500 mg kg-1 day for seven days. Group III was given only EDA (30 mg kg-1day for seven days. Group IV was given VPA+EDA (in same dose and time. EDA and VPA were given intraperitoneally. On the 8th day of experiment, blood samples and liver tissue were taken. Serum aspartate and alanine aminotransferase, alkaline phosphatase and bilirubin levels, liver myeloperoxidase, xanthine oxidase, adenosine deaminase, Na+/K+ATPase, sorbitol dehydrogenase, glutamate dehydrogenase, DT-diaphorase, arginase and thromboplastic activities, lipid peroxidation, protein carbonyl levels were increased whereas paraoxonase, biotinidase activities and glutathione levels were decreased in VPA group. Application of EDA with VPA protected against VPA-induced effects. These results demonstrated that administration of EDA is a potentially beneficial agent to reduce hepatic damage in VPA induced hepatotoxicity, probably by decreasing oxidative stress.

  12. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  13. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  14. Edaravone, a Free Radical Scavenger, Mitigates Both Gray and White Matter Damages after Global Cerebral Ischemia in Rats

    Science.gov (United States)

    Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh

    2012-01-01

    Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the β amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562

  15. Protection from ionizing radiation induced damages by phytoceuticals and nutraceuticals

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2012-01-01

    Exposure of living systems to ionizing radiation cause a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. The radiation induced lesions in the cellular DNA are mainly strand breaks, damage to sugar moiety, alterations and elimination of bases, cross links of the intra and inter strand type and cross links to proteins while peroxidation of the lipids and oxidation of proteins constitute the major lesions in the membranes. The radioprotectors elicit their action by various mechanisms such as i) by suppressing the formation of reactive species, ii) detoxification of radiation induced species, iii) target stabilization and iv) enhancing the repair and recovery processes. The radioprotective compounds are of importance in medical, industrial, environmental, military and space science applications. Radiation protection might offer a tactical advantage on the battlefield in the event of a nuclear warfare. Radioprotectors might reduce the cancer risk to populations exposed to radiations directly or indirectly through industrial and military applications. The antioxidant and radioprotective properties a few of these agents under in vitro and in vivo conditions in animal models will be discussed

  16. Mitigation of waterlogging-induced damages to pepper by exogenous meja

    International Nuclear Information System (INIS)

    Jun, O.; Bin, L.; Zhi, Y.B.

    2017-01-01

    In this study, we studied the mitigation effects of exogenous Methyl jasmonate (MeJA) on waterlogging-induced damages to Xinyou No.5 wrinkled skin pepper cultivar by spraying MeJA on leave's surface at different waterlogging periods and investigated its underlying mechanisms. The results showed that administration of MeJA increased antioxidant enzymes' activities, proline and soluble sugar contents and alcohol dehydrogenase (ADH) activity, reduced relative conductivity, malondialdehyde (MDA) and hydroxyl free radical (.OH) accumulation, lactate dehydrogenase (LDH) activity and lactic acid and acetaldehyde accumulation, and maintained high root malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) activities and certain aerobic respiratory metabolism. The study also found that there were significant differences among exogenous MeJA treatments at different waterlogging periods. Peppers treated with exogenous MeJA 1 day and 2 days prior to waterlogging had optimal agronomic traits, higher chlorophyll content, enzymatic activities and osmolytic substances, as well as lower relative conductivity, MDA and ·OH accumulation. Overall, the results suggest that MeJA mitigates waterlogging-induced damages to pepper by adjusting osmolytic substances contents, antioxidant enzymatic activities and root respiration and metabolism and achieves better alleviation effects by spraying prior to waterlogging. (author)

  17. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  18. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    International Nuclear Information System (INIS)

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F.; Jha, Awadhesh N.

    2008-01-01

    TiO 2 nanoparticles ( 2 nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO 2 alone (0.1-1000 μg ml -1 ) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m -2 ) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO 2 and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 μg ml -1 in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO 2 . UVA irradiation of TiO 2 -treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO 2 were most likely due to hydroxyl radical (·OH) formation

  19. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    Science.gov (United States)

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  20. Amelioration of radiation induced DNA damage and biochemical alterations by Punica Granatum (L) extracts and synthetic ellagic acid in Swiss albino mice

    International Nuclear Information System (INIS)

    Satheesh Kumar Bhandary, B.; Sharmila, K.P.; Suchetha Kumari, N.; Vadisha Bhat, S.; Sherly, Sharmila; Sanjeev, Ganesh

    2013-01-01

    Radiation therapy has been used in cancer treatment for many decades; Although effective in killing tumor cells, ROS produced in radiotherapy threaten the integrity and survival of surrounding normal cells. ROS are scavenged by radioprotectors before they can interact with biochemical molecules, thus reducing harmful effects of radiation. The pomegranate, Punica granatum L., an ancient, mystical, and highly distinctive fruit, is the predominant member of the Punicaceae family. It is used in several systems of medicine for a variety of ailments. The objective of the present study was to investigate the protective effects of ethanolic extracts of pomegranate whole fruit (EPWF) and seeds (EPS) and Synthetic Ellagic acid (EA) against Electron Beam Radiation (EBR) induced DNA damage and biochemical alterations in Swiss Albino mice. The extracts and synthetic compound were assessed for its radical scavenging property by DPPH radical scavenging and Ferric Reducing Antioxidant Power assays. The animals were treated with 200 mg/kg body wt. of pomegranate extracts and Ellagic acid for 15 days before exposure to 6 Gy of EBR. Radiation induced DNA damage was assessed by comet assay in the peripheral blood lymphocytes of mice. The biochemical estimations were carried out in the serum and RBC lysate of the animals. The plant extracts and synthetic compound exhibited good radical scavenging and reducing properties.The pretreated animals before irradiation caused a reduction in the comet length, olive tail moment, % DNA in tail when compared to irradiated group. The biochemical parameters such as lipid peroxidation was significantly depleted in the treated groups when compared to irradiated group followed by significant elevation in reduced glutathione. Our findings indicate the ameliorating effects of pomegranate extracts and synthetic ellagic acid on radiation induced DNA damage and biochemical changes in mice may be due to its free radical scavenging and increased antioxidant

  1. The Possible Protective Role of Curcumin against Radiation Induced Cytogenetic Damages in Mice

    International Nuclear Information System (INIS)

    Hassan, M.R.M.

    2014-01-01

    This study was undertaken to investigate the effect of curcumin on radiation induced damages in albino male mice. Animals were injected intraperitoneally with 20 mg/kg body weight curcumin 30 minutes prior to whole body gamma-irradiation (4Gy). Animals were sacrificed after 1, 3 and 7 days of the irradiation. The possible radioprotective effect of curcumin on bone marrow chromosomes, DNA fragmentation, superoxide dismutase (SOD) activity, reduced glutathione (GSH) content, malondialdehyde (MDA) level, total free radicals in spleen, and peripheral blood differential count was examined at the different time intervals of the experiment. Radiation exposure resulted in a statistically significant elevation in the percentage of the aberrant metaphases, total amount of chromosomal damage, percentage of the DNA fragmentation, (MDA) level, decline in the activities of (SOD) and (GSH) contents, at 1, 3 and 7 days post-irradiation, elevation in the total free radicals one day post-irradiation and percentage of the total number of normal and abnormal white blood cells after 1, 3 days of irradiation specially the abnormal lymphocytes and neutrophils. Curcumin showed a clastogenic effect that it caused elevation of the total number of aberrant cells, structural and numerical aberrant cells after 1 and 3 days of the experiment. Moreover, curcumin caused a decline in the liver (GSH) content after 1, 3 and 7 days of the experiment. On the other hand, intraperitoneal injection of curcumin before irradiation didn‘t show any protective effect on the total aberrant cells and structural aberrant cells induced by irradiation, liver (GSH) content and the percentage of the DNA fragmentation, liver (MDA) level and number of abnormal leukocytes. In contrast, it showed potentiating effect on the numerical type aberrations especially endomitosis after one day post-irradiation. In addition, elevation in the percentage of the total free radicals induced by curcumin 3 and 7 days post

  2. Radical scavenging potential and DNA damage protection of wild edible mushrooms of Kashmir Himalaya

    Directory of Open Access Journals (Sweden)

    Nowsheen Shameem

    2017-10-01

    Full Text Available The edible mushrooms Verpa bohemica and Morchella esculenta are locally used for dietary and antioxidant in tribal areas of Kashmir Himalaya. In the present study, sequences of solvents on the basis of their polarity were used for the extraction from selected mushrooms. The comprehensive antioxidant activity of all edible mushroom extracts was evaluated by seven different methods. V. bohemica exhibited significant inhibitory activity of radicals among all the mushrooms while Morchella extracts protected the DNA damage from OH· radicals. This study provides us the substantiation for the use of these mushrooms as antioxidants besides being already eaten as food.

  3. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  4. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  5. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  6. Melatonin and Structurally-Related Compounds Protect Synaptosomal Membranes from Free Radical Damage

    Directory of Open Access Journals (Sweden)

    María A. Sáenz

    2010-01-01

    Full Text Available Since biological membranes are composed of lipids and proteins we tested the in vitro antioxidant properties of several indoleamines from the tryptophan metabolic pathway in the pineal gland against oxidative damage to lipids and proteins of synaptosomes isolated from the rat brain. Free radicals were generated by incubation with 0.1 mM FeCl3, and 0.1 mM ascorbic acid. Levels of malondialdehyde (MDA plus 4-hydroxyalkenal (4-HDA, and carbonyl content in the proteins were measured as indices of oxidative damage to lipids and proteins, respectively. Pinoline was the most powerful antioxidant evaluated, with melatonin, N-acetylserotonin, 5-hydroxytryptophan, 5-methoxytryptamine, 5-methoxytryptophol, and tryptoline also acting as antioxidants.

  7. Effects of the peculiar compositions in tea plant on free radicals induced by radiation

    International Nuclear Information System (INIS)

    Yang Yuehua; Lin Shuqi; Sun Tao; Cheng Qikun

    1994-01-01

    Effects of the peculiar compositions in tea plant on free radicals induced by radiation was investigated. Results showed that the contents of free radicals in aborescence large-leaf varieties were more than that in shrubby middle-small leaf varieties under the same irradiation dose. Dose-effect curve for free radical contents in tea varieties could be described with an exponential equation. The contents of free radical and the radiosensitivities were related to the contents of catechin, tea polyphenols, flavone glycoside and caffeine. The main factor that affected free radical content in tea plant was catechin. Results also showed that there was a quantitative effect between (-)-EGCG and free radical: (-)-EGCG could induce the increase of free radical contents in tea at low concentration but scavenge free radicals at high concentration

  8. A novel process for ultrasound-induced radical polymerization in CO2-expanded fluids

    NARCIS (Netherlands)

    Kemmere, M.F.; Kuijpers, M.W.A.; Prickaerts, R.M.H.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. In this work, ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA in order to reduce the

  9. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  10. Electron spin resonance study on γ-ray-induced radical species in ethylene hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi

    2007-01-01

    Electron spin resonance (ESR) study on γ-irradiated synthetic ethylene hydrate was performed to investigate induced radicals and their thermal stability. ESR spectra of induced 3-butenyl radical (.CH 2 C 2 H 3 =CH 2 ,g=2.0039±0.0005,A α =2.2±0.1mTandA β =3.0±0.1mT) and induced ethyl radical (.C 2 H 5 , g=2.0044±0.0005, A α =2.2±0.1mT and A β =2.7±0.1mT) were observed in irradiated ethylene hydrate. The decay of the 3-butenyl radicals was observed above 200 K with the activation energy of 51.9±4.4kJ/mol. The obvious decay of ethyl radicals starts above 240 K that is close to the dissociation temperature of ethylene hydrate at atmospheric pressure. The activation energy of the ethyl radical decay is estimated as 63.4±8.2kJ/mol and nearly equal to the enthalpy change of ethylene hydrate into liquid water and gaseous ethylene. It is suggested that the decay of ethyl radicals would be caused by the hydrate dissociation and that ethylene hydrate dissociates into water (supercooled) and ethylene at 240-265 K.

  11. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  12. Un-repairable DNA damage in cell due to irradiation

    International Nuclear Information System (INIS)

    Yoshii, Giichi

    1992-01-01

    Radiation-induced cell reproductive deactivation is caused by damage to DNA. In a cell, cellular DNA radical reacts with diffusion controlled rate and generates DNA peroxide radical. The chemical repair of DNA radical with hydrogen donation by thiol competes with the reaction of oxygen with same radicals in the DNA molecules. From the point reaction rates, the prolongation of radical life time is not as great as expected from the reduction in the glutathione content of the cell. This indicates that further reducting compounds (protein bound thiol) are present in the cell. The residual radicals are altered to strand breaks, base damages and so on. The effective lesions for a number of endpoints is un-repaired double strand break, which has been discovered in a cluster. This event gives risk to high LET radiation or to a track end of X-rays. For X- or electron irradiations the strand breaks are frequently induced by the interactions between sublesions on two strands in DNA. A single strand break followed by radical action may be unstable excited state, because of remaining sugar radical action and of having negative charged phosphates, in which strands breaks will be rejoined in a short time to stable state. On the same time, a break in the double helix will be immediately produced if two breaks are on either or approximately opposite locations. The formation of a double strand break in the helix depends on the ion strength of the cell. The potassium ions are largely released from polyanionic strand during irradiation, which results in the induction of denatured region. Double strand break with the denatured region seems to be un-repairable DNA damage. (author)

  13. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  14. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  15. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  16. X-band ESR study on evaluation of radicals induced in pasteurized pepper

    International Nuclear Information System (INIS)

    Matsuura, Masaaki; Ogawa, Satoko; Ukai, Mitsuko; Oowada, Shigeru

    2007-01-01

    The radical properties of pasteurized pepper were investigated by means of X-band ESR spectroscopy. Pasteurization process was done by irradiation or steam. There were three radicals in the specimens before and after pasteurization. Upon irradiation a new radical was found. ESR peak intensity of specimen before and after parturition with steam was almost same level. Peak intensity of radiated pepper showed almost 4 times as compare with that of non treated pepper. Radical activity of the specimens after pasteurization showed almost same value. We concluded that radicals were induced by irradiation. But the radical activity was not changed before and after pasteurization. (author)

  17. Ganoderma extract prevents albumin-induced oxidative damage and chemokines synthesis in cultured human proximal tubular epithelial cells.

    Science.gov (United States)

    Lai, Kar Neng; Chan, Loretta Y Y; Tang, Sydney C W; Leung, Joseph C K

    2006-05-01

    Ganoderma lucidum (Ganoderma or lingzhi) is widely used as an alternative medicine remedy to promote health and longevity. Recent studies have indicated that components extracted from Ganoderma have a wide range of pharmacological actions including suppressing inflammation and scavenging free radicals. We recently reported that tubular secretion of interleukin-8 (IL-8) induced by albumin is important in the pathogenesis of tubulointerstitial injury in the proteinuric state. In this study, we explored the protective effect of Ganoderma extract (LZ) on albumin-induced kidney epithelial injury. Growth arrested human proximal tubular epithelial cells (PTECs) were incubated with 0.625 to 10 mg/ml human serum albumin (HSA) for up to 72 h. HSA induced DNA damage and apoptosis in PTEC in a dose- and time-dependent manner. Co-incubation of PTEC with 4-64 microg/ml LZ significantly reduced the oxidative damage and cytotoxic effect of HSA in a dose-dependent manner (PGanoderma (16 microg/ml). To explore the components of LZ that exhibited most protective effect in HSA-induced PTEC damages, LZ was further separated into two sub-fractions, LZF1 (MW effective in reducing sICAM-1 released from HSA-activated PTEC whereas the high molecular weight LZ (unfractionated LZ) was more effective in diminishing IL-8 production. Our results suggest that Ganoderma significantly reduces oxidative damages and apoptosis in PTEC induced by HSA. The differential reduction of IL-8 or sICAM-1 released from HSA-activated PTEC by different components of the LZ implicates that components of Ganoderma with different molecular weights could play different roles and operate different mechanisms in preventing HSA-induced PTEC damage.

  18. Ion irradiation and biomolecular radiation damage II. Indirect effect

    OpenAIRE

    Wang, Wei; Yu, Zengliang; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is ...

  19. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  20. Effect of shear stress and free radicals induced by ultrasound on erythrocytes

    International Nuclear Information System (INIS)

    Kondo, T.; Fukushima, Y.; Kon, H.; Riesz, P.

    1989-01-01

    The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation

  1. Hypochlorite-induced damage to nucleosides

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    2001-01-01

    HOCl damage to DNA bases. We show that reaction of HOCl with the exocyclic -NH(2) groups of cytidine, adenosine, and guanosine, and the ring NH groups of all bases, yields chloramines (RNHCl/RR'NCl). These are the major initial products. Chloramine decay can be accelerated by UV light and metal ions...... for radical formation is cytidine > adenosine = guanosine > uridine = thymidine. These data are inconsistent with the selectivity of HOCl attack and the stability of the resulting chloramines, but can be rationalized if chlorine transfer between bases is rapid and yields the most stable chloramine...

  2. Deciphering free-radical code of radiation effects

    International Nuclear Information System (INIS)

    Volovyk, S.; Bazyka, D.; Loganovsky, K.; Bebeshko, V.

    2007-01-01

    Complete text of publication follows. Objective: Ionizing radiation is fundamental environmental factor for life origin and evolution. Free radicals, primordial 'sea' for life conceiving and existence, induced by cosmic and terrestrial background radiation, are evolutionally archetypal, ubiquitous, and omnipotent in physiological- pathophysiological dichotomy. Classical free-radical paradigm in radiation biology and medicine, focused in essence on oxidative damage, needs new conceptualization and generalization. Methods: Suggested novel insights into free radicals dual immanent nature and functions in organism systems are based on original concepts of radicals dynamic charge transfer (CT) - redox ambivalence (interactional nucleo-, electro-, and ambiphilicity spectrum); pertinent chemical reactivity and selectivity delocalization model; physiological functional ambivalence and complementarity, and dynamic free-radical homeostasis. Results: Subtle perturbations in radicals CT spatiotemporal homeodynamics, in responsive signaling / controlling networks, concomitant alterations in genes expression, transcription, and apoptosis, redox control of mitochondrial ET chain, telomere/telomerase balance, DNA CT, circadian clock, hemispheric biochemical dominance/accentuation, including alteration of nitric oxide-superoxide complementarity, membranes permeability, neurotransmission pattern, synaptic circuitry, etc under radiation exposure have more fundamental impact on organism systems (especially CNS and CVS) deterioration than simple radicals inflicted oxidative (nitrosative) damage of cellular constituents. Conclusions: This novel conceptualization of free-radical paradigm constitutes new dimension in deciphering molecular mechanisms of radiation effects on subtle borderline norm-pathology and continuity-discontinuity dichotomy in organisms systems disorders - CT(redox)omics, which involves investigation of CT, redox, and spin states of free radicals, DNA bases

  3. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments

    International Nuclear Information System (INIS)

    Keszenman, D.J.; Sutherland, B.M.

    2010-01-01

    To determine the linear energy transfer (LET) dependence of the biological effects of densely ionizing radiation in relation to changes in the ionization density along the track, we measured the yields and spectrum of clustered DNA damages induced by charged particles of different atomic number but similar kinetic energy per nucleon in different DNA microenvironments. Yeast DNA embedded in agarose in solutions of different free radical scavenging capacity was irradiated with 1 GeV protons, 1 GeV/nucleon oxygen ions, 980 MeV/nucleon titanium ions or 968 MeV/nucleon iron ions. The frequencies of double-strand breaks (DSBs), abasic sites and oxypurine clusters were quantified. The total DNA damage yields per absorbed dose induced in non-radioquenching solution decreased with LET, with minor variations in radioquenching conditions being detected. However, the total damage yields per particle fluence increased with LET in both conditions, indicating a higher efficiency per particle to induce clustered DNA damages. The yields of DSBs and non-DSB clusters as well as the damage spectra varied with LET and DNA milieu, suggesting the involvement of more than one mechanism in the formation of the different types of clustered damages.

  4. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    Science.gov (United States)

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  5. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  6. Efficacy of wheat germ oil in modulating radiation-induced heart damage in rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, Kh.Sh.

    2006-01-01

    Wheat Germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. This study was designed to investigate the cardio-protective efficacy of wheat germ oil, on radiation-induced oxidative damage in rat's heart. Wheat germ oil was supplemented by gavage to rats at a dose of 81 mg/ kg body wt for 10 successive days pre- and 7 successive days post-exposure to 7 Gy (single dose) of whole body gamma irradiation. The dose of wheat germ oil is equivalent to daily human nutritional supplementation quantity. The results revealed that whole body ?-irradiation of rats produced significant alterations in blood cells picture. The erythrocyte, leucocyte, platelet counts and hemoglobin levels decreased after irradiation. Also, radiation-induced biochemical disorders manifested by significant elevation in xanthine oxidase activity (XO) and thiobarbituric acid reactive substances (TBARS) level, with decrease in reduced glutathione (GSH) content in heart tissues, indicating depression in the antioxidant status. Serum lipid profile as total cholesterol, high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and triglycerides levels (TG) were significantly higher than normal control rats. Radiation exposure produced a significant rise in the activities of serum markers for heart damage as creatine phosphokinase (CPK), aspartate aminotransferase (AST) and lactic dehydrogenase (LDH) indicating acute cardiac toxicity. Moreover, the obtained results revealed abnormal electrophoretic pattern of LDH isoenzymes in the 7th day after exposure to gamma rays. Three bands only appear on the agarose film comparing with 4 bands in normal control rats. The rats that received wheat germ oil supplement showed significantly less severe damage and remarkable improvement in all of the measured parameters when compared to

  7. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  8. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    Science.gov (United States)

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.

  9. Pion-induced damage in silicon detectors

    CERN Document Server

    Bates, S; Glaser, M; Lemeilleur, F; León-Florián, E; Gössling, C; Kaiser, B; Rolf, A; Wunstorf, R; Feick, H; Fretwurst, E; Lindström, G; Moll, Michael; Taylor, G; Chilingarov, A G

    1995-01-01

    The damage induced by pions in silicon detectors is studied for positive and negative pions for fluence up to 10(14)cm-2 and 10(13) cm-2 respectively. Results on the energy dependence of the damage in the region of 65-330 MeV near to the  resonance are presented. The change in detector characteristics such as leakage current, charge collection efficiency and effective impurity concentration including long-term annealing effects have been studied. Comparisons to neutron and proton-induced damage are presented and discussed.

  10. Insights into the Structures of DNA Damaged by Hydroxyl Radical: Crystal Structures of DNA Duplexes Containing 5-Formyluracil

    Directory of Open Access Journals (Sweden)

    Masaru Tsunoda

    2010-01-01

    Full Text Available Hydroxyl radicals are potent mutagens that attack DNA to form various base and ribose derivatives. One of the major damaged thymine derivatives is 5-formyluracil (fU, which induces pyrimidine transition during replication. In order to establish the structural basis for such mutagenesis, the crystal structures of two kinds of DNA d(CGCGRATfUCGCG with R = A/G have been determined by X-ray crystallography. The fU residues form a Watson-Crick-type pair with A and two types of pairs (wobble and reversed wobble with G, the latter being a new type of base pair between ionized thymine base and guanine base. In silico structural modeling suggests that the DNA polymerase can accept the reversed wobble pair with G, as well as the Watson-Crick pair with A.

  11. Radical's view of sciences

    International Nuclear Information System (INIS)

    Mittal, J.P.

    2004-01-01

    Full text: General concept in radiation biology is that free radicals are highly reactive and they can damage vital cellular molecules leading to injurious effects. However, in this talk, evidence will be presented through the techniques of electron paramagnetic resonance ( EPR ) and pulse radiolysis that free radicals can be highly selective in their reaction with the target molecules. In addition, attempts will be made to present a brief account of emerging scenario of free radical generation, identification and their involvement in radiation damage mechanisms in chemical and biological systems

  12. Studies on protective effects of superoxide dismutase on radiation induced-chromosomal aberrations

    International Nuclear Information System (INIS)

    Zheng Siying; Jiang Jiagui; Lin Xingcheng

    1987-09-01

    This study demonstrates that radiation induced-chromosomal aberrations are not only due to the direct effect of radiation h it , but the indirect effect of free radical as well. Therefore, chromosome damage induced by radiation may be reduced by adding exogenous SOD into the radiation exposed lymphocyte culture to eliminate the superoxide free radical which damages DNA. On the other hand, however, the radiosensitivity of lymphocytes can be raised by adding SOD inhibitor (DDC) into the lymphocyte culture, which makes radiation induced-chromosomal damages more severely

  13. Genomics and radical mediated DNA damage: major differences between ionizing radiation and DNA-cleaving enediynes

    International Nuclear Information System (INIS)

    Cosgrove, J.P.; Begley, T.J.; Samson, L.D.; Dedon, P.C.

    2003-01-01

    While the evidence is strong for radical-mediated oxidative processes in the pathophysiology of cancer and aging, the mechanisms by which cells respond to oxidative stress have eluded definition. To this end, we have undertaken genomic studies comparing the response of S. cerevisiae to DNA-specific oxidizing agents, the enediynes calicheamicin (CAL), esperamicin (ESP), and neocarzinostatin (NCS), and the non-specific gamma-radiation (RAD). While RAD results in relatively indiscriminate oxidation of cellular molecules, the enediynes are highly specific to DNA and produce damage by a common mechanism involving radical-mediated oxidation of deoxyribose. Transcriptional profiling in response to these agents (80% survival; 15 min exposure; Affymetrix) revealed unexpected differences between RAD and the enediynes and among the three enediynes. Only 2 genes responded in common to all agents, while 9 genes were regulated in common for the 3 enediynes (no DNA repair genes altered in common). The limited common gene expression changes for the 3 enediynes may result from differences in deoxyribose oxidation chemistry, DNA and chromatin targets or the proportions of single- and double-strand DNA lesions. RAD produced a more robust response than the enediynes, altering expression of 195 and 52 genes by more than 2- and 5-fold, respectively, compared to 16-44 and *2 genes, respectively, for the enediynes. This suggests that the transcriptional response varies in intensity according to the number of cellular features affected by the toxin. Genes showing the strongest up-regulation with RAD: ribonucleotide reductase, multidrug resistance, DS break repair/RAD51, GSH transferase; strongly reduced gene expression: TEL1 (damage signaling), NAT2 (acetyltransferase). Genomic phenotyping studies, using a subset of the Research Genetics deletion library, revealed that loss of apn1, the major AP endonuclease, caused resistance to NCS, possibly due to reduced formation of protein-DNA cross

  14. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    International Nuclear Information System (INIS)

    Dudek, E.J.; Roth, R.M.

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs

  15. Analysis of decay of radicals induced in irradiated foods during long storage

    International Nuclear Information System (INIS)

    Kishita, Keigo; Kawamura, Shoei; Nakamura, Hideo; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2013-01-01

    By electron spin resonance (ESR) spectroscopy, we revealed free radicals in γ-ray irradiated foods ; black pepper, green coffee bean, cereal flour and ginseng. We also analyzed the decay behavior of radiation induced free radicals during long storage. The ESR spectrum of experimental irradiated foods consists of a sextet signal centered at g=2.0 and a singlet signal at the same g-value position and a singlet signal at g=4.0. The ESR spectrum of the cereal flour sample showed only singlet signal at g=2.0. The singlet signal at g=2.0 is originated from organic free radicals and its peak intensity showed the dependence of γ-ray radiation dose levels. But the signal intensity was decreased during storage. Only after 3 hours of radiation treatment the peak intensity was decreased fast and after that the intensity was decreased slowly. The analysis of radical decay process using the simulation methods based on the theory of reaction speed, the three decay behavior was showed. It is considered that at least three or more kinds of radicals were induced in irradiated foods and in decay during long time storage. (author)

  16. Mechanisms of DNA damage by the tumor promoter and progressor benzoyl peroxide

    International Nuclear Information System (INIS)

    Swauger, J.E.; Dolan, P.M.; Zweier, J.L.; Kensler, T.W.

    1990-01-01

    Benzoyl peroxide (BzPO), a tumor promoter and progressor in mouse skin, produces strand breaks in DNA of exposed cells. Previously we have reported that the metabolism of BzPO in keratinocytes proceeds via the initial cleavage of the peroxide bond, yielding benzoyloxyl radicals which, in turn, can fragment to form phenyl radicals and carbon dioxide. Benzoic acid, the product of hydrogen abstraction by the benzoyloxyl radical, is the major stable metabolite of BzPO produced by keratinocytes. In the present study we have examined the capacity of BzPO to generate strand scissions in φX-174 plasmid DNA. DNA damage was dose-dependent over a concentration range of 10-1000 μM BzPO and was dependent on the presence of copper but not other transition state metals. By contrast, benzoic acid did not produce DNA damage in this system. The inclusion of spin trapping agents (PBN, DBNBS), radical scavenging agents (Nal, GSH), or the copper chelator o-phenanthroline in incubations was found to significantly reduce the extent of DNA damage. Electron paramagnetic resonance spectroscopy studies suggested that the primary radical trapped was the benzoyloxyl radical, implying a role for this radical in the generation of the observed DNA damage. Collectively these observations suggest BzPO may be activated to DNA damaging intermediates in keratinocytes via metal-catalyzed cleavage of the peroxide bond resulting in the formation of the benzoyloxyl radical. Covalent modification of DNA was not observed when [ 14 C]BzPO was incubated with calf thymus DNA in the presence of copper. Overall, these results suggest that BzPO induces DNA damage via benzoyloxyl radical mediated proton abstraction from the DNA strand and the adduct formation with DNA is unlikely to occur

  17. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Mason, Ronald P

    2015-01-01

    Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    Science.gov (United States)

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  19. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hun; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2016-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not

  20. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hoon; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2014-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

  1. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  2. Protective effects of rosmarinic acid on sepsis-induced DNA damage in the liver of Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Hatice Gul Goktas

    2015-06-01

    Full Text Available Sepsis is an imbalance between pro and anti-inflammatory responses. Sepsis induced multiple organ failure that is associated with mortality is characterized by liver, renal, cardiovascular and pulmonary dysfunction and reactive oxygen species (ROS are believed to be involved in the development of sepsis. Plant polyphenols may act as antioxidants by different mechanisms such as free radical scavenging, metal chelation and protein binding. Data indicates possible beneficial effects of plant derived phenolic compounds against sepsis. Rosmarinic acid (RA (α-O-caffeoyl-3,4-dihydroxyphenyllactic acid is a phenolic compound commonly found in various plants such as Rosmarinus officinalis (rosemary, Origanum vulgare (oregano, Thymus vulgaris (thyme, Mentha spicata (spearmint, Perilla frutescens (perilla, Ocimum basilicum (sweet basil and several other medicinal plants. It has been shown that RA has many biological activities including antioxidant, anti-inflammatory, antiallergic, anticancer and actimicrobial and is widely used in cosmetic and food industry. In the present study, we aimed to determine the protective effects of RA against the oxidative DNA damage induced by sepsis in Wistar albino rats. The rats were divided into four groups; sham, sepsis induced, RA-treated, RA treated and sepsis induced groups. Wistar rats were subjected to sepsis by cecal ligation puncture. The liver tissues were carefully dissected from their attachments and totally excised. The concentrations of the hepatic tissue cells were adjusted to approximately 2 x 106 cells/ml. Standard and formamidopyrimidine-DNA glycosylase (Fpg modified comet assay described by Singh et al were used. There were no statistically significant differences in terms of tail length, tail intensity and tail moment between the sham group and the RA-treated groups (p>0.05. The DNA damage was found significantly higher in the sepsis-induced group compared to the sham group (p0.05, and the DNA damage

  3. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    International Nuclear Information System (INIS)

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy

  4. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.G.; Peliciari-Garcia, R.A. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Takahashi-Hyodo, S.A. [Área de Ciências da Saúde, Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Rodrigues, A.C. [Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Amaral, F.G. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Berra, C.M. [Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Bordin, S.; Curi, R.; Cipolla-Neto, J. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-03-08

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  5. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Boll, M.; Weber, L.W.D.; Becker, E.; Stampfl, A. [Inst. of Toxicology, GSF - National Research Center for Environment and Health, Muenchen, Neuherberg (Germany)

    2001-08-01

    CCl{sub 4}-induced liver damage was modeled in monolayer cultures of rat primary hepatocytes with a focus on involvement of covalent binding of CCl{sub 4} metabolites to cell components and/or peroxidative damage as the cause of injury. (1) Covalent binding of {sup 14}C-labeled metabolites was detected in hepatocytes immediately after exposure to CCl{sub 4}. (2) Low oxygen partial pressure increased the reductive metabolism of CCl{sub 4} and thus covalent binding. (3) [{sup 14}C]-CCl{sub 4} was bound to lipids and to proteins throughout subcellular fractions. Binding occurred preferentially to triacylglycerols and phospholipids, with phosphatidylcholine containing the highest amount of label. (4) The lipid peroxidation potency of CCl{sub 4} revealed subtle differences compared to other peroxidative substances, viz., ADP-Fe{sup 3+} and cumol hydroperoxide, respectively. (5) CCl{sub 4}, but not the other peroxidative substances, decreased the rate of triacylglycerol secretion as very low density lipoproteins. (6) The anti-oxidant vitamin E ({alpha}-tocopherol) blocked lipid peroxidation, but not covalent binding, and secretion of lipoproteins remained inhibited. (7) The radical scavenger piperonyl butoxide prevented CCl{sub 4}-induced lipid peroxidation as well as covalent binding of CCl{sub 4} metabolites to cell components, and also restored lipoprotein metabolism. The results confirm that covalent binding of the CCl{sub 3}{sup *} radical to cell components initiates the inhibition of lipoprotein secretion and thus steatosis, whereas the reaction with oxygen, to form CCl{sub 3}-OO{sup *}, initiates lipid peroxidation. The two processes are independent of each other, and the extent to which either process occurs depends on partial oxygen pressure. The former process may result in adduct formation and, ultimately, cancer initiation, whereas the latter results in loss of calcium homeostasis and, ultimately, apoptosis and cell death. (orig.)

  6. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    Science.gov (United States)

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Radioprotection against DNA damage by an extract of Indian green mussel, Perna viridis (L.)

    Digital Repository Service at National Institute of Oceanography (India)

    Kumaran, S.P.; Kutty, B.C.; Chatterji, A.; Parameswaran, P.S.; Mishra, K.P.

    -irradiation Prevention of DNA damage both in plasmid and lymphocytes and cell death in lymphocytes appears correlated with reduction of oxidatively generated free radicals It is concluded that protection against radiation-induced cell death and DNA damage by MH...

  8. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage?

    Science.gov (United States)

    Deloncle, Roger; Guillard, Olivier

    2015-01-01

    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  9. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    Science.gov (United States)

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  10. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  11. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    Science.gov (United States)

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  12. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  13. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  14. Relaxation behavior and dose dependence of radiation induced radicals in irradiated mango

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kakita, Daisuke; Kaimori, Yoshihiko; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    Mangoes are imported to Japan after treated with hot water. Recently, irradiated mangoes imported to U. S. are widely used. This paper reports on the ESR method for analyzing the radiation induced radicals of irradiated mangoes. Upon the γ ray irradiation, a strong single peak in the flesh and skin of mangoes was observed at g=2.004. This singlet peak may be attributed to organic free radicals. The ESR spectra of the flesh and skin of mangoes showed the radiation induced radicals due to cellulose by irradiation over 12 kGy. The relaxation times (T 1 and T 2 ) of the singlet signal were calculated. T 2 showed dose response according to increasing the irradiation dose levels, while T 1 was almost constant. The value of (T 1 T 2 ) 1/2 showed the dependence of irradiation dose level. (author)

  15. Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Faucitano, A. E-mail: chemrad@unipv.it; Buttafava, A.; Montanari, L.; Cilurzo, F.; Conti, B.; Genta, I.; Valvo, L

    2003-05-01

    The primary and secondary free radical intermediates in the gamma radiolysis of poly(D,L-lactide-co-glycolide) (PLGA) and clonazepam loaded PLGA microspheres were investigated by matrix EPR spectroscopy in the temperature range 77-298 K. Drug-polymer interactions were found to be important leading to significant deviations of the G(radicals) from the additivity law. In particular, in the mixed system a stabilization of the polymer matrix with respect to the radiation damage was detected, witnessed by a decrease of the overall polymer radicals yield which is accompanied by an increase of the drug radicals yield. These effects have been attributed to the scavenging properties of the nitro group with respect to electrons and polymer radicals. It is conceivable that such conclusions be of general application for all pharmaceutical formulations containing drugs bearing nitro groups in their chemical structure.

  16. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  17. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by H radicals

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Heuvel, N. van; Woldhuis, J.; Loman, H.

    1978-01-01

    Single-stranded phiX174 DNA in aqueous solutions has been irradiated in the absence of oxygen, under conditions in which H radicals react with the DNA. It was shown that H radical reactions result in breaks, which contribute approximately 10 per cent inactivation. Further, two types of alkali-labile sites were formed. One was lethal and gave rise to single-strand breaks by alkali and was most probably identical with post-irradiation heat damage and contributed about 33 per cent to the inactivation mentioned above. The other consisted of non-lethal damage, partly dihydropyrimidine derivatives, and was converted to lethal damage by alkali. This followed from experiments in which the DNA was treated with osmium-tetroxide, which oxidized thymine to 5,6-dihydroxydihydrothymine. Treatment with alkali of this DNA gave the same temperature dependence as found for the non-lethal alkali-labile sites in irradiated DNA. A similar temperature dependence was found for dihydrothymine and irradiated pyrimidines with alkali. (author)

  18. Oxidative stress induced damage in benign and malignant breast diseases: histopathological and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Seema Khanna

    2012-04-01

    Full Text Available Increasing evidences indicate involvement of free radicals in the pathogenesis of benign and malignant breast diseases. Free radicals are highly reactive molecules and react with non–radicals in chain reaction leading to formation of new free radicals. If the defense mechanism of body fails to combat them, these free radicals pose a threat of injuring tissues by reacting with cell lipids. Lipids in the cell membrane undergo degradation to form hydroperoxides, which decompose to form a variety of products including malondialdehyde (MDA. MDA therefore was used as a marker to assess oxidative damage of cells and tissues. The aim of the present study was to assess the status of oxidative stress in the patients of benign and malignant breast diseases. Study has been made on the blood samples of 25 cases of benign breast disease and on an equal number of breast carcinoma patients. 20 healthy subjects were taken as the control cases.Mean MDA levels were significantly raised with depletion of antioxidant activity in all the patients in comparison to their control group suggesting the role of oxidative damage in the aetiopathogenesis of disease.

  19. Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C

    Directory of Open Access Journals (Sweden)

    Roy Siddhartha

    2008-11-01

    Full Text Available Abstract Background Cigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury. Considering that p-benzosemiquinone may be a causative factor of lung injury, we have isolated p-benzosemiquinone and compared its pathophysiological effects with cigarette smoke. Since vitamin C is a strong antioxidant, we have also determined the modulatory effect of vitamin C for preventing the pathophysiological events. Methods Vitamin C-restricted guinea pigs were exposed to cigarette smoke (5 cigarettes/day; 2 puffs/cigarette for 21 days with and without supplementation of 15 mg vitamin C/guinea pig/day. Oxidative damage, apoptosis and lung injury were assessed in vitro, ex vivo in A549 cells as well as in vivo in guinea pigs. Inflammation was measured by neutrophilia in BALF. p-Benzosemiquinone was isolated from freshly prepared aqueous extract of cigarette smoke and characterized by various physico-chemical methods, including mass, NMR and ESR spectroscopy. p-Benzosemiquinone-induced lung damage was examined by intratracheal instillation in guinea pigs. Lung damage was measured by increased air spaces, as evidenced by histology and morphometric analysis. Oxidative protein damage, MMPs, VEGF and VEGFR2 were measured by western blot analysis, and formation of Michael adducts using MALDI-TOF-MS. Apoptosis was evidenced by TUNEL assay, activation of caspase 3, degradation of PARP and increased Bax/Bcl-2 ratio using immunoblot analysis and confocal microscopy. Results Exposure of guinea pigs to cigarette smoke resulted in progressive protein damage, inflammation, apoptosis and lung injury up to 21 days of the experimental period. Administration of 15 mg of vitamin C/guinea pig/day prevented all these

  20. [The significance of free radicals and antioxidants due to the load induced by sport activity].

    Science.gov (United States)

    Holecek, V; Liska, J; Racek, J; Rokyta, R

    2004-01-01

    Sport performance is followed by a high production of free radicals. The main reasons are reperfusion after the previous imbalance between the increased need of the organism and the ability of blood supply by oxygen, increased production of ATP, decomposition of the cells particularly white blood cells, oxidation of the purin basis from DNA, stress, output of epinephrine release of free iron, increased temperature in the muscle and its inflammation, and the reception of free radicals from external environment. Peroxidation of lipids, proteins, DNA and other compounds follows the previous biochemical steps. Antioxidants are consumed by free radicals, antioxidative enzymes are released into blood plasma, intracellular calcium is increased, the production of nitric oxide rises, the levels of hydrogen peroxide and hypochlorous acid increase. These penetrate through the membranes and oxidatively damage the tissues. Training improves the ability of the organism to balance the increased load of free radicals. The damage can be lowered by the application of a mixture of antioxidants, the most important are vitamin C, A, E, glutathione, selenium, carnosine, eventually bioflavonoids and ginkgo biloba. The lack of antioxidants can significantly diminish the sport performance and therefore the supplementation with antioxidants is for top sportsmen but also for aged people advisable.

  1. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    Science.gov (United States)

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  2. Free Radicals and Extrinsic Skin Aging

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2012-01-01

    Full Text Available Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR. It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−•, hydrogen peroxide (H2O2, hydroxyl radical (OH•, and singlet oxygen (1O2. The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants and antioxidants we consume from the food (vitamin A, C, E, etc.. The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.

  3. Two-photon laser-induced fluorescence studies of HS radicals, DS radicals, and I atoms

    Energy Technology Data Exchange (ETDEWEB)

    Tiee, J J; Ferris, M J; Loge, G W; Wampler, F B

    1983-04-15

    A two-photon laser-induced excitation and fluorescence technique has been used to study the A /sup 2/..sigma../sup +/ - X/sup 2/PI transition of HS and DS radicals and various high-lying /sup 4/P/sup 0/, /sup 2/D/sup 0/, and /sup 4/D/sup 0/ states of the I atom. The two-photon excitation cross sections and detection sensitivity are discussed. 13 references, 5 figures.

  4. DNA damage-inducible transcripts in mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Alamo, I. Jr.; Hollander, M.C.

    1988-01-01

    Hybridization subtraction at low ratios of RNA to cDNA was used to enrich for the cDNA of transcripts increased in Chinese hamster cells after UV irradiation. Forty-nine different cDNA clones were isolated. Most coded for nonabundant transcripts rapidly induced 2- to 10-fold after UV irradiation. Only 2 of the 20 cDNA clones sequenced matched known sequences (metallothionein I and II). The predicted amino acid sequence of one cDNA had two localized areas of homology with the rat helix-destabilizing protein. These areas of homology were at the two DNA-binding sites of this nucleic acid single-strand-binding protein. The induced transcripts were separated into two general classes. Class I transcripts were induced by UV radiation and not by the alkylating agent methyl methanesulfonate. Class II transcripts were induced by UV radiation and by methyl methanesulfonate. Many class II transcripts were induced also by H2O2 and various alkylating agents but not by heat shock, phorbol 12-tetradecanoate 13-acetate, or DNA-damaging agents which do not produce high levels of base damage. Since many of the cDNA clones coded for transcripts which were induced rapidly and only by certain types of DNA-damaging agents, their induction is likely a specific response to such damage rather than a general response to cell injury

  5. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Cohn Corey A

    2008-02-01

    Full Text Available Abstract Background Reactive oxygen species including hydroxyl radicals can cause oxidative stress and mutations. Inhaled particulate matter can trigger formation of hydroxyl radicals, which have been implicated as one of the causes of particulate-induced lung disease. The extreme reactivity of hydroxyl radicals presents challenges to their detection and quantification. Here, three fluorescein derivatives [aminophenyl fluorescamine (APF, amplex ultrared, and dichlorofluorescein (DCFH] and two radical species, proxyl fluorescamine and tempo-9-ac have been compared for their usefulness to measure hydroxyl radicals generated in two different systems: a solution containing ferrous iron and a suspension of pyrite particles. Results APF, amplex ultrared, and DCFH react similarly to the presence of hydroxyl radicals. Proxyl fluorescamine and tempo-9-ac do not react with hydroxyl radicals directly, which reduces their sensitivity. Since both DCFH and amplex ultrared will react with reactive oxygen species other than hydroxyl radicals and another highly reactive species, peroxynitite, they lack specificity. Conclusion The most useful probe evaluated here for hydroxyl radicals formed from cell-free particle suspensions is APF due to its sensitivity and selectivity.

  6. Jatropha curcas leaf and bark fractions protect against ultraviolet radiation-B induced DNA damage in human peripheral blood lymphocytes.

    Science.gov (United States)

    Sundari, J; Selvaraj, R; Rajendra Prasad, N; Elumalai, R

    2013-11-01

    The present study is conducted to investigate the antioxidant potential of Jatropha curcas root bark extract (RB4 fraction) and leaf extract (L1 fraction), and to study their effects on UVB-radiation-induced DNA damage in cultured human blood lymphocytes. In this study, J. curcas showed strong antioxidant property in different free radical scavenging systems. Both the fractions effectively scavenged hydroxyl (OH), superoxide anion (O₂(·-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical cation (ABTS(·+)) in a concentration-dependent manner. The IC₅₀ (Inhibitory Concentration 50) values of J. curcas fractions were compared to standard ascorbic acid used in this study. The antioxidant potential of a compound was directly proportional to the photoprotective effect. In this study, human peripheral blood lymphocytes (HPBL) were exposed to UVB-radiation and there was an increase in comet attributes (% tail DNA, tail length, tail movement and Olive tail moment). Jatropha curcas RB4 fraction and L1 fraction treatment before UVB-irradiation significantly decreased the % tail DNA, tail length, tail moment and Olive tail moment in irradiated HPBL. These results suggested that J. curcas exhibited strong antioxidant property and RB4 and L1 fractions protected UVB-radiation-induced DNA damage in HPBL. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Free radical generation in post-irradiation period: an evidence from the conversion of xanthine dehydrogenase into xanthine oxidase

    International Nuclear Information System (INIS)

    Kale, R.K.

    2003-01-01

    Xanthine oxidoreductase (XOR) system which consists of xanthine dehydrogenase (XDH) and xathine oxidase (XO), is one of the major sources of free radicals in biological systems. XOR system is pre-dominantly present as XDH in the normal tissue and converts into free radical generating XO-Form in the damaged tissue. Therefore, XO-Form of XOR system, is expected to be mainly found in the radiolytically damaged tissue. In such an event, XO may catalyze the generation of free radicals and potentiate the radiation effects in post-irradiation period. Recent findings on the effect of ionizing radiation on XOR system in the liver of mice, peroxidative damage and lactate dehydrogenase support this possibility. From these results it has been hypothized that free radical generating systems could be activated in the radiolytically damaged cell and in turn contribute to the cause and complications of late effects and their persistence in post-irradiation period. This aspect may have great significance in understanding the radiation - induced damages. It may also have serious implication in various fields like radiation therapy, health physics, carcinogenesis, space travelling radiation exposures and post nuclear accident care. Further, it is suggested that efforts need to be made to search more system(s) which could be activated particularly at lower doses of radiation and generate free radicals in post-irradiation period

  8. Long term radiological features of radiation-induced lung damage.

    Science.gov (United States)

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    International Nuclear Information System (INIS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kaneko, Toshiro; Kanzaki, Makoto

    2016-01-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor( s ), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OH aq ), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OH aq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OH aq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OH aq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool. (paper)

  10. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  11. Peroxy Radical Measurements via Laser Induced Fluorescence

    Science.gov (United States)

    Trawny, Katrin; Tatum Ernest, Cheryl; Novelli, Anna; Elste, Thomas; Plaß-Dülmer, Christian; Rudolf, Markus; Martinez, Monica; Harder, Hartwig; Lelieveld, Jos

    2013-04-01

    We present a newly built Laser Induced Fluorescence (LIF) system to measure the sum of all peroxy radicals (RO2) utilizing chemical conversion to OH. This instrument operates in two different modes: the ROx mode (sum of OH, HO2, and RO2) and the HOx mode (sum of OH and HO2). The HOx mode is used to derive the RO2 data from the ROx measurements. A model approach was used during instrumental development to identify the key parameters needed for the conversion process in front of the detection area and to optimize sensitivity. The instrument was then carefully characterized in various lab experiments, where it could be shown that the wall losses for HO2 are negligible and that nearly all HO2 is converted to OH in front of the detection zone. The pressure and temperature dependencies were also analyzed and assured that the instrument does not show any photolytical interference. As the instrument is calibrated with only one kind of peroxy radicals it was very important that the differences in sensitivity for different peroxy radicals are acceptable. Lab experiments as well as first results from the HOPE 2012 intensive field campaign, which took place in summer 2012 at the Global Atmosphere Watch (GAW) station of the German Weather Service, will be discussed.

  12. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  13. Protection of naturally occurring antioxidants against oxidative damages to protein

    International Nuclear Information System (INIS)

    Zhu Hongping; Zhang Zhaoxia; Hao Shumei; Wang Wenfeng; Yao Side

    2006-01-01

    One of the most compelling theories explaining age-related deterioration is the free radical theory of aging. It has been shown that reactive oxygen species are involved in oxidative damages to biomolecules and this is related to a number of diseases. Proteins, the second most abundant components of cells (next to water by weight), are now increasingly recognized as major biological targets of oxidative damages. Convincing evidences have indicated that damages to protein have been implicated in Alzheimer's disease, Parkinson's disease, cancer, and aging. Antioxidant has been the subject of great attention because they are known to lower the risk of cardiovascular and other diseases. Hydroxycinnamic acid derivatives (HCAs) are antioxidants abundant in tea, red wine, fruits, beverages and various medicinal plants. Results showed that they exhibit remarkable activity for scavenging oxidizing radicals and triplet states. The protective effects of four kinds of HCAs on oxidative damages to lysozyme were investigated in our lab. Protein damages induced by two different paradigms: riboflavin-sensitized photooxidation and hydroxyl ( . OH)-mediated oxidation, were investigated using polyacrylamide gel electrophoresis. HCAs were found to inhibit the cross-linking of protein induced by riboflavin-mediated photooxidation. HCAs also exhibited protection effect on lysozyme damage induced by γ-ray irradiation. The rate constants for quenching triplet state of riboflavin by lysozyme and HCAs were obtained using laser flash photolysis. The protective mechanism was proposed based on the dynamic study. HCAs were found to protect protein against oxidation by scavenging oxidizing species and repairing the damaged protein. (authors)

  14. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P.; Muniz, R.O.R.; Souza, G.S. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.com.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    Antiproliferative and oxidative damage effects occurring in Boron Neutron Capture Therapy (BNCT) in normal fibroblasts and melanoma cell lines were analyzed. Melanoma cells and normal fibroblasts were treated with different concentrations of Boronophenylalanine and irradiated with thermal neutron flux. The cellular viability and the oxidative stress were determined. BNCT induced free radicals production and proliferative potential inhibition in melanoma cells. Therefore, this therapeutic technique could be considered efficient to inhibit growth of melanoma with minimal effects on normal tissues. - Highlights: Black-Right-Pointing-Pointer Boron Neutron Capture Therapy (BNCT) induces melanoma cell death. Black-Right-Pointing-Pointer BNCT stimulates free radicals production and proliferative inhibition in melanoma cells. Black-Right-Pointing-Pointer It produces tumor membrane degeneration and destruction with apoptotic bodies formation. Black-Right-Pointing-Pointer This therapy damages tumor cells selectively, with minimum effects on normal adjacent tissue.

  15. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  16. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals

    International Nuclear Information System (INIS)

    Peak, J.G.; Ito, T.; Peak, M.J.; Robb, F.T.

    1994-01-01

    A supercoiled plasmid of 7300 base pairs was isolated and exposed in an aqueous environment to 60 Co γ rays and JANUS 0.85 MeV fission-spectrum neutrons. Dose responses for the production of single-strand breaks (SSBs), double-strand breaks (DSBs) and alkali-labile sites (ALSs) were compared with computations made from the conversion of the supercoil to its relaxed and linear forms. The relative biological effectiveness (RBE) for production of SSBs and DSBs was similar to that previously measured in the cellular environment. The RBE for destruction of genetic transforming activity of M13 viral DNA followed that for DNA damage. This is in contrast to the situation for biological effects such as lethality, mutagenesis, and cellular transformation measured in mammalian cells, where the RBE values are reversed. The role of hydroxyl (OH) radical in DNA damage induction by neutrons was investigated by exposure of plasmid in the presence of known quenchers of this species. Of four quenchers tested, all were able to reduce the yields of both SSBs and DSBs. These findings are consistent with a model for SSB and DSB induction by high linear energy transfer that involves OH radical mediation

  17. An extract of Polygonum multiflorum protects against free radical damage induced by ultraviolet B irradiation of the skin

    Directory of Open Access Journals (Sweden)

    I.K. Hwang

    Full Text Available Over the last decades, the incidence of ultraviolet B (UVB-related skin problems has been increasing. Damages induced by UVB radiation are related to mutations that occur as a result of direct DNA damage and/or the production of reactive oxygen species. We investigated the anti-oxidant effects of a Polygonum multiflorum thumb extract against skin damage induced by UVB irradiation. Female SKH-1 hairless mice were divided into three groups: control (N = 7, distilled water- (N = 10, and P. multiflorum extract-treated (PM, N = 10 groups. The PM (10 g was extracted with 100 mL distilled water, cryo-dried and 9.8 g was obtained. The animals received a topical application of 500 µL distilled water or PM extract (1, 2, 4, 8, and 16%, w/v, dissolved in distilled water for 30 min after UVB irradiation (wavelength 280-320 nm, 300 mJ/cm²; 3 min of the dorsal kin for 14 days, and skin immunohistochemistry and Cu,Zn-superoxide dismutase (SOD1 activity were determined. SOD1 immunoreactivity, its protein levels and activities in the skin were significantly reduced by 70% in the distilled water-treated group after UVB irradiation compared to control. However, in the PM extract-treated groups, SOD1 immunoreactivity and its protein and activity levels increased in a dose-dependent manner (1-16%, w/v, PM extract compared to the distilled water-treated group. SOD1 protein levels and activities in the groups treated with 8 and 16%, w/v, PM extract recovered to 80-90% of the control group levels after UVB. These results suggest that PM extract strongly inhibits the destruction of SOD1 by UV radiation and probably contains anti-skin photoaging agents.

  18. Differential modification of oxic and anoxic components of radiation damage by t-butanol, an. OH radical scavenger

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, S M.J.; Kesavan, P C [Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences

    1979-03-01

    Caryopses of a hull-less barley strain (IB 65) were gamma-irradiated (10 to 45 krad) in oxygenated and oxygen-free water in the presence of t-butanol (5 x 10/sup -3/ to 10/sup -1/M), and eight-day seedling growth was then measured. The results showed that t-butanol afforded partial radio-protection against oxic damage and potentiated the anoxic damage in both dry and metabolizing barley seeds. Attention is given to the possible basic differences in the oxygen effect(s) in prokaryotes and eukaryotes, and to the involvement of .OH radicals under these conditions.

  19. Role of distonic dimer radical cations in the radiation-induced polymerisation of vinyl ethers

    International Nuclear Information System (INIS)

    Naumov, Sergej; Janovsky, Igor; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    The experimental low-temperature EPR results and the quantum chemical calculations suggest that dimer radical cations of cyclic and aliphatic vinyl ethers (VE) plays a key role in starting of radiation-induced polymerisation. The main species observed at high 2,3-dihydrofuran (DHF), 2,3-dihydropyran (DHP) and VE concentration is the dimer radical cation. In the case of cyclic VE the dimer radical cation transforms through H-abstraction from neutral molecule into a carbocation and radical, which could start both cationic and free-radical polymerisation. However, in the case of aliphatic VE no further reactive species, which could start polymerisation, were observed. This is caused (in agreement with experiment and quantum chemical calculations) by the very high stability of dimer radical cation and calculated endothermity of H-abstraction reaction by dimer radical cation from monomer

  20. Investigation of pUC19 DNA damage induced by direct and indirect effect of 7Li ions radiation

    International Nuclear Information System (INIS)

    Sui Li; Zhao Kui; Guo Jiyu; Ni Meinan; Kong Fuquan; Cai Minghui; Yang Mingjian

    2006-01-01

    The effect of direct and indirect action on DNA damage in 7 Li ions radiation is investigated. Using 7 Li ions generated by HI-13 tandem accelerator, three conditions of pUC19 plasmid DNA samples including dry, with or without mannitol are irradiated at different doses in air. These irradiated DNA samples are analyzed with atomic force microscopy (AFM) in nanometer-scale. The changes of DNA forms as the dose increases are observed. The results show that free radical is the main factor in DNA strand breaks induced by 7 Li ions radiation under condition of aqueous solution. The mannitol can effectively scavenge free radical and reduce the yields of DNA strand breaks. The experimental results of this report can offered valuable basal data for cancer therapy by boron neutron capture therapy (BNCT) or heavy ion radiation method, etc. (author)

  1. Formation and repair of gamma-ray induced nucleic acid base damage in bacteria and mammalian cells. Final report, September 1, 1973--August 31, 1976

    International Nuclear Information System (INIS)

    Cerutti, P.A.

    1976-01-01

    Results are summarized from a three-year study of the formation and repair of γ-ray induced thymine damage in bacteria and mammalian cells. A systematic study was made of the formation of a specific type of ionizing radiation induced base damage under in vivo conditions. Assay for the determination of γ-ray products of the 5,6-dihydroxy-dihydrothymine type (alkaline-acid degradation assay) and a method for the determination of the formation of 5-methylene-uracil radicals (formation of ( 3 H)H 2 O from thymine-methyl ( 3 H)) are discussed. The radiation-chemical reactivity of thymine decreased according to the following pattern in different biological systems: phi X174-DNA greater than E. coli DNA = phi X174 phage much greater than HeLa chromatin greater than E. coli cells greater than human fibroblasts WI-38. In WI-38 the efficiency of formation of 5-methylene-uracil radicals was 1.6 x 10 -3 per Krad and 10 6 daltons DNA and of products of the 5,6-dihydroxy-dihydrothymine type 0.54 x 10 -3 per Krad per 10 6 daltons DNA (uncorrected). It was concluded that γ-rays produce DNA single strand breaks and (total) base damage with comparable efficiencies under in vivo conditions in cultured cells. A list is included of 18 published papers that report the findings in detail

  2. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    Science.gov (United States)

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  3. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  4. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection.

    Science.gov (United States)

    Xie, Jiani; Wang, Ning; Dong, Xinghua; Wang, Chengyan; Du, Zhen; Mei, Linqiang; Yong, Yuan; Huang, Changshui; Li, Yuliang; Gu, Zhanjun; Zhao, Yuliang

    2018-03-06

    Numerous carbon networks materials comprised of benzene moieties, such as graphene and fullerene, have held great fascination for radioprotection because of their acknowledged good biocompatibility and strong free radical scavenging activity derived from their delocalized π-conjugated structure. Recently, graphdiyne, a new emerging carbon network material consisting of a unique chemical structure of benzene and acetylenic moieties, has gradually attracted attention in many research fields. Encouraged by its unique structure with strong conjugated π-system and highly reactive diacetylenic linkages, graphdiyne might have free radical activity and can thus be used as a radioprotector, which has not been investigated so far. Herein, for the first time, we synthesized bovine serum albumin (BSA)-modified graphdiyne nanoparticles (graphdiyne-BSA NPs) to evaluate their free radical scavenging ability and investigate their application for radioprotection both in cell and animal models. In vitro studies indicated that the graphdiyne-BSA NPs could effectively eliminate the free-radicals, decrease radiation-induced DNA damage in cells, and improve the viability of cells under ionizing radiation. In vivo experiments showed that the graphdiyne-BSA NPs could protect the bone marrow DNA of mice from radiation-induced damage and make the superoxide dismutase (SOD) and malondialdehyde (MDA) (two kinds of vital indicators of radiation-induced injury) recover back to normal levels. Furthermore, the good biocompatibility and negligible systemically toxicity responses of the graphdiyne-BSA NPs to mice were verified. All these results manifest the good biosafety and radioprotection activity of graphdiyne-BSA NPs to normal tissues. Therefore, our studies not only provide a new radiation protection platform based on graphdiyne for protecting normal tissues from radiation-caused injury but also provide a promising direction for the application of graphdiyne in the biomedicine field.

  5. Blood-induced joint damage: novel targets for therapy

    NARCIS (Netherlands)

    van Meegeren, M.E.R.

    2012-01-01

    -induced joint damage can occur due to a trauma but also during surgery when blood leaks into the joint cavity. Besides that, it is one of the major causes of morbidity amongst haemophilia patients. The aims of this thesis were to further unravel the pathogenesis of blood-induced joint damage and to

  6. Hydroxyl-radical-induced oxidation of cyclic dipeptides: Reactions of free peptide radicals and their peroxyl radicals

    International Nuclear Information System (INIS)

    Mieden, O.J.

    1989-01-01

    In the course of this study investigations were carried out into the reactions of hydroxyl radicals and hydrogen atoms with cyclic dipeptides as well as the subsequent reactions of peptide radicals and their peroxyl radicals in aqueous solution. The radiolysis products formed in the absence and presence of oxygen or transient metal complexes were characterized and determined on a quantitative basis. The linking of information from product analyses to the kinetic data for transient species obtained by time-resolving UV/VIS and conductivity measurements (pulse radiolysis) as well as computer-assisted simulations of individual events during the reaction permitted an evaluation of the mechanisms underlying the various processes and an identification of interim products with short life-times, which did or did not belong to the group of radicals. Through the characterization of key reactions of radicals and peroxyl radicals of this substance class a major advance has been made towards a better understanding of the role of radicals in the peptide compound and the mechanisms involved in indirect radiation effects on long-chain peptides and proteins. (orig.) [de

  7. Bean grain hysteresis with induced mechanical damage

    Directory of Open Access Journals (Sweden)

    Renata C. Campos

    Full Text Available ABSTRACT This study aimed to evaluate the effect of mechanical damage on the hysteresis of beans with induced mechanical damage under different conditions of temperature and relative humidity. Beans (Phaseolus vulgaris L. harvested manually with 35% water content (w.b. were used. Part of this product was subjected to induced mechanical damage by Stein Breakage Tester and controlled drying (damaged and control sample, for sorption processes. The sorption isotherms of water were analyzed for different temperature conditions: 20, 30, 40 and 50 oC; and relative humidity: 0.3; 0.4; 0.5; 0.7 and 0.9 (decimal. Equilibrium moisture content data were correlated with six mathematical models, and the Modified Oswin model was the one that best fitted to the experimental data. According to the above mentioned isotherms, it was possible to observe the phenomenon of hysteresis of damaged and control samples, and this phenomenon was more pronounced in control ones.

  8. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  9. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    Science.gov (United States)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  10. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  11. Neuroprotection by Radical Avoidance: Search for Suitable Agents

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2009-12-01

    Full Text Available Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. l-Theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.

  12. Radiation damage to DNA constituents

    International Nuclear Information System (INIS)

    Bergene, R.

    1977-01-01

    The molecular changes of the DNA molecule, in various systems exposed to inoizing radiation, have been the subject of a great number of studies. In the present work electron spin resonance spectroscopy (ESR) has been applied to irradiated crystalline systems, in particular single crystals of DNA subunits and their derivatives. The main conclusions about the molecular damage are based on this technique in combination with molecular orbital calculations. It should be emphasized that the ESR technique is restricted to damage containing unpaired electrons. These unstable intermediates called free radicals seem, however, to be involved in all molecular models describing the action of radiation on DNA. One of the premises for a detailed theory of the radiation induced reactions at the physico-chemical level seems to involve exact knowledge of the induced free radicals as well as the modes of their formation and fate. For DNA, as such, it is hardly possible to arrive at such a level of knowledge since the molecular complexity prevents selective studies of the many different radiation induced products. One possible approach is to study the free radicals formed in the constituents of DNA. In the present work three lines of approach should be mentioned. The first is based on the observation that radical formation in general causes only minor structural alterations to the molecule in question. The use of isotopes with different spin and magnetic moment (in particular deuterium) may also serve a source of information. Deuteration leads to a number of protons, mainly NH - and OH, becoming substituted, and if any of these are involved in interactions with unpaired protons the resonance pattern is influeneed. The third source of information is molecular orbital calculation. The electron spin density distribution is a function in the three dimensional space based on the system's electronic wave functions. This constitutes the basis for the idea that ESR data can be correlated with

  13. Laser-induced damage study of polymer PMMA; Motale-e-ye padid-e-ye khesarat-e mavvad-e polimeri PMMA dar moghabel-e barik-e-ye laizer

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, N

    2001-07-01

    This article presents the results of bulk laser-induced damage measurements in polymer PMMA at 532 nm and 1064 nm for nanosecond laser pulses. The damage thresholds were measured for focused spot sizes ranging over two orders of magnitude. In this work, self-focusing effects were verified to be absent by measurements of breakdown thresholds using both linearly and circularly polarized light. At both 1064 nm and 532 nm, the dependence of the breakdown field, E{sub B}, on the spot size, {omega}, was empirically determined to be E{sub B} = C/{radical}{omega}, where C depends on the wavelength. The extracted value for C({lambda}) at 1064 nm is larger by a factor of 5 than at 532 nm. Possible reasons for this strong dispersion and mechanism for laser-induced damage in polymer materials will be discussed.

  14. Electron spin resonance study on γ-ray-induced ethyl radical in ethane hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Nango, Kouhei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi; Ito, Hironori; Okada, Michio; Kasai, Toshio

    2007-01-01

    Electron spin resonance (ESR) studies have been performed to investigate radicals induced in ethane hydrate irradiated by γ-rays at 77K. Two ESR spectra are observed and identified as the induced ethyl radical (g=2.0031±0.0005, A α sub(perpendicular)=2.2±0.1mT, A α sub(parallel)=2.5±0.1mT, A β =2.7±0.1mT) and induced atomic hydrogen (g=2.0026±0.0005, A=50.5±0.1mT). From the results of ESR analysis and gas mass spectroscopy, it is concluded that the ethyl radical decays into butane by dimerization in the first-order reaction in the temperature region of 250-265K. The activation energy of the decay reaction is 73.1±6.3kJ/mol, which is near the dissociation enthalpy change of ethane hydrate to liquid water and gaseous ethane. This finding implies that ethane hydrate does not dissociate into ice but supercooled water in the present temperature region, similar to the dissociation of methane hydrate in our previous study. (author)

  15. Photo-oxidative damage to isolated rat liver mitochondria induced by phenothiazines

    Directory of Open Access Journals (Sweden)

    T. RODRIGUES

    2009-01-01

    Full Text Available

    Photosensitization is a well-known side-effect of phenothiazines that could involve photochemically promoted oxidative damage to mitochondria, leading to the impairment of metabolic functions and apoptosis. In this work, for the first time, we investigated the effects of photoexcited thioridazine (TR, trifluoperazine (TFP and fluphenazine (FP on isolated rat liver mitochondria. Under UV irradiation, the presence of these phenothiazines led to a dose-dependent lack of the respiratory control ratio. These effects were not accompanied by significant swelling and oxidation of protein thiol groups but were accompanied by lipid peroxidation. Lycopene and sorbate, well-known quenchers of singlet oxygen and triplet species, respectively, were ineffective at protecting mitochondrial lipids against the damage promoted by the excited phenothiazines, suggesting that photochemically-produced cation radicals were the prooxidant species. Corroborating this proposal, butylated hydroxytoluene (BHT completely inhibited the lipid peroxidation induced by UV irradiation in the presence of phenothiazines. These novel results make a significant contribution to the understanding of the photochemical properties of phenothiazines in biological systems. Keywords: Trifluoperazine, thioridazine, fluphenazine, rat liver mitochondria, oxidative stress, photochemistry, photodamage, respiratory chain.

  16. Chromium-induced membrane damage: protective role of ascorbic acid.

    Science.gov (United States)

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  17. Protective effects of vitamin C against gamma-ray induced wholly damage and genetic damage

    International Nuclear Information System (INIS)

    Fu Chunling; Jiang Weiwei; Zhang Ping; Chen Xiang; Zhu Shengtao

    2000-01-01

    Objective: Protective effects of supplemental vitamin C against 60 Co-gamma-ray induced wholly damage and genetic damage was investigated in mice. Method: Mice were divided into normal control group, irradiation control group and vitamin C experimental group 1,2,3 (which were orally given vitamin C 15, 30, 45 mg/kg.bw for 10 successive days respectively prior to gamma-ray irradiation). Micronuclei in the bone marrow polychromatophilic erythrocytes in each group of mice were examined and the 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Supplemental vitamin C prior to gamma-rays irradiation can significantly decrease bone marrow PECMN rate of mice and increase 30 day survival rate and prolong average survival time. The protection factor is 2.09. Conclusion: Vitamin C has potent protective effects against gamma irradiation induced damage in mice. In certain dose range, vitamin C can absolutely suppress the gamma-rays induced genetic damage in vivo

  18. Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery

    Science.gov (United States)

    Shi, Hualiang

    Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma

  19. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Rakvin, B.

    2005-01-01

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν 0 is 24.1±0.4min -1 . The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  20. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  1. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  2. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  3. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  4. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  5. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    A. Montoro

    2011-01-01

    Full Text Available Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP, including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.

  6. Investigation of the reactions of histone protein hydroperoxides and their role in DNA damage

    International Nuclear Information System (INIS)

    Luxford, C.; Dean, R.T.; Davies, M.J.

    1998-01-01

    that the transition metal ion-catalyzed breakdown of histone H1-OOH generates radicals which result in DNA damage. Thus, initial radical-induced damage to histones is a potential pathway for subsequent DNA mutation via a damage transfer process

  7. Hydroxyl radicals ({center_dot}OH) are associated with titanium dioxide (TiO{sub 2}) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2008-04-02

    TiO{sub 2} nanoparticles (<100 nm diameter) have been reported to cause oxidative stress related effects, including inflammation, cytotoxicity and genomic instability, either alone or in the presence of UVA irradiation in mammalian studies. Despite the fact that the aquatic environment is often the ultimate recipient of all contaminants there is a paucity of data pertaining to the potential detrimental effects of nanoparticles on aquatic organisms. Therefore, these investigations aimed to evaluate the potential cytotoxic and genotoxic effects of TiO{sub 2} nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO{sub 2} alone (0.1-1000 {mu}g ml{sup -1}) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m{sup -2}) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO{sub 2} and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 {mu}g ml{sup -1} in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO{sub 2}. UVA irradiation of TiO{sub 2}-treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO{sub 2} were most likely due to hydroxyl radical ({center_dot}OH) formation.

  8. Evaluation of the Genotoxic Potential against H2O2-Radical-Mediated DNA Damage and Acute Oral Toxicity of Standardized Extract of Polyalthia longifolia Leaf

    Directory of Open Access Journals (Sweden)

    Subramanion L. Jothy

    2013-01-01

    Full Text Available Medicinal plants have been used in medicoculturally diverse countries around the world, where it is a part of a time-honoured tradition that is respected even today. Polyalthia longifolia leaf extract has been previously reported as an efficient antioxidant in vitro. Hence, the genotoxic effects of P. longifolia leaf were investigated by using plasmid relation, comet, and Allium cepa assay. In the presence of  ∙OH radicals, the DNA in supercoil was start nicked into open circular form, which is the product of the single-stranded cleavage of supercoil DNA and quantified as fragmented separate bands on agarose gel in plasmid relation assay. In the plasmid relation and comet assay, the P. longifolia leaf extract exhibited strong inhibitory effects against H2O2-mediated DNA damage. A dose-dependent increase of chromosome aberrations was also observed in the Allium cepa assay. The abnormalities scored were stickiness, c-mitosis, bridges, and vagrant chromosomes. Micronucleated cells were also observed at the interphase. The results of Allium cepa assay confirmed that the methanol extracts of P. longifolia exerted no significant genotoxic or mitodepressive effects at 100 μg/mL. Thus, this study demonstrated that P. longifolia leaf extract has a beneficial effect against oxidative DNA damage. This experiment is the first report for the protective effect of P. longifolia on DNA damage-induced by hydroxyl radicals. Additionally in acute oral toxicity study, female rats were treated at 5000 mg/kg body weight of P. longifolia leaf extract and observed for signs of toxicity for 14 days. P. longifolia leaf extract did not produce any treatment-related toxic effects in rats.

  9. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    Science.gov (United States)

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  10. Protective effect of zingerone, a dietary compound against radiation induced damage

    International Nuclear Information System (INIS)

    Satish Rao, B.S.; Rao, Nageshwar

    2012-01-01

    The radioprotective potential of phenolic alkanone, Zingerone (ZO) was investigated using human peripheral blood lymphocytes as well as Chinese hamster fibroblast (V79) cells growing in vitro and in vivo by using Swiss albino mice exposed to gamma radiation. In the in vivo studies, mice were administered with ZO (10-100 mg/kg b.wt), once daily for five consecutive days. One hour after the last administration of ZO on the fifth day, animals were whole body exposed to 10 Gy gamma radiations. The radioprotective potential was assessed using animal survival, haemopoietic stem cell survival (CFU) assay, mouse bone marrow micronucleus test, histological observations of intestinal and bone marrow damage. Effect of ZO pretreatment on radiation-induced changes in glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPx) levels was also analyzed. ZO treatment resulted increase in the LD50/30 by 1.8 Gy (dose reduction factor = 1.2). The number of spleen colonies after whole body irradiation of mice (4.5 or 7.5 Gy) was increased when ZO was administered 1 h prior to irradiation. The histological observations indicated a decline in the villus height and crypt number with an increase in goblet and dead cell population in the irradiated group, which was normalized by pretreatment with ZO. A significant (p < 0.001) reduction in micronucleated polychromatic, normochromatic erythrocytes, increased PCE/NCE ratio, increase in the GSH, GST, SOD, CAT and decreased LPx levels were observed in ZO by pretreated group when compared to the irradiated animals. Our in vitro and in vivo studies demonstrate the potential of ZO in mitigating radiation-induced cytotoxic, genotoxicity, apoptosis in cell culture and animal mortality, cytogenetic damage, intestinal and bone marrow protection in vivo. Radioprotective potential of ZO may be attributed to the inhibition radiation-induced decline in the endogenous antioxidant levels

  11. Protective effects of edaravone against cisplatin-induced hair cell damage in zebrafish.

    Science.gov (United States)

    Hong, Seok Jin; Im, Gi Jung; Chang, Jiwon; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon Young; Jung, Hak Hyun; Chung, Ah Young; Park, Hae Chul; Choi, June

    2013-06-01

    Edaravone is known to have a potent free radical scavenging effect. The objective of the present study was to evaluate the effects of edaravone on cisplatin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five day post-fertilization zebrafish larvae were exposed to 1000 μM cisplatin and 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, and 1000 μM concentrations of edaravone for 4h. Hair cells within neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed by fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of the hair cells in the control group that were not exposed to cisplatin. Ultrastructural changes were evaluated using scanning electron microscopy and transmission electron microscopy. Edaravone protected cisplatin-induced hair cell loss of neuromasts (edaravone 750 μM: 8.7 ± 1.5 cells, cisplatin 1000 μM only: 3.7 ± 0.9 cells; n=10, pedaravone for 4h. Edaravone attenuated cisplatin-induced hair cell damage in zebrafish. The results of the current study suggest that cisplatin induces apoptosis, and the apoptotic cell death can be prevented by treatment with edaravone in zebrafish. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Synergy between low and high energy radical femtochemistry

    International Nuclear Information System (INIS)

    Gauduel, Y A

    2011-01-01

    The deleterious effects of ionizing radiation on integrated biological targets being dependent on the spatio-temporal distribution of short-lived radical processes, a thorough knowledge of these early events requires a real-time probing in the range 10 -15 - 10 -10 s. This manuscript review is focused on the synergy that exists between low (1-10 eV) and high (MeV) energy radiation femtochemistry (LERF, HERF respectively). The synergy remains crucial for the investigation of primary radical processes that take place within the prethermal regime of low energy secondary electrons. The quantum character of very-short lived electron in a prehydrated configuration provides a unique sub-nanometric probe to spatially explore some early radiation-induced biomolecular damage. This approach would foreshadow the development of innovative applications for spatio-temporal radiation biology such as, i) a highly-selective pro-drug activation using well-defined quantum states of short-lived radicals, ii) the real-time nanodosimetry in biologically relevant environments, and iii) the ultrashort irradiation of living cells.

  13. Damage-induced nonassociated inelastic flow in rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Brodsky, N.S.; Fossum, A.F.; Munson, D.E.

    1993-01-01

    The multi-mechanism deformation coupled fracture model recently developed by CHAN, et al. (1992), for describing time-dependent, pressure-sensitive inelastic flow and damage evolution in crystalline solids was evaluated against triaxial creep experiments on rock salt. Guided by experimental observations, the kinetic equation and the flow law for damage-induced inelastic flow in the model were modified to account for the development of damage and inelastic dilatation in the transient creep regime. The revised model was then utilized to obtain the creep response and damage evolution in rock salt as a function of confining pressure and stress difference. Comparison between model calculation and experiment revealed that damage-induced inelastic flow is nonassociated, dilatational, and contributes significantly to the macroscopic strain rate observed in rock salt deformed at low confining pressures. The inelastic strain rate and volumetric strain due to damage decrease with increasing confining pressures, and all are suppressed at sufficiently high confining pressures

  14. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  15. Influence of Cocoa Flavanols and Procyanidins on Free Radical-induced Human Erythrocyte Hemolysis

    Directory of Open Access Journals (Sweden)

    Qin Yan Zhu

    2005-01-01

    Full Text Available Cocoa can be a rich source of antioxidants including the flavan-3-ols, epicatechin and catechin, and their oligomers (procyanidins. While these flavonoids have been reported to reduce the rate of free radical-induced erythrocyte hemolysis in experimental animal models, little is known about their effect on human erythrocyte hemolysis. The major objective of this work was to study the effect of a flavonoid-rich cocoa beverage on the resistance of human erythrocytes to oxidative stress. A second objective was to assess the effects of select purified cocoa flavonoids, epicatechin, catechin, the procyanidin Dimer B2 and one of its major metabolites, 3ʹ-O-methyl epicatechin, on free radical-induced erythrocyte hemolysis in vitro. Peripheral blood was obtained from 8 healthy subjects before and 1, 2, 4 and 8 h after consuming a flavonoid-rich cocoa beverage that provided 0.25 g/kg body weight (BW, 0.375 or 0.50 g/kg BW of cocoa. Plasma flavanol and dimer concentrations were determined for each subject. Erythrocyte hemolysis was evaluated using a controlled peroxidation reaction. Epicatechin, catechin, 3ʹ-O-methyl epicatechin and (--epicatechin-(4β > 8epicatechin (Dimer B2 were detected in the plasma within 1 h after the consumption of the beverage. The susceptibility of erythrocytes to hemolysis was reduced significantly following the consumption of the beverages. The duration of the lag time, which reflects the capacity of cells to buffer free radicals, was increased. Consistent with the above, the purified flavonoids, epicatechin, catechin, Dimer B2 and the metabolite 3ʹ-O-methyl epicatechin, exhibited dose-dependent protection against AAPH-induced erythrocyte hemolysis at concentrations ranging from 2.5 to 20 μM. Erythrocytes from subjects consuming flavonoid-rich cocoa show reduced susceptibility to free radical-induced hemolysis (p < 0.05.

  16. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  17. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad...... of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state...... step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer....

  18. Free radicals in pyrimidines: ESR of. gamma. -irradiated 5-cyclohexenyl-1,5-dimethyl barbituric acid. [/sup 60/Co

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B. (Lehigh Univ., Bethlehem, PA); Erich, L.

    1981-06-01

    ESR studies have determined that ionizing radiation damage of hexobarbital (5-cyclohexenyl-1,5-dimethylbarbituric acid) causes the formation of a free radical (A) by hydrogen abstraction from the cyclohexenyl group. Hyperfine coupling tensors were determined for coupling of the unpaired electron to four protons. Visible light of wavelengths near 450 nm reversibly converts this radical to a second free radical (B) which also has the unpaired electron localized in the cyclohexenyl group. The activation energy for a thermally induced reverse conversion (B ..-->.. A) was determined to be 1.4 eV.

  19. Radiation damage to DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim-Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 261, zima (2011), s. 1-10 ISSN 1742-6588. [COST Chemistry CM0603-MELUSYN Joint Meeting Damages Induced in Biomolecules by Low and High Energy Radiations. Paříž, 09.03.2010-12.03.2010] R&D Projects: GA AV ČR IAA1048103; GA AV ČR KJB4048401; GA MŠk 1P05OC085; GA MŠk OC09012; GA AV ČR IAB1048901 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiolysis * molecular-dynamics simulation * hydroxyl radical attack * induced strand breakage Subject RIV: BO - Biophysics

  20. DMA mitigates ionizing radiation induced damage in Balb/c mice through Akt/NFκB/PTEN pathway

    International Nuclear Information System (INIS)

    Tiwari, Vinod; Ranjan, Atul; Tandon, Vibha

    2014-01-01

    Ionizing radiation is associated with massive apoptosis in tumor as well as in radiosensitive organs. DMA, (5-(4-methylpiperazin-1-yl)-2-(2'-(3,4-dimethoxy-phenyl)-5'-benzimidazolyl) a cytoprotective radiomodulator, work in dual mode of action as free radical quencher and modifier of genomic instability caused by radiation. We observed 34% radioprotection with 50 mg/Kg bw intravenous dose of DMA in Balb/c mice at 8 Gy. DMA treatment before irradiation restored the normal crypts and villi architecture in Balb/c mice. The villi height was restored equivalent to control group in DMA treated animals, whereas, it was degenerated in irradiated animals. IR-induced apoptosis was reduced in spleen in presence of DMA as a result of preservation of splenic lymphocytes from radiation. This clearly exhibits the radioprotective ability of DMA to mitigate radiation induced tissue damage. IR-induced S phase check point was overcome by DMA. DMA promoted activation and phosphorylation of GSK3β through the activation of Akt in Balb/c mice. There was reduction in PTEN level in DMA pretreated mice where as it was upregulated in irradiated mice. Relative enhanced kinase activity of Akt was observed in DMA treated Balb/c mice and irradiated A549, MRC5 cell lines. There was no significant radioprotection in DMA treated Akt siRNA transfected cells in comparison to only Akt siRNA transfected cells with increasing dose of radiation. Akt activation was found in a dose-dependent manner by DMA through Luciferase reporter assay. We observed that DMA treated HEK cells transfected with control siRNA, resulted in less early apoptotic cells within 24h, but radiation (5 Gy) treated cells showed 20% early apoptotic cells within 3 h which were reduced to 12% at 3 h, 9% at 6 h and 8% at 24 h in DMA+radiation treated cells determined by Annexin V binding assay. Further molecular mRNA expression analysis of key regulatory genes unveil that DMA inhibited p21 and augmented Akt and Gadd45 in

  1. Effect of free radicals and cultivation media on radiation sensitivities of escherichia coli and related bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2000-01-01

    Effects of gamma-irradiation on some strains of Escherichia coli, Salmonella enteritidis and Staphylococcus aureus were investigated in the presence of N 2 , N 2 O and O 2 and with the hydroxyl radical (OH) scavengers glycerol, polyethylene glycerol and formate. Injured cell membrane of bacteria was detected using with MacConkey agar for E. coli and S. enteritidis and 7% NaCl Triptic soy agar for St. aureus instead of Tryptic soy agar for recovery medium. From this study, addition of glycerol significantly reduced the sensitivity in all of strains, and cell membrane was not injured significantly except in radiation sensitive strain E. coli A4-1. When superoxide radicals (O 2 ) were generated during irradiation in the presence of formate, injured cell membrane increased significantly in all of strains. However, molecular oxygen (O 2 ) and OH radicals also had some effects on the damage of cell membrane. These results suggest that most radiation induced cell lethality was responsible to the cooperative effects of intracellular OH radicals and O 2 on DNA with lessor effect of damage on cell membrane by O 2 radicals, O 2 and OH radicals. On the radiation sensitive strain of E. coli, cell lethality occurred significantly by the injury of cell membrane compared with other strains. (author)

  2. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    Science.gov (United States)

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the

  3. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  4. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    Science.gov (United States)

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.

  5. An extended sequence specificity for UV-induced DNA damage.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  7. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  8. Laser-induced damage study of polymer PMMA

    International Nuclear Information System (INIS)

    Mansour, N.

    2001-01-01

    This article presents the results of bulk laser-induced damage measurements in polymer PMMA at 532 nm and 1064 nm for nanosecond laser pulses. The damage thresholds were measured for focused spot sizes ranging over two orders of magnitude. In this work, self-focusing effects were verified to be absent by measurements of breakdown thresholds using both linearly and circularly polarized light. At both 1064 nm and 532 nm, the dependence of the breakdown field, E B , on the spot size, ω, was empirically determined to be E B = C/√ω, where C depends on the wavelength. The extracted value for C(λ) at 1064 nm is larger by a factor of 5 than at 532 nm. Possible reasons for this strong dispersion and mechanism for laser-induced damage in polymer materials will be discussed

  9. Photodynamically generated bovine serum albumin radicals

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photoxidation of bovine serum albumin (BSA) results in oxidation of the protein at (at least) two different, specific sites: the Cys-34 residue giving rise to a thiyl radical (RS.); and one or both of the tryptophan residues (Trp-134 and Trp-214) resulting in the formation...... of tertiary carbon-centred radicals and disruption of the tryptophan ring system. In the case of porphyrins such as hematoporphyrin, which bind at specific sites on BSA, these species appear to arise via long-range transfer of damage within the protein structure, as the binding site is some distance from...... the ultimate site of radical formation. This transfer of damage is shown to depend on a number of factors including the conformation of the protein, the presence of blocking groups and pH. Alteration of the protein conformation results in radical formation at additional (or alternative) sites, as does blocking...

  10. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  11. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    Science.gov (United States)

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  12. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code

    International Nuclear Information System (INIS)

    Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Villagrasa, C.; Incerti, S.

    2014-01-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or de-condensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with de-condensed chromatin. This work aims to evaluate the influence of the chromatin condensation in the number and complexity of direct DSB damages induced by proton and alpha irradiation. With the simulations of this study, the increase in the number and complexity of DSB-like clusters induced by ions in the heterochromatin when compared with euchromatin regions of the cell nucleus has been observed and quantified. These results suggest that condensed chromatin can be the location of more severe radiation-induced lesions, more difficult to repair, than de-condensed chromatin. On the other hand, it was also observed that, whatever the chromatin condensation, more possible damages are found after proton irradiation compared with alpha particles of the same LET. Nevertheless, as already remarked, this study concerns only the direct effect of ionising radiation that can be calculated from the results of the physical stage simulated with Geant4-DNA. To include indirect effects induced by radicals around the DNA molecule, the elements needed for simulating the chemical stage are being developed in the frame of the Geant4-DNA project(15, 16) and they are planned to be included in future work. With a complete calculation (direct + indirect damages) it would then be possible to estimate an energy

  13. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Shi Huahong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)]. E-mail: huahongshi@tom.com; Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Luo Yi [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Su Yan [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)

    2005-09-30

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants (BFRs). To confirm its putative oxidative stress-inducing activity, freshwater fish Carassius auratus were injected intraperitoneally with TBBPA. One experiment lasted 3 h to 28 days after a single injection of 100 mg/kg TBBPA, and the other lasted 24 h after a single injection of 0-300 mg/kg TBBPA. Reactive oxygen species (ROS) were trapped by phenyl-tert-butyl nitrone (PBN) and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation product (LPO) content were also determined. A six-line EPR spectrum was detected in the sample prepared in air, and a multiple one was obtained in nitrogen. The observed spectrum in nitrogen fits the simulation one with PBN/{center_dot}OCH{sub 3} and PBN/{center_dot}CH{sub 3} quite well. As compared to the control group, TBBPA significantly induced ROS production marked by the intensity of the prominent spectra in liver and bile. TBBPA (100 mg/kg) also significantly increased PCO content in liver starting 24 h and LPO content 3 days after injection. Either PCO or LPO content showed significant relation with ROS production. Based on the hyperfine constants and shape of the spectrum, ROS induced by TBBPA was determined as {center_dot}OH. The results clearly indicated that TBBPA could induce {center_dot}OH generation and result in oxidative damage in liver of C. auratus.

  14. Total free radical species and oxidation equivalent in polluted air.

    Science.gov (United States)

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N2O-saturated buffers

    International Nuclear Information System (INIS)

    Krokosz, Anita; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia

    2008-01-01

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N 2 O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes

  16. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Boucher, D.

    2006-01-01

    DNA strand-breaks we were able to show that uncontrolled oxidation of DNA during cell lysis and DNA extraction gives rise to artificial DSB. If one avoids this oxidation by adding an antioxidant and/or an iron chelating agent (to inhibit possible Fenton reactions and the formation of OH radicals) before cell-lysis, the amount of LMDS decreases to very low, nearly insignificant levels. This holds for mammalian cells after low LET and high LET radiation (Ar+ ions). The induction of LMDS turned out to be neither dose- nor dose-rate dependent. Furthermore, we demonstrate that additional DSB, i.e. 'LMDS' can be detected by PFGE and enzymatic treatment when adding H 2 O 2 during cell-lysis. Thus, it is clear that the actual method used for the detection of these lesions induced in living cells is inadequate and that there is at present no firm experimental evidence for the presence of LMDS composed of oxidative damage after low or high LET irradiation in mammalian cells that can be related to radiation responses. At present, other possible approaches are tested that might allow a better definition of complex radiation-induced lesions in mammalian cells such as complex DSB. (authors)

  17. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    into DNA strand-breaks we were able to show that uncontrolled oxidation of DNA during cell lysis and DNA extraction gives rise to artificial DSB. If one avoids this oxidation by adding an antioxidant and/or an iron chelating agent (to inhibit possible Fenton reactions and the formation of OH radicals) before cell-lysis, the amount of LMDS decreases to very low, nearly insignificant levels. This holds for mammalian cells after low LET and high LET radiation (Ar+ ions). The induction of LMDS turned out to be neither dose- nor dose-rate dependent. Furthermore, we demonstrate that additional DSB, i.e. 'LMDS' can be detected by PFGE and enzymatic treatment when adding H{sub 2}O{sub 2} during cell-lysis. Thus, it is clear that the actual method used for the detection of these lesions induced in living cells is inadequate and that there is at present no firm experimental evidence for the presence of LMDS composed of oxidative damage after low or high LET irradiation in mammalian cells that can be related to radiation responses. At present, other possible approaches are tested that might allow a better definition of complex radiation-induced lesions in mammalian cells such as complex DSB. (authors)

  18. Protection of myocytes against free radical-induced damage by accelerated turnover of the glutathione redox cycle

    NARCIS (Netherlands)

    Le, C. T.; Hollaar, L.; van der Valk, E. J.; Franken, N. A.; van Ravels, F. J.; Wondergem, J.; van der Laarse, A.

    1995-01-01

    The primary defence mechanism of myocytes against peroxides and peroxide-derived peroxyl and alkoxyl radicals is the glutathione redox cycle. The purpose of the present study was to increase the turnover rate of this cycle by stimulating the glutathione peroxidase catalysed reaction (2GSH-->GSSG),

  19. MDM2 Antagonists Counteract Drug-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Anna E. Vilgelm

    2017-10-01

    Full Text Available Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.

  20. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye.

    Science.gov (United States)

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-08

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2mJ/cm(2)) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (Peyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low concentration, probably through its free radical scavenging and antioxidant properties. Therefore, 4-CA may be useful in protecting the eye from free radical damage following UVB exposure from sunlight, UV lamps and welding torches.

  1. Radical chemistry of epigallocatechin gallate and its relevance to protein damage

    DEFF Research Database (Denmark)

    Hagerman, Ann E; Dean, Roger T; Davies, Michael Jonathan

    2003-01-01

    The radical chemistry of the plant polyphenolics epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were investigated using electron paramagnetic resonance spectroscopy. Radical species formed spontaneously in aqueous solutions at low pH without external oxidant and were spin stabilized...... redox potentials of EGCG and EGC varied from 1000 mV at pH 3 to 400 mV at pH 8. The polyphenolics did not produce hydroxyl radicals unless reduced metal ions such as iron(II) were added to the system. Zinc(II)-stabilized EGCG radicals were more effective protein-precipitating agents than unoxidized EGCG...

  2. Dicranostiga leptopodu (Maxim.) Fedde extracts attenuated CCl4-induced acute liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function.

    Science.gov (United States)

    Tang, Deping; Wang, Fang; Tang, Jinzhou; Mao, Aihong; Liao, Shiqi; Wang, Qin

    2017-01-01

    Dicranostiga Leptodu (Maxim.) fedde (DLF), a poppy plant, has been reported have many benefits and medicinal properties, including free radicals scavenging and detoxifying. However, the protective effect of DLF extracts against carbon tetrachloride (CCl 4 )-induced damage in mice liver has not been elucidated. Here, we demonstrated that DLF extracts attenuated CCl 4 -induced liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function. In this study, the mice liver damage evoked by CCl 4 was marked by morphology changes, significant rise in lipid peroxidation, as well as alterations of mitochondrial respiratory function. Interestingly, pretreatment with DLF extracts attenuated CCl 4 -induced morphological damage and increasing of lipid peroxidation in mice liver. Additionally, DLF extracts improved mitochondrial function by preventing the disruption of respiratory chain and suppression of mitochondrial Na + K + -ATPase and Ca 2+ -ATPase activity. Furthermore, administration with DLF extracts elevated superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels and maintained the balance of redox status. This results showed that toxic protection effect of DLF extracts on mice liver is mediated by improving mitochondrial respiratory function and keeping the balance of redox status, which suggesting that DLF extracts could be used as potential toxic protection agent for the liver against hepatotoxic agent. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Smeared crack modelling approach for corrosion-induced concrete damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik

    2017-01-01

    In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....

  4. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  5. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  6. Low dose radiation induced hormesis and its mechanism of free radicals

    International Nuclear Information System (INIS)

    Zhang Liyuan; Huo Hongmei; Zhang Yusong; Zhao Peifeng; Li Wei; Jiang Jiagui

    2008-01-01

    Objective: To investigate whether the supernatant (the stimulating fluid) centrifuged from myeloid cells suspension after low dose radiation in vitro can produce hormesis on the normal or radiation damage cells. The mechanism of free radical was probed. Methods: Mouse myeloid cell suspension was irradiated respectively by 0, 2 and 5 Gy, and cultured in vitro. MTT method was used to measure the reproductive activity of cells. Meanwhile, Cytochrome C reduction method was used to determine the concentration of O 2 - . Lastly, the concentration of O 2 - was decreased or increased by adding DPI or PMA, and the effect of such changes on 'the stimulating fluid' was observed. Results: Co-cultured with 'the stimulating fluid', the reproductive activity of the myeloid cells after large dose radiation or the normal myeloid cells were enhanced. Decreasing the concentration of O 2 - ; may degrade the proliferation of the cells after radiation damage; while increasing it may lead to the opposite result. Conclusions: The stimulating fluid can enhance the proliferation of the myeloid cells after radiation damage and also the normal ones. The mechanism of above-mentioned phenomena might be related with the changes of O 2 - concentration. (authors)

  7. Free radicals created by radiation and aging symptoms

    International Nuclear Information System (INIS)

    Ashry, O.M.

    2012-01-01

    The universality of aging implies that its cause is basically the same in all species. A free radical hypothesis of aging has been proposed that the free radicals produced during normal metabolism of the cell over time damage DNA and other macromolecules leading to degenerative diseases, malignancies, and eventual death of vital cells which in turn causes aging and death of the organism. This hypothesis is supported by several observations. Radiation produces its biologic effect through free radical formation and causes premature aging. Second, the age pigment lipo fuscin is associated with lipid peroxidation. The hypothesis that oxygen radicals play a role in aging is also supported by the observation that, in general, long-lived species produce less endogenous free oxygen radicals because of their lower metabolic rate. Long-lived animals also have more superoxide dismutase than do their short-lived counterparts, and animal species with the longest lifespan have the highest levels of superoxide dismutase. Oxidative DNA damage is rapidly and effectively repaired. It has been estimated that there are several thousand oxidative DNA damage sites in a human cell every day, and the majority of these are repaired. However, a small fraction of unrepaired lesions could cause permanent changes in DNA and might be a major contributor to aging and cancer. A consequence of the free radical hypothesis of aging is the idea that free radical scavenging agents might be used to prevent aging. (author)

  8. Parvovirus infection-induced DNA damage response

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  9. OH radical induced depolymerization of poly(methacrylic acid)

    Science.gov (United States)

    Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens

    1999-05-01

    Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.

  10. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC Damages.

    Directory of Open Access Journals (Sweden)

    Yumei Zhang

    Full Text Available Here, we studied the underlying mechanism of aldosterone (Aldo-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L inhibited human umbilical vein endothelial cells (HUVEC survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18 production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P, an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS inhibitor PDMP or the ceramide (C6 potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1 is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  11. Understanding the dosimetric powder EPR spectrum of sucrose by identification of the stable radiation-induced radicals

    International Nuclear Information System (INIS)

    Vrielinck, H.; Vanhaelewyn, G.; Matthys, P.; Callens, F.; Kusakovskij, J.

    2014-01-01

    Sucrose, the main component of table sugar, present in nearly every household and quite radiation sensitive, is considered as an interesting emergency dosemeter. Another application of radiation-induced radicals in sugars is the detection of irradiation in sugar-containing foodstuffs. The complexity of electron paramagnetic resonance (EPR) spectra of radicals in these materials, as a result of many hyperfine interactions and the multi-compositeness of the spectra of individual sugars, complicate dose assessment and the improvement of protocols for control and identification of irradiated sugar-containing foodstuffs using EPR. A thorough understanding of the EPR spectrum of individual irradiated sugars is desirable when one wants to reliably use them in a wide variety of dosimetric applications. Recently, the dominant room temperature stable radicals in irradiated sucrose have been thoroughly characterised using EPR, electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. These radicals were structurally identified by comparing their proton hyperfine and g-tensors with the results of Density Functional Theory calculations for test radical structures. In this paper, the authors use the spin Hamiltonian parameters determined in these studies to simulate powder EPR spectra at the standard X-band (9.5 GHz), commonly used in applications, and at higher frequencies, up to J-band (285 GHz), rendering spectra with higher resolution. A few pitfalls in the simulation process are highlighted. The results indicate that the major part of the dosimetric spectrum can be understood in terms of three dominant radicals, but as-yet unidentified radicals also contribute in a non-negligible way. (authors)

  12. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    Science.gov (United States)

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  13. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution.

    Science.gov (United States)

    Abolfath, Ramin M; Biswas, P K; Rajnarayanam, R; Brabec, Thomas; Kodym, Reinhard; Papiez, Lech

    2012-04-19

    Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to understanding the indirect effect of ionizing radiation. Previous studies address the problem with truncated DNA bases as ab initio quantum simulations required to study such electronic-spin-dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid quantum mechanical-molecular mechanical simulation to study the interaction of OH radicals with a guanine-deoxyribose-phosphate DNA molecular unit in the presence of water, where all of the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical molecular mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH radicals with respect to the DNA base (here, guanine). This results in an angular anisotropy in the chemical pathway and a lower efficiency in the hydrogen-abstraction mechanisms than previously anticipated for identical systems in vacuum. The method can easily be extended to single- and double-stranded DNA without any appreciable computational cost as these molecular units can be treated in the classical subsystem, as has been demonstrated here. © 2012 American Chemical Society

  14. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia.

    Science.gov (United States)

    Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V

    1996-10-01

    Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.

  15. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    Science.gov (United States)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  16. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    Science.gov (United States)

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  17. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  18. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  19. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  20. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  1. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  2. Ground water pollution by arsenic and its effects on health. Involvement of metabolic methylation in arsenic-induced genetic damage and tumorigenesis; Muki hiso no mechiru ka taisha to idenshi shogaisei narabini shuyo yuhatsusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K. [Nihon Univ., Tokyo (Japan)] Okada, S. [Shizuoka Prefecture (Japan)

    1997-07-10

    Drinking water contamination has become a worldwide problem. It is pointed out that re-evaluation of genetic damage with carcinogen is considered as an important problem particularly arsenic`s effects on health. To explain the genetic damage development mechanism of arsenic compound, results of the research conducted on the action of arsenic compound which develops during metabolic methylation process and inorganic arsenic are explained in this paper. The results of the study are summarized as follows. Arsenic genetic damage mutation is caused by dimethyl arsenic in main metabolism than inorganic arsenic. Lung DNA damage is induced by the interaction of O2 and arsenic peroxide radical. Dimethyl arsenic shows very important effect on lung cancer formation process which is induced based on 4-nitroquinoline-1-oxide (4NQO). It not only promotes lung cancer but it also plays an important role in malignant tumor`s mutation. 25 refs., 2 figs.

  3. Ascorbic acid (AA) metabolism in protection against radiation damage

    International Nuclear Information System (INIS)

    Rose, R.C.; Koch, M.J.

    1986-01-01

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with 14 C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the 14 C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of 14 C-AFR disproportionate, with the net effect of 14 C-dehydroascorbic acid formation from 14 C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23 0 C in the presence of 15 μM 14 C-AA. Samples of supernatant maintained at 100 0 C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues

  4. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  5. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  6. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N{sub 2}O-saturated buffers

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)], E-mail: krokosz@biol.uni.lodz.pl; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)

    2008-06-15

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N{sub 2}O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes.

  7. Differential radioprotection and free radical scavenging activity of Caesalpinia digyna extracts and the active constituent

    International Nuclear Information System (INIS)

    Singh, Umang; Kunwar, A.; Barik, A.; Priyadarsini, K.I.; Mula, S.; Srinivasan, R.

    2008-01-01

    Differential free radical activity of the fractionated extracts (F1: methanolic fraction, F2: acetone soluble fraction and F3: acetone insoluble fraction) of a medicinal plant Caesalpinia digyna, has been studied employing DPPH, superoxide radical and in vitro radioprotecting activity by following their effect on radiation induced protein carbonylation and DNA damage in pBR322. The activity for these fractions is in the order of F1>F2>F3. HPLC analysis indicated that all fractions contain high amount of bergenin, a polyhydroxy isocoumarin derivative and the fractions are more active than isolated bergenin. (author)

  8. Differential radioprotection and free radical scavenging activity of Caesalpinia digyna extracts and the active constituent

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Umang; Kunwar, A; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Mula, S [Bio-Organic Div., Bhabha Atomic Research Centre, Mumbai (India); Srinivasan, R [JSS College of Pharmacy, Ootacamund (India)

    2008-01-15

    Differential free radical activity of the fractionated extracts (F1: methanolic fraction, F2: acetone soluble fraction and F3: acetone insoluble fraction) of a medicinal plant Caesalpinia digyna, has been studied employing DPPH, superoxide radical and in vitro radioprotecting activity by following their effect on radiation induced protein carbonylation and DNA damage in pBR322. The activity for these fractions is in the order of F1>F2>F3. HPLC analysis indicated that all fractions contain high amount of bergenin, a polyhydroxy isocoumarin derivative and the fractions are more active than isolated bergenin. (author)

  9. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    HEMEIDA, R.A.M.; MOHAFEZ, O.M.

    2008-01-01

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  10. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  11. DNA damage protection and 5-lipoxygenase inhibiting activity of ...

    African Journals Online (AJOL)

    DNA damage caused by free radical is associated with mutation-based health impairment. The protective effect on DNA damage mediated by hydroxyl radical and peroxynitrite radical, and the inhibiting activity on 5-lipoxygenase of areca inflorescence extracts were studied in vitro. The results show that the boiling water ...

  12. Current study on ionizing radiation-induced mitochondial DNA damage and mutations

    International Nuclear Information System (INIS)

    Zhou Xin; Wang Zhenhua; Zhang Hong

    2012-01-01

    Current advance in ionizing radiation-induced mitochondrial DNA damage and mutations is reviewed, in addition with the essential differences between mtDNA and nDNA damage and mutations. To extent the knowledge about radiation induced mitochondrial alterations, the researchers in Institute of Modern Physics, Chinese Academy of Sciences developed some technics such as real-time PCR, long-PCR for accurate quantification of radiation induced damage and mutations, and in-depth investigation about the functional changes of mitochondria based on mtDNA damage and mutations were also carried out. In conclusion, the important role of mitochondrial study in radiation biology is underlined, and further study on mitochondrial study associated with late effect and metabolism changes in radiation biology is pointed out. (authors)

  13. The application of radiation-induced free radicals signals in retrospective dosimetry

    International Nuclear Information System (INIS)

    Liu Zhongchao; Zhang Wenyi; Jiao Ling

    2013-01-01

    For some materials and biological samples, free radicals can be induced after ionizing radiation. Electron spin resonance (ESR) spectroscopy can detect free radical signal and its intensity can reflect the dose of the ionizing radiation. It is a typical way to estimate the radiation dosimetry by using the ESR spectroscopy of teeth. In recent years, many researchers studied on ESR of easy-getting materials such as finger (toe) nail, hair, cell phone screen, in order to investigate the relationship between signal intensity and radiation dose. The aim of this paper is to survey the current literature about methodologies and the materials on background signal, linearity of dose-response relationship, minimum detection limit and post-irradiation signal stability, so that more data will be provided for nuclear accident dose estimation. (authors)

  14. Radiation-initiated free-radical fragmentation of biologically active glycerides

    International Nuclear Information System (INIS)

    Akhrem, A.A.; Kisel', M.A.; Shadyro, O.I.; Yurkova, I.L.

    1993-01-01

    Oxidation reactions of the free-radical type play a decisive role in the initial processes of radiation damage. The most suitable substrates for such reactions are lipids. Lipids are a basic structural element of biomembranes and are involved in the barrier function and biocatalytic activity of such membranes. Free-radical degradation of membrane lipids can lead to serious damage and ultimately to destruction of the living cell. A well-studied type of free-radical conversion of lipids is oxidation of polyunsaturated fatty acid residues, so-called peroxide oxidation of lipids. In this paper, using as examples dimyristoylphosphatidyl glycerol (DMPG), monoglycerides, and glycerophosphate, the authors investigated the possibility of free-radical degradation in compounds of a lipid nature containing the α,β-bifunctional group

  15. Modelling of settlement induced building damage

    NARCIS (Netherlands)

    Giardina, G.

    2013-01-01

    This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing.

  16. Modeling of Corrosion-induced Concrete Damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    2013-01-01

    In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non...... of corrosion products affects both the time-to cover cracking and the crack width at the concrete surface.......In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non......-uniform formation of corrosion products at the concrete/reinforcement interface, a deterministic approach is used. The model gives good estimates of both deformations in the con-crete/reinforcement interface and crack width when compared to experimental data. Further, it is shown that non-uniform deposition...

  17. Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Eun Hye Jho

    2013-10-01

    Full Text Available We investigated the protective effects of Gymnaster koraiensisagainst oxidative stress-induced hepatic cell damage. We usedtwo different cytotoxicity models, i.e., the administration oftert-butyl hydroperoxide (t-BHP and acetaminophen, in HepG2cells to evaluate the protective effects of G. koraiensis. The ethylacetate (EA fraction of G. koraiensis and its major compound,3,5-di-O-caffeoylquinic acid (DCQA, exerted protective effectsin the t-BHP-induced liver cytotoxicity model. The EA fractionand DCQA ameliorated t-BHP-induced reductions in GSHlevels and exhibited free radical scavenging activity. The EAfraction and DCQA also significantly reduced t-BHP-inducedDNA damage in HepG2 cells. Furthermore, the hexane fractionof G. koraiensis and its major compound, gymnasterkoreayne B(GKB, exerted strong hepatoprotection in the acetaminopheninducedcytotoxicity model. CYP 3A4 enzyme activity wasstrongly inhibited by the extract, hexane fraction, and GKB. Thehexane fraction and GKB ameliorated acetaminophen-inducedreductions in GSH levels and protected against cell death. [BMBReports 2013; 46(10: 513-518

  18. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    Science.gov (United States)

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Evaluation of Radio-Protective Effect of Melatonin on Whole Body Irradiation Induced Liver Tissue Damage

    NARCIS (Netherlands)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazaleh; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Objective: Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system. The aim

  1. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    Science.gov (United States)

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.

  2. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  3. DNA damage by ethylbenzenehydroperoxide formed from carcinogenic ethylbenzene by sunlight irradiation

    International Nuclear Information System (INIS)

    Toda, Chitose; Uchida, Takafumi; Midorikawa, Kaoru; Murata, Mariko; Hiraku, Yusuke; Okamoto, Yoshinori; Ueda, Koji; Kojima, Nakao; Kawanishi, Shosuke

    2003-01-01

    Ethylbenzene, widely used in human life, is a non-mutagenic carcinogen. Sunlight-irradiated ethylbenzene caused DNA damage in the presence of Cu 2+ , but unirradiated ethylbenzene did not. A Cu + -specific chelator bathocuproine inhibited DNA damage and catalase showed a little inhibitory effect. The scopoletin assay revealed that peroxides and H 2 O 2 were formed in ethylbenzene exposed to sunlight. These results suggest that Cu + and alkoxyl radical mainly participate in DNA damage, and H 2 O 2 partially does. When catalase was added, DNA damage at thymine and cytosine was inhibited. Ethylbenzenehydroperoxide, identified by GC/MS analysis, induced the formation of 8-oxo-7,8-dihydro-2 ' -deoxyguanosine and caused DNA damage at consecutive guanines, as observed with cumenehydroperoxide. Equimolar concentrations of H 2 O 2 and acetophenone were produced by the sunlight-irradiation of 1-phenylethanol, a further degraded product of ethylbenzene. These results indicate a novel pathway that oxidative DNA damage induced by the peroxide and H 2 O 2 derived from sunlight-irradiated ethylbenzene may lead to expression of the carcinogenicity

  4. Generation and propagation of radical reactions on proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    2001-01-01

    The oxidation of proteins by free radicals is thought to play a major role in many oxidative processes within cells and is implicated in a number of human diseases as well as ageing. This review summarises information on the formation of radicals on peptides and proteins and how radical damage may...... be propagated and transferred within protein structures. The emphasis of this article is primarily on the deleterious actions of radicals generated on proteins, and their mechanisms of action, rather than on enzymatic systems where radicals are deliberately formed as transient intermediates. The final section...

  5. Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

    International Nuclear Information System (INIS)

    Liu Peng

    2009-01-01

    A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.

  6. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  7. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  8. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  9. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  10. Modelling low velocity impact induced damage in composite laminates

    Science.gov (United States)

    Shi, Yu; Soutis, Constantinos

    2017-12-01

    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.

  11. Ion-induced damage and amorphization in Si

    International Nuclear Information System (INIS)

    Holland, O.W.; White, C.W.

    1990-01-01

    Ion-induced damage growth in high-energy, self-ion irradiated Si was studied using electron microscopy and Rutherford backscattering spectroscopy. The results show that there is a marked variation in the rate of damage growth, as well as the damage morphology, along the path of the ion. Near the ion end-of-range (eor), damage increases monotonically with ion fluence until a buried amorphous layer is formed, while damage growth saturates at a low level in the region ahead. The morphology of the damage in the saturated region is shown to consist predominantly of simple defect clusters such as the divacancy. Damage growth remains saturated ahead of the eor until expansion of the buried amorphous layer encroaches into the region. A homogeneous growth model is presented which accounts for damage saturation, and accurately predicts the dose-rate dependence of the saturation level. Modifications of the model are discussed which are needed to account for the rapid growth in the eor region and near the interface of the buried amorphous layer. Two important factors contributing to rapid damage growth are identified. Spatial separation of the Frenkel defect pairs (i.e. interstitials and vacancies) due to the momentum of the interstitials is shown to greatly impact damage growth near the eor, while uniaxial strain in the interfacial region of the amorphous layer is identified as an important factor contributing to growth at that location. 20 refs., 10 figs

  12. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2012-01-01

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R 2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  13. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  14. Generation of Oxygen Free Radicals by Proflavine: Implication in Protein Degradation

    Directory of Open Access Journals (Sweden)

    Mansour K.M. Gatasheh

    2017-07-01

    Full Text Available Proflavine, an acridine dye, is a known DNA intercalating agent. In the present study, we show that proflavine alone on photoillumination can generate reactive oxygen species (ROS. These proflavine-derived ROS cause damage to proteins, and this effect is enhanced when the divalent metal ion Cu (II is included in the reaction. Bathocuproine, a specific Cu (I sequestering agent, when present in the reaction mixture containing Cu (II, was found to inhibit the protein degradation, showing that Cu (I is an essential intermediate in the reaction. The effect of several scavengers of ROS such as superoxide dismutase, sodium azide, potassium iodide, and thiourea were examined on the protein damaging reaction. Potassium iodide was found to be the most effective in inhibiting protein damage followed by sodium azide and thiourea. Our results indicate the involvement of superoxide, singlet oxygen, triplet oxygen, and hydroxyl radicals in proflavine-induced damage to proteins.

  15. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2016-02-01

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.

  16. Oxidative damage and aging: spotlight on mitochondria.

    Science.gov (United States)

    Linford, Nancy J; Schriner, Samuel E; Rabinovitch, Peter S

    2006-03-01

    Whereas free radical damage has been proposed as a key component in the tissue degeneration associated with aging, there has been little evidence that free radical damage limits life span in mammals. The current research shows that overexpression of the antioxidant enzyme catalase in mitochondria can extend mouse life span. These results highlight the importance of mitochondrial damage in aging and suggest that when targeted appropriately, boosting antioxidant defenses can increase mammalian life span.

  17. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  18. Myostatin as a Marker for Doxorubicin Induced Cardiac Damage.

    Science.gov (United States)

    Kesik, Vural; Honca, Tevfik; Gulgun, Mustafa; Uysal, Bulent; Kurt, Yasemin Gulcan; Cayci, Tuncer; Babacan, Oguzhan; Gocgeldi, Ercan; Korkmazer, Nadir

    2016-01-01

    Doxorubicin (DXR) is an effective chemotherapeutic agent but causes severe cardiac failure over known doses. Thus, early detection and prevention of cardiac damage is important. Various markers have been tested for early detection of cardiac damage. Myostatin is a protein produced in skeletal muscle cells inhibits muscle differentiation and growth during myogenesis. We evaluated the role of myostatin as a marker for showing DXR induced cardiac damage and compared with well known cardiac markers like NT-proBNP, hs-TnT and CK in a rat model of chronic DXR cardiotoxicity. Myostatin, NT-proBNP, and hs-TnT but not CK rose significantly during DXR treatment. Myostatin can be used as an early marker of DXR induced cardiotoxicity. © 2016 by the Association of Clinical Scientists, Inc.

  19. Protection from radiation-induced enteropathy by elemental diet feeding: The role of free radicals

    International Nuclear Information System (INIS)

    McArdle, A.H.; Duong, M.N.

    1991-01-01

    Free radicals have been implicated in intestinal reperfusion injury following ischemia and in epithelial cell damage resulting from ionizing radiation. Elemental diets (ED) have been shown to afford significant prophylaxis to the intestine from these injuries. The purpose of the present study was to investigate whether ED alters the activity of the defense mechanisms necessary for free radical removal. Six female dogs, fed on normal dog chow, had a 30 cm resection of terminal ileum to form Thiry-Vella loops. The main intestine was biopsied and anastomosed. Two weeks later, biopsies were taken from the lips of the loops. Following this, the loops were fed daily with ED another 2 weeks and biopsied again. The dogs were then placed on ED for 3 days before and during 4 days of pelvic irradiation, and the loops also were fed ED daily; after which the animals were again anesthetized, and the loops and main intestine were biopsied. All biopsies were processed for histology, and assayed for xanthine oxidase (XO), superoxide dismutase (SOD), glutathione peroxidase (GSP) and catalase (CAT). The XO and SOD pathway of free oxygen radical generation and scavenging are not affected by radiation. However, ED lowers both XO and SOD activity and may result in a reduced production of peroxides. The significantly increased activity of GSP and CAT when ED is fed improves the scavenging capacity of the free hydroxyl radicals generated by the radiation, and is an important adjunct to an understanding of ED prophylaxis

  20. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  1. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  2. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  3. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  4. 'Water Structure' versus 'Radical Scavenger' theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Symons, M.C.R.

    1987-01-01

    We report here that dimethylsulfoxide (DMSO): (i) suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation; (ii) inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; (iii) does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and (iv) may be affecting radiation-induced transformation through its solvent properties (i.e. the 'Water Structure' theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro. As DMSO is known to be an extremely effective OH free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. (author)

  5. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  6. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    Science.gov (United States)

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  8. Photoexcited riboflavin induces oxidative damage to human serum albumin

    Science.gov (United States)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  9. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  10. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  11. Evaluation of the potential inhibitor of Ix (Pp-Ix) protoporphyrin of the genetic damage induced by gamma rays administered to different dose reasons in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Flores A, J. A.

    2016-01-01

    Ionizing radiation can damage in DNA directly or indirectly by free radicals (Rl), characterized by unstable and highly reactive. To avoid damage by Rl the cell has endogenous antioxidants such as Sod, Cat, GSH or exogenous as some vitamins, but if with these mechanisms does not reach the cell homeostasis, the consequence may be the generation of chronic-disease degenerative such as cancer. This study was conducted in order to test the inhibitory role of Rl protoporphyrin Ix (Pp-Ix), induced by 20 Gy of gamma rays administered at different dose ratios using the assay of somatic mutation and recombination in the Drosophila wing. The results indicated that 20 Gy delivered at a rate of low dose (6.659 Gy/h), caused elevated frequencies of genetic damage (p <0.001), compared with those that induced a high dose reason (1111.42 Gy/h) in larvae of 48 h old. The difference is probably due to an indirect damage by Rl; when this hypothesis was approved with the possible inhibitor role of Pp-Ix (0.69 m M), damage was increased with the two reasons of tested doses. This result may be due to: 1) the Pp-Ix is not a good inhibitor of Rl, 2) the difference in the frequency of mutation found with both dose reasons, not due to Rl so that this compound did not reduce the genetic damage, and 3) that Pp-Ix acts as pro oxidant. (Author)

  12. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  13. Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals

    International Nuclear Information System (INIS)

    Ward, J.F.

    1981-01-01

    Ionizing radiation deposits energy nonhomogeneously in the medium through which it passes. Mozumder and Magee (Radiat. Res. 28, 203-214(1966)) have classified the events as spurs, blobs, and short tracks. These are defined by size and amount of energy deposited. Thus the initial chemically reactive species are distributed in an inhomogeneous manner. In these volumes of high radical concentration, radical-radical reactions can occur which can only be scavenged by solutes at high concentration. Making the reasonable assumption that similar events occur intracellularly, the consequences of such events must be considered. In the case of DNA, several authors have shown that OH radicals diffuse only tens of angstroms prior to reaction. In the volume from which these radicals originate, DNA is necessarily at high concentration and consequently will interact with the radicals formed in the spur, etc. Such events are probably the source of radiation-production double-strand breaks in cellular DNA. However, the radicals cause other types of damage than strand breaks-potential strand breaks and base damage. An attempt is made to present the interrelation of multiply damaged sites - their constitution, the problems they present to cell repair mechanisms, and their possible relationship to cell survival

  14. Impact induced damage assessment by means of Lamb wave image processing

    Science.gov (United States)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-03-01

    The aim of this research is an analysis of full wavefield Lamb wave interaction with impact-induced damage at various impact energies in order to find out the limitation of the wavenumber adaptive image filtering method. In other words, the relation between impact energy and damage detectability will be shown. A numerical model based on the time domain spectral element method is used for modeling of Lamb wave propagation and interaction with barely visible impact damage in a carbon-epoxy laminate. Numerical studies are followed by experimental research on the same material with an impact damage induced by various energy and also a Teflon insert simulating delamination. Wavenumber adaptive image filtering and signal processing are used for damage visualization and assessment for both numerical and experimental full wavefield data. It is shown that it is possible to visualize and assess the impact damage location, size and to some extent severity by using the proposed technique.

  15. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  16. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  17. Free radical scavenger edaravone suppresses X-ray-induced apoptosis through p53 inhibition in MOLT-4 cells

    International Nuclear Information System (INIS)

    Sasano, Nakashi; Shiraishi, Kenshiro; Igaki, Hiroshi; Nakagawa, Keiichi; Enomoto, Atsushi; Hosoi, Yoshio; Matsumoto, Yoshihisa; Miyagawa, Kiyoshi; Katsumura, Yosuke

    2007-01-01

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular reactive oxygen species (ROS) production was determined by the chloromethyl-2', 7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21 WAF1 , a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53. (author)

  18. Free radical scavenger edaravone suppresses X-ray-induced apoptosis through p53 inhibition in MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasano, Nakashi; Shiraishi, Kenshiro; Igaki, Hiroshi; Nakagawa, Keiichi [Tokyo Univ., Graduate School of Medicine, Tokyo (Japan); Enomoto, Atsushi; Hosoi, Yoshio; Matsumoto, Yoshihisa; Miyagawa, Kiyoshi [Tokyo Univ., Faculty of Medicine, Tokyo (Japan); Katsumura, Yosuke [Tokyo Univ., Graduate School of Engineering, Tokyo (Japan)

    2007-11-15

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular reactive oxygen species (ROS) production was determined by the chloromethyl-2', 7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21{sup WAF1}, a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53. (author)

  19. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.

    Science.gov (United States)

    Santacruz-Gomez, K; Silva-Campa, E; Melendrez-Amavizca, R; Teran Arce, F; Mata-Haro, V; Landon, P B; Zhang, C; Pedroza-Montero, M; Lal, R

    2016-04-07

    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.

  20. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  1. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  2. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    Science.gov (United States)

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Laser-induced damage to thin film dielectric coatings

    International Nuclear Information System (INIS)

    Walker, T.W.

    1980-01-01

    The laser-induced damage thresholds of dielectric thin film coatings have been found to be more than an order of magnitude lower than the bulk material damage thresholds. Prior damage studies have been inconclusive in determining the damage mechanism which is operative in thin films. A program was conducted in which thin film damage thresholds were measured as a function of laser wavelength (1.06 μm, 0.53 μm, 0.35 μm and 0.26 μm), laser pulse length (5 and 15 nanoseconds), film materials and film thickness. The large matrix of data was compared to predictions given by avalanche ionization, multiphoton ionization and impurity theories of laser damage. When Mie absorption cross-sections and the exact thermal equations were included into the impurity theory excellent agreement with the data was found. The avalanche and multiphoton damage theories could not account for most parametric variations in the data. For example, the damage thresholds for most films increased as the film thickness decreased and only the impurity theory could account for this behavior. Other observed changes in damage threshold with changes in laser wavelength, pulse length and film material could only be adequately explained by the impurity theory. The conclusion which results from this study is that laser damage in thin film coatings results from absorbing impurities included during the deposition process

  4. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Aynur Serçe

    2016-01-01

    Full Text Available Antioxidant properties of ethanol extract of Silybum marianum (milk thistle seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using diff erent in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also effi ciently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE. The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  5. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  6. Laser induced damage threshold on metallic surfaces during laser cleaning

    CSIR Research Space (South Africa)

    Labuschagne, K

    2005-07-01

    Full Text Available laser paint removal. Laser induced damage on 316L stainless steel was studied, with the target subjected to single and multiple pulse irradiations using a Q-switched Nd:YAG, with fluences between 0.15 and 11.8 J/cm2. Several different damage morphologies...

  7. Measurement of OH free radical in magnetized sheet plasma crossed with vertical gas-flow by laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Tonegawa, Akira; Takatori, Masahiko; Kobayashi, Yukihiro; Kawamura, Kazutaka; Takayama, Kazuo

    1997-01-01

    We demonstrated the production of OH free radicals in an argon magnetized sheet plasma crossed with vertical gas-flow mixed with an oxygen gas O 2 and a hydrogen gas H 2 . The density and the rotational-vibrational temperature of the OH free radicals were measured by a laser-induced fluorescence (LIF). The density of OH free radicals increases with increasing O 2 gas-flow, while the high energy part of the electron-energy-distribution-function f e (E) above 8 eV decreases. These results suggest the high energy part of f e (E) is contributed to the dissociation of O 2 and the production of OH free radicals. (author)

  8. Effect of quercetin on paracetamole-induced liver disjunction in irradiated rats

    International Nuclear Information System (INIS)

    Hedayat, I.S.

    2005-01-01

    Nowadays, increasing attention has been given to the role of free radicals generated through oxidation stress. Persons subjected to radiation, such as radiotherapy, consuming analgesic drugs such as paracetamole which accumulates at relatively high concentration in liver, are in need to be investigated to explore the synergetic effects of these stresses. Many radical scavengers, interestingly naturally occurring antioxidants, have been found to be effective in inhibiting the oxidative damage Quercetin, the well known phenolic compound widely present in the plant kingdom, has been investigated for its possible protection effect against gamma irradiation and paracetamole-induced hepatic damage. Data revealed serious effects of oral administration of sublethal dose of paracetamole (500 mg/kg) and/or exposure to 6 Gy whole body gamma irradiation on liver. This damage is reflected by increased hepatic levels of MDA, carbonyl content and ALT activity, associated by decrease in hepatic SOD, catalase and GSH when compared with respective control values. The combination of quercetin with paracetamole and/or gamma irradiation have clearly reduced liver damage. It was noticed that the restoration of peroxides and carbonyls rates has occurred. Quercetin seems to act by activation of the turnover of SOD, catalase and GSH and permitting the capitation of reactive metabolites of paracetamole as well as its ability in quenching free radicals induced by exposure of rats to gamma irradiation, thus improving regeneration in the biological tissues

  9. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  10. Protective role of S-Adenosylmethionine against fructose-induced oxidative damage in obesity

    Directory of Open Access Journals (Sweden)

    Kameliya Zh Bratoeva

    2017-10-01

    Full Text Available Introduction. It has been shown that S-adenosylmethionine (S-AMe stimulates glutathione synthesis and increases cell resistance to the cytotoxic action of free radicals and pro-inflammatory cytokines. The aim of this study was to determine the effect of Sadenosylmethionine on the oxidative stress in adipose tissue in a model of fructose-induced obesity. Methods. The study was performed on male Wistar rats divided into 3 groups: control, fructose fed (HFD (35%, 16 weeks, and HFD + S-AMe (20 mg/kg. We examined the changes in the ratio of retroperitoneal adipose tissue weight / body weight; levels of reduced glutathione (GSH and malondialdehyde (MDA in the retroperitoneal adipose tissue, and serum levels of GSH and TNF-α. Results. Significant increases in the retroperitoneal adipose tissue, MDA, and serum TNF-α were identified, as well as decreased tissue and serum levels of GSH in rats fed with a high-fructose diet as compared with the control group. In the group fed with HFD and SAMe, we found significant reduction in the retroperitoneal adipose tissue and decreased levels of MDA and serum TNF-α, as well as increased tissue and serum levels of GSH as compared with the group only on HFD. In conclusion, our results show that fructose-induced obesity causes oxidative stress in hypertrophic visceral adipose tissue. The administration of S-AMe improves the antioxidative protection of adipocytes, and reduces oxidative damage and excessive accumulation of lipids and inflammation.

  11. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis

    International Nuclear Information System (INIS)

    Love, P.E.; Lyle, M.J.; Yasbin, R.E.

    1985-01-01

    DNA damage-inducible (din) operon fusions were generated in Bacillus subtilis by transpositional mutagenesis. These YB886(din::Tn917-lacZ) fusion isolates produced increased β-galactosidase when exposed to mitomycin C, UV radiation, or ethyl methanesulfonate, indicating that the lacZ structural gene had inserted into host transcriptional units that are induced by a variety of DNA-damaging agents. One of the fusion strains was DNA-repair deficient and phenotypically resembled a UV-sensitive mutant of B. subtilis. Induction of β-galactosidase also occurred in the competent subpopulation of each of the din fusion strains, independent of exposure to DNA-damaging agents. Both the DNA-damage-inducible and competence-inducible components of β-galactosidase expression were abolished by the recE4 mutation, which inhibits SOS-like (SOB) induction but does not interfere with the development of the component state. The results indicate that gene expression is stimulated at specific loci within the B. subtilis chromosome both by DNA-damaging agents and by the development of competence and that this response is under the control of the SOB regulatory system. Furthermore, they demonstrate that at the molecular level SOB induction and the development of competence are interrelated cellular events

  12. Prevention of shockwave induced functional and morphological alterations: an overview.

    Science.gov (United States)

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  13. The chemical basis of DNA damage by the direct pathway of ionizing radiation

    International Nuclear Information System (INIS)

    Sharma, Kiran Kumar K.

    2013-01-01

    Free radicals in living system has been implicated as playing a major role in the etiology of variety of diseases. The mechanism of free radicals in vivo involves predominantly the reaction with the DNA, producing different types of damage to the DNA. These lesions induced to the DNA could lead to mutation and even cell death. Radiolysis techniques, which uses ionizing radiation has proven to be one of the most advanced and excellent tool for studying the free radical reaction mechanisms as it can produce a host of well characterized free radicals. The effects of ionizing radiation on DNA have been studied for many years. Ionizing radiation interacts with DNA in vivo by two pathways, direct and indirect. The indirect accounts for 50-60% while the direct effect accounts for 40-50%. The chemical mechanism of the former reaction arising mainly from the reactive species produced by radiolysis of water has been extensively studied, however with respect to the later pathway, which creates holes and electrons to the DNA molecule using DNA films and crystals is an active area of research as both the pathways plays important roles in DNA damage in vivo particularly in chromosomal DNA which are tightly bound with histones and compartmentalized

  14. Pathology of radiation induced lung damage

    International Nuclear Information System (INIS)

    Kawabata, Yoshinori; Murata, Yoshihiko; Ogata, Hideo; Katagiri, Shiro; Sugita, Hironobu; Iwai, Kazuo; Sakurai, Isamu.

    1985-01-01

    We examined pathological findings of radiation induced lung damage. Twenty-three cases are chosen from our hospital autopsy cases for 9 years, which fulfil strict criteria of radiation lung damage. Lung damage could be classified into 3 groups : 1) interstitial pneumonia type (9 cases), 2) intermediate pneumonia type (8 cases), and 3) alveolar pneumonia type (6 cases), according to the degree of intra-luminal exudation. These classification is well correlated with clinical findings. Pathological alveolar pneumonia type corresponds to symptomatic, radiologic ground glass pneumonic shadow. And pathologic interstitial type corresponds to clinical asymptomatic, radiologic reticulo-nodular shadow. From the clinico-pathological view point these classification is reasonable one. Radiation affects many lung structures and showed characteristic feature of repair. Elastofibrosis of the alveolar wall is observed in every cases, obstructive bronchiolitis are observed in 5 cases, and obstructive bronchiolitis in 9 cases. They are remarkable additional findings. Thickening of the interlobular septum, broncho-vascular connective tissue, and pleural layer are observed in every cases together with vascular lesions. (author)

  15. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  16. Comparison between radical- and energetic ion-induced growth of SiCxNy films in plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Afanasyev-Charkin, I.V.; Nastasi, M.

    2004-01-01

    Ternary SiC x N y compounds are materials with some remarkable properties such as high oxidation resistance and high hardness. In this work we compare the properties of SiC x N y films obtained using radio-frequency (rf) and pulsed glow discharge (PGD) plasmas with combinations of SiH 4 , C 2 H 2 , N 2 , and Ar source gases. The pulsed voltage used for the rf deposition was 200 V and for the PGD deposition it was 4 kV. During the rf growth, the growth takes place mostly by attaching neutral radicals to form chemical bonds. In the PGD method, the deposition takes place by subplantation and surface activation by energetic ions. We show that in the case of low-energy RF deposition, a high relative number of C-N bonds with sp 3 hybridization is formed and very few Si-C bonds can be observed. Apparently the growth of carbon nitride and silicon nitride networks takes place independently. This indicates that SiH 3 radicals attach to the dangling bonds of silicon and nitrogen, whereas C 2 H radicals attach to the dangling bonds of carbon and nitrogen. During pulsed glow discharge deposition, bonds between all three components are formed apparently by means of subplantation and damage-induced disorder. The hardness of the PGD films exceed that of the RF films, showing that to form a dense SiC x N y film one has to either supply energy during the growth of the films by heating the substrate, as in the case of chemical vapor deposition or by using energetic ions

  17. Protective effect of propolis on radiation-induced chromosomal damage on Chinese hamster ovary cells (CHO-K1)

    Energy Technology Data Exchange (ETDEWEB)

    Spigoti, Geyza; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br; Tsutsumi, Shiguetoshi [Amazon Food Ltd., Tokyo (Japan)], e-mail: fwip5138@mb.infoweb.ne.jp

    2009-07-01

    In the last years, particular interest has been given to investigations concerning natural, effective and nontoxic compounds with radioprotective capacity in concert with increasing utilization of different types of ionizing radiation for various applications. Among them, propolis, a resinous mixture of substances collected by honey bees (Apis mellifera) has been considered promising since it presents several advantageous characteristics, i.e., antiinflammatory, anticarcinogenic, antimicrobial and free radical scavenging action. It is, therefore, a direct antioxidant that protects cells and organisms from the adverse effects of ionizing radiation. These relevant biological activities are mainly mediated by the flavonoids, present at relatively high concentrations in the propolis. Considering that the chemical composition and, consequently, the biological activity of propolis is variable according to the environmental plant ecology, the present study was conducted in order to evaluate the radioprotective capacity of Brazilian propolis, collected in the State of Rio Grande do Sul, against genotoxic damages induced by {sup 60}Co {gamma}-radiation in Chinese hamster ovary cells (CHO-K1). for this purpose, micronucleus induction was analyzed concerning irreparable damage, specifically related to DNA double-strand breaks, that are potentially carcinogenic. CHO-K1 cells were submitted to different concentrations of propolis (3 - 33 {mu}g/ml), 1 h before irradiation, with 1 Gy of {gamma} radiation (0.722 Gy/min). The data obtained showed a decreasing tendency in the quantity of radioinduced damage on cells previously treated with propolis. The radioprotective effect was more prominent at higher propolis concentration. The treatment with propolis alone did not induce genotoxic effects on CHO-K1 cells. Beside that, the treatment with propolis, associated or not with radiation, did not influence the kinetics of cellular proliferation. (author)

  18. Protective effect of propolis on radiation-induced chromosomal damage on Chinese hamster ovary cells (CHO-K1)

    International Nuclear Information System (INIS)

    Spigoti, Geyza; Bartolini, Paolo; Okazaki, Kayo; Tsutsumi, Shiguetoshi

    2009-01-01

    In the last years, particular interest has been given to investigations concerning natural, effective and nontoxic compounds with radioprotective capacity in concert with increasing utilization of different types of ionizing radiation for various applications. Among them, propolis, a resinous mixture of substances collected by honey bees (Apis mellifera) has been considered promising since it presents several advantageous characteristics, i.e., antiinflammatory, anticarcinogenic, antimicrobial and free radical scavenging action. It is, therefore, a direct antioxidant that protects cells and organisms from the adverse effects of ionizing radiation. These relevant biological activities are mainly mediated by the flavonoids, present at relatively high concentrations in the propolis. Considering that the chemical composition and, consequently, the biological activity of propolis is variable according to the environmental plant ecology, the present study was conducted in order to evaluate the radioprotective capacity of Brazilian propolis, collected in the State of Rio Grande do Sul, against genotoxic damages induced by 60 Co γ-radiation in Chinese hamster ovary cells (CHO-K1). for this purpose, micronucleus induction was analyzed concerning irreparable damage, specifically related to DNA double-strand breaks, that are potentially carcinogenic. CHO-K1 cells were submitted to different concentrations of propolis (3 - 33 μg/ml), 1 h before irradiation, with 1 Gy of γ radiation (0.722 Gy/min). The data obtained showed a decreasing tendency in the quantity of radioinduced damage on cells previously treated with propolis. The radioprotective effect was more prominent at higher propolis concentration. The treatment with propolis alone did not induce genotoxic effects on CHO-K1 cells. Beside that, the treatment with propolis, associated or not with radiation, did not influence the kinetics of cellular proliferation. (author)

  19. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  20. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    Science.gov (United States)

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  2. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  3. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins

    DEFF Research Database (Denmark)

    Hazell, L J; Davies, Michael Jonathan; Stocker, R

    1999-01-01

    component to be the major site of attack, whereas others describe extensive lipid peroxidation. The present study addresses this controversy. The results obtained are consistent with the hypothesis that radical-induced oxidation of LDL's lipids by HOCl is a secondary reaction, with most HOCl consumed via...... by an extended period of lipid peroxidation during which further protein oxidation does not occur. The secondary lipid peroxidation process involves EPR-detectable radicals, is attenuated by a radical trap or treatment of HOCl-oxidized LDL with methionine, and occurs less rapidly when the lipoprotein...

  4. Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice

    International Nuclear Information System (INIS)

    Gong Pin; Chen Fuxin; Ma Guofen; Feng Yun; Zhao Qianyu; Wang Rui

    2008-01-01

    The antioxidative capacity of endomorphin 1 (EM1), an endogenous μ-opioid receptor agonist, has been demonstrated by in vivo assays. The present study reports the effect of EM1 on hepatic damage induced by cadmium chloride (Cd(II)) in adult male mouse. Mouse were given intraperitoneally (i.p.) a single dose of Cd(II) (1 mg/kg body weight per day) and the animals were co-administrated with a dose of EM1 (50 μM/kg body weight per day) for 6 days. Since hepatic damage induced by Cd(II) is related to oxidative stress, lipid peroxidation (LPO), protein carbonyl (PCO), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were evaluated. The parameter indicating tissue damage such as liver histopathology was also determined. In addition, the concentrations of Cd and zinc (Zn) in the liver were analyzed. The intoxication of Cd(II) lead to the enhanced production of LPO and PCO, treatment with EM1 can effectively ameliorate the increase of LPO and PCO compared to the Cd(II) group. The increased activities of CAT, SOD and the elevated GSH induced by Cd(II) may relate to an adaptive-response to the oxidative damage, the effect of EM1 can restore the elevated antioxidant defense. Our results suggested that the structure features and the ability of chelating metal of EM1 may play a major role in the antioxidant effect of EM1 in vivo and opioid receptors may be involved in the protection of hepatic damage induced by Cd(II)

  5. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol

    International Nuclear Information System (INIS)

    Mitchell, J.B.; DeGraff, W.; Kaufman, D.; Krishna, M.C.; Samuni, A.; Finkelstein, E.; Ahn, M.S.; Hahn, S.M.; Gamson, J.; Russo, A.

    1991-01-01

    Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress

  6. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    Science.gov (United States)

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  8. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  9. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    Science.gov (United States)

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  10. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  11. Topical application of ST266 reduces UV-induced skin damage

    Directory of Open Access Journals (Sweden)

    Guan L

    2017-11-01

    Full Text Available Linna Guan,1 Amanda Suggs,1 Emily Galan,1 Minh Lam,1 Elma D Baron1,2 1Department of Dermatology, Case Western Reserve University, 2Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA Abstract: Ultraviolet radiation (UVR has a significant impact on human skin and is the major environmental factor for skin cancer formation. It is also believed that 80% of the signs of skin aging are attributed to UVR. UVR induces inflammatory changes in the skin via the increase in oxidative stress, DNA damage vascular permeability, and fluctuation in a myriad of cytokines. Acutely, UVR causes skin inflammation and DNA damage, which manifest as sunburn (erythema. ST266 is the secretome of proprietary amnion-derived cells that have been shown to reduce inflammation and accelerate healing of various wounds by promoting migration of keratinocytes and fibroblasts in preclinical animal studies. We hypothesized that ST266 has anti-inflammatory effects that can be used to reduce ultraviolet (UV erythema and markers of inflammation. In this study, we examined the in vivo effects of ST266 on post UV-irradiated skin by measuring erythema, level of cyclobutane pyrimidine dimer (CPD, and expression level of xeroderma pigmentosum, complementation group A (XPA. We demonstrated that ST266 has the potential to reduce the acute effects of UV-induced skin damage when applied immediately after the initial exposure. In addition, ST266 is shown to reduce erythema, increase XPA DNA repair protein, and decrease damaged DNA. Keywords: ST266, photoaging, erythema, CPD, XPA, UV-induced DNA damage

  12. Elastoplastic simulation coupled to the induced anisotropic damage for argilites

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Shao, J.F.

    2002-01-01

    A constitutive model coupling plastic deformation and induced damage is proposed to describe the mechanical behaviour of a shale rock, the argilites of East. The plastic behaviour is produced by a typical cohesive-frictional model. The material damage is represented by a second rank symmetric tensor. The damage criterion and evolution rate is related to tensile strains. The damage effect on plastic flow is also considered by an anisotropic transformation. The model formulation and a simple procedure for the determination of model parameters from standards tests is proposed. The validity of the model is checked against experimental data in various loading conditions. (author)

  13. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  14. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    International Nuclear Information System (INIS)

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  15. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  16. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  17. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    Science.gov (United States)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  18. Glutathione as a radical scavenger and the biological consequences of thiyl radical production

    International Nuclear Information System (INIS)

    Winterbourn, C.C.

    1996-01-01

    A large number of compounds that have toxic effects can be metabolised to free radicals and secondary reactive oxygen species. These may be directly damaging or affect cell function by altering regulatory mechanisms through changing redox status. Protection is provided by an integrated system of antioxidant defenses. This includes reduced glutathione (GSH), one of the functions of which is as a free radical scavenger. For GSH to be an effective radical scavenging antioxidant, therefore, it must act in concert with superoxide dismutase to remove the superoxide so generated. Superoxide is produced in a variety of metabolic processes. It is also a secondary product of radicals reacting with oxygen either directly or through GSH. The biological reactivity of superoxide has been the subject of much debate ever since the discovery of superoxide dismutase in 1968. It has more recently become apparent that its rapid reaction with nitric oxide to give peroxynitrite, and its ability to reversibly oxidise and inactivate iron sulphur enzymes, contribute to the toxicity of superoxide. Another mechanism that could be important involves addition reactions of superoxide with other radicals to give organic peroxides. This reaction, to form a tyrosine peroxide, has come to authors attention through the study of the scavenging of tyrosyl radicals by GSH. It is also shown that a tyrosine peroxide is a major product of the oxidation of tyrosine by neutrophils

  19. Radical reactions in vivo - an overview

    International Nuclear Information System (INIS)

    Saran, M.; Bors, W.

    1990-01-01

    Generation of radicals in vivo depends on metabolic activities. The reactions are usually influenced by (i) the presence and concentration of oxygen, (ii) the availability of transition metals (effects of binding and compartimentalization), (iii) the level of reductants and antioxidants (e.g. nutritional effects). The effects of radicals are thought to be due to (i) membrane damage (affecting passive or active transport through altered fluidity/function interrelationships, intercellular messenging through modifications in the synthesis of prostaglandins and leukotrienes); (ii) protein damage (e.g. affecting membrane transporters, channel proteins, receptor or regulatory proteins, immunomodulators); (iii) damage to DNA. Defense mechanisms consist of (i) prevention of the 'spreading' of primary damage by low molecular weight antioxidants (e.g. vitamin E, GSH, vitamin C, β-carotene, uric acid); (ii) prevention or limitation of 'secondary' damage by enzymes (e.g. GSH-peroxidase, catalase, superoxide dismutase, DT-diaphorase) and/or chelators; (iii) repair processes, e.g. lipid degradation/membrane repair enzymes (phospholipases, peroxidases, some transferases and reductases), protein disposal or repair enzymes (proteases, GSSG-reductase), DNA degradation or repair enzymes (exonucleases III, endonucleases III and IV, glycosylases, polymerases). Recent hypotheses on a messenging function of the superoxide anion O 2 - are discussed and possible implications of cross-reactions between O 2 - and nitric oxide (endothelium-derived relaxing factor EDRF) are shortly mentioned. (orig.)

  20. Hydrogen induced plastic damage in pressure vessel steel of 2.25Cr-1Mo

    International Nuclear Information System (INIS)

    Han, G.W.; Song, Y.J.

    1995-01-01

    2.25Cr-1Mo steel is generally employed as a hydrogenation reaction vessel material used at elevated temperature and in a hydrogen containing environment. During service of the reaction vessel, a large number of hydrogen atoms would enter its wall. When the reaction vessel is shutdown and the temperature reduces to about ambient temperature, the hydrogen atoms remaining in the wall would induce plastic damage in the steel. The mechanism of hydrogen induced plastic damage is different for various materials with different microstructures. Investigations have demonstrated that the hydrogen induced plastic damage in carbide annealed carbon steels is caused by hydrogen accelerating the initiating and growing of microvoids from the carbide particles. However, SEM examination on the fracture surface of hydrogen charged tensile specimen of 2.25Cr-1Mo steel show that a large number of fisheyes appear on the fracture surface. This indicates that hydrogen induced plastic damage in 2.25Cr-1Mo steel is related to the occurrence of fisheye cracks during plastic deformation. By means of micro-fracture mechanics to analyze fisheye crack occurrence from the first generation microvoid, the mechanism of hydrogen induced plastic damage in the pressure vessel steel is investigated

  1. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  2. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  3. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    Science.gov (United States)

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  4. Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2003-01-01

    Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has...... been presented for the formation of alcohols as stable products of peroxide decomposition, and these have been employed as markers of oxidative damage in vivo. The mechanism of formation of these alcohols is unclear, with both radical and nonradical pathways capable of generating these products....... In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed...

  5. A Controlled Study on Vaginal Blood Flow During Sexual Arousal Among Early-Stage Cervical Cancer Survivors Treated With Conventional Radical or Nerve-Sparing Surgery With or Without Radiotherapy

    NARCIS (Netherlands)

    Bakker, Rinske Maria; Pieterse, Quirine D.; van Lonkhuijzen, Luc R. C. W.; Trimbos, Baptist J. B. M. Z.; Creutzberg, Carien L.; Kenter, Gemma G.; de Kroon, Cor D.; ter Kuile, Moniek M.

    2017-01-01

    Objective: Sexual problems among cervical cancer survivors may in part be caused by reduced vaginal blood flow due to damaged hypogastric nerves during radical hysterectomy with pelvic lymphadenectomy and/or by radiation-induced vaginal changes after pelvic radiotherapy. A nerve-sparing modification

  6. An ESR study of radicals induced in irradiated fresh mango

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Hussain, Mohammed S.; Morishita, Norio; Kobayashi, Yasuhiko; Ukai, Mitsuko; Shimoyama, Yuhei

    2009-01-01

    An electron spin resonance (ESR) spectroscopic study was performed on the radicals induced irradiated fresh mangoes. Fresh Philippine mangoes were irradiated by the γ-rays, lyophilized and powdered. The ESR spectrum of the dry specimen showed a strong main peak at g=2.004 and a pair of peaks at both magnetic fields of the main peak. The main peak detected from flesh and skin specimens faded away in a few days after the irradiation. On the other hand, the side peaks showed a well-defined dose response even 9 days after the irradiation. The side-peak is a useful mean to define the irradiation on fresh mangoes. (author)

  7. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye

    International Nuclear Information System (INIS)

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-01

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2 mJ/cm 2 ) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164 ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24 h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (P < 0.05) in sclera and cornea by UVB irradiation, but when 4-CA was administered to the conjunctiva in a buffered solution once a day for 3 d before and 6 d after UVB exposure, levels of 8-oxodGuo were similar to controls and significantly reduced (P < 0.05) compared to UVB-treated corneas. XO activity in the aqueous humour was significantly increased. The administration of 4-CA for 3 d before and 6 d after UVB irradiation induced a small but significant (P < 0.05) reduction of XO compared with control eyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low

  8. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, Y.; Puplampu, S.B.; Summers, P.T.; Lattimer, B.Y.; Penumadu, D.; Case, S.W.

    2015-01-01

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep

  9. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yanyun@vt.edu [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Puplampu, S.B. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Summers, P.T.; Lattimer, B.Y. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Penumadu, D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Case, S.W. [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2015-08-12

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep.

  10. Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties

    International Nuclear Information System (INIS)

    Mir, A.H.; Monnet, I.; Toulemonde, M.; Bouffard, S.; Jegou, C.; Peuget, S.

    2016-01-01

    Simple and complex borosilicate glasses were irradiated with single and double ion beams of light and heavy ions over a broad fluence and stopping power range. As a result of the heavy ion irradiation (U, Kr, Au), the hardness was observed to diminish and saturate after a decrease by 35 ± 1%. Unlike slow and swift heavy ion irradiation, irradiation with light ions (He,O) induced a saturation hardness decrease of 18 ± 1% only. During double ion beam irradiation; where glasses were first irradiated with a heavy ion (gold) and then by a light ion (helium), the light ion irradiation induced partial damage recovery. As a consequence of the recovery effect, the hardness of the pre-irradiated glasses increased by 10–15% depending on the chemical composition. These results highlight that the nuclear energy loss and high electronic energy loss (≥4 keV/nm) result in significant and similar modifications whereas light ions with low electronic energy loss (≤1 keV/nm) result in only mild damage formation in virgin glasses and recovery in highly pre-damaged glasses. These results are important to understand the damage formation and recovery in actinide bearing minerals and in glasses subjected to self-irradiation by alpha decays. - Highlights: • Behavior of glasses strongly depends on the electronic energy loss (Se) of the ions. • High Se (≥4 keV/nm) induces large changes in comparison to lower Se values. • Apart from mild damage formation, low Se causes recovery of pre-existing damage. • Alpha induced partial recovery of the damage would occur in nuclear waste glasses.

  11. Ketoconazole-induced testicular damage in rats reduced by Gentiana extract.

    Science.gov (United States)

    Amin, Amr

    2008-04-01

    Ketoconazole (KET) is an antifungal drug with a broad spectrum of activity that also induces reproductive toxicity in humans and animals. The protective effect of Gentiana (GEN) extract (Gentiana lutea) against KET-induced testicular damage was evaluated in male Wistar rats. GEN extract was administered orally (1g/kgbwt/day) for 26 days. Three weeks after extract administration, KET was co-administered intraperitoneally at a dose of 100mg/kg once a day for 5 days. KET-induced reproductive toxicity was associated with clear reductions of the weights of testes and epididymides, sperm indices and serum testosterone levels. KET also induced severe testicular histopathological lesions such as degeneration of the seminiferous tubules and depletion of germ cells. In addition, marked oxidative damage to testicular lipids and alterations of natural antioxidants (catalase (CAT) and superoxide dismutase (SOD)) were reported in association with KET toxicity. Most of the KET-induced effects were greatly decreased with the concomitant application of GEN extract. This study suggests a protective role of GEN extract that could be attributed to its antioxidant properties.

  12. Abstracts of 2. symposium on free radicals in biology and medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The abstracts presented in the booklet concern influence of free radicals (frequently generated by ionizing radiation) on DNA, proteins, lipids and chromatin of various living organisms. Works show, that free radicals cause serious damages in biological systems leading to carcinogenesis and many genetic diseases. Thus understanding of mechanisms of free radical action is important issue in medicine and life sciences.

  13. Abstracts of 2. symposium on free radicals in biology and medicine

    International Nuclear Information System (INIS)

    1994-01-01

    The abstracts presented in the booklet concern influence of free radicals (frequently generated by ionizing radiation) on DNA, proteins, lipids and chromatin of various living organisms. Works show, that free radicals cause serious damages in biological systems leading to carcinogenesis and many genetic diseases. Thus understanding of mechanisms of free radical action is important issue in medicine and life sciences

  14. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.; Sutherland, B.; Bennett, P. V.; Cutter, N. C.; Sutherland, J. C.

    2011-06-01

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF) followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.

  15. Modeling DNA?damage-induced pneumopathy in mice: insight from danger signaling cascades

    OpenAIRE

    Wirsd?rfer, Florian; Jendrossek, Verena

    2017-01-01

    Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secr...

  16. Is there a role for leukotrienes as mediators of ethanol-induced gastric mucosal damage?

    International Nuclear Information System (INIS)

    Wallace, J.L.; Beck, P.L.; Morris, G.P.

    1988-01-01

    The role of leukotriene (LT) C 4 as a mediator of ethanol-induced gastric mucosal damage was investigated. Rats were pretreated with a number of compounds, including inhibitors of leukotriene biosynthesis and agents that have previously been shown to reduce ethanol-induced damage prior to oral administration of absolute ethanol. Ethanol administration resulted in a fourfold increase in LTC 4 synthesis. LTC 4 synthesis could be reduced significantly by pretreatment with L651,392 or dexamethosone without altering the susceptibility of the gastric mucosa to ethanol-induced damage. Furthermore, changes in LBT 4 synthesis paralleled the changes in LTC 4 synthesis observed after ethanol administration. The effects of ethanol on gastric eicosanoid synthesis were further examined using an ex vivo gastric chamber preparation that allowed for application of ethanol to only one side of the stomach. These studies confirm that ethanol can stimulate gastric leukotriene synthesis independent of the production of hemorrhagic damage. Inhibition of LTC 4 synthesis does not confer protection to the mucosa, suggesting that LTC 4 does not play an important role in the etiology of ethanol-induced gastric damage

  17. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  18. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  19. Protective Effect of Royal Jelly against Renal Damage in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Elham Ghanbari

    2015-03-01

    Full Text Available Background: Royal jelly has been shown to have antioxidant and antidiabetic effects. The objective of this study was to evaluate the protective effect of RJ against kidney damage in streptozotocin induced diabetic rats. Methods: Thirty two male Wistar rats were divided randomly into four groups (n=8 per group. Normal control and diabetic control groups received 1cc/day distilled water, normal RJ-treated and diabetic RJ-treated groups received 100mg RJ/kg body weight daily. Diabetes was induced by intraperitoneal injection of streptozotocin. At the end of the experiment, urine and kidney samples were collected for biochemical and histopathological analysis. Results: The results showed that diabetes could increase levels of urine urea, total protein and albumin significantly, and could decrease the levels of creatinine and uric acid in urine. In the kidney tissue homogenates, catalase activity and antioxidant power were significantly lower, whereas malondialdehyde levels were significantly higher in diabetic group when compared with control group. Diabetic rats showed severe histological changes in kidney tissues. Treatment of diabetic rats with RJ improved significantly all of these parameters. Conclusion: The present study revealed that treatment with RJ resulted in significant improvement in histopathological alterations in kidney tissue and urine parameters of diabetic rats. This could be due to its antioxidant activity and the ability of RJ for scavenging the free radicals released in diabetes. These findings suggest that RJ has protective effects on kidneys affected by diabetes mellitus.

  20. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  1. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates

    NARCIS (Netherlands)

    Koleva, [No Value; Niederlander, HAG; van Beek, TA

    2001-01-01

    The radical cation 2,2 ' -azinobis-(3 -ethylbenzothiazoline-6-sulfonate), (ABTS(.+)) was utilized in an on-line HPLC method for the detection of radical scavengers in complex matrixes. The HPLC-separated analytes react postcolumn with the preformed ABTS(.+), and the induced bleaching is detected as

  2. Ultraviolet radiation-mediated damage to cellular DNA

    International Nuclear Information System (INIS)

    Cadet, Jean; Sage, Evelyne; Douki, Thierry

    2005-01-01

    Emphasis is placed in this review article on recent aspects of the photochemistry of cellular DNA in which both the UVB and UVA components of solar radiation are implicated individually or synergistically. Interestingly, further mechanistic insights into the UV-induced formation of DNA photoproducts were gained from the application of new accurate and sensitive chromatographic and enzymic assays aimed at measuring base damage. Thus, each of the twelve possible dimeric photoproducts that are produced at the four main bipyrimidine sites can now be singled out as dinucleoside monophosphates that are enzymatically released from UV-irradiated DNA. This was achieved using a recently developed high-performance liquid chromatography-tandem mass spectrometry assay (HPLC-MS/MS) assay after DNA extraction and appropriate enzymic digestion. Interestingly, a similar photoproduct distribution pattern is observed in both isolated and cellular DNA upon exposure to low doses of either UVC or UVB radiation. This applies more specifically to the DNA of rodent and human cells, the cis-syn cyclobutadithymine being predominant over the two other main photolesions, namely thymine-cytosine pyrimidine (6-4) pyrimidone adduct and the related cyclobutyl dimer. UVA-irradiation was found to generate cyclobutane dimers at TT and to a lower extent at TC sites as a likely result of energy transfer mechanism involving still unknown photoexcited chromophore(s). Oxidative damage to DNA is also induced although less efficiently by UVA-mediated photosensitization processes that mostly involved 1 O 2 together with a smaller contribution of hydroxyl radical-mediated reactions through initially generated superoxide radicals

  3. Effects of gamma radiation induced forced formation of free radicals on the strength of concrete for use in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Burnham Steven

    2017-01-01

    Full Text Available In this paper, we present a summary of preliminary experiments and numerical assessments of the effects of gamma radiation induced formation of free radicals in the curing stage of concrete on its characteristics. Substantial literature reports on the damaging effects of long-term and high-dose gamma and neutron exposure on concrete. However, we show that short-term exposure of concrete to gamma radiation can be beneficial in increasing its compressive strength. The effects of exposing to 630 MBq 137Cs the 56 cubes each made of 125 cm3 concrete during the first seven days of curing are compared to another 56 cubes cured by the conventional process. The average compressive strength of the gamma cured cubes is around 8.500 psi, while conventionally cured cubes show the lower average strength of around 6.700 psi. The microstructure of the gamma and conventionally cured concrete cubes is analyzed using a scanning electron microscope. The radiolysis within the microstructure of the concrete cubes is assessed with computational modeling based on Geant4. The production of free radicals from radiolysis is shown to increase with increasing source strength and increasing the time of exposure to gamma radiation. This research shows in general that curing concrete in gamma radiation field provides observable trends toward its increased strength.

  4. Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells.

    Science.gov (United States)

    Hao, Qiao; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Li, Tao; Tong, Wan Yan

    2009-02-01

    The biologic effects and the underlying mechanisms of Ehrlich ascitic tumor (EAT) cells induced by ultrasound were investigated in this study. Cells were subjected to ultrasonic irradiation with a frequency of 2.17 MHz and an intensity of 3 W/cm(2) for variable periods of time. Trypan blue exclusion was used to detect the integrity of cellular membrane; the membrane permeability was investigated by the incorporation of fluorescein isothiocyanate dextran during ultrasound exposure; and the cell membrane ultrastructure changes were observed under a scanning electron microscope. The potential mechanism was estimated from the generation of hydroxyl radicals, the lipid peroxidation levels, and intracellular reactive oxygen radicals production. The cell membrane damage effects induced by ultrasound increased with a prolonged exposure time; the fluorescent rates of the cells irradiated with ultrasound for 30 and 60 seconds were 11.46% and 18.50%, respectively; the amount of hydroxyl radicals in 30 (26.10 U/mL) and 60 seconds (28.47 U/mL) were significantly enhanced, compared with the control group (24.44 U/mL); then, the level of lipid peroxidation was also changed from 0.27 to 0.54 (30 seconds) and 1.21 nmol/mL (60 seconds). Shear forces and free radicals produced by acoustic cavitation may play important roles in these actions.

  5. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    Science.gov (United States)

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  6. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  7. HPLC-MS/MS measurement of radiation and photo-induced damage in cellular DNA and human skin

    International Nuclear Information System (INIS)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2010-01-01

    Full text: The measurement of damage induced in cellular DNA by ionizing and solar radiations is of major importance to assess the molecular mode of action and the biological role (mutagenesis, DNA repair) of these genotoxic agents. For this purpose several analytical approaches including immunodetection, post-labeling and chromatographic assays have been designed. However most of them have been shown to suffer from a lack of specificity, sensitivity or quantitative response. It may be noted that the gas-chromatography method in its basal version has been found to lead to overestimated yields of oxidatively generated base lesions by two to three order of magnitude due to the occurrence of artifactual oxidation of the overwhelming purine and pyrimidine bases during the derivatization step of the assay. The advent of HPLC coupled to tandem mass spectrometry operating in the electrospray ionization mode has allowed overcoming most of these drawbacks. Thus, accurate determination of 11 oxidized bases and nucleosides has been achieved in cellular DNA upon exposure to radiation-induced hydroxyl radical and one-electron oxidation agents. This has involved quantitative enzymatic release of lesions from extracted DNA and their accurate detection at the output of the HPLC column using the highly quantitative isotopic dilution technique. Evidence was also provided for the generation of five clustered lesions that all involve a base modification and an altered 2-deoxyribose residue as the result of only one initial radical oxidation hit. These consist of (5'R)-5',8-cyclo-2'-deoxyadenosine and cytosinealdehyde adducts that arise from .OH-mediated hydrogen abstraction at C5 and C4 of the sugar moiety of cellular DNA respectively. The damaging effects of UVA radiation on cellular DNA and human skin were rationalized in terms of predominant 1 O 2 -mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine. Other relevant types of DNA modifications consist in bipyrimidine

  8. The structure and properties of free radicals: An electron spin resonance study of radiation damage to nucleic acid and protein components and to some sulfur-substituted derivitives

    International Nuclear Information System (INIS)

    Sagstuen, E.

    1979-01-01

    When cellular systems are exposed to ionizing radiation the long-term effects may range from minor disturbances to such dramatic changes as mutations and cell death. The processes leading to these macroscopical injuries are primarily confined at the molecular level. In all models aimed at a description of the action of radiation at the molecular level the formation of free radicals (which are species containing unpaired electrons) is a central concept. The technique of ESR spectroscopy is uniquely suited to study free radicals, as it is based on resonance absorption of energy by unpaired electrons in a magnetic field. ESR spectroscopy makes it possible to detect free radicals and, in some cases, to identify them. In order to study free radicals by ESR it is necessary to build up a sufficient number of unpaired spins in the sample (approximately 10 11 or more, depending on the shape of the resonance). This may be different techniques have been used to trap the induced radicals or to attain a sufficient steady state concentration level. A procedure which seems to contain a large amount of information is to irradiate at low temperatures, and, by subsequent heat-treatment of the sample to study the reactions and fate of the induced radicals. In this thesis single crystal studies of aromatic amino acids and pyrimidine derivitives together with some substituted purine derivitives are presented, and the results are discussed in relation to the present knowledge about radical formation in these classes of compounds. Single crystal studies of some sulfur-containing aromatic compounds have been presented with the purpose of shedding light on the electronic structure of sulfur-centred radicals. (JIW)

  9. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  10. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  11. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  12. Muscle damage and repeated bout effect induced by enhanced eccentric squats.

    Science.gov (United States)

    Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico

    2016-12-01

    Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.

  13. Transmission of Free Radicals through and Damage to Freestanding Single and Multilayer Dielectric Film

    Science.gov (United States)

    Choudhury, Faraz Anwar

    A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR

  14. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  15. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  16. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  18. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  19. Occupational exposure to ionizing radiation as a risk factor for free-radicals mediated diseases

    International Nuclear Information System (INIS)

    Djurovic, B.; Spasic-Jokic, V.; Selakovic, V.

    2007-01-01

    Complete text of publication follows. It was experimentally showed, that the exposure to low doses of ionizing radiation (IR) result in over-production of oxygen derived free radicals with inverse dose-rate effect. The oxidative stress that follows, especially cell membrane damage, was considered by Petkau, as crucial step in the induction of radiation injuries. From clinical research and practice with other unexposed patients is known that this type of cell damage can lead to an impairment of cellular function and can cause many free-radicals mediated diseases, such as atherosclerosis, damage of heart muscles, inflammatory and immuno-reactive lesions, senile dementia, cancer, etc. The aim of this paper is to investigate if occupational exposure to low doses of IR change the redox status of exposed personnel, and if so, is it the additional risk factor for free-radicals mediated diseases. Subjects: 77 medical workers, devided in two groups: 44 occupationally exposed to ionizing radiation (E), and 33 controls (C), matched in age, gender, habits-daitary, alcohol consumption, smoking and exposure time, were examined. Methods: Radiation dose accumulated over years was calculated on the basis of individual TL-dose records. Superoxide-anion and MDA production, as well as SOD (MnSOD, CuZnSOD) and GSH activity were determined in blood samples spectrophotometrically. Results: Significantly higher incidence of cataract, and higher, but not significant, incidence of cardiovascular diseases was noticed in exposed. Our results also confirmed significantly higher superoxide and MDA production (p=0.0049, 0.000028, respectively), as well as, increased activity of MnSOD and CuZnSOD (p0.0105, 0.001, respectively), and decreased level of GSH (p=0.0599) in exposed. Conclusions: Our results showed that low doses of IR could induce oxidative stress and for that reason could be considered as additional risk factor for free radical-mediated diseases. Further epidemiological studies are

  20. The effect of dithiothreitol on radiation-induced genetic damage in Arabidopsis thaliana (L) Heynh

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    A study was made on the effect of dithiothreitol (DTT; present during irradiation) on M 1 ovule sterility, M 2 embryonic lethals, M 2 chlorophyll mutants and M 2 viable mutants induced with fast neutrons or X-rays in Arabidopsis thaliana. DTT provides considerable protection against both fast-neutron and X-ray induced genetic damage. However, a higher protection was observed against M 1 ovule sterility, than against embryonic lethals, chlorophylls and viable mutants. This implies a significant DTT-induced spectral shift (0.01 < p < 0.05), i.e. a shift in the relative frequencies of the different genetic parameters. This spectral shift is explained on the basis of a specific DTT protection against radiation-induced strand breaks, and by differences in the ratio strand breaks/base damage for the genetic parameters concerned, i.e. a higher ratio for ovule sterility than for the other parameters. The induction of the genetic damage by ionizing radiation, either with or without DTT, is described by a mathematical model, which includes both strand breaks and base damage. The model shows that the resolving power of a test for a 'mutation'spectral shift depends on the relative values of the strandbreak reduction factor of -SH compounds and on the ratio strand breaks/base damage of the genetic parameters. For each genetic parameter the DTT damage reduction factor (DRF) is calculated per irradiation dose, and in addition the average (over-all doses) ratio strand breaks/base damage. (orig.)

  1. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  2. Measurement of interferences associated with the detection of the hydroperoxy radical in the atmosphere using laser-induced fluorescence

    Science.gov (United States)

    Lew, Michelle M.; Dusanter, Sebastien; Stevens, Philip S.

    2018-01-01

    One technique used to measure concentrations of the hydroperoxy radical (HO2) in the atmosphere involves chemically converting it to OH by addition of NO and subsequent detection of OH. However, some organic peroxy radicals (RO2) can also be rapidly converted to HO2 (and subsequently OH) in the presence of NO, interfering with measurements of ambient HO2 radical concentrations. This interference must be characterized for each instrument to determine to what extent various RO2 radicals interfere with measurements of HO2 and to assess the impact of this interference on past measurements. The efficiency of RO2-to-HO2 conversion for the Indiana University laser-induced fluorescence-fluorescence assay by gas expansion (IU-FAGE) instrument was measured for a variety of RO2 radicals. Known quantities of OH and HO2 radicals were produced from the photolysis of water vapor at 184.9 nm, and RO2 radicals were produced by the reaction of several volatile organic compounds (VOCs) with OH. The conversion efficiency of RO2 radicals to HO2 was measured when NO was added to the sampling cell for conditions employed during several previous field campaigns. For these conditions, approximately 80 % of alkene-derived RO2 radicals and 20 % of alkane-derived RO2 radicals were converted to HO2. Based on these measurements, interferences from various RO2 radicals contributed to approximately 35 % of the measured HO2 signal during the Mexico City Metropolitan Area (MCMA) 2006 campaign (MCMA-2006), where the measured VOCs consisted of a mixture of saturated and unsaturated species. However, this interference can contribute more significantly to the measured HO2 signal in forested environments dominated by unsaturated biogenic emissions such as isoprene.

  3. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  4. Role of free radicals in radiation chemical aging

    Energy Technology Data Exchange (ETDEWEB)

    Greenstock, C L

    1986-01-01

    Ionizing radiation initiates chemical changes in DNA, phospholipid membranes and other critical cell targets, that, if allowed to accumulate unrepaired, may lead to aging and other chronic effects. The chemical effects are free radical mediated, the principal damaging species being radical OH and to a lesser extent O2-anion radical and the molecular product H/sub 2/O/sub 2/. Many compounds can act in combination with ionizing radiation, to amplify the potential oxidative stress. Chemicals, ultra-violet light, lipid peroxides and their breakdown products may increase the extent of acute and chronic radiobiological effects.

  5. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Slininger Patricia J

    2010-01-01

    Full Text Available Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP, and the PPP is associated with reactive oxygen species (ROS tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. Results We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM that prevents growth. Conclusion These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced

  6. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  8. The Evaluation of Melatonin Effect Against The Early Effect of Ionizing Radiation Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    raziyeh tahamtan

    2014-06-01

    Results: the results indicated that radiation increases the collapse and fibrosis and cause the abundance of macrophage compared to control group (p<0.05. Oral administration of melatonin before radiation therapy significantly increased the lymphocyte and macrophage frequency (p<0.001 and decreased the RBC (p<0.05 frequency compared to the radiation group. Conclusion: According to the results, melatonin can prevent early damages in irradiated lungs. Free radicals cause cytotoxicity and melatonin can directly decrease the radiation induced cell damages by converting the free radicals to non- toxic compounds and also through the activation of the major antioxidant enzymes.

  9. Studies of cellular damage induced by X-rays and visible light

    International Nuclear Information System (INIS)

    Christensen, T.; Kinn, G.; Reitan, J.B.

    1989-01-01

    DNA-damage in cells has been studied by use of spectrophotometry and fluorometry. The method is based on the differential fluorescence quantum yield of the fluorochrome Hoechst 33258 when bound to single and double stranded DNA, respectively. DNA-damage by doses of X-rays below 2 Gy was clearly detectable. Blue light from phototherapy lamps induced DNA-damage in human TMG-1 glioblastoma, but no significant effect could be observed after irradiation with green lamps. In the presence of bilirubin the amount of DNA-damage was increased, notably at high bilirubin concentration and by blue light. 9 refs; 12 figs

  10. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ieradi, L.A. [Istituto per lo Studio degli Ecosistemi, CNR, Rome (Italy); Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M. [Universite La Sapienza, Dipt. di Biologia Animale e dell' Uomo, Rome (Italy); Tanzarella, C. [Roma Univ., Dipt. di Biologia (Italy)

    2006-07-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 {mu}T E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 {mu}T) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  11. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    International Nuclear Information System (INIS)

    Ieradi, L.A.; Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M.; Tanzarella, C.

    2006-01-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 μT E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 μT) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  12. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  13. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  14. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  15. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Science.gov (United States)

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  16. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  17. Water structure versus radical scavenger theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A.R.; Symons, M.C.

    1987-05-01

    We report here that dimethylsulfoxide (DMSO): suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation (when cells are in the confluent, stationary phase of growth); inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and may be affecting radiation-induced transformation through its solvent properties (i.e. the Water Structure theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro (at concentrations in the cellular media down to 0.01%). As DMSO is known to be an extremely effective OH. free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. It is known that low concentrations of such basic aprotic solvents modify water structure so as to suppress the protic (H-bond donor) reactivity of water and enhance its basic (H-bond receptor) reactivity. These reactivity changes may well be responsible for the effects noted above. DMSO, DMF and DMA are also capable of suppressing the TPA enhancement of radiation transformation (at concentrations of the compounds of 0.1% or higher). For this effect, the ability of these compounds to scavenge OH. shows a general correlation with their ability to suppress the TPA enhancement of transformation, suggesting that the Radical Scavenger theory may explain the ability of DMSO to suppress promotion in vitro.

  18. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    Science.gov (United States)

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines

    Czech Academy of Sciences Publication Activity Database

    Ferreri, C.; Golding, B. T.; Jahn, Ullrich; Ravanat, J. L.

    2016-01-01

    Roč. 50, Suppl 1 (2016), S112-S128 ISSN 1071-5762 Institutional support: RVO:61388963 Keywords : radical enzyme * membrane stress * phospholipid remodeling * DNA damage and repair * biomimetic models * bio-inspired synthetic methodologies Subject RIV: CC - Organic Chemistry Impact factor: 3.188, year: 2016 http://www.tandfonline.com/doi/full/10.1080/10715762.2016.1248961

  20. A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.; Bump, E.; Sahu, S.K.; Berman, R.M.; Kassis, A.I.

    1993-01-01

    A novel method is described to quantitate radiation-induced hydroxyl radicals in the vicinity of biomolecules in aqueous solutions. Coumarin-3-carboxylic acid (CCA) is a non-fluorescent molecule that, upon interaction with radiation in aqueous solution, produces fluorescent products. CCA was derivatized to its succinimidyl ester (SECCA) and coupled to free primary amines of albumin, avidin, histone-H1, polylysine, and an oligonucleotide. When SECCA-biomolecule conjugates were irradiated, the relationship between induced fluorescence and dose was linear in the dose range examined (0.01-10 Gy). The data indicate that the induction of fluorescence on SECCA-biomolecule conjugates records specifically the presence of the hydroxyl radical in the immediate vicinity of the irradiated biomolecule. The method is rapid and sensitive, uses standard instrumentation, and the sample remains available for further studies. (Author)

  1. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  2. Free radical injury in skin cultured fibroblasts from Alzheimer's disease patients.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Sorbi, S; Piacentini, S; Amaducci, L

    1992-12-26

    Oxygen radical production is postulated to be a major cause of cell damage in aging. We have studied the response to toxic oxygen metabolites of fibroblast cell lines derived from skin biopsies of patients with familial and sporadic Alzheimer's disease compared with those derived from normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 mU of xanthine-oxidase. To quantify cell damage we measured lactate dehydrogenase activity in the culture medium and cell viability in fibroblast cultures from four normal subjects, five FAD, and four AD patients after 2 hours of Xo incubation. We found a significant increase of LDH activity in FAD vs. controls and also in AD vs. controls, suggesting that AD cells are more susceptible to oxygen radical damage than are normal controls.

  3. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals

    DEFF Research Database (Denmark)

    Bastiaansen, Jessica A M; Yoshihara, Hikari A I; Capozzi, Andrea

    2018-01-01

    dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Ultraviolet irradiation created nonpersistent radicals in a mixture containing......To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen...... into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization in a 7T polarizer, the beads were...

  4. Role of nitric oxide in targeted-subcellular organelles induced bystander effect

    International Nuclear Information System (INIS)

    Shao Chunlin; Folkard, M.; Prise, K.M.

    2007-01-01

    The work is to investigate the bystander effect and related signaling factor induced by targeted irradiation on tumor cells. Human glioblastoma T98G cells were irradiated with a precise number of helium microbeam ions, which targeted to either nuclear or cytoplasm. Chromosome damage and intracellular NO level were assayed. Influence of a NO free radical scavenger on these radiation responses was measured. Using DEANO, the cellular effect of NO was also studied. It was found that even only one cell with a population was targeted with one particle through either nuclear or cytoplasm, additional cellular damage was induced in other 10s cells through a signaling amplification pathway and related bystander response. Although cell damage induced directly by nuclear irradiation was greater than that induced by cytoplasmic irradiation, bystander responses induced by these two kinds of irradiation were similar. When a fraction of cells were individually irradiated by helium ions, the yield of micronuclei was obviously higher than that assuming no bystander effect. However, these targeted irradiation induced bystander response were inhibited by c-PTIO, a scavenger of nitric oxide (NO) free radical. Detected with a NO molecular probe DAF-AM, it was observed that when only 1% of cells were irradiated either through nuclear or cytoplasm, the percentage of NO-positive cells increased by about 30% so that the NO-related fluorescence intensity increased by 15%. Moreover, micronuclei were induced indeed in T98G cells treated with a NO donor. These indicate that NO is a bystander signaling factor for both nuclear irradiation and cytoplasmic irradiation. (authors)

  5. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    Science.gov (United States)

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.

  6. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kmetko, Jan [Kenyon College, Gambier, OH 43022 (United States); Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Kenyon College, Gambier, OH 43022 (United States)

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  7. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    International Nuclear Information System (INIS)

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions

  8. Heavy ion induced damage to plasmid DNA : plateau region vs. spread out Bragg-peak

    NARCIS (Netherlands)

    Dang, H.M.; van Goethem, M.J.; van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.A.; Schlathölter, T.A.

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage

  9. Lansoprazole prevents experimental gastric injury induced by non-steroidal anti-inflammatory drugs through a reduction of mucosal oxidative damage

    Science.gov (United States)

    Blandizzi, Corrado; Fornai, Matteo; Colucci, Rocchina; Natale, Gianfranco; Lubrano, Valter; Vassalle, Cristina; Antonioli, Luca; Lazzeri, Gloria; Tacca, Mario Del

    2005-01-01

    AIM: This study investigated the mechanisms of protection afforded by the proton pump inhibitor lansoprazole against gastric injury induced by different non-steroidal anti-inflammatory drugs (NSAIDs) in rats. METHODS: Male Sprague-Dawley rats were orally treated with indomethacin (100 µmol/kg), diclofenac (60 µmol/kg), piroxicam (150 µmol/kg) or ketoprofen (150 µmol/kg). Thirty minutes before NSAIDs, animals were orally treated with lansoprazole 18 or 90 µmol/kg. Four hours after the end of treatments, the following parameters were assessed: gastric mucosal PGE2, malondialdehyde (MDA), myeloperoxidase (MPO) or non-proteic sulfhydryl compounds (GSH) levels; reverse transcription-polymerase chain reaction (RT-PCR) of mucosal COX-2 mRNA; gastric acid secretion in pylorus-ligated animals; in vitro effects of lansoprazole (1-300 µmol/L) on the oxidation of low density lipoproteins (LDLs) induced by copper sulphate. RESULTS: All NSAIDs elicited mucosal necrotic lesions which were associated with neutrophil infiltration and reduction of PGE2 levels. Increments of MPO and MDA contents, as well as a decrease in GSH levels were detected in the gastric mucosa of indomethacin- or piroxicam-treated animals. Indomethacin enhanced mucosal cyclooxygenase-2 expression, while not affecting cyclooxygenase-1. At the oral dose of 18 µmol/kg lansoprazole partly counteracted diclofenac-induced mucosal damage, whereas at 90 µmol/kg it markedly prevented injuries evoked by all test NSAIDs. Lansoprazole at 90 µmol/kg reversed also the effects of NSAIDs on MPO, MDA and GSH mucosal contents, without interfering with the decrease in PGE2 levels or indomethacin-induced cyclooxygenase-2 expression. However, both lansoprazole doses markedly inhibited acid secretion in pylorus-ligated rats. Lansoprazole concentration-dependently reduced the oxidation of LDLs in vitro. CONCLUSION: These results suggest that, besides the inhibition of acid secretion, lansoprazole protection against NSAID-induced

  10. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation

    International Nuclear Information System (INIS)

    Henderson, B.W.; Miller, A.C.

    1986-01-01

    The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H 2 O 2 . The addition of catalase, which prevents H 2 O 2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O 2 , acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H 2 O 2 , was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species

  11. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation

    DEFF Research Database (Denmark)

    Bailey, Damian M; Rasmussen, Peter; Evans, Kevin A

    2018-01-01

    This study examined to what extent the human cerebral and femoral circulation contribute to free radical formation during basal and exercise-induced responses to hypoxia. Healthy participants (5♂, 5♀) were randomly assigned single-blinded to normoxic (21% O2) and hypoxic (10% O2) trials...... hypoxia (P free radical-mediated lipid peroxidation subsequent to inadequate antioxidant defense. This was pronounced during exercise across the femoral circulation in proportion to the increase in local O2 uptake (r = -0.397 to -0.459, P = 0.037 to 0...... with measurements taken at rest and 30min after cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled from the brachial artery (a), internal jugular and femoral veins (v) for non-enzymatic antioxidants (HPLC), ascorbate radical (A...

  12. Study of OH● Radicals in Human Serum Blood of Healthy Individuals and Those with Pathological Schizophrenia

    Directory of Open Access Journals (Sweden)

    Wolfgang Linert

    2011-01-01

    Full Text Available The human body is constantly under attack from free radicals that occur as part of normal cell metabolism, and by exposure to environmental factors such as UV light, cigarette smoke, environmental pollutants and gamma radiation. The resulting “Reactive Oxygen Species” (ROS circulate freely in the body with access to all organs and tissues, which can have serious repercussions throughout the body. The body possesses a number of mechanisms both to control the production of ROS and to cope with free radicals in order to limit or repair damage to tissues. Overproduction of ROS or insufficient defense mechanisms leads to a dangerous disbalance in the organism. Thereby several pathomechanisms implicated in over 100 human diseases, e.g., cardiovascular disease, cancer, diabetes mellitus, physiological disease, aging, etc., can be induced. Thus, a detailed investigation on the quantity of oxygen radicals, such as hydroxyl radicals (OH● in human serum blood, and its possible correlation with antioxidant therapy effects, is highly topical. The subject of this study was the influence of schizophrenia on the amount of OH● in human serum blood. The radicals were detected by fluorimetry, using terephthalic acid as a chemical trap. For all experiments the serum blood of healthy people was used as a control group.

  13. Theoretical research of multi-pulses laser induced damage in dielectrics

    International Nuclear Information System (INIS)

    Luo Jin; Liu Zhichao; Chen Songlin; Ma Ping

    2013-01-01

    The pulse width is different, the mechanism of the laser-matter interaction is different. Damage results from plasma formation and ablation forτ≤10 ps and from heat depositing and conventional melting for τ>100 ps. Two theoretical models of transparent dielectrics irradiated by multi-pulses laser are respectively developed based on the above-mentioned different mechanism. One is the dielectric breakdown model based on electron density evolution equation for femtosecond multi-pluses laser, the other is the dielectric heat-damage model based on Fourier's heat exchange equation for nanosecond multi-pluses laser. Using these models, the effects of laser parameters and material parameters on the laser-induced damage threshold of dielectrics are analyzed. The analysis results show that different parameters have different influence on the damage threshold. The effect of parameters on the multi -pulses damage threshold is not entirely the same to the single-pulse damage threshold. The multi-pulses damage mechanism of dielectrics is discussed in detail, considering the effect of different parameters. The discussion provides more information for understanding its damage process and more knowledge to improve its damage thresholds. And the relationship between damage threshold and pulse number is illustrated, it is in good agreement with experimental results. The illustration can help us to predict the multi-pulses damage threshold and the lifetime of optical components. (authors)

  14. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution

    International Nuclear Information System (INIS)

    Kinley, J.S.; Moan, J.; Brunborg, G.

    1995-01-01

    Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). (Author)

  15. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  16. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    Science.gov (United States)

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  17. Initial decay process of radicals induced in irradiated food

    International Nuclear Information System (INIS)

    Kaimori, Yoshihiko; Sakamoto, Yuki; Nakamura, Hideo; Ukai, Mitsuko; Kikuchi, Masahiro; Shimoyama, Yuhei; Kobayashi, Yasuhiko; Kameya, Hiromi

    2011-01-01

    In order to determine radial decay behaviors of γ-irradiated food, we analyzed radicals in the food using ESR. We detected the ESR signal of specimens just several minutes after irradiation. The singlet signal intensity at g=2.0, originated from organic free radicals was increased as followed by the increasing radiation dose. Singlet signal intensity that increased by γ-irradiation was decreased with time. The phenomena of decay of the ESR singlet signal showed two phase that are rapid decay and slow decay. It was suggested that those two phase decay is due to at least the two radical species. Also we concluded that after three hours of radiation treatment long life radical as ESR signal intensity was detected in irradiated specimen; black pepper, green coffee bean and ginseng, showed the same decay phenomena. But the signal intensity of irradiated black pepper was three times larger than that of irradiated green coffee bean and irradiated ginseng. (author)

  18. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  19. Does oxygen enhance the radiation: induced inactivation of penicillinase. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-01-01

    The radiation-induced inactivation of penicillinase in dilute aqueous solutions buffered with phosphate was studied, by examining enzyme radiosensitivity in the presence of various gases (He, O 2 , H 2 , N 2 O, N 2 O + O 2 ). The introduction of either N 2 O or O 2 was found to reduce the radiodamage. On the other hand H 2 or N 2 O + O 2 gas-mixture enhanced the radiosensitivity. In the presence of formate and oxygen, no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is almost four-fold higher than that of OH radical; therefore in phosphate buffer, where more than half of the free radicals are H atoms, it is the H radicals that are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute toward enzyme inactivation. Oxygen was shown to affect the radiosensitivity in two ways. On one side, it protected by converting e - /sub aq/ and H radicals into harmless O 2 - radicals. On the other side it increased the inactivation by enhancing the damage brought about by OH radicals (OER = 2.8). In the present case the oxygen effect of protection exceeded that of sensitization, thus giving rise to a moderate overall protection effect

  20. Antagonist effects of veratric acid against UVB-induced cell damages.

    Science.gov (United States)

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  1. Particle size-dependent radical generation from wildland fire smoke

    International Nuclear Information System (INIS)

    Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.

    2007-01-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The

  2. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum against Ultraviolet B–Irradiated Damage in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Jin Won Hyun

    2011-11-01

    Full Text Available The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME against ultraviolet B (UVB-induced cell damage in human keratinocytes (HaCaT cells. SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H2O2 and UVB-induced intracellular reactive oxygen species (ROS. SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4 + H2O2, which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis.

  3. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  4. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  5. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  6. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  7. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  8. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  9. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  10. Characterization of 60 Co y-radiation induced radical products of antipyrine by means of high performance liquid chromatography, mass spectrometry, capillary zone electrophoresis, micellar electrokinetic capillary chromatography and nuclear magnetic resonance spectrometry

    NARCIS (Netherlands)

    Coolen, S.A.J.; Everaerts, F.M.; Huf, F.A.

    1997-01-01

    Monitoring the amount of oxidative damage, caused by free radicals, is a major problem in free radical and aging research. Antipyrine is proposed as an exogenous marker for the biomolecular monitoring of oxidative stress. In this paper the characterization of the 60Co γ-radiation products of

  11. Characterization of 60Co gamma-radiation induced radical products of antipyrine by means of high-performance liquid chromatography, mass spectrometry, capillary zone electrophoresis, micellar electrokinetic capillary chromatography and nuclear magnetic resonance spectrometry

    NARCIS (Netherlands)

    Coolen, S.A.J.; Everaerts, F.M.; Huf, F.A.

    1997-01-01

    Monitoring the amount of oxidative damage, caused by free radicals, is a major problem in free radical and aging research. Antipyrine is proposed as an exogenous marker for the biomolecular monitoring of oxidative stress. In this paper the characterization of the 60Co ¿-radiation products of

  12. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  13. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Um, So Young [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Park, Jung Hyun [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Chung, Myeon Woo [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Kim, Kyu-Bong [College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Kim, Seon Hwa [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Choi, Ki Hwan, E-mail: hyokwa11@korea.kr [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Lee, Hwa Jeong, E-mail: hwalee@ewha.ac.kr [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer NMR based metabolomics - gastric damage by indomethacin. Black-Right-Pointing-Pointer Pattern recognition analysis was performed to biomarkers of gastric damage. Black-Right-Pointing-Pointer 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. Black-Right-Pointing-Pointer The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the {sup 1}H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg{sup -1}) or co-administration with cimetidine (100 mg kg{sup -1}), which protects against GI damage. The {sup 1}H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg{sup -1}) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by

  14. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    International Nuclear Information System (INIS)

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Kim, Kyu-Bong; Kim, Seon Hwa; Choi, Ki Hwan; Lee, Hwa Jeong

    2012-01-01

    Highlights: ► NMR based metabolomics – gastric damage by indomethacin. ► Pattern recognition analysis was performed to biomarkers of gastric damage. ► 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. ► The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1 H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg −1 ) or co-administration with cimetidine (100 mg kg −1 ), which protects against GI damage. The 1 H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg −1 ) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  15. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  16. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  17. Synchrotron radiation structure analyses of the light-induced radical pair of a hexaarylbiimidazolyl derivative. Origin of the spin-multiplicity change

    CERN Document Server

    Kawano, M; Matsubara, K; Imabayashi, H; Mitsumi, M; Toriumi, K; Ohashi, Y

    2002-01-01

    In situ synchrotron radiation structure analyses of a light-induced radical pair from o-Cl-HABI were performed by using an X-ray vacuum camera at 23-70K at the BL02B1 station of SPring-8. The combined results of X-ray analysis with theoretical calculation, IR, and UV-vis spectroscopy reveal that a slight conformational change of the radical pair causes the drastic spin-multiplicity change during 2-140K. (author)

  18. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  19. DNA damage and mutagenesis of lambda phage induced by gamma-rays

    International Nuclear Information System (INIS)

    Bertram, Heidi

    1988-01-01

    Lambda phage DNA was gamma irradiated in aqueous solution and strand breakage determined. Twice as much minor structural damage per lethal hit was found in this DNA compared with DNA from irradiated phage suspensions. The in vitro irradiated DNA was repackaged into infectious particles. Induction of mutations in the cI or cII cistron was scored using SOS-induced host cells. In vitro prepared particles were found to have second-order kinetics for mutagenesis induced by gamma rays indicating two pre-mutational events were necessary to produce a mutation, but bacteria-free phage suspensions ('lys-phage') showed single hit kinetics for mutagenesis after irradiation. Increase in the mutation rate in the phage particles was mainly due to minor lesions, i.e. ssb, als and unidentified base damage. In lys-phage, mutagenesis might be enhanced by clustered DNA damage - configuration not existing in pack-phage. Loss of infectivity was analysed in comparison with structural damage. All lesions contributed to biological inactivation. Minor lesions were tolerated by lambda phage to a limited extent. Major lesions (e.g. dsb) contributed most to infectivity loss and were considered lethal events. (U.K.)

  20. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  1. Simulation study of radiation damage induced by energetic helium nuclei

    CERN Document Server

    Hoang Dac Luc; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses.

  2. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Brigitte Gonthier

    2012-01-01

    Full Text Available Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  3. The thyroid hormone receptor β induces DNA damage and premature senescence.

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  4. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the open-quotes Electron Spin Resonance of Radiation Damage to DNAclose quotes

  6. Simulation study of radiation damage induced by energetic helium nuclei

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vo Tuong Hanh; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses. (author)

  7. Orally active multi-functional antioxidants are neuroprotective in a rat model of light-induced retinal damage.

    Directory of Open Access Journals (Sweden)

    James Randazzo

    Full Text Available Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4 and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8 to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD.

  8. Free radicals in biology. Volume II

    International Nuclear Information System (INIS)

    Pryor, W.A.

    1976-01-01

    This volume continues the treatment of topics in free radical biology and free radical pathology from Volume I. In the first chapter, pyridinyl radicals, radicals which are models for those derived from NAD, are discussed. Pyridinyl radicals can be synthesized and isolated and directly studied in a number of chemical systems. The next chapter treats the role of glutathione in the cell. It is becoming even more apparent that this vital thiol controls a large number of important cellular functions. The GSH/GSSG balance has recently been implicated as a control for cellular development; this balance also may be important in relaying the effects of oxidants from one site to another in the body. The next chapter outlines the reactions of singlet oxygen; some of these involve free radicals and some do not. This reactive intermediate appears to be important both in photochemical smog and in cellular chemistry where singlet oxygen is produced by nonphotochemical processes. The production of free radicals from dry tissues, a controversial area with conflicting claims is reviewed. The next chapter outlines the current status of the studies of photochemical smog. The next two chapters treat specific reactive materials which are present in smog. The first discusses the chemistry of nitrogen oxides and ozone. The second chapter treats the chemistry of the peroxyacyl nitrites. These compounds, although present in only small concentration, are among the most toxic components of smog. The last two chapters treat radiation damage to proteins and radiation protection and radical reactions produced by radiation in nucleic acids

  9. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  10. Surfactant Protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Lock Johansson, Sofie; Tan, Qihua; Holst, Rene

    2014-01-01

    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  11. Protective effect of hemin against cadmium-induced testicular damage in rats

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Qureshi, Habib A.; Al-Sultan, Ali Ibrahim; Yacoubi, Mohamed T.; Ali, Abdellah Abusrie

    2009-01-01

    The protective effect of hemin, the heme oxygenase-1 inducer, was investigated in rats with cadmium induced-testicular injury, in which oxidative stress and inflammation play a major role. Testicular damage was induced by a single i.p. injection of cadmium chloride (2 mg/kg). Hemin was given for three consecutive days (40 μmol/kg/day, s.c.), starting 1 day before cadmium administration. Hemin treatment significantly increased serum testosterone level that was reduced by cadmium. Hemin compensated deficits in the antioxidant defense mechanisms (reduced glutathione, and catalase and superoxide dismutase activities), and suppressed lipid peroxidation in testicular tissue resulted from cadmium administration. Also, hemin attenuated the cadmium-induced elevations in testicular tumor necrosis factor-α and nitric oxide levels, and caspase-3 activity. Additionally, hemin ameliorated cadmium-induced testicular tissue damage observed by light and electron microscopic examinations. The protective effect afforded by hemin was abolished by prior administration of zinc protoporphyrin-IX, the heme oxygenase-1 inhibitor. It was concluded that hemin, through its antioxidant, anti-inflammatory and antiapoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of cadmium

  12. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  13. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    Directory of Open Access Journals (Sweden)

    Deokhoon Park

    2013-05-01

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs formation, glutathione (GSH depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  14. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  15. Effects of Resveratrol on Methotrexate-Induced Testicular Damage in Rats

    Directory of Open Access Journals (Sweden)

    Esin Yuluğ

    2013-01-01

    Full Text Available This study investigated the probable protective effects of resveratrol (RES, an antioxidant, against methotrexate- (MTX- induced testis damage. Twenty-four male Sprague Dawley rats were randomly divided into four groups: control, RES, MTX, and MTX + RES groups. Rats were sacrificed at the end of the experiment. Plasma and tissue malondialdehyde (MDA levels, superoxide dismutase (SOD and catalase (CAT activity in tissue, testicular histopathological damage scores, and testicular and epididymal epithelial apoptotic index (AI were evaluated. The MTX group had significantly higher plasma and tissue MDA levels and significantly lower SOD and CAT activity than those of the control group. In the MTX + RES group, plasma and tissue MDA levels decreased significantly and SOD activity rose significantly compared to the MTX group. The MTX group had significantly lower Johnsen’s testicular biopsy score (JTBS values than those of the control group. JTBS was significantly higher in the MTX + RES group than in the MTX group. AI increased in the testis and epididymis in the MTX group and significantly decreased in the MTX + RES group. Our results indicate that RES has protective effects against MTX-induced testis damage at the biochemical, histopathological, and apoptotic levels.

  16. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  17. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  18. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  19. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  20. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-01-01

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE_2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  1. Investigation of cutting-induced damage in CMC bend bars

    Directory of Open Access Journals (Sweden)

    Neubrand A.

    2015-01-01

    Full Text Available Ceramic matrix composites (“CMC” with a strong fibre-matrix interface can be made damage-tolerant by introducing a highly porous matrix. Such composites typically have only a low interlaminar shear strength, which can potentially promote damage when preparing specimens or components by cutting. In order to investigate the damage induced by different cutting methods, waterjet cutting with and without abrasives, laser-cutting, wire eroding and cutoff grinding were used to cut plates of two different CMCs with a matrix porosity up to 35 vol.-%. For each combination of cutting method and composite, the flexural and interlaminar shear strength of the resulting specimens was determined. Additionally, the integrity of the regions near the cut surfaces was investigated by high-resolution x-ray computer tomography. It could be shown that the geometrical quality of the cut is strongly affected by the cutting method employed. Laser cut and waterjet cut specimens showed damage and delaminations near the cut surface leading to a reduced interlaminar shear strength of short bend bars in extreme cases.

  2. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  3. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  4. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  5. Radiation-induced cell damage

    International Nuclear Information System (INIS)

    Felix, W.D.; Schneiderman, M.H.

    1976-01-01

    The addition of irradiated crystals of galactose to Chinese hamster ovary cells resulted in mitotic delay, whereas exposure to nonirradiated crystals resulted in no detectable delay. The inference from this preliminary data is that free radicals or other transient irradiation products have reacted with external cellular components

  6. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    Science.gov (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  7. Modifications induced by swift heavy ions on poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and poly(ε-caprolactone) (PCL). Part 2. Radicals characterization

    International Nuclear Information System (INIS)

    Rouxhet, L.; Mestdagh, M.; Legras, R.

    2000-01-01

    Modifications induced by different energetic heavy ions ( 40 Ar 9+ , 80 Kr 15+ , 129 Xe 24+ , 208 Pb 53+ and 208 Pb 56+ ) on poly(ε-caprolactone) (PCL) and poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) have been investigated by electron spin resonance (ESR). Indeed, film irradiation by heavy ions leads to, among other phenomena, the formation of radicals in the ion tracks. Thanks to ESR, it is possible to detect these radicals and to identify them or at least to characterize them by following the evolution of the radical signal as a function of parameters, like temperature, or the kinetic of disappearance of the radical species at ambient temperature in vacuum or ambient atmosphere. This study confirmed the generation of radicals by the irradiation of PHB/HV samples with energetic heavy ions reported in the literature. The study on PCL was not pursued after a few preliminary studies, revealing the presence of an ESR signal in the non-irradiated sample. Electronic stopping power has a major influence on radical decrease at ambient temperature. The ion used for the irradiation did not modify very much the radical signal and the evolution of the radicalar signal intensity with temperature. Different reasoning and experiments revealed that the glass transition temperature is a key temperature above which irreversible recombinations of the most stable radicals take place. A simulation study indicated that the most stable radical produced was probably a tertiary radical formed by the stabilization of the secondary radical resulting from the abstraction of a highly mobile hydrogen adjacent to the carbonyl

  8. Study of the laser-induced damage of reflective components in the sub-picosecond regime

    International Nuclear Information System (INIS)

    Sozet, Martin

    2016-01-01

    In this thesis, laser-induced damage phenomenon of reflective components is investigated in the sub-picosecond regime. These components, made of stacks of dielectric materials, are widely used in powerful laser facilities such as PETAL laser. PETAL laser has been built at the CEA-CESTA in France to deliver multi-kJ/500 fs pulses at 1053 nm and reach a power higher than 6 PW. For this kind of laser systems, reflective components are commonly used instead of optics operating in transmission to limit the accumulation of non-linear phase along the beam propagation due to the high intensities. Optical components irradiated by the highest power densities are the pulse compression gratings, transport mirrors and the focusing parabola, located at the end of the laser chain. Nowadays, laser-induced damage is the main factor that limits the overall performances of powerful laser systems. This manuscript presents three study axes to better understand and control damage phenomenon. The first one concerns the conception of reflective optics for the peta-watt applications. The design of new structures has been investigated to reach high diffraction efficiencies in the case of pulse compression gratings and a high reflectivity in the case of mirrors, while reducing the Electric-field enhancement which is one of the causes of the laser-induced damage. The second axis deals with the development of a precise damage metrology with new testing tools which brings new perspectives and a new viewpoint for the assessment of the laser resistance of optical components. Finally, the third axis concerns the study the damage growth after several irradiations in the sub-picosecond regime. The evolution of the damage area during growth sequences is observed and compared to numerical simulations. It enables to improve the understanding in the growth phenomenon. In the end, these studies will allow to develop predictive models of the laser-induced damage and new tools for the conception of

  9. Laser-Induced Damage Growth on Larger-Aperture Fused Silica Optical Components at 351 nm

    International Nuclear Information System (INIS)

    Wan-Qing, Huang; Wei, Han; Fang, Wang; Yong, Xiang; Fu-Quan, Li; Bin, Feng; Feng, Jing; Xiao-Feng, Wei; Wan-Guo, Zheng; Xiao-Min, Zhang

    2009-01-01

    Laser-induced damage is a key lifetime limiter for optics in high-power laser facility. Damage initiation and growth under 351 nm high-fluence laser irradiation are observed on larger-aperture fused silica optics. The input surface of one fused silica component is damaged most severely and an explanation is presented. Obscurations and the area of a scratch on it are found to grow exponentially with the shot number. The area of damage site grows linearly. Micrographs of damage sites support the micro-explosion damage model which could be used to qualitatively explain the phenomena

  10. Effects of ionizing radiation on laser-induced damage in SiO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Soileau, M J; Mansour, N; Canto, E; Griscom, D L

    1988-05-01

    The effects of radiation damage on bulk laser-induced damage in SiO/sub 2/ were investigated. Samples studied included Spectrasil A, B, and WF (water free). Measurements of laser-induced breakdown were conducted with 532 and 1064 nm laser pulses of approximately 20 ns duration. Reductions of up to 40% in the laser-induced breakdown threshold were observed at 532 nm for samples exposed to 10/sup 8/ rad of ..gamma..-radiation. The decrease in breakdown threshold for irradiated SiO/sub 2/ samples at 532 nm was found to be proportional to the linear absorption of the specimen at 266 nm. These results are in good agreement with a proposed model which suggests that two-photon absorption initiated avalanche process is responsible for laser-induced breakdown for these materials.

  11. Induction of lethal and genetic damage by vacuum-ultraviolet (163 nm) irradiation of aqueous suspensions of yeast cells

    International Nuclear Information System (INIS)

    Ito, T.; Kobayashi, K.

    1976-01-01

    Yeast cells suspended in distilled water were irradiated with monochromatic 163 nm photons by immersing a specially designed discharge tube into the suspension. This was thought to be a useful means of investigating in vivo effects of radiation-induced water radicals on well cells in the complete absence of ionic species, since 163 nm photons can dissociate water only via excitation. These experiments showed that the water radicals (excluding e/sub aq/ - ) exerted both lethal and genetic (gene-conversion) effects quite potently, and the characteristic protection against these effects was observable when 2-mercaptoethanol or, in particular, p-aminobenzoic acid, a specific scavenger for OH radicals, was added to the medium prior to irradiation. Nearly complete protection from both lethal and genetic effects was observed in some cases with p-aminobenzoic acid. These results establish unequivocally that the OH radical, and not the hydrogen atom (H radical), possesses the damaging potency in the cell. Comparisons with γ-ray experiments revealed several differences between 163 nm photons and γ rays in the protective actions of radical scavengers, which may be attributable to reactive species other than OH radicals produced by the γ rays

  12. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity

  13. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  14. The mitochondrial free radical theory of aging.

    Science.gov (United States)

    Barja, Gustavo

    2014-01-01

    The mitochondrial free radical theory of aging is reviewed. Only two parameters currently correlate with species longevity in the right sense: the mitochondrial rate of reactive oxygen species (mitROS) production and the degree of fatty acid unsaturation of tissue membranes. Both are low in long-lived animals. In addition, the best-known manipulation that extends longevity, dietary restriction, also decreases the rate of mitROS production and oxidative damage to mtDNA. The same occurs during protein restriction as well as during methionine restriction. These two manipulations also increase maximum longevity in rodents. The decrease in mitROS generation and oxidative stress that takes place in caloric restriction seems to be due to restriction of a single dietary substance: methionine. The information available supports a mitochondrial free radical theory of aging focused on low generation of endogenous damage and low sensitivity of membranes to oxidation in long-lived animals. © 2014 Elsevier Inc. All rights reserved.

  15. Lattice damage induced by Tb-implanted AlN crystalline films

    International Nuclear Information System (INIS)

    Lu Fei; Hu Hui; Rizzi, A.

    2002-01-01

    AlN films with thickness from 100 to 1000 nm were grown on SiC substrate by MBE. AlN crystalline films were doped by implantation with 160 keV Tb ions to fluences of 5x10 14 , 1.5x10 15 , 3x10 15 and 6x10 15 ions/cm 2 , respectively. The damage profiles in AlN films induced by Tb implantation were investigated using RBS/channeling technique. A procedure developed by Feldman and Rodgers was used to extract damage profile by considering the dechanneling mechanism of multiple. The comparison of the extracted profile with TRIM prediction shows a significant difference in the shape and in the position of damage profile. The damage profile in AlN film is similar as Tb distribution. The RBS/channeling of Tb-implanted AlN film before and after 950 deg. C annealing treatments show a good consistency, which indicate that high temperature annealing cannot result in a significant change in both crystal damage and in Tb distribution

  16. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  17. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  18. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Mild hyperthermia can induce adaptation to cytogenetic damage caused by subsequent X irradiation

    International Nuclear Information System (INIS)

    Cai, Lu.; Jiang, Jie.

    1995-01-01

    Many low-level environmental agents are able to induce an increased resistance to subsequent mutagenic effects induced by ionizing radiation. In this paper, an induced cytogenetic adaptation to radiation in human lymphocytes was studied with mild hyperthermia as the adaptive treatment and compared with that induced by low-dose radiation. We found that this adaptation could be induced not only in PHA-stimulated human lymphocytes (at 14, 38 and 42 h after addition of PHA), but also in unstimulated G 0 -phase cells (before addition of PHA) by mild hyperthermia (41 degrees C for 1 h) as well as 50 mGy X rays. When the two adaptive treatments were combined, no additive effects on the magnitude of the adaptation induced were observed, suggesting that low-dose radiation and hyperthermia may share one mechanism of induction of adaptation to cytogenetic damage. Some mechanisms which may be involved in the induction of adaptation to cytogenetic damage by low-dose radiation are discussed and compared with the effects of mild hyperthermia in inducing thermotolerance and radioresistance. 56 refs., 4 figs., 3 tabs

  20. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.