WorldWideScience

Sample records for radical cation bound

  1. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  2. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  3. Letter: OCCO*+, NNCO*+ and NNNN*+ radical cations.

    Science.gov (United States)

    Flammang, R; Srinivas, R; Nguyen, M T; Gerbaux, P

    2007-01-01

    Chemical ionization of a mixture of nitrogen and carbon monoxide produces three stable isobaric species at m/z 56: OCCO, OCNN and NNNN radical cations. Separated at increased resolution, these ions are readily identified by collisional activation. Neutralization-reionization experiments performed on two different mass spectrometers have not allowed the detection of any recovery signals for the corresponding neutrals.

  4. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Tagawa, Seiichi

    2009-01-01

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  5. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  6. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: Radical cation photochemical transformations without photons

    International Nuclear Information System (INIS)

    Barnabas, M.V.; Trifunac, A.D.

    1994-01-01

    Radical cations of quadricyclane (Q) and norbornadiene (NBD) are produced by γ-radiolysis in zeolites. In polar ZSM-5, only one radical cation is initially observed below 100K. Increasing the temperature above 200K gives rise to the cyclopentadiene radical cation. Higher temperatures (>360K) give rise to the cyclopenten-4-yl radical. The observation of cyclopentadiene radical cation implies the occurrence of the reverse Diels-Alder reaction. This is a thermally forbidden, photochemically allowed, process, which is made possible by the interaction of the polar zeolite matrix sites with parent NBD and Q radical cations

  7. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  8. Radical Cations and Acid Protection during Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zarzana, Christopher A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stephen P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-09

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  9. Radical Cations and Acid Protection during Radiolysis

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Zarzana, Christopher A.; Mezyk, Stephen P.

    2016-01-01

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO 3 . It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  10. Isomerizations of the Nitromethane Radical Cation in the Gas Phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars; Elbel, Susanne

    1986-01-01

    The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane/aci-nitromethane tauto......The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane...

  11. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  12. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  13. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  14. Stepwise radical cation Diels-Alder reaction via multiple pathways.

    Science.gov (United States)

    Shimizu, Ryo; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Herein we disclose the radical cation Diels-Alder reaction of aryl vinyl ethers by electrocatalysis, which is triggered by an oxidative SET process. The reaction clearly proceeds in a stepwise fashion, which is a rare mechanism in this class. We also found that two distinctive pathways, including "direct" and "indirect", are possible to construct the Diels-Alder adduct.

  15. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  16. Measurement of antioxidant activity with trifluoperazine dihydrochloride radical cation

    Directory of Open Access Journals (Sweden)

    M.N. Asghar

    2008-06-01

    Full Text Available A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R² ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.

  17. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.

    Science.gov (United States)

    Tay, Nicholas E S; Nicewicz, David A

    2017-11-15

    Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.

  18. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  19. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  20. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  1. Role of distonic dimer radical cations in the radiation-induced polymerisation of vinyl ethers

    International Nuclear Information System (INIS)

    Naumov, Sergej; Janovsky, Igor; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    The experimental low-temperature EPR results and the quantum chemical calculations suggest that dimer radical cations of cyclic and aliphatic vinyl ethers (VE) plays a key role in starting of radiation-induced polymerisation. The main species observed at high 2,3-dihydrofuran (DHF), 2,3-dihydropyran (DHP) and VE concentration is the dimer radical cation. In the case of cyclic VE the dimer radical cation transforms through H-abstraction from neutral molecule into a carbocation and radical, which could start both cationic and free-radical polymerisation. However, in the case of aliphatic VE no further reactive species, which could start polymerisation, were observed. This is caused (in agreement with experiment and quantum chemical calculations) by the very high stability of dimer radical cation and calculated endothermity of H-abstraction reaction by dimer radical cation from monomer

  2. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  3. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  4. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1992-01-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials

  5. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  6. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    International Nuclear Information System (INIS)

    Kispert, Lowell D.; Focsan, A. Ligia; Konovalova, Tatyana A.; Lawrence, Jesse; Bowman, Michael K.; Dixon, David A.; Molnar, Peter; Deli, Jozsef

    2007-01-01

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car ·+ ) but also neutral radicals ((number s ign)Car · ) by proton loss from the methyl groups at positions 5 or 5(prime), and possibly 9 or 9(prime) and 13 or 13(prime). Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car # center d ot# + which agree with the ENDOR for carotenoid π-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity (Lycopene (III) versus 8(prime)-apo-β-caroten-8(prime)-al (IV)); hydrogen bonding (Lutein (V) versus III); host (silica-alumina versus MCM-41 molecular sieve); and substituted metal in MCM-41. Loss of H + from the 5(5(prime)), 9(9(prime)) or 13(13(prime)) methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1 Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I # center d ot# + ...Chl # center d ot# - ), lower in

  7. 17.9.3 Radical cations of diazo compounds

    Science.gov (United States)

    Davies, A. G.

    This document is part of Subvolume E2 `Phosphorus-Centered Radicals, Radicals Centered on Other Heteroatoms, Organic Radical Ions' of Volume 26 `Magnetic Properties of Free Radicals' of Landolt-Börnstein Group II `Molecules and Radicals'.

  8. Fragmentation characteristics of the unstable [CH3 CO][radical sign] radicals generated by neutralization of [CH3CO]+ cations

    Science.gov (United States)

    Hop, C. E. C. A.; Holmes, J. L.

    1991-03-01

    The stability and fragmentation characteristics of [CH3 CO][radical sign] radicals, generated by vertical charge exchange between acetyl cations and permanent gases or metal vapours (He, Xe, NO, Cd, Na and K), were examined mass spectrometrically. Two dissociation reactions were observed, the losses of CH[radical sign]3 and H[radical sign]. The H[radical sign] loss reaction, the higher energy dissociation, became of greater importance as the exothermicity of the charge exchange was increased. Based on the analysis of the kinetic energy releases it was concluded that these decompositions arose from the population of two excited states of the [CH3 CO][radical sign] radical.

  9. Structure and dynamics of olefin radical cation aggregates. Time-resolved fluorescence detected magnetic resonance

    International Nuclear Information System (INIS)

    Desrosiers, M.F.; Trifunac, A.D.

    1986-01-01

    The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures

  10. Formation and reactions of radical cations of substituted benzenes in aqueous media

    International Nuclear Information System (INIS)

    Holcman, J.

    1977-08-01

    Radical cations of anisole, methylated benzenes, ethylbenzene, isopropylbenzene, tert-butylbenzene and N,N-dimethylaniline were studied in aqueous media by pulse radiolytic technique. Absorption spectra and reaction kinetics of the radical cations were recorded. The radical cations are formed from the corresponding OH adducts by the elimination of OH - , either by a simple dissociation or by an acid catalyzed reaction. The rate constants of the formation of the radical cations and their reactions with water, OH - and Fe 2+ , or the reaction of a proton loss, were measured. The rate constants for the reaction with water and OH - , together with the rate constants for the dissociation of the OH adducts, are correlated with the ionization potential of the parent compound. These correlations offer a possibility of predicting the acid-base properties of radical cations of substituted benzenes, or the estimation of their ionization potential. (author)

  11. The chemistry of amine radical cations produced by visible light photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2013-10-01

    Full Text Available Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis.

  12. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water

    International Nuclear Information System (INIS)

    Hayon, E.; Rao, P.S.

    1975-01-01

    The one-electron oxidation by hydroxyl radicals of aromatic amines and diamines in water was studied using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The following compounds were examined: N,N,N 1 ,N 1 - tetramethyl-p-phenylenediamine (TMPD), p-phenylenediamine (PD), N,N-dimethyl-p-phenylenediamene (DMPD), N,N,N 1 ,N 1 -tetramethylbenzidine (TMB), and diphenylamine (DPA). The main initial reaction of the OH radicals is suggested to be an addition to these compounds to give absorption spectra which absorb strongly in the visible and uv regions. These OH radical adducts decay by first-order kinetics and have lifetimes of approximately 5-50 μsec, dependent on the pH, buffer concentration, and the nature of the aromatic amines and diamines. They decay to give species with somewhat similar absorption spectra and extinction coefficients, which are very long lived in the absence of oxygen. The latter species are assigned to the cation radicals TMPD. + , PD. + , DMPD. + , TMB. + , and DPA. + . The OH radical adducts and the cation radicals have acid-base properties. The pK/sub a/ values of the cation radicals TMPDH. 2+ , PDH. 2+ , DMPDH. 2+ , TMBH. 2+ , and DPAH. 2+ were found to be 5.3, 5.9, 6.1, 5.1, and 4.2, respectively. The results indicate that these aromatic amines and diamines can be oxidized by free radicals to yield the corresponding cation radicals. (U.S.)

  13. Radiation-induced polymerisation of 2,3-dihydrofuran: free-radical or cationic mechanism?

    International Nuclear Information System (INIS)

    Janovsky, Igor; Naumov, Sergej; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    Concentrated (10 mol%) solutions of 2,3-dihydrofuran in CFCl 2 CF 2 Cl matrix were irradiated at 77 K and several intermediates (dimer radical cation, dihydrofuryl radical, and polymer radicals) were observed by low-temperature EPR spectroscopy. The irradiated solutions yielded after melting a polymeric product, which was characterised by IR spectroscopy and gel permeation chromatography. The polydisperse polymer is assumed to be formed mainly by a cationic process initiated by a dimer carbocation. The free-radical mechanism via the dihydrofuryl radical leads to low molecular weight oligomers only. Quantum chemical calculations support the interpretation of the experimental results

  14. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates

    NARCIS (Netherlands)

    Koleva, [No Value; Niederlander, HAG; van Beek, TA

    2001-01-01

    The radical cation 2,2 ' -azinobis-(3 -ethylbenzothiazoline-6-sulfonate), (ABTS(.+)) was utilized in an on-line HPLC method for the detection of radical scavengers in complex matrixes. The HPLC-separated analytes react postcolumn with the preformed ABTS(.+), and the induced bleaching is detected as

  15. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    ,3,5-hexatriene have been studied. The radical cations were generated radiolytically in a glassy Freon matrix and investigated by optical absorption and resonance Raman spectroscopy. Ab initio and density functional molecular-orbital calculations have been carried out to predict equilibrium structures...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  16. Reactions of the radical cations of aliphatic aldehydes in freon matrices

    International Nuclear Information System (INIS)

    Belevskij, V.N.; Belopushkin, S.I.; Feldman, V.I.

    1985-01-01

    ESR spectra of γ-irradiated solutions of acetic and propionic aldehydes in freon-11 and freon-113 affected by aldehyde concentration, temperature, and the action of light were studied. It is shown that the radical cations are converted into neutral radicals, and the cations CHsub(3)CHsub(2)CHOsup(+). are converted to RCO and CHsub(3)CHCHO due to ion-molecular reactions of proton transfer of hydrogen atom transfer. (author)

  17. Valence isomerization of hexamethyl(dewar benzene) radical cation. Pulse radiolytic investigation

    International Nuclear Information System (INIS)

    Gebicki, J.; Marcinek, A.; Mayer, J.

    1989-01-01

    Organic radical ions are important intermediates in a wide variety of electron-transfer reactions. Both the steady-state and time-resolved techniques have been extensively applied to probe various aspects of their chemistry. We have recently established that low-temperature pulse radiolysis can be successfully applied to the kinetic study of radical ion transformations with very low activation barriers. The target of the present investigation is the hexamethyl(Dewar benzene) (HMDB)-hexamethylbenzene (HMDB) system. Studies by the CIDNP technique indicated the presence of two distinguishable radical cations in the system HMDB-HMB. This view has not been supported by a nanosecond spectroscopic observation which failed to reveal any evidence for a radical cation other than HMB sm-bullet+ . The aim of this work is to present spectroscopic evidence for two different radical cations HMDB sm-bullet+ -HMB sm-bullet+ and the activation barrier for their interconversion

  18. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  19. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    Science.gov (United States)

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  20. Stilbene dimer radical cations in the radiolyses of stilbenes and 1,2,3,4-tetraphenylcyclobutanes

    International Nuclear Information System (INIS)

    Tojo, Sachiko; Morishima, Kazuhiro; Ishida, Akito; Majima, Tetsuro; Takamuku, Setsuo

    1995-01-01

    The reaction of the stilbene radical cation formed by pulse radiolysis or γ-radiolyses is explained based on neutralization as well as the formation of a π-type stilbene dimer radical cation (π-St 2 +· ), converting to the σ-type St 2 +· (σ-St 2 +· ). The r-1, c-2, t-3, t-4-tetraphenylcyclobutane radical cation generated in a rigid matrix at 77 K which converted to σ-St 2 +· upon warming. Both r-1, c-2, t-3, t-4- and r-1, t-2, c-3, t-4-tetraphenylcyclobutane radical cations underwent photochemical cycloreversion to π-St 2 +· upon irradiation at wavelengths longer than 390 nm at 77 K, and converted to σ-St 2 +· upon warming. It is suggested that π-St 2 +· has overlapping arrangements of π-electrons, while σ-St 2 +· has radical and cation centers on the 1- and 4-positions of the C 4 linkage. (author)

  1. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2004-01-01

    To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates

  2. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    Science.gov (United States)

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  3. Molecular design of high performance fused heteroacene radical cations: A DFT study

    International Nuclear Information System (INIS)

    Kawabata, Hiroshi; Ohmori, Shigekazu; Matsushige, Kazumi; Tachikawa, Hiroto

    2008-01-01

    Hybrid density functional theory (DFT) calculations have been carried out for neutral and radical cation of fused furan oligomer, denoted by F(n) where n means number of furan rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused furan was also investigated using one-dimensional periodic boundary condition (PBC) for comparison. It was found that the reorganization energy of radical cation of F(n) from vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that F(n) has an effective hole transport property. It was found that the cation radical of F(n) has a low energy band at near IR region, which is strongly correlated to hole conductivity. The relation between the electronic states and hole conductivity was discussed on the basis of theoretical calculations

  4. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    Science.gov (United States)

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  6. Investigating radical cation chain processes in the electrocatalytic Diels-Alder reaction.

    Science.gov (United States)

    Imada, Yasushi; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Single electron transfer (SET)-triggered radical ion-based reactions have proven to be powerful options in synthetic organic chemistry. Although unique chain processes have been proposed in various photo- and electrochemical radical ion-based transformations, the turnover number, also referred to as catalytic efficiency, remains unclear in most cases. Herein, we disclose our investigations of radical cation chain processes in the electrocatalytic Diels-Alder reaction, leading to a scalable synthesis. A gram-scale synthesis was achieved with high current efficiency of up to 8000%. The reaction monitoring profiles showed sigmoidal curves with induction periods, suggesting the involvement of intermediate(s) in the rate determining step.

  7. Structure and Reactivity of the Glutathione Radical Cation: Radical Rearrangement from the Cysteine Sulfur to the Glutamic Acid alpha-Carbon Atom

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; Gulyuz, K.; Polfer, N.C.; O'Hair, R.A.J.; Ryzhov, V.

    2013-01-01

    A gas-phase radical rearrangement through intramolecular hydrogen-atom transfer (HAT) was studied in the glutathione radical cation, [-ECG](+.), which was generated by a homolytic cleavage of the protonated S-nitrosoglutathione. Ion-molecule reactions suggested that the radical migrates from the

  8. Through-bond interaction in the radical cation of N,N-dimethylpiperazine

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Langkilde, F.W.; Bajdor, K.

    1994-01-01

    The radical cation of N,N-dimethylpiperazine is investigated by resonance Raman spectroscopy and ab initio calculations. The calculations strongly support the assignment of the vibrational spectrum to a chair conformation. It is shown that a dramatic geometry relaxation following ionization allows...

  9. Resonance Raman investigation of the radical cation of 1,3,5-hexatriene

    DEFF Research Database (Denmark)

    Keszhelyi, T.; Wilbrandt, R.; Cave, R.J.

    1994-01-01

    The resonance Raman spectrum of the 1,3,5-hexatriene radical cation generated by gamma-irradiation in a Freon glass is reported. The spectrum is excited at 395 nm in resonance with the second absorption band. Identical spectra are obtained from ionized (E)- and (Z)-1,3,5-hexatriene. The presence...

  10. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    International Nuclear Information System (INIS)

    Grodkowski, J.; Bobrowski, K.; Mehnert, R.; Brede, O.

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl 4 and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN +radical ) and the former to the known carbonium ion of malachite green dye (MG + ). Observation of the consecutive charge transfer via the schemes: DCE +radical → BPh +radical → MGCN +radical and DCE +radical → MGCN +radical → TMPD +radical , allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV MGCN +radical radical cation is located in the ''aniline'' part of the molecule. (author)

  11. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Bobrowski, K; Mehnert, R; Brede, O

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl/sub 4/ and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN/sup +radical/) and the former to the known carbonium ion of malachite green dye (MG/sup +/). Observation of the consecutive charge transfer via the schemes: DCE/sup +radical/ -> BPh/sup +radical/ -> MGCN/sup +radical/ and DCE/sup +radical/ -> MGCN/sup +radical/ -> TMPD/sup +radical/, allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV < Ip/sub MGCN/ < 8.27 eV. Presented results and literature data suggest that positive charge in MGCN/sup +radical/ radical cation is located in the ''aniline'' part of the molecule. (author).

  12. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Isotope substitution effects on preferred conformations of some hydrocarbon radical cations

    International Nuclear Information System (INIS)

    Lunell, S.; Eriksson, L.A.

    1992-01-01

    The stability of different conformational isomers of partially deuterated radical cations of ethane, butane, and cyclopropane is studied at the HF/6-31G** and MP2/6-31G** levels. It is shown that the superposition patterns of spectra corresponding to different isomers, observed in ESR spectroscopy, are accurately reproduced by Boltzmann statistics based on differences in vibrational zero-point energies (ZPE), provided that the temperature is high enough to overcome existing barriers toward internal pseudorotation in the cations. For the ethane and butane cations, the most stable conformations are, as expected, those which are deuterated in the short CH bonds, while this is found not to be the case for the cyclopropane cation. The latter result is explained by shifts in the low-frequency bending modes, which counteract the anticipated isotope effect on the C H stretching modes

  14. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  15. New electrochemical oscillator based on the cation-catalyzed reduction of nitroaromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana; Fanelli, N.

    2009-01-01

    Roč. 54, č. 22 (2009), s. 4991-4996 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400802; GA AV ČR IAA400400505; GA ČR GA203/08/1157; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : nitroaromatic radical * cationic catalysis * electrochemical impendance * oscillation Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  16. Radical cation spectroscopy of substituted alkyl phenyl ketones via tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Bohinski, Timothy; Moore Tibbetts, Katharine [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Munkerup, Kristin [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark); Tarazkar, Maryam [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Romanov, Dmitri A. [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Physics, Temple University, Philadelphia, PA 19122 (United States); Matsika, Spiridoula [Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Levis, Robert J., E-mail: rjlevis@temple.edu [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States)

    2014-10-17

    Highlights: • Infrared strong field spectroscopy on (o, m, p)-methylacetophenone was performed. • Electronic resonance in the radical cations at 1370 nm produces benzoyl fragment. • Magnitude of resonance feature increases from ortho to meta to para isomer. • Hydrogen interactions and moment of inertia account for the trend across isomers. - Abstract: Mass spectra are measured for 2′-, 3′- and 4′-(ortho, meta and para) methyl substituted alkyl phenyl ketones excited at wavelengths ranging from 1200 to 1500 nm in the strong field regime. The selective loss of a methyl group from the acetyl group of the parent molecular ion upon excitation at ∼1370 nm is attributed to an electronic resonance between ground D{sub 0} and excited D{sub 2} state of the radical cation. Depletion of the parent molecular ion is enhanced as the methyl substituent is moved from the 2′ to 3′ to 4′ position on the phenyl ring with respect to the acetyl group. The phenyl-acetyl dihedral angle is the relevant coordinate enabling excitation to the dissociative D{sub 2} state. Calculations on the radical cation of 2′-methylacetophenone show two stable geometries with dihedral angles of 7 degrees and 63 degrees between the phenyl and acetyl groups. The barrier to rotation for the 2′ isomer limits population transfer to the D{sub 2} state. In contrast, calculations on the radical cations of 3′- and 4′-methylacetophenone reveal no rotational barrier to prevent population transfer to the excited state, which is consistent with the enhanced dissociation yield in comparison with the 2′ substitution. The enhanced dissociation of the 4′ isomer as compared to the 3′ isomer is attributed to its lower moment of inertia about the dihedral angle.

  17. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations

    International Nuclear Information System (INIS)

    Amthor, Stephan; Noller, Bastian; Lambert, Christoph

    2005-01-01

    The one-electron oxidation potential of 10 triarylamines 1-10 with all permutations of chloro-, methoxy- and methyl-substituents in the three para-positions were determined by cyclic voltammetry. The half wave potential E 1/2 (I) of the first oxidation wave correlates linearly with the number of chloro- and methoxy-substituents. A high long-term stability of the first oxidation wave for all triarylamines was observed by multi-cycle thin-layer measurements. AM1-CISD derived values of the absorption energies are in good agreement with the experiments but differ strongly for the oscillator strengths as well as for neutral compounds 1-10 and their corresponding mono radical cations. The small solvent dependence of the experimental UV/Vis spectra in CH 2 Cl 2 and MeCN reflects a minor charge transfer (CT) character of the electronic transitions of neutral and cationic compounds

  18. Asymmetrical distorted structure, dynamics, and reactions of the silacyclohexane and related radical cations: ESR and ab-initio MO study

    International Nuclear Information System (INIS)

    Komaguchi, Kenji; Shiotani, Masaru; Ishikawa, Mitsuo

    1995-01-01

    The σ-type radical cations generated by one electron oxidation of the saturated hydrocarbon have been attracted much attention because of their fundamental importance as primary reactant species in radiation chemistry. Our studies on σ-type radical cations were recently extended to the silacyclohexane (cSiC5), silacyclopentane (cSiC4), and silacyclobutane (cSiC3) radical cations. Their electronic structure, dynamics, and reactions were investigated by means of low temperature matrix isolation ESR technique combined with ionizing radiation (γ-rays from 60 Co). In the preceding paper, the 1-methylsilacyclohexane (1-Me-cSiC5) radical cation has been found to take an asymmetrically distorted C 1 structure with one of two Si-C bonds elongated in which the unpaired electron mainly resides ( 2 A in C 1 ). This conclusion was based on the 4.2 K ESR spectra of radical cations of selectively deuteriated and/or methylsubstituted silacyclohexanes, i.e., cSiC5-2,2,6,6-d 4 + , 1-Me-cSiC5 + , 1-Me-cSiC5-2,2-d 2 + , 1-Me-cSiC5-2,2,6,6-d 4 + , 1,1-Me 2 -cSiC5 + , and 4,4-Me 2 -cSiC5 + , in a frozen CF 3 -cC 6 F 11 matrix. Here we report further experimental and theoretical results on 1-methylsilacyclohexane radical cation, especially on the ab initio MO results and matrix effects on the structural distortion, as well as thermal reactions of the radical cations. The results will make it clear that the distorted C 1 structure of the 1-Me-cSiC5 + is the intrinsic nature at the ground electronic state. (J.P.N.)

  19. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound

    Science.gov (United States)

    Mouloudakis, K.; Kominis, I. K.

    2017-02-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.

  20. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound.

    Science.gov (United States)

    Mouloudakis, K; Kominis, I K

    2017-02-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.

  1. Multihydroxy-Anthraquinone Derivatives as Free Radical and Cationic Photoinitiators of Various Photopolymerizations under Green LED.

    Science.gov (United States)

    Zhang, Jing; Hill, NicholasS; Lalevée, Jacques; Fouassier, Jean-Pierre; Zhao, Jiacheng; Graff, Bernadette; Schmidt, Timothy W; Kable, Scott H; Stenzel, Martina H; Coote, Michelle L; Xiao, Pu

    2018-04-20

    Multihydroxy-anthraquinone derivatives [i.e., 1,2,4-trihydroxyanthraquinone (124-THAQ), 1,2,7-trihydroxyanthraquinone (127-THAQ), and 1,2,5,8-tetrahydroxyanthraquinone (1258-THAQ)] can interact with various additives [e.g., iodonium salt, tertiary amine, N-vinylcarbazole, and 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine] under household green LED irradiation to generate active species (cations and radicals). The relevant photochemical mechanism is investigated using quantum chemistry, fluorescence, cyclic voltammetry, laser flash photolysis, steady state photolysis, and electron spin resonance spin-trapping techniques. Furthermore, the multihydroxy-anthraquinone derivative-based photoinitiating systems are capable of initiating cationic photopolymerization of epoxides or divinyl ethers under green LED, and the relevant photoinitiation ability is consistent with the photochemical reactivity (i.e., 124-THAQ-based photoinitiating system exhibits highest reactivity and photoinitiation ability). More interestingly, multihydroxy-anthraquinone derivative-based photoinitiating systems can initiate free radical crosslinking or controlled (i.e., reversible addition-fragmentation chain transfer) photopolymerization of methacrylates under green LED. It reveals that multihydroxy-anthraquinone derivatives can be used as versatile photoinitiators for various types of photopolymerization reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  3. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    Science.gov (United States)

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  4. Radical cations in radiation chemistry of aldehydes. ESR study and quantum chemical analysis

    International Nuclear Information System (INIS)

    Belevskii, V.N.; Tyurin, D.A.; Chuvilkin, N.D.

    1998-01-01

    Quantum-chemical (MNDO-UHF) calculations of electronic, spin and energy characteristics of radical cations (RC) of ethanal, propanal, butanal, and pentanal and their distonic isomers were performed. The calculations both with 'frozen' (vertical ionization) and completely optimize geometry (adiabatic approximation) were made. It was been shown that the most positive charge and spin population are localized at O atoms and adjacent C atom as well as at aldehyde protons. The C-H bonds corresponding to those protons as well as neighboring C-O and C-C bonds are considerable weaker (longer) in radical cations as compared to their neutral precursors. That is why such reaction centers are apt to deprotonation with the formation of acyl radical as well as to α- and β-splitting (scission) which are well-known from aldehydes mass-spectra. Our calculations shown that distonic RC (products of intramolecular H-atom transfer) are more stable as compare to their classical isomers: e.g. the difference in energy ΔE = -0.95 eV, -1.2 eV, and -1.5 eV for tree distonic isomers of butanal RC as compare to classical isomer, ΔE -1.2 eV for distonic RC of ethanal. The results of calculations are effectively correlated with ESR data obtained in freonic solutions, X- and gamma-irradiated at 77 K and in liquid aldehydes, X-irradiated by using 2,4,6-tri-tert-burylnitrosobenzene (BNB) and t-BuNO (NtB) as a spin traps. (author)

  5. Effect of reagents and medium nature on direction of cation-radical transformations in the reaction of diarylamines with nitrosonium borofluoride

    International Nuclear Information System (INIS)

    Koshechko, V.G.; Inozemtsev, A.N.; Pokhodenko, V.O.

    1983-01-01

    Diphenylamine and 4, 4'-dimethoxydiphenylamine in acetonitrile are oxidized monoelectronically by NOBF 4 . On the 4, 4'-dimethoxydiphenylamine example a maximum current concentration of intermediate cation-radicals formed in this reaction is measured. Cation-radicals in acetonitrile get dimeric transforming into products of oxidizing condensation of amines, with no respective nitrozamines being observed. Nitrosamines production on through cation-radical-NO recombination is realized but in the presence of protonoacceptor solvents, in particular pyridine

  6. A DFT study on the deprotonation antioxidant mechanistic step of ortho-substituted phenolic cation radicals

    International Nuclear Information System (INIS)

    Vafiadis, Anastasios P.; Bakalbassis, Evangelos G.

    2005-01-01

    The conformers of the 2-, 3- and 4-substituted phenolic cation radicals, 2-X-, 3-X- and 4-X-ArOH ·+ , and the respective phenoxyl radicals, ArO · , the intramolecular hydrogen bond strength (ΔH intra ) estimate along with the electronic effects of five electron withdrawing (EWG) and eight electron donating groups (EDG) on the gas-phase O-H proton dissociation enthalpies, (PDEs), of the short-lived, 2-X-ArOH ·+ , (involved in the single-electron transfer antioxidant mechanism), are studied at the DFT/B3LYP level of theory. EWG result to smaller PDEs, hence to stronger acidity; EDG to weaker acidity. The deprotonation antioxidant mechanistic step is not a rate-controlling step for 2-X-ArOH to scavenge free radicals. Approximate estimations of the ΔPDEs (hence acidities as well) can be derived from calculated structural and/or vibrational frequency values. ΔH intra s correlate reasonably with geometrical parameters for the closed-shell, neutral counterparts, in contrast with previous estimates

  7. Photolysis of carotenoids in chloroform: enhanced yields of carotenoid radical cations in the presence of a tryptophan ester

    International Nuclear Information System (INIS)

    El-Agamey, Ali; Burke, Marc; Edge, Ruth; Land, Edward J.; McGarvey, David J.; Truscott, T. George

    2005-01-01

    The presence of an acetyl tryptophan ester gives rise to enhanced yields of carotenoid radical cations in chloroform following 355 nm laser excitation of the carotenoid, even though the tryptophan does not absorb at this wavelength. The increase is attributed to positive charge transfer from semi-oxidized tryptophan itself generated by light absorbed by the carotenoid. The mechanism of these radical processes has been elucidated by pulse radiolysis studies

  8. Sugar Radical Formation by a Proton Coupled Hole Transfer in 2′-Deoxyguanosine Radical Cation (2′-dG•+): A Theoretical Treatment

    Science.gov (United States)

    Kumar, Anil; Sevilla, Michael D.

    2009-01-01

    Previous experimental and theoretical work has established that electronic excitation of a guanine cation radical in nucleosides or in DNA itself leads to sugar radical formation by deprotonation from the dexoxyribose sugar. In this work we investigate a ground electronic state pathway for such sugar radical formation in a hydrated one electron oxidized 2′-deoxyguanosine (dG•+ + 7H2O), using density functional theory (DFT) with the B3LYP functional and the 6-31G* basis set. We follow the stretching of the C5′-H bond in dG•+ to gain an understanding of the energy requirements to transfer the hole from the base to sugar ring and then to deprotonate to proton acceptor sites in solution and on the guanine ring. The geometries of reactant (dG•+ + 7H2O), transition state (TS) for deprotonation of C5′ site and product (dG(•C5′, N7-H+) + 7 H2O) were fully optimized. The zero point energy (ZPE) corrected activation energy (TS) for the proton transfer (PT) from C5′ is calculated to be 9.0 kcal/mol and is achieved by stretching the C5′-H bond by 0.13 Å from its equilibrium bond distance (1.099 Å). Remarkably, this small bond stretch is sufficient to transfer the “hole” (positive charge and spin) from guanine to the C5′ site on the deoxyribose group. Beyond the TS, the proton (H+) spontaneously adds to water to form a hydronium ion (H3O+) as an intermediate. The proton subsequently transfers to the N7 site of the guanine (product). The 9 kcal/mol barrier suggests slow thermal conversion of the cation radical to the sugar radical but also suggests that localized vibrational excitations would be sufficient to induce rapid sugar radical formation in DNA base cation radicals. PMID:19754084

  9. pi-dimerization of pleiadiene radical cations at low temperatures revealed by UV-vis spectroelectrochemistry and quantum theory

    NARCIS (Netherlands)

    van het Goor, Layo; van Duijnen, Piet Th.; Koper, Carola; Jenneskens, Leonardus W.; Havenith, Remco W. A.; Hartl, Frantisek

    2011-01-01

    One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293-263 K only on the subsecond time scale of cyclic

  10. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    Science.gov (United States)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  11. Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C-NO2 bond homolysis

    Science.gov (United States)

    Ampadu Boateng, Derrick; Gutsev, Gennady L.; Jena, Puru; Tibbetts, Katharine Moore

    2018-04-01

    Monosubstituted nitrotoluenes serve as important model compounds for nitroaromatic energetic molecules such as trinitrotoluene. This work investigates the ultrafast nuclear dynamics of 3- and 4-nitrotoluene radical cations using femtosecond pump-probe measurements and the results of density functional theory calculations. Strong-field adiabatic ionization of 3- and 4-nitrotoluene using 1500 nm, 18 fs pulses produces radical cations in the ground electronic state with distinct coherent vibrational excitations. In both nitrotoluene isomers, a one-photon excitation with the probe pulse results in NO2 loss to form C7H7+, which exhibits out-of-phase oscillations in yield with the parent molecular ion. The oscillations in 4-nitrotoluene with a period of 470 fs are attributed to the torsional motion of the NO2 group based on theoretical results showing that the dominant relaxation pathway in 4-nitrotoluene radical cations involves the rotation of the NO2 group away from the planar geometry. The distinctly faster oscillation period of 216 fs in 3-nitrotoluene is attributed to an in-plane bending motion of the NO2 and CH3 moieties based on analysis of the normal modes. These results demonstrate that coherent nuclear motions determine the probability of C-NO2 homolysis in the nitrotoluene radical cations upon optical excitation within several hundred femtoseconds of the initial ionization event.

  12. Acetone n-radical cation internal rotation spectrum: The torsional potential surface

    International Nuclear Information System (INIS)

    Shea, Dana A.; Goodman, Lionel; White, Michael G.

    2000-01-01

    The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics

  13. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    Science.gov (United States)

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  14. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  15. Photoionization mass spectrometry of ω -phenylalkylamines: Role of radical cation-π interaction

    Science.gov (United States)

    Corinti, Davide; Catone, Daniele; Turchini, Stefano; Rondino, Flaminia; Crestoni, Maria Elisa; Fornarini, Simonetta

    2018-04-01

    Linear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length. In this work, the ionization energy (IE) values of benzylamine (BA), 2-phenylethylamine (2-PEA), 3-phenylpropylamine (3-PPA), and 4-phenylbutylamine (4-PBA) were investigated in order to ascertain the impact of the different alkyl chain lengths and to verify an amino radical cation-π interaction. The IEs obtained experimentally, 8.54, 8.37, 8.29, and 8.31 eV for BA, 2-PEA, 3-PPA and 4-PBA, respectively, show a decreasing trend that is discussed employing calculations at the CBS-QB3 level. Moreover, the appearance energy values for major fragments produced by the photofragmentation process are reported.

  16. Radical Cationic Pathway for the Decay of Ionized Glyme Molecules in Liquid Solution.

    Science.gov (United States)

    Taletskiy, Konstantin S; Borovkov, Vsevolod I; Schegoleva, Lyudmila N; Beregovaya, Irina V; Taratayko, Andrey I; Molin, Yuriy N

    2015-11-12

    Chemical stability of primary radical cations (RCs) generated in irradiated matter determines substantially the radiation resistance of organic materials. Transformations of the RCs of the glyme molecules, R(-O-CH2-CH2-)nO-R (R = CH3, n = 1-4) has been studied on the nanosecond time scale by measuring the magnetic field effects in the recombination fluorescence from irradiated liquid solutions of the glymes. In all cases, the RCs observed were different from that expected for the primary ones and revealed very similar hyperfine couplings independent of the poly(ethylene oxide) chain length and of the substitution of terminal methyl groups by C2H5 or CH2CH2Cl, as has been shown with diglyme as an example. Quantum chemical analysis of possible chemical transformations for the monoglyme RC as a model system allowed us to discover the reaction pathway yielding the methyl vinyl ether RC. The pathway involves intramolecular proton transfer followed by C-O bond cleavage. Only one (-O-CH2-CH2-O-) fragment is involved in this transformation, which is nearly barrierless due to the catalytic effect of adjacent glyme molecules. The rapid formation of the methyl vinyl ether RC in the irradiated monoglyme was confirmed by the numerical simulation of the experimental curves of the time-resolved magnetic field effect. These findings suggest that the R'-O-CH═CH2(•+) formation is a typical decay pathway for the primary RCs in irradiated liquid glymes.

  17. Histidine, lysine, and arginine radical cations: isomer control via the choice of auxiliary ligand (L) in the dissociation of [CuII(L)amino acid]*2+ complexes.

    Science.gov (United States)

    Ke, Yuyong; Zhao, Junfang; Verkerk, Udo H; Hopkinson, Alan C; Siu, K W Michael

    2007-12-27

    Histidine, lysine, and arginine radical cations have been generated through collision-induced dissociation (CID) of complexes [CuII(auxiliary ligand)namino acid]*2+, using tri-, bi-, as well as monodentate auxiliary ligands. On the basis of the observed CID products, the existence of two isomeric amino-acid populations is postulated. The Type 1 radical cations of histidine and lysine, stable on the mass spectrometer time scale, were found to lose water, followed by the loss of carbon monoxide under more energetic CID conditions. The arginine Type 1 radical cation behaved differently, losing dehydroalanine. The Type 2 radical cations were metastable and easily fragmented by the loss of carbon dioxide, effectively preventing direct observation. Type 1 radical cations are proposed to result from neutral (canonical) amino-acid coordination, whereas Type 2 radical cations are from zwitterionic amino-acid coordination to copper in the complex. The ratio of Type 1/Type 2 ions was found to be dependent on the auxiliary ligand, providing a method of controlling which radical cation would be formed primarily. Density functional calculations at B3LYP/6-311++G(d,p) have been used to determine the relative energies of five His*+ isomers. Barriers against interconversion between the isomers and against fragmentation have been calculated, giving insight as to why the Type 1 ions are stable, while only fragmentation products of the Type 2 ions are observable under CID conditions.

  18. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  19. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  20. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  1. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  2. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    Science.gov (United States)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  3. Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1997-01-01

    Use of IR spectroscopy (as a supplement to EPR) may provide new insight into the problem of analysis of structure and properties of organic radical cations. In this work, the results of combined EPR/IR studies of the formation, structure and properties of hydrocarbon radical cations in halocarbon and solid rare gas matrices are discussed. Both IR and EPR studies were carried out with matrix deposited samples irradiated with fast electrons at 15 or 77 K. IR spectroscopic data were found to be helpful in three aspects: (i) characterization of the conformation and association and molecule-matrix interactions of the parent molecules; (ii) identification of diamagnetic products of the reactions of radical cations in ground and excited states; (iii) determining the characteristics of vibrational spectra of the radical cations, which are of primary interest for analysis of chemical bonding and reactivity of the radical cations. The applications of the combined approach are illustrated with examples of studies of several alkenes in Freon matrices and alkanes in solid rare gas matrices. The matrix effects on trapping and degradation of radical cations were interpreted as the result of variations in matrix electronic characteristics (IP, polarizability) and molecule-matrix interactions. (au) 48 refs

  4. The cyclopropene radical cation: Rovibrational level structure at low energies from high-resolution photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vasilatou, K.; Michaud, J. M.; Baykusheva, D.; Grassi, G.; Merkt, F. [Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-08-14

    The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra of deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.

  5. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    Science.gov (United States)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  6. Radical Cation Salt-initiated Aerobic C-H Phosphorylation of N-Benzylanilines: Synthesis of a-Aminophosphonates.

    Science.gov (United States)

    Jia, Xiao Dong; Liu, Xiaofei; Yuan, Yu; Li, Pengfei; Hou, Wentao; He, Kaixuan

    2018-06-03

    A radical cation salt-initiated phosphorylation of N-benzylanilines was realized through the aerobic oxidation of sp3 C-H bond, providing a series of α-aminophosphonates in high yields. The investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C-H bond was involved in the rate-determining step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization

    Science.gov (United States)

    1994-02-02

    identify the end groups in the polymer of cyclohexene oxide. N,N-Dimethylnaphthyl amine (DNA), a compound with high fluorescence quantum yield, was used...candidates to be polymerized via a cationic mechanism include cyclic ethers, cyclic formals and acetals, vinyl ethers, and epoxy compounds . Of these...reported sensitizer, bears two dimethylamino groups, is direct evidence that an aromatic amine can be present in a cationically photopolymerizable system

  8. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G. [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  9. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    Science.gov (United States)

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  10. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    Science.gov (United States)

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  11. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  12. Characterization of a distonic isomer C6H5C+(OH)OCH2 of methyl benzoate radical cation by associative ion-molecule reactions

    Science.gov (United States)

    Dechamps, Noémie; Flammang, Robert; Gerbaux, Pascal; Nam, Pham-Cam; Nguyen, Minh Tho

    2006-03-01

    The C6H5C+(OH)OCH2 radical cation, formally a distonic isomer of ionized methyl benzoate, has been prepared by dissociative ionization of neopentyl benzoate, as earlier suggested by Audier et al. [H.E. Audier, A. Milliet, G. Sozzi, S. Hammerum, Org. Mass. Spectrom. 25 (1990) 44]. Its distonic character has now been firmly established by its high reactivity towards neutral methyl isocyanide (ionized methylene transfer) producing N-methyl ketenimine ions. Other mass spectrometric experiments and ab initio quantum chemical calculations also concur with each other pointing toward the existence of a stable distonic radical cation.

  13. Bleaching threshold of cationic radicals of alkanes and capture energy of the positive hole of these ions in irradiated solid matrix

    International Nuclear Information System (INIS)

    Van den Bosch, A.; Strobbe, M.; Ceulemans, J.

    1984-01-01

    Gamma irradiated Cl 3 CCF 3 shows an absorption band at about 360 nm, and another band, at 600 nm. The band at 600 nm disappears completely by irradiation with light of lambda>610 nm. Cl 3 CCF 3 containing 1% of decane irradiated at 77 K presents the some phenomena. Selective bleaching by photons of increasing energy allows the determination of the threshold for bleaching of cationic radicals of decane trapped in Cl 3 CCF 3 . Distinction between photoinduced charge transfer and photodissociation is obtained by addition of tetramethyl-p-phenylenediame. Showing that bleaching threshold corresponds to the capture energy of the positive hole on decane cationic radical [fr

  14. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Mathavan, T., E-mail: tjmathavan@gmail.com; Divya, A.; Benial, A. Milton Franklin [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Archana, J. [Research Institute of Engineering, Shizuoka University (Japan); Ramasubbu, A. [PG & Research Department of Chemistry, Govt. Arts College, Coimbatore (India); Jothirajan, M. A. [Research Department of Physics, Arul Anandar College, Karumathur, Madurai-625 514 (India)

    2016-05-23

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  15. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    International Nuclear Information System (INIS)

    Mathavan, T.; Divya, A.; Benial, A. Milton Franklin; Archana, J.; Ramasubbu, A.; Jothirajan, M. A.

    2016-01-01

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  16. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation.

    Science.gov (United States)

    Erel, Ozcan

    2004-04-01

    To develop a novel colorimetric and automated direct measurement method for total antioxidant capacity (TAC). A new generation, more stable, colored 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(*+)) was employed. The ABTS(*+) is decolorized by antioxidants according to their concentrations and antioxidant capacities. This change in color is measured as a change in absorbance at 660 nm. This process is applied to an automated analyzer and the assay is calibrated with Trolox. The novel assay is linear up to 6 mmol Trolox equivalent/l, its precision values are lower than 3%, and there is no interference from hemoglobin, bilirubin, EDTA, or citrate. The method developed is significantly correlated with the Randox- total antioxidant status (TAS) assay (r = 0.897, P total antioxidant capacity.

  17. Comparison of ChemicalComposition and Free Radical Scavenging Ability of Glycosidically Bound andFree Volatiles from Bosnian Pine (Pinus heldreichii Christ. var. leucodermis

    Directory of Open Access Journals (Sweden)

    Mladen Milos

    2007-03-01

    Full Text Available The results obtained show that Bosnian pine is richin glycosidically bound volatile compounds with strong free radical scavengingproperties. Since volatiles can be released from nonvolatile glycosideprecursors, these compounds can be considered as a hidden potential source ofantioxidant substances and may contribute to the total free radical scavengingability of Bosnian pine.

  18. Ab Initio Study of Ionized Water Radical Cation (H2O)8+ in Combination with the Particle Swarm Optimization Method.

    Science.gov (United States)

    Tang, Mei; Hu, Cui-E; Lv, Zhen-Long; Chen, Xiang-Rong; Cai, Ling-Cang

    2016-12-01

    The structures of cationic water clusters (H 2 O) 8 + have been globally explored by the particle swarm optimization method in combination with quantum chemical calculations. Geometry optimization and vibrational analysis for the 15 most interesting clusters were computed at the MP2/aug-cc-pVDZ level and infrared spectrum calculation at MPW1K/6-311++G** level. Special attention was paid to the relationships between their configurations and energies. Both MP2 and B3LYP-D3 calculations revealed that the cage-like structure is the most stable, which is different from a five-membered ring lowest energy structure but agrees well with a cage-like structure in the literature. Furthermore, our obtained cage-like structure is more stable by 0.87 and 1.23 kcal/mol than the previously reported structures at MP2 and B3LYP-D3 levels, respectively. Interestingly, on the basis of their relative Gibbs free energies and the temperature dependence of populations, the cage-like structure predominates only at very low temperatures, and the most dominating species transforms into a newfound four-membered ring structure from 100 to 400 K, which can contribute greatly to the experimental infrared spectrum. By topological analysis and reduced density gradient analysis, we also investigated the structural characteristics and bonding strengths of these water cluster radical cations.

  19. Synthesis of poly(2-ethyl-2-oxazoline)-b-poly(styrene) copolymers via a dual initiator route combining cationic ring-opening polymerization and atom transfer radical polymerization

    NARCIS (Netherlands)

    Becer, C.R.; Paulus, R.M.; ppener, S.; Hoogenboom, R.; Fustin, C.A.; Gohy, J.M.W.; Schubert, U.S.

    2008-01-01

    Block copolymers of 2-ethyl-2-oxazoline (EtOx) and styrene were synthesized by a combination of cationic ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP). Initially, a detailed kinetic investigation for the ?-bromoisobutyrylbromide (BrEBBr) initiated CROP of EtOx

  20. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    Science.gov (United States)

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.

  1. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney

    International Nuclear Information System (INIS)

    Kako, K.; Kato, M.; Matsuoka, T.; Mustapha, A.

    1988-01-01

    A partially purified, membrane-bound Na + -K + -ATPase fraction, prepared from the outer medulla of porcine kidney, was incubated in the presence of 0.1-100 mM H 2 O 2 for either 15 or 30 min at 37 degree C. The activity of ouabain-sensitive Na + -K + -ATPase was reduced proportionally to the concentration of H 2 O 2 and the duration of incubation. There were decreases in SH contents and turnover rates of the Na + -K + -ATPase preparation, while malondialdehyde (MDA) and conjugated dienes were generated from the membrane lipids in the course of the incubation. The concentrations of ethanolamine (E) plasmalogen and of arachidonic acid in the E glycerophospholipid molecules were reduced by the free radical reaction. Similarly, a reduction in Na + K + -ATPase activity and the formation of MDA and conjugated dienes, together with a decrease in E glycerophospholipids, were observed when the membrane fraction was exposed to ultraviolet irradiation (254 nm) for 30 min at 4 degree C. Microsomal fractions, prepared from the outer medulla of canine kidney after 1 h of unilateral ischemia and 1 h of reperfusion, showed a decreased Na + -K + -ATPase activity, a reduced amount of SH groups, and an increased MDA. These changes were normalized by the infusion of N-mercaptopropionylglycine. These results support the view (1) that free radical generation affects the enzyme protein as well as membrane lipids, and (2) that free radicals may be formed in the ischemic reperfused kidney

  2. Pathways for the reaction of the butadiene radical cation, [C{sub 4}H{sub 6}]{sup {sm{underscore}bullet}+}, with ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M.; Schaefer, H.F. III

    1999-11-04

    The Diels-Alder (DA) reaction, a [4+2] cycloaddition used to build six membered rings, is one of the most valuable cycloadditions in organic chemistry. In cases where the ene does not add to the diene (even with the help of Lewis acids which may reduce the electron density of one reactant by complexation) one electron oxidation (by an oxidizing agent or by photoinduced electron transfer (PET)) may accelerate the reaction. Reaction pathways for the addition of ethylene, 1, to butadiene radical cation, 2, involving H-shifts have been investigated at the coupled cluster UCCSD(T)/DZP//UMP2(fc)/DZP + ZPE level of theory. Activation energies are relatively low for [1,2]- (10.0 kcal mol{sup {minus}1}, TS-4/20) and [1,5]-hydrogen shifts (7.7 kcal mol{sup {minus}1}, TS-4/26) but are relatively high for [1,4]-(33.8 kcal mol{sup {minus}1}, TS-4/14) and [1,3]-H shifts (e.g., 42.2 kcal mol{sup {minus}1}, TS-12/13; 57.2 kcal mol{sup {minus}1}, TS-16/21). Several rearrangement reactions have been found to occur below the energy limit of separated 1 + 2. The cyclopentenyl cation, [C{sub 5}{sub 7}]{sup +}, 18, experimentally observed as reaction product of the butadiene radical cation, 2, and ethylene, 1, in the gas phase may origin from various reaction pathways. The following reaction sequence has been identified as the lowest in energy path from 1 + 2 to 18 with all relative energies ({Delta}E{degree}) of transition structures below that of 1 + 2: (a) ethylene adds to the butadiene radical cation to form an open-chain distonic intermediate, that undergoes a [1,5]-H shift to the 1,4-hexadiene radical cation; (b) intramolecular [2+1] cycloaddition to methyl-cyclopenta-1,3-diyl intermediates, which can interconvert through a bicyclo[2.1.0]pentane radical cation; (c) [1,2]-H shift to the 3-methyl cyclopentene radical cation; (d) methyl radical loss to give cyclopenten-3-yl cation. Along this reaction pathway, {Delta}H{sup 298} is below that of 1 + 2; max. ({Delta}G{sup 298} by

  3. Transformations of the radical cations of 1,3-dienes, 1,4-dienes, and cyclopentene as studied by ESR technique in irradiated frozen freon matrices and by spin trapping technique in liquid phase

    International Nuclear Information System (INIS)

    Shchapin, I.Yu.; Belevskij, V.N.

    1996-01-01

    Transformations of cation-radicals of 1,3- and 1,4-pentadienes, 2,3-dimethylbutadienes and cyclopentene, formed by X-ray irradiation at 77 K, are studied in the freon-11 and 113 matrices. It is shown that cation-radicals of 1,3-pentadienes in the CFCl 3 matrix at 77 K are regrouped in cyclopentene cation-radicals. There is no such a regrouping in the freon-113 matrix. The 1,4-pentadiene radicals have plane structure in the CFCl 3 matrix and are transformed into pentadienyl radicals in the freon-113 matrix. The cation radicals of dimethylbutadiene in the freon-113 matrix are transformed into end allyl radicals. The cation-radicals of cyclopentene in the freon-113 matrix are transformed at 110 K in cyclic allyl radicals. The radicals formation mechanism is in good agreement with the data, obtained during studies on liquid hydrocarbons, X-irradiated at 293 K in the presence of spin trap of 2.4.6-tri-tert-butylnitrosobenzene

  4. Depression of membrane-bound Na sup + -K sup + -ATPase activity induced by free radicals and by ischemia of kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kako, K.; Kato, M.; Matsuoka, T.; Mustapha, A. (Univ. of Ottawa, Ontario (Canada))

    1988-02-01

    A partially purified, membrane-bound Na{sup +}-K{sup +}-ATPase fraction, prepared from the outer medulla of porcine kidney, was incubated in the presence of 0.1-100 mM H{sub 2}O{sub 2} for either 15 or 30 min at 37{degree}C. The activity of ouabain-sensitive Na{sup +}-K{sup +}-ATPase was reduced proportionally to the concentration of H{sub 2}O{sub 2} and the duration of incubation. There were decreases in SH contents and turnover rates of the Na{sup +}-K{sup +}-ATPase preparation, while malondialdehyde (MDA) and conjugated dienes were generated from the membrane lipids in the course of the incubation. The concentrations of ethanolamine (E) plasmalogen and of arachidonic acid in the E glycerophospholipid molecules were reduced by the free radical reaction. Similarly, a reduction in Na{sup +}K{sup +}-ATPase activity and the formation of MDA and conjugated dienes, together with a decrease in E glycerophospholipids, were observed when the membrane fraction was exposed to ultraviolet irradiation (254 nm) for 30 min at 4{degree}C. Microsomal fractions, prepared from the outer medulla of canine kidney after 1 h of unilateral ischemia and 1 h of reperfusion, showed a decreased Na{sup +}-K{sup +}-ATPase activity, a reduced amount of SH groups, and an increased MDA. These changes were normalized by the infusion of N-mercaptopropionylglycine. These results support the view (1) that free radical generation affects the enzyme protein as well as membrane lipids, and (2) that free radicals may be formed in the ischemic reperfused kidney.

  5. Conserving Coherence and Storing Energy during Internal Conversion: Photoinduced Dynamics of cis- and trans-Azobenzene Radical Cations

    KAUST Repository

    Munkerup, Kristin

    2017-10-24

    Light harvesting via energy storage in azobenzene has been a key topic for decades, and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of non-ergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics, as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom. Here, we present a unique case where the excitation energy remains localized even subsequent to internal conversion. Strong-field ionization is used to prepare cis- and trans-azobenzene radical cations on the D1 surface with little excess energy, at the equilibrium neutral geometry. These D1 ions are preferably formed because in this case D1 and D0 switch place in the presence of the strong laser field. The post-ionization dynamics is dictated by the potential energy landscape. The D1 surface is steep downhill along the cis/trans isomerization coordinate and towards a common minimum shared by the two isomers in the region of D1/D0 conical intersection. Coherent cis/trans torsional motion along this coordinate is manifested in the ion transients by a cosine modulation. In this scenario, D0 becomes populated with molecules that are energized mainly along the cis-trans isomerization coordinate, with the kinetic energy above the cis-trans inter-conversion barrier. These activated azobenzene molecules easily cycle back and forth along the D0 surface, and give rise to several periods of modulated signal before coherence is lost. This persistent localization of the internal energy during internal conversion is provided by the steep downhill potential energy surface, small initial internal energy content, and a strong hole-lone pair interaction that drives the molecule along the cis-trans isomerization coordinate to facilitate the transition between

  6. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    Science.gov (United States)

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  7. The radical cations of sulphur (S8sup(.+)) and tetrasulphur tetranitride (S4N4sup(.+)): a radiation-electron spin resonance study

    International Nuclear Information System (INIS)

    Chandra, Harish; Ramakrishna Rao, D.N.; Symons, M.C.R.

    1987-01-01

    Exposure of dilute solutions of S 8 and S 4 N 4 in trichlorofluoromethane to 60 Co γ-rays at 77 K gave the corresponding radical cations. Enrichment (99%) with 33 S gave greatly broadened electron spin resonance x and y features, with A( 33 S) approx. = + - 4 G, where A is the first formed species from sulfur. The z features showed a clear central line flanked by others with Asub(z) approx. = 28 G. The results suggest the presence of two equally coupled sulphur atoms. On annealing, species (A) changes irreversibly into species (B),possibly, S 8 radical + in a relaxed form in which two opposite atoms have formed a weak three-electron bond. A clear spectrum was produced from S 4 N 4 which showed little g-value variation and no evidence for 14 N splitting. It is concluded that the S 4 N 4 radical + cation has a relatively isolated semi-occupied molecular orbital, with low spin density on nitrogen. (author)

  8. Adjacent effect on positive charge transfer from radical cation of n-dodecane to scavenger studied by supbicosecond pulse radiolysis, statistical and Monte Carlo approach

    International Nuclear Information System (INIS)

    Saeki, A.; Tagawa, S.; Kozawa, T.; Yoshida, Y.

    2003-01-01

    Time-dependent behaviors of radical cation in n-dodecane in the presence of high-concentrated cation scavenger triethylamine were measured by subpicosecond pulse radiolysis system. The significant reduction of the initial yield in the optical density was observed. This reduction were not able to be explained by the first order rate constant. Therefore, we assumed that this phenomena occur due to the adjacent effect of the solute molecules. We approached this effect by the statistical model and configurational-bias Monte Carlo method. In both methods, we supposed a condition that the cation site in the radical cation is delocalized and will be scavenged rapidly within the time resolution if the solute molecules is adjacent to any sites of the solvent. In addition to the adjacent effect, the fact that a large part of the solvent molecules is excluded by the solute molecules especially at high concentration was taken into consideration. First, we formulated this effect by a statistical model. In addition to the above assumption, this model is based on the following assumption; the effects of molecule's shape, conformation and interaction among molecules were ignored and the aggregation of the solute molecules were treated randomly. As a result, the formula indicated good agreement with the experimental data. Second, as another approach, we adopted the configurational-bias Monte Carlo simulation to reproduce the liquid system. The OLPS model was used to describe the intermolecular and intramolecular potentials. The adjacent effect estimated by this method corresponded to the experimental data with a threshold of 0.5 nm. This value are close to a typical reaction radius. The average number of adjacent solvent molecules and the distribution of aggregated solute's number were also collected from the position data

  9. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  10. Cytosine Radical Cations: A Gas-Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion-Molecule Reactions, and Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Lesslie, M.; Lawler, J. T.; Dang, A.; Korn, J. A.; Bím, Daniel; Steinmetz, V.; Maitre, P.; Tureček, F.; Ryzhov, V.

    2017-01-01

    Roč. 18, č. 10 (2017), s. 1293-1301 ISSN 1439-4235 Institutional support: RVO:61388963 Keywords : ion-molecule reactions * IRMPD spectroscopy * nucleobases * radical ions * UVPD spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016

  11. Detection of Anisotropic Hyperfine Components of Chemically Prepared Carotenoid Radical Cations:1D and 2D ESEEM and Pulsed ENDOR Study

    International Nuclear Information System (INIS)

    Konovalova, Tatyana A.; Dikanov, Sergei A.; Bowman, Michael K.; Kispert, Lowell D.

    2001-01-01

    Canthaxanthin and 8'-apo-B-caroten-8'-al radical cations chemically prepared on activated silica-alumina and in CH2CI2 solution containing A1C13 were studied by pulsed EPR and ENDOR spectroscopies. Both the 1D three-pulse ESEEM and the 2D HYSCORE spectra of the carotenoid-A1C13 mixtures exhibited the 27 A1 nuclei peak at 3.75 MHz. This indicates electron-transfer interactions between carotenoids and A1III ions resulting in the formation and stabilization of carotenoid radical cations. Davies ENDOR measurements of the canthaxanthin radical cation on silica-alumina determined the hyperfine couplings of B protons belonging to three different methyl groups with ahI=2.6 MHz, aH2=8.6MHz, and ah3 ca. 13 MHz. The principal components of the proton hyperfine tensors were obtained from HYSCORE spectra in A1C13 solutions and on the solid support. Identification of the protons was made on the basis of isotropic hyperfine couplings determined by RHF-INDO/SP molecular orbital calculations. In frozen A1C13 solution, the C(7, 7')Ha and C(14, 14')-Ha a protons were observed for Canthaxanthin and the C(8 or 14')-Ha, C(15')-Ha were observed for 8'-apo-B-caroten-8'-al. On the silica-alumina support, the C(10, 10')-Ha, C(11, 11')-Ha, and C(15,15')-Ha a protons were measured for Canthaxanthin and the C(12)-Ha and C(15')-Ha were measured for 8' apo-B-caroten-8'-al. Some protons with large isotropic couplings (> 10 MHz) determined from HYSCORE analysis could be assigned to B protons, but the principal components of their hyperfine tensors are much more anisotropic than those reported previously for B protons. We suggest that cis/trans isomerization of carotenoids on silica-alumina results in stabilization of di-cis isomers with large isotropic couplings for some a protons which are comparable to those of B protons

  12. Nucleophilic Aromatic Addition in Ionizing Environments: Observation and Analysis of New C-N Valence Bonds in Complexes between Naphthalene Radical Cation and Pyridine.

    Science.gov (United States)

    Peverati, Roberto; Platt, Sean P; Attah, Isaac K; Aziz, Saaudallah G; El-Shall, M Samy; Head-Gordon, Martin

    2017-08-30

    Radical organic ions can be stabilized by complexation with neutral organics via interactions that can resemble chemical bonds, but with much diminished bond energies. Those interactions are a key factor in cluster growth and polymerization reactions in ionizing environments such as regions of the interstellar medium and solar nebulae. Such radical cation complexes between naphthalene (Naph) and pyridine (Pyr) are characterized using mass-selected ion mobility experiments. The measured enthalpy of binding of the Naph +• (Pyr) heterodimer (20.9 kcal/mol) exceeds that of the Naph +• (Naph) homodimer (17.8 kcal/mol). The addition of 1-3 more pyridine molecules to the Naph +• (Pyr) heterodimer gives 10-11 kcal/mol increments in binding enthalpy. A rich array of Naph +• (Pyr) isomers are characterized by electronic structure calculations. The calculated Boltzmann distribution at 400 K yields an enthalpy of binding in reasonable agreement with experiment. The global minimum is a distonic cation formed by Pyr attack on Naph +• at the α-carbon, changing its hybridization from sp 2 to distorted sp 3 . The measured collision cross section in helium for the Naph +• (Pyr) heterodimer of 84.9 ± 2.5 Å 2 at 302 K agrees well with calculated angle-averaged cross sections (83.9-85.1 Å 2 at 302 K) of the lowest energy distonic structures. A remarkable 16 kcal/mol increase in the binding energy between Naph +• (Pyr) and Bz +• (Pyr) (Bz is benzene) is understood by energy decomposition analysis. A similar increase in binding from Naph +• (NH 3 ) to Naph +• (Pyr) (as well as between Bz +• (NH 3 ) and Bz +• (Pyr)) is likewise rationalized.

  13. The impact of the self-interaction error on the density functional theory description of dissociating radical cations: ionic and covalent dissociation limits.

    Science.gov (United States)

    Gräfenstein, Jürgen; Kraka, Elfi; Cremer, Dieter

    2004-01-08

    Self-interaction corrected density functional theory was used to determine the self-interaction error for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics nondynamic correlation effects that have no physical basis where these effects increase for increasing separation distance. For short distances the magnitude of the self-interaction error takes a minimum and increases then again for decreasing R. The position of the minimum of the magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond in the radical cations H2+ (1), B2H4+ (2), and C2H6+ (3), which differ significantly. These differences are explained by hyperconjugative interactions in 2 and 3 that are directly reflected by the self-interaction error and its orbital contributions. The density functional theory description of the dissociating radical cations suffers not only from the self-interaction error but also from the simplified description of interelectronic exchange. The calculated differences between ionic and covalent dissociation for 1, 2, and 3 provide an excellent criterion for determining the basic failures of density functional theory, self-interaction corrected density functional theory, and other methods. Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction error are discussed. The relevance of these effects for the description of transition states and charge transfer complexes is shown. Suggestions for the construction of new exchange-correlation functionals are given. In this connection, the disadvantages of recently suggested self-interaction error-free density functional theory methods are emphasized. (c) 2004 American Institute of Physics

  14. Resolving the radical cation formation from the lowest-excited singlet (S-1) state of terthiophene in a TiO2-SiO2 hybrid polymer matrix

    DEFF Research Database (Denmark)

    Helbig, M.; Ruseckas, A.; Grage, M.M.-L.

    1999-01-01

    and simultaneous rise of 3T(-)(+.) radical cation absorption. The observed kinetics of electron transfer are independent of excess vibrational energy in the S-1 state, and can be described by a biexponential function with time constants of similar to 1 ps (for similar to 62% of the excited 3T molecules...

  15. Regeneration of β-Carotene from Radical Cation by Eugenol, Isoeugenol, and Clove Oil in the Marcus Theory Inverted Region for Electron Transfer.

    Science.gov (United States)

    Chang, Hui-Ting; Cheng, Hong; Han, Rui-Min; Wang, Peng; Zhang, Jian-Ping; Skibsted, Leif H

    2017-02-01

    The rate of regeneration of β-carotene by eugenol from the β-carotene radical cation, an initial bleaching product of β-carotene, was found by laser flash photolysis and transient absorption spectroscopy to be close to the diffusion limit in chloroform/methanol (9:1, v/v), with a second-order rate constant (k 2 ) of 4.3 × 10 9 L mol -1 s -1 at 23 °C. Isoeugenol, more reducing with a standard reduction potential of 100 mV lower than eugenol, was slower, with k 2 = 7.2 × 10 8 L mol -1 s -1 . Regeneration of β-carotene following photobleaching was found 50% more efficient by eugenol, indicating that, for the more reducing isoeugenol, the driving force exceeds the reorganization energy for electron transfer significantly in the Marcus theory inverted region. For eugenol/isoeugenol mixtures and clove oil, kinetic control by the faster eugenol determines the regeneration, with a thermodynamic backup of reduction equivalent through eugenol regeneration by the more reducing isoeugenol for the mixture. Clove oil, accordingly, is a potential protector of provitamin A for use in red palm oils.

  16. 2-(1,3-Dithiolan-2-ylidene)-5-(1,3-dithian-2-ylidene)-1,3,4,6- tetrathiapentalene(DHDA-TTP), a hybrid of BDH-TTP and BDA-TTP, and its metallic cation-radical salts.

    Science.gov (United States)

    Yamada, Jun-ichi; Watanabe, Maki; Toita, Takashi; Akutsu, Hiroki; Nakatsuji, Shin'ichi; Nishikawa, Hiroyuki; Ikemoto, Isao; Kikuchi, Koichi

    2002-05-21

    The synthesis and electrochemical properties of the DHDA-TTP donor, a hybrid of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) and 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), has been investigated, and its ability to form metallic cation-radical salts is elucidated.

  17. 4-(2-Tetrathiafulvalenyl-ethenyl)pyridine (TTF-CH=CH-Py) radical cation salts containing poly(beta-diketonate) rare earth complexes: synthesis, crystal structure, photoluminescent and magnetic properties.

    Science.gov (United States)

    Pointillart, Fabrice; Maury, Olivier; Le Gal, Yann; Golhen, Stéphane; Cador, Olivier; Ouahab, Lahcène

    2009-08-03

    The reactions between the redox-active 4-(2-tetrathiafulvalenyl-ethenyl)pyridine ligand (TTF-CH=CH-Py) and the tris(1,1,1,5,5,5-hexafluoroacetylacetonate)Ln(III) (Ln = La and Nd) lead to the formation of compounds with the formulas {[La(hfac)(5)][(TTF-CH=CH-Py(*+))](2)} (1), {[Nd(hfac)(4)(H(2)O)][(TTF-CH=CH-Py(*+))]}(2) (2), and {[Nd(hfac)(4)(H(2)O)][(TTF-CH=CH-Py(*+))]}(2)(H(2)O)(C(6)H(14))(0.5) (3) (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion). These compounds have been characterized by single-crystal X-ray diffraction, optical, and magnetic measurements. Compounds 1, 2, and 3 crystallize in the monoclinic C2/c, triclinic P1, and monoclinic P2(1)/c space groups, respectively. La(III) adopts a tetradecahedral geometry, while Nd(III) stands in a distorted capped square antiprism one. In 1, the inorganic network is formed by the [La(hfac)(5)](2-) dianionic complexes, while it is formed by a pseudo-dimeric dianionic unit of formula {[Nd(hfac)(4)(H(2)O)](2)}(2-) in 2 and 3. In all crystal structures, the organic network is constituted by the TTF-CH=CH-Py(*+) radical cations. The inorganic and organic networks interact through intermolecular contacts between the pyridine moieties of the TTF-CH=CH-Py(*+) radical cations and the Ln(III) ions. The luminescence properties of the Nd(III) ions (9400 cm(-1)) and fluorescence band of the TTF-CH=CH-Py(*+) radical cations (10200 cm(-1)) have been observed and studied for compound 2. Complexes 2 and 3 are paramagnetic because of Nd(III) ions. Compound 2 is a paramagnetic luminescent TTF-radical-cation-based material. Resistivity measurements have also been performed on these materials.

  18. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III Reaction Intermediate Models of Peroxidase Enzymes

    Directory of Open Access Journals (Sweden)

    Samuel Hernández Anzaldo

    2016-06-01

    Full Text Available The spectroscopic and kinetic characterization of two intermediates from the H2O2 oxidation of three dimethyl ester [(proto, (meso, (deuteroporphyrinato (picdien]Fe(III complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III quantum mixed spin (qms ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1–3 + guaiacol + H2O2 → oxidation guaiacol products. The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III and H2O2, resulting in only two types of kinetics that were developed during the first 0–4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III family with the ligand picdien [N,N’-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, 1H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  19. Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation

    International Nuclear Information System (INIS)

    Reimers, Jeffrey R.; Hush, Noel S.

    2003-01-01

    ENDOR data suggests that the special-pair radical cation P + from Rhodobacter sphaeroides is 68% localized on P L while simple interpretations of FTIR difference spectra based primarily on intensity information, but to some extent also bandwidths, suggest near-complete charge localization. We provide a complete a priori spectral simulation of the spectrum of P + in the range 0-5000 cm-1, including explicit treatment of the high-resolution vibrational transitions, the low-resolution hole-transfer absorption centered at 2700 cm-1, and the resonance with the SHOMO to HOMO transition at 2200 cm-1 that resolve the issues concerning the nature of P + . The description of the vibrational aspects of the problem were taken from results of previous density-functional calculations, and a qualitatively realistic large number of vibrational modes (50 antisymmetric and 18-20 symmetric) were included. To facilitate the calculations, a new representation of the vibronic-coupling Hamiltonian for intervalence hole-transfer or electron-transfer problems is introduced, allowing the spectrum to be simulated efficiently using only up to 4x10 9 vibronic basis functions and leading also to new general analytical relationships. Observed spectra are fitted using seven adjustable chemical parameters describing the interactions between the four electronic states involved. The resulting fits provide unique descriptions of the parameters that are insensitive to the source of the observed spectrum or the nature of the symmetric modes used in the model, and all fitted parameters are found to be close in value to those from independent estimates. We determine the electronic coupling, antisymmetric-mode reorganization energy, and redox asymmetry to be J=0.126±0.002 eV, λ=0.139±0.003 eV, and E 0 =0.069±0.002 eV, respectively. Our description forms the basis of understanding for a wide range of other properties observed for Rhodobacter sphaeroides mutants, as well as the properties of the

  20. Electron spin resonance studies of γ-irradiated phosphite and phosphate esters. Identification of phosphinyl, phosphonyl, phosphoranyl, and phosphine dimer cation radicals

    International Nuclear Information System (INIS)

    Kerr, C.M.L.; Webster, K.; Williams, F.

    1975-01-01

    The powder ESR spectra of several γ-irradiated phosphorus esters at 77 0 K were analyzed into their distinguishable radical components, each spectrum being generally a composite of anisotropic features from a number of alkyl and phosphorus-centered radicals. Resolution of overlapping spectra was achieved in some instances by radiation-chemical experiments designed to suppress or enhance the products of electron capture relative to the radicals formed by other mechanisms. The radiation chemistry of dialkyl phosphites, (RO) 2 P(O)H, is influenced by the ease with which the P--H bond in these compounds is broken, the principal radicals being the phosphonyl species (RO) 2 PO and ROP(O)O - . Both of these species are thought to be the secondary products of hydrogen atom abstraction by the alkyl radical R which is produced by dissociative electron capture. A similar primary step was found to apply for the trialkyl phosphates, (RO) 3 PO, but in this case only carbon-centered radicals are formed by secondary H-atom abstraction processes. Results for the pyrophosphite differ from those for the trialkyl phosphites in showing the absence of alkyl radicals or their phosphoranyl adducts and the formation of the phosphonyl species (EtO) 2 PO, the latter being produced presumably by cleavage of the P--O--P bridge. The ESR parameters for each of the four main groups of phosphorus-centered radicals are summarized and the electronic structures of these radicals are discussed briefly

  1. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site

    DEFF Research Database (Denmark)

    Laursen, Mette; Yatime, Laure; Nissen, Poul

    2013-01-01

    of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg2+, and crystallographic studies indicate that Rb+ and Mn2+, but not Na+, bind to this site. Comparison with the low-affinity [K2]E2–MgFx–ouabain structure [Ogawa et al...

  2. Unimolecular fragrmentations of the radical cation of the high-valent organometal oxide CH3ReO3 and its reactivity with ethylene in the gas phase

    Science.gov (United States)

    Schröder, Detlef; Herrmann, W. A.; Fischer, Richard W.; Schwarz, Helmut

    1992-12-01

    The unimolecular chemistry of CH3ReO[radical sign]+3 in the gas phase commences with a methyl migration to' generate CH3 OReO[radical sign]+2. This further undergoes multiple hydrogen migration to the metal centre to generate an intermediate which serves as a precursor for the elimination of both molecular hydrogen and of carbon monoxide. If CH3ReO[radical sign]+3 is reacted with ethylene, inter alia products are observed which point to a competition between an intramolecular metathesis reaction of the ethylene-inserted intermediate CH3CH2CH2ReO3[radical sign]+ and epoxidation of ethylene to generate c-C2H4O.

  3. Symmetry breaking and spectral considerations of the surprisingly floppy c-C3H radical and the related dipole-bound excited state of c-C3H-

    Science.gov (United States)

    Bassett, Matthew K.; Fortenberry, Ryan C.

    2017-06-01

    The C3H radical is believed to be prevalent throughout the interstellar medium and may be involved in the formation of polycyclic aromatic hydrocarbons. C3H exists as both a linear and a cyclic isomer. The C2 v cyclopropenylidenyl radical isomer was detected in the dark molecular cloud TMC-1, and the linear propenylidenyl radical isomer has been observed in various dark molecular clouds. Even though the c-C3H radical has been classified rotationally, the vibrational frequencies of this seemingly important interstellar molecule have never been directly observed. Established, highly accurate quartic force field methodologies are employed here to compute useful geometrical data, spectroscopic constants, and vibrational frequencies. The computed rotational constants are consistent with the experimental results. Consequently, the three a1 (ν1, ν2, and ν3) and one b1 (ν6) anharmonic vibrational frequencies at 3117.7 cm-1, 1564.3 cm-1, 1198.5 cm-1, and 826.7 cm-1, respectively, are reliable predictions for these, as of yet unseen, observables. Unfortunately, the two b2 fundamentals (ν4 and ν5) cannot be treated adequately in the current approach due to a flat and possible double-well potential described in detail herein. The dipole-bound excited state of the anion suffers from the same issues and may not even be bound. However, the trusted fundamental vibrational frequencies described for the neutral radical should not be affected by this deformity and are the first robustly produced for c-C3H. The insights gained here will also be applicable to other structures containing three-membered bare and exposed carbon rings that are surprisingly floppy in nature.

  4. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site.

    Science.gov (United States)

    Laursen, Mette; Yatime, Laure; Nissen, Poul; Fedosova, Natalya U

    2013-07-02

    The Na(+),K(+)-ATPase maintains electrochemical gradients for Na(+) and K(+) that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na(+),K(+)-ATPase. Here we describe a crystal structure of the phosphorylated pig kidney Na(+),K(+)-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg(2+), and crystallographic studies indicate that Rb(+) and Mn(2+), but not Na(+), bind to this site. Comparison with the low-affinity [K2]E2-MgF(x)-ouabain structure [Ogawa et al. (2009) Proc Natl Acad Sci USA 106(33):13742-13747) shows that the CTS binding pocket of [Mg]E2P allows deep ouabain binding with possible long-range interactions between its polarized five-membered lactone ring and the Mg(2+). K(+) binding at the same site unwinds a turn of αM4, dragging residues Ile318-Val325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K(+)-Mg(2+) competition and explain the well-known antagonistic effect of K(+) on CTS binding.

  5. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  6. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant.

    Science.gov (United States)

    Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W

    1997-07-08

    Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

  7. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species?

    Science.gov (United States)

    Wang, Fang; Sun, Wei; Xia, Chungu; Wang, Yong

    2017-10-01

    Through the introduction of dimethylamino (Me 2 N) substituent at the pyridine ring of 2-((R)-2-[(R)-1-(pyridine-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-ylmethyl)pyridine (PDP) ligand, the non-heme Fe II ( Me2N PDP)/H 2 O 2 /AcOH catalyst system was found to exhibit significant higher catalytic activity and enantioselectivity than the non-substituent one in the asymmetric epoxidation experiments. The mechanistic origin of the remarkable substituent effects in these oxidation reactions has not been well established. To ascertain the potent oxidant and the related reaction mechanism, a detailed DFT calculation was performed. Interestingly, a novel Fe(IV)-oxo Me2N PDP cation radical species, [( Me2N PDP) + · Fe IV (O)(OAc)] 2+ ( Me2N 5), with about one spin spreading over the non-heme Me2N PDP ligand was formed via a carboxylic-acid-assisted O-O bond heterolysis, which is reminiscent of Compound I (an Fe(IV)(O)(porphyrin cation radical) species) in cytochrome P450 chemistry. Me2N 5 is energetically comparable with the cyclic ferric peracetate species Me2N 6, while in the pristine Fe(PDP) catalyst system, H 6 is more stable than H 5. Comparison of the activation energy for the ethylene epoxidation promoted by Me2N 5 and Me2N 6, Me2N 5 is supposed as the true oxidant triggering the epoxidation of olefins. In addition, a systematic research on the substituent effects varied from the electron-donating substituent (dMM, the substituents at sites 3, 4, and 5 of the pyridine ring: methyl, methoxyl, and methyl) to the electron-withdrawing one (CF 3 , 2,6-bis(trifluoromethyl)phenyl) on the electronic structure of the reaction intermediates has also been investigated. An alternative cyclic ferric peracetate complex is obtained, indicating that the substituents at the pyridine ring of PDP ligands have significant impacts on the electronic structure of the oxidants.

  8. Dissociation of acetone radical cation (CH3COCH3(+*) --> CH3CO(+) + CH3(*)): an ab initio direct classical trajectory study of the energy dependence of the branching ratio.

    Science.gov (United States)

    Zhou, Jia; Schlegel, H Bernhard

    2008-12-18

    The nonstatistical dissociation of acetone radical cation has been studied by ab initio direct classical trajectory calculations at the MP2/6-31G(d) level of theory. A bond additivity correction has been used to improve the MP2 potential energy surface (BAC-MP2). The energy dependence of the branching ratio, dissociation kinetics, and translational energy distribution for the two types of methyl groups have been investigated using microcanonical ensembles and specific mode excitation. In each case, the dissociation favors the loss of the newly formed methyl group, in agreement with the experiments. For microcanonical ensembles, the branching ratios for methyl loss are calculated to be 1.43, 1.88, 1.70, and 1.50 for 1, 2, 10, and 18 kcal/mol of excess energy, respectively. The energy dependence of the branching ratio is seen more dramatically in the excitation of individual modes involving C-C-O bending. For modes 3 and 6, the branching ratio rises to 1.6 and 1.8-2.3 when 1 or 2 kcal/mol are added, respectively, but falls off when more energy is added. For mode 8, the branching ratio continues to rise monotonically from 1.5 to 2.76 when 1-8 kcal/mol of excess energy are added.

  9. Muonium and muonic radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Geeson, D.; Symons, M.C.R.

    1985-01-01

    An energetic positive muon which is injected in a liquid sample of substrate molecules (S) creates an ionization track consisting of substrate cations (S + ) and electrons. Near the end of this track the muon may combine with an electron to form muonium (Mu) which is observable in inert liquids, but which reacts by addition to form a radical. Alternatively, the electron can add to S to form S - , which then combines with the muon to form the radical. Furthermore, instead of ending up in Mu or in a radical the muon may stay in a diamagnetic environment as a solvated muon, or as a muon substituting a proton in a molecule. Of interest in these schemes are the mechanisms and rates of formation of muonated radicals and in particular the rate constants for their reactions to products. Investigations are based on the observation of Mu and the radical by means of the μSR technique in transverse magnetic fields. (Auth.)

  10. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali; Khashab, Niveen M.; Fahrenbach, Albert C.; Friedman, Douglas C.; Colvin, Michael T.; Coti, Karla K.; Bení tez, Diego S.; Tkatchouk, Ekaterina; Olsen, John Carl; Belowich, Matthew E.; Carmieli, Raanan; Khatib, Hussam A.; Goddard, William Andrew III; Wasielewski, Michael R.; Stoddart, Fraser Fraser Raser

    2009-01-01

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  11. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  12. The Wolff rearrangement in radical cations

    International Nuclear Information System (INIS)

    Ohashi, Mamoru; Tsujimoto, Kazuo; Shida, Yasuo; Yamada, Yasuji.

    1975-01-01

    The mass spectrometric behavior of 1-phenyl-4,5,6,7-tetrahydrobenzotriazole and its seven membered analog is described. The principal fragmentation process of the molecular ions is loss of nitrogen. It was concluded from the results of deuterium labeling and accurate mass measurements that the subsequent fragmentation of the M-N 2 ions proceeds via isomerization to the ring-contracted ketenimine ions by the Wolff rearrangement, in sharp contrast to the case of 1-phenylbenzotriazole. (auth.)

  13. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  14. Selective Generation of the Radical Cation Isomers [CH3CN](•+) and [CH2CNH](•+) via VUV Photoionization of Different Neutral Precursors and Their Reactivity with C2H4.

    Science.gov (United States)

    Polášek, Miroslav; Zins, Emilie-Laure; Alcaraz, Christian; Žabka, Ján; Křížová, Věra; Giacomozzi, Linda; Tosi, Paolo; Ascenzi, Daniela

    2016-07-14

    Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed.

  15. DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP.

    Science.gov (United States)

    Aied, Ahmed; Zheng, Yu; Pandit, Abhay; Wang, Wenxin

    2012-02-01

    Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP. The cellulose paper grafted polymer was used in combination with PicoGreen (PG) to demonstrate detection of nucleic acids in the nanogram range in homogeneous solution and in a biological sample (serum). The results showed specific identification of hybridized DNA after addition of PG in both solutions.

  16. Cation disorder in Ga1212.

    Science.gov (United States)

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  17. Fluorescence lifetime measurement of radical ions

    International Nuclear Information System (INIS)

    Ichinose, Nobuyuki; Kinugasa, Jun-ichiro; Hagiri, Masahide; Nakayama, Toshihiro; Murakami, Hiroshi; Kishimoto, Maki; Daido, Hiroyuki

    2004-01-01

    One-photonic excitation of a charge transfer complex of hexamethoxybenzene (HMB) and nitrosonium tetrafluoroborate (NO + BF 4 - ) in acetonitrile afforded fluorescences emission from excited radical cation of HMB (HMB + *). Lifetime of the excited radical ion species was measured to be 7 ps by the pump-probe transient absorption technique. The lifetime was much shorter than that of free radical ion (63 ps), indicating the presence of an interaction between HMB + * and NO in the excited complex. (author)

  18. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    Science.gov (United States)

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  19. Generation of carotenoid radical cation in the vicinity of a chlorophyll derivative bound to titanium oxide, upon excitation of the chlorophyll derivative to the Q y state, as identified by time-resolved absorption spectroscopy

    Science.gov (United States)

    Wang, Xiao-Feng; Kakitani, Yoshinori; Xiang, Junfeng; Koyama, Yasushi; Rondonuwu, Ferdy S.; Nagae, Hiroyoshi; Sasaki, Shin-ichi; Tamiaki, Hitoshi

    2005-12-01

    Electron injection from a chlorophyll derivative (methyl 3-carboxy-3-devinylpyropheophorobide a, abbreviated as PPB a) to TiO 2 nanoparticle took place in ≈30 fs following the decay of an excimer that was generated immediately after excitation to the Q y state (681 nm). Then, electron transfer from carotenoids (Cars) to PPB arad + took place in ≈200-240 ps. The latter observation supports the electron-transfer mechanism proposed in a previous investigation, in which Cars were added as redox spacers to the PPB a-sensitized TiO 2 solar cells to enhance their performance (X.-F. Wang, J. Xiang, P. Wang, Y. Koyama, S. Yanagida, Y. Wada, K. Hamada, S. Sasaki, H. Tamiaki, Chem. Phys. Lett. 408 (2005) 409).

  20. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  1. Pulse radiolysis investigations on the oxidation of bilirubin by chlorinated peroxyl radicals (Preprint No. RC.18)

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1989-01-01

    Chlorinated peroxyl radicals were observed to oxidize bilirubin. The rate constants, estimated from the formation kinetics of bilirubin cation, were observed to decrease with decrease in the chlorine substitution of various chlorinated peroxyl radicals. (author)

  2. Fate of free radicals generated during one-electron reductions of 4-alkyl-1,4-peroxyquinols by cytochrome P-450

    International Nuclear Information System (INIS)

    Yumibe, N.P.; Thompson, J.A.

    1988-01-01

    Free radicals resulting from the one-electron reduction and subsequent homolytic cleavage of oxygen-oxygen bonds by heme proteins are likely to be responsible for some aspects of the toxicity of organic hydroperoxides. In the present work, effects of the 4-alkyl substituent of 2,6-di-tert-butyl-4-alkyl-4-hydroperoxycytohexa-2,5-dienones on radical production were investigated with microsomal cytochrome P-450 from rat liver. Quinoxy radicals from homolysis of the peroxyquinols underwent β-scission to produce a quinone and an alkyl radical, and this process occurred with increasing frequency as the stability of the alkyl radical increased. The fate of benzyl and 2-phenylethyl radicals generated from the appropriately substituted peroxyquinols was investigated also. The former was converted to benzyl alcohol, benzaldehyde, and toluene and the latter to 2-phenylethanol, phenylacetaldehyde, ethylbenzene, styrene, and benzaldehyde. Oxygen-18 labeling studies demonstrate that 80-85% of the benzyl alcohol incorporated oxygen from the hydroperoxide and the balance from molecular oxygen. This indicates that the predominant reaction pathway involved recombination between the benzyl radical and the iron-bound hydroxyl radical of the P-450 intermediate complex. By contrast, about 50% of 2-phenylethanol from the 2-phenylethyl radical incorporated oxygen from water and the balance from O 2 . Two alternative mechanisms are proposed to explain the formation of 2-phenylethanol that contained oxygen from water and the concurrent formation of styrene: (a) oxygen exchange of the P-450 intermediate with water, followed by hydrogen abstraction and radical recombination reactions with the P-450 complex, or (b) oxidation of the radical to the 2-phenylethyl cation followed by proton elimination and hydration

  3. Radical Evil

    Directory of Open Access Journals (Sweden)

    Carlos Manrique

    2007-12-01

    Full Text Available There is an aporia in Kant’s analysis of evil: he defines radical evilas an invisible disposition of the will, but he also demands an inferential connection between visible evil actions and this invisible disposition. This inference,however, undermines the radical invisibility of radical evil according to Kant’s own definition of the latter. Noting how this invisibility of moral worth is a distinctive feature of Kant’s approach to the moral problem, the paper then asks why, in the Groundwork, he nonetheless forecloses a question about evil that seems to be consistent with this approach. It is argued that to account for this aporia and this foreclosure, one has to interrogate the way in which the category of religion orients Kant’s incipient philosophy of history in Die Religion.

  4. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  5. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  6. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  7. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  8. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  9. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  10. Electron-beam curing of epoxy resins: effect of alcohols on cationic ...

    Indian Academy of Sciences (India)

    Unknown

    Electron-beam (e-beam) induced polymerization of epoxy resins proceeds via cationic mechanism in presence of suitable ... generate ionic species, free radicals, and/or molecules in .... bisphenol A) and the effect of presence of different OH.

  11. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  12. Perceptron Mistake Bounds

    OpenAIRE

    Mohri, Mehryar; Rostamizadeh, Afshin

    2013-01-01

    We present a brief survey of existing mistake bounds and introduce novel bounds for the Perceptron or the kernel Perceptron algorithm. Our novel bounds generalize beyond standard margin-loss type bounds, allow for any convex and Lipschitz loss function, and admit a very simple proof.

  13. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  14. Cation-π interaction of the univalent sodium cation with [2.2.2]paracyclophane: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Sýkora, David; Böhm, Stanislav; Vaňura, Petr

    2018-02-01

    By employing electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent sodium cation (Na+) forms with [2.2.2]paracyclophane (C24H24) the cationic complex [Na(C24H24)]+. Further, applying quantum chemical DFT calculations, the most probable structure of the [Na(C24H24)]+ complex was derived. In the resulting complex with a symmetry very close to C3, the "central" cation Na+, fully located in the cavity of the parent [2.2.2]paracyclophane ligand, is bound to all three benzene rings of [2.2.2]paracyclophane via cation-π interaction. Finally, the interaction energy, E(int), of the considered cation-π complex [Na(C24H24)]+ was found to be -267.3 kJ/mol, confirming the formation of this fascinating complex species as well.

  15. A photoelectron and TPEPICO investigation of the acetone radical cation.

    Science.gov (United States)

    Rennie, Emma E; Boulanger, Anne-Marie; Mayer, Paul M; Holland, David M P; Shaw, David A; Cooper, Louise; Shpinkova, Larisa G

    2006-07-20

    The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).

  16. UV curing by radical, cationic and concurrent radicalcationic polymerization

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1984-01-01

    UV and EB curing represent complementary technologies with respective advantages and disadvantages. This paper deals with the design and evaluation of UV curable coatings to optimize cure rate and film properties. Topics included are state-of-the-art photoinitiator systems, light intensity effects, retardation of air-inhibition, adhesion, and amplification of photons for enhanced speed of cure

  17. Electronic Spectra of the Tetraphenylcyclobutadienecyclopentadienylnickel(II) Cation and Radical

    Czech Academy of Sciences Publication Activity Database

    Craig, P. R.; Havlas, Zdeněk; Trujillo, M.; Rempala, P.; Kirby, J. P.; Miller, J. R.; Noll, B. C.; Michl, Josef

    2016-01-01

    Roč. 120, č. 20 (2016), s. 3456-3462 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : cyclobutadiene-metal complexes * tetragonal star connectors * square grid polymer * halides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016

  18. Circuit lower bounds in bounded arithmetics

    Czech Academy of Sciences Publication Activity Database

    Pich, Ján

    2015-01-01

    Roč. 166, č. 1 (2015), s. 29-45 ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007214000888

  19. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor.

    Science.gov (United States)

    El-Agamey, Ali; McGarvey, David J

    2016-01-01

    The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of

  20. Scattering by bound nucleons

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1984-10-01

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  1. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... How radical change in public policy has occurred in the past is then documented. We find examples of radical change by chance, radical change by consensus, radical change by learning, and radical change by entrepreneurial design...

  2. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  3. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  4. Identifi cation of Sectarianism

    Directory of Open Access Journals (Sweden)

    Martinovich Vladimir

    2016-03-01

    Full Text Available «New religious movements and society» is traditionally one of the most sophisticated topics in the area of new religions studies. Its problem field is so huge that up to now by far not all important research themes where even touched by scientists from all over the world. The problem of the process of the identification of sectarianism by diff erent societal institutions is one of such untouched themes that is taken as the main subject of this article. This process by itself is an inseparable part of the every societal deliberate reaction to the very existence of unconventional religiosity, its unstructured and mainly structured types. The focal point of the article is step-by-step analysis of the general structure elements of the process of the identification of sectarianism without any reference to the specific time and place of its flow. Special attention is paid to the analysis of the subjects of the identification of sectarianism, to the criteria for religious groups to be qualified as new religious movements, and to the specific features of the process of documents filtration. The causes of selective perception of sectarianism are disclosed. Some main consequences and unpredictable outcomes of the process of the identification of sectarianism are described.

  5. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  6. Binding of radiation-induced phenylalanine radicals to DNA

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  7. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  8. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  9. DNA Binding Hydroxyl Radical Probes.

    Science.gov (United States)

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  10. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  11. The mechanisms of radical formation in L-α-alanine

    International Nuclear Information System (INIS)

    Bugay, A.A.; Onischuk, V.A.; Petrenko, T.L.; Teslenko, V.V.

    2000-01-01

    Modeling of radical transformations in L-α-alanine after irradiation was performed for isolated radicals and for clusters. Special attention was devoted to the explanation of the experimental results concerning selective proton transfer and behavior of cation-radicals because a unique interpretation of the corresponding experiments is very difficult. Both semi-empirical and ab initio methods were used depending on the size of system under investigation. The results obtained show the usefulness of the computer simulation for processes in rather complex materials used in dosimetry

  12. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  13. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    ) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  14. An electron spin resonance study of radicals formed from tetrolic acid by radiolysis in a freon matrix

    International Nuclear Information System (INIS)

    Rhodes, C.J.

    1989-01-01

    In the present study, e.s.r. spectra have been observed following γ-irradiation of dilute frozen solutions of tetrolic acid, MeC≡CCO 2 H, in CFCl 3 at 77 K. A typical spectrum is shown which we interpret in terms of an isotropic quartet from the parent radical cation. MeC≡CCo 2 H +· , and an anisotropic triplet arising from the propargyl radical, ·CH 2 C≡CCO 2 H, formed by deprotonation of the parent cation. This appears to be the first example of an alkyne radical cation to be observed in a CFCl 3 matrix. (author)

  15. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  16. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  17. Bounded Intention Planning Revisited

    OpenAIRE

    Sievers Silvan; Wehrle Martin; Helmert Malte

    2014-01-01

    Bounded intention planning provides a pruning technique for optimal planning that has been proposed several years ago. In addition partial order reduction techniques based on stubborn sets have recently been investigated for this purpose. In this paper we revisit bounded intention planning in the view of stubborn sets.

  18. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  19. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  20. Introducing Stable Radicals into Molecular Machines.

    Science.gov (United States)

    Wang, Yuping; Frasconi, Marco; Stoddart, J Fraser

    2017-09-27

    Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY •+ ) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY •+ -based molecular machines with useful functions.

  1. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  2. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  3. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  4. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  5. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  6. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  7. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  8. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  9. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  10. A pulse radiolysis study of the reaction of the sulphate radical ion in aqueous solutions of styrene

    International Nuclear Information System (INIS)

    McAskill, N.A.; Sangster, D.F.

    1979-01-01

    The ultraviolet absorption spectra of the transient species formed during the pulse radiolysis of styrene and peroxydisulfate solutions showed that a benzyl-type radical was formed from styrene and the SO 4 - radical. The effect of adding Cl - was also studied. These results are in conflict with the claim that a phenylethyl radical was formed from SO 4 - via the styrene cation radical. That study was made on acetonitrile solutions of styrene, S 2 O 8 2- CUCl 2 and LiCl and the present results suggest that up to 70% of the SO 4 - radicals may have been converted into Cl 2 - radical which then reacted with styrene

  11. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  12. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    International Nuclear Information System (INIS)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-01-01

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized [ 3 H]albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized [ 3 H]albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling [ 3 H]beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The [ 3 H]beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier

  13. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  14. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  15. Bounded Rationality and Budgeting

    OpenAIRE

    Ibrahim, Mukdad

    2016-01-01

    This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...

  16. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  17. Bound and rebound states

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1979-01-01

    In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)

  18. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  19. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  20. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  1. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  2. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  3. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  4. Radicals in arithmetic

    NARCIS (Netherlands)

    W.J. Palenstijn (Willem Jan)

    2014-01-01

    htmlabstractLet K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement

  5. Radicals in arithmetic

    NARCIS (Netherlands)

    Palenstijn, Willem Jan

    2014-01-01

    Let K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement group. We give

  6. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...

  7. Massive Galileon positivity bounds

    Science.gov (United States)

    de Rham, Claudia; Melville, Scott; Tolley, Andrew J.; Zhou, Shuang-Yong

    2017-09-01

    The EFT coefficients in any gapped, scalar, Lorentz invariant field theory must satisfy positivity requirements if there is to exist a local, analytic Wilsonian UV completion. We apply these bounds to the tree level scattering amplitudes for a massive Galileon. The addition of a mass term, which does not spoil the non-renormalization theorem of the Galileon and preserves the Galileon symmetry at loop level, is necessary to satisfy the lowest order positivity bound. We further show that a careful choice of successively higher derivative corrections are necessary to satisfy the higher order positivity bounds. There is then no obstruction to a local UV completion from considerations of tree level 2-to-2 scattering alone. To demonstrate this we give an explicit example of such a UV completion.

  8. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  9. Formation and thermal transformations of radicals in γ-irradiated cellulose

    International Nuclear Information System (INIS)

    Ershov, B.G.; Isakova, O.V.

    1984-01-01

    The work is aimed at more detailed theoretical analysis of the structure of radicals in cellulose gamma-irradiated at 77 K, specification of the mechanism of their formation, as well as studying reactions of transformation of radicals in the case of temperature increase. It is established that in the case of cellulose gamma-irradiation radicals appear with the localization of an unpaired electron in 1 and 4 positions of the pyranose cycle the formation of which is accompanied by the disruption of the glycoside bound. Thermal transformations of these radicals are conditioned by their dehydration and occur with the formation of radicals of the allelow type

  10. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. Bounded variation and around

    CERN Document Server

    Appell, Jürgen; Merentes Díaz, Nelson José

    2013-01-01

    This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.

  13. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  14. Matrix isolation spectroscopic studies of the radical ions of 2,5-diphenyloxazole (Preprint No. RC-15)

    International Nuclear Information System (INIS)

    Wani, A.M.

    1988-02-01

    The radical ions of 2,5-diphenyloxazole (PPO) produced upon γ-irradiation were studied at 77 K in organic glasses by optical absorption spectroscopy. The dependence of absorption spectra on the nature of the matrix, electron and hole scavengers is interpretted and the absorption bands are assigned to the anionic and cationic radical species of PPO. (author). 6 refs

  15. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and radical feminism would easily fall under this definition. There is, however, one major difference: since radical feminism is a relatively recent phenomenon which also benefited from modern modes of text production and preservation, almost all of the sources are still with us. This, in turn, may allow us...... to use radical feminism to make certain aspects of ancient Gnosticism re-emerge from their long submersion, provided that enough similarities can be independently drawn between the two phenomena to merit such a comparison. This paper therefore presents a comparison between concepts and positions...

  16. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    It has been reported that a growing number of youngsters from Western Europe are engaging in conflicts motivated by religious and political conflicts in the Middle East. This paper explores the reasons behind this seemingly religious radicalization from the point of view of the youngsters...... youngsters and parents of youngsters who have chosen a radicalized path in life. The paper will shed light on how the sense of and yearning for belonging and recognition have to be taken into account in our understanding of homegrown religious radicalization...

  17. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2011-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  18. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  19. Radical chemistry of artemisinin

    International Nuclear Information System (INIS)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G

    2010-01-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  20. Radical's view of sciences

    International Nuclear Information System (INIS)

    Mittal, J.P.

    2004-01-01

    Full text: General concept in radiation biology is that free radicals are highly reactive and they can damage vital cellular molecules leading to injurious effects. However, in this talk, evidence will be presented through the techniques of electron paramagnetic resonance ( EPR ) and pulse radiolysis that free radicals can be highly selective in their reaction with the target molecules. In addition, attempts will be made to present a brief account of emerging scenario of free radical generation, identification and their involvement in radiation damage mechanisms in chemical and biological systems

  1. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  2. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  3. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  4. The fate of primary cations in radiolysis of alkanes as studied by ESR

    International Nuclear Information System (INIS)

    Iwasaki, M.; Toriyama, K.; Nunome, K.

    1983-01-01

    The structures and reactions of alkane cations (RH + ) have been studied by ESR to elucidate the fate of primary cations in radiolysis of alkanes. Radical cations of prototype alkanes such as C 2 H 6 , C 3 H 8 , iso-C 4 H 10 and neo-C 5 H 12 etc. as well as their partially deuterated analogues were stabilized in irradiated frozen matrices such as SF 6 , CFCl 2 CF 2 Cl and CFCl 3 having a higher ionization potential than that of these alkanes contained as dilute solutes. RH + in SF 6 and in CFCl 2 CF 2 Cl converts into alkyl radicals by deprotonation probably through bimolecular reactions, whereas RH + in CFCl 3 unimolecularily decomposes into olefinic cations by H 2 and/or CH 4 elimination reactions. It is further found that the electronic structures of propane and isobutane cations in halocarbon matrices are different from those in SF 6 and the difference is drastically reflected in the site preference of their deprotonation reactions. The results are discussed in relation to the mechanisms of pairwise formation of alkyl radicals in low temperature radiolysis of neat alkanes and its suppression by addition of electron scavengers. (author)

  5. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    OpenAIRE

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-01-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing ...

  6. The cation-π interaction.

    Science.gov (United States)

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  7. Cation exchange assisted binding-elution strategy for enzymatic synthesis of human milk oligosaccharides (HMOs).

    Science.gov (United States)

    Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang

    2017-09-15

    A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  9. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Directory of Open Access Journals (Sweden)

    Jacques Lalevée

    2015-04-01

    Full Text Available Photoinitiators (PI or photoinitiating systems (PIS usable in light induced cationic polymerization (CP and free radical promoted cationic polymerization (FRPCP reactions (more specifically for cationic ring opening polymerization (ROP together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  10. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  11. Moderate and Radical Islam

    National Research Council Canada - National Science Library

    Rabasa, Angel

    2005-01-01

    This report presents the statement of Angel Rabasa, PhD, Senior Policy Analyst, The RAND Corporation, to the Committee on Armed Services, Defense Review Terrorism and Radical Islam Gap Panel, United...

  12. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  13. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...... within this field and to answer the question: From an empirical point of view, what is known and what is not known about radicalization connected to militant Islamism in Europe?...

  14. Maps of Bounded Rationality

    OpenAIRE

    Kahneman, Daniel

    2002-01-01

    The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...

  15. Bounded Satisfiability for PCTL

    OpenAIRE

    Bertrand, Nathalie; Fearnley, John; Schewe, Sven

    2012-01-01

    While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more appl...

  16. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  17. Universal bounds on current fluctuations.

    Science.gov (United States)

    Pietzonka, Patrick; Barato, Andre C; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  18. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    Science.gov (United States)

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  19. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  20. A bound on chaos

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)

    2016-08-17

    We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

  1. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  2. Introduction: Radical Teaching About Human Rights Part II

    Directory of Open Access Journals (Sweden)

    Michael Bennett

    2016-02-01

    Full Text Available In our introduction to the first of these two issues of Radical Teacher devoted to “Radical Teaching About Human Rights,” we cautioned that all forms of Human Rights Education (HRE are not radical.  The problem, we pointed out, with rights discourse is that it can mask the politics of how rights are defined, whose rights are recognized, and how they are enforced.  This problem becomes evident when HRE is bound up with a neoliberal, or worse than neoliberal, perspective that points fingers at others and rallies troops for supposedly humanitarian interventions while eliding the role of the United States as an imperializing settler colonial state.  Fortunately, we have once again received several essays that seem to us to be aware of this danger and provide admirable examples of radical teaching about human rights.

  3. Ion radical rupture of the carbon-carbon bond in oxidation of 1,3,1',3'-tetramethyl-2,3,2',3'- tetrahydro-2,2'-diperimidinyl

    International Nuclear Information System (INIS)

    Sabanov, V.Kh.; Kibizova, A.Yu.; Klimov, E.S.; Berberova, N.T.; Okhlobystin, O.Yu.

    1987-01-01

    Electrochemical and chemical oxidation of 1,3,1',3'-tetramethyl-2,3,2',3'-tetrahydro-2,2'-dipyriminyl takes place with rupture of the C-C bond in the initially formed cation radical. In the oxidation of the compound with aluminum chloride in nitrobenzene, ESR revealed a cation radical with an unresolved hyperfine structure. Oxidation of the dihydrodimer with nitrosonium perchlorate in nitrobenzene or nitromethane resulted in the same spectra. Cyclic volt-ampere diagrams are included

  4. Radical dematerialization and degrowth

    Science.gov (United States)

    Kallis, Giorgos

    2017-05-01

    The emission targets agreed in Paris require a radical reduction of material extraction, use and disposal. The core claim of this article is that a radical dematerialization can only be part and parcel of degrowth. Given that capitalist economies are designed to grow, this raises the question of whether, and under what circumstances, the inevitable `degrowth' can become socially sustainable. Three economic policies are discussed in this direction: work-sharing, green taxes and public money. This article is part of the themed issue 'Material demand reduction'.

  5. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  6. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  7. Free Radical Scavenging Properties of Annona squamosa

    Science.gov (United States)

    Vikas, Biba; Akhil B, S; P, Remani; Sujathan, K

    2017-10-26

    Annona squamosa has extensively been used in the traditional and folkloric medicine and found to possess many biological activities. Different solvents, petroleum ether, chloroform, ethyl acetate and methanol extracts of Annona squamosa seeds (ASPE, ASCH, ASEA, ASME) have been used to prepare plant extracts. The present investigations dealt with the free radical scavenging activity of four extracts using various techniques such as total reducing power estimation, total phenolic count, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging effect, evaluation of ABTS cation decolorisation capacity, FRAP assay, hdroxyl radical scavenging assay, super oxide assay and Nitric oxide radical scavenging assay of the extracts. The results showed that the four extracts of Annona squamosa showed significant reducing power in four extracts. The total phenolic contents in petroleum ether, chloroform, ethyl acetate, methanol extracts and positive control were 0.64±0.17, 0.54±0.27, 0.49±0.24, 0.57±0.22 and 0.66±0.33. The antioxidant capacity by ABTS assay of ASPE, ASCH, ASEA, ASME and positive control, trolox showed 77.75±0.5,73.25±1.7,78.5± 1.2 , 80 ± 0.8 μg/ml and 94.2 ± 0.9 respectively. The (50 % scavenging activity) SA50 of ASPE and ASCH, ASEA and ASME was found to be 34.4 μg/ml, 43.8 μg/ml 34.7 μg/m and 28.8 μg/ml respectively by DPPH assay. The percentage of hydroxyl radical scavenging increased with the increasing concentration of the extracts. ASPE, ASCH, ASEA and ASME showed superoxide radical scavenging activity, as indicated by their values 66 ± 0.5, 68 ± 1 ,63 ± 1 and 70 ± 0.5 μg/ml respectively compared to gallic acid which was 97 ± 0.5 μg/ml. The values for scavenging of nitric oxide for ASPE, ASCH, ASEA and ASME were 91.0 ± 1.0, 66.75 ± 0.5, 71.75 ± 1.1 and 75.75 ± 1.15 μg/ml while value for standard ascorbic acid was 91.0 ± 1.0 μg/ml. The results revealed strong antioxidants in four extracts may lead to the development of potent

  8. Relativistic bound states

    International Nuclear Information System (INIS)

    Ritchie, Burke

    2006-01-01

    The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2

  9. Counter radicalization development assistance

    OpenAIRE

    van Hippel, Karin

    2006-01-01

    The paper reviews current research and practice and recommends strategies for development agencies working in the Arab and Muslim world. It builds on the basic assumption that the realization of the Millennium Development Goals will be vital to reduce support for terrorism in the long term. Within this overall framework, emphasis is placed on particular programs that could be specifically applied to counter radicalization.

  10. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten

    2017-01-01

    incontinence in relation to sexual activity after surgery. This can present at the time of orgasm (ie, climacturia) or arise during arousal. In general, the problem subsides with time and pelvic floor training and tension penile loops can be used as treatments. Orgasmic disturbances after radical prostatectomy...

  11. Online Radicalization: Bangladesh Perspective

    Science.gov (United States)

    2017-06-09

    radicalization through cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom...cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom of speech...67 An Organizational Approach to Implement the Measures........................................ 69 Formation of

  12. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  13. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  14. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  15. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    Sonntag, C. von; Bothe, E.; Ulanski, P.

    1998-01-01

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N 2 O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO 2 -elimination. This prevents a scission of the polymer chain in the

  16. New double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, 01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [Department of Physical Chemistry and Crystallography, University of Geneva, 1211 Geneva (Switzerland)

    2011-07-01

    Complex hydrides are under consideration for on-board hydrogen storage due to their high hydrogen density. However, up to now conventional borohydrides are either too stable or unstable for applications as in PEM fuel cells (60-120 C). Recently, double-cation borohydride systems have attracted great interest. The desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by the combination of appropriate cations. The stability was found to be intermediate between the single-cation borohydride systems. Two combinations were sucessfully synthesised by metathesis reaction via high energy ball milling. Al-Li-borohydride shows desorption at about 70 C combined with a very high hydrogen density (17.2 wt.%) and the Na-Al-borohydride (14.2 wt.%) decomposes around 90 C. Both desorption temperatures are in the target range for applications. The decomposition pathways were observed by in-situ-Raman spectroscopy, DSC (Differential Scanning Calorimetry), TG (Thermogravimetry) and thermal desorption measurements.

  17. Muonium-containing vinyl radicals

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Symons, M.C.R.; Roduner, E.; Heming, M.

    1987-01-01

    Exposure of trimethylsilylacetylene and bis(trimethylsilyl)acetylene to positive muons gave radicals whose muon-electron hyperfine coupling constants establish that the corresponding vinyl radicals were formed. (author)

  18. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  19. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  20. Ligand-free, protein-bound technetium-99m. Evidence for tumour localisation

    International Nuclear Information System (INIS)

    Jakovljevic, A.C.; Pojer, P.M.

    1984-11-01

    An hypothesis that cations accumulate in tumours independent of ligand is tested. A preparation of technetium-99m known to be ligand-free (that is, the technetium is protein bound and no other ligand is injected) has been shown to accumulate in a T-cell lymphoma

  1. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  2. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Yalcin, Erdal; Schröder, Philipp

    2010-01-01

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...

  3. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...

  4. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Quivers of Bound Path Algebras and Bound Path Coalgebras

    Directory of Open Access Journals (Sweden)

    Dr. Intan Muchtadi

    2010-09-01

    Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.

  6. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  7. Trends in radical prostatectomy.

    Science.gov (United States)

    Eastham, James; Tokuda, Yuji; Scardino, Peter

    2009-02-01

    The surgical treatment of prostate cancer ideally removes the entire cancer, avoids excessive blood loss or serious perioperative complications, and results in complete recovery of continence and potency. To achieve this, the surgeon must excise sufficient periprostatic tissue to cure the cancer while preserving the cavernosal nerves required for erectile function and the neuromusculature required for normal urinary and bowel function. Here we will examine recent trends in radical prostatectomy, focusing on surgical technique.

  8. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  9. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  10. Synchrotron-based valence shell photoionization of CH radical

    Energy Technology Data Exchange (ETDEWEB)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Holzmeier, F.; Röder, A. [Institut of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); Krüger, J.; Garcia, G. A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex (France); Lopes, A.; Alcaraz, C., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr [Laboratoire de Chimie Physique, UMR 8000 CNRS—Univ. Paris-Sud, Univ. Paris-Saclay, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex (France); Fittschen, C. [Université Lille, CNRS, UMR 8522–PC2A–Physicochimie des Processus de Combustion et de l’Atmosphère, F-59000 Lille (France); Loison, J.-C. [Institut des Sciences Moléculaires, UMR 5255 CNRS—Université de Bordeaux, Bât. A12, 351 cours de la Libération, F-33405 Talence Cedex (France)

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  11. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  12. Product differentiation under bounded rationality

    NARCIS (Netherlands)

    Vermeulen, B.; Poutré, La J.A.; Kok, de A.G.; Pyka, A.; Handa, H.; Ishibuchi, H.; Ong, Y.-S.; Tan, K.-C.

    2015-01-01

    We study product differentiation equilibria and dynamics on the Salop circle under bounded rationality. Due to bounded rationality, firms tend to agglomerate in pairs. Upon adding a second tier of component suppliers, downstream assemblers may escape pairwise horizontal agglomeration. Moreover, we

  13. Formation of tryptophan radicals in irradiated aqueous solutions of hexachloroplatinate(IV): a flash photolysis study.

    Science.gov (United States)

    Zang, L; Rodgers, M A

    1999-10-01

    The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.

  14. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  15. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    Science.gov (United States)

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-09-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.

  17. Antioxidant Effects of Herbal Tea Leaves from Yacon (Smallanthus sonchifolius) on Multiple Free Radical and Reducing Power Assays, Especially on Different Superoxide Anion Radical Generation Systems.

    Science.gov (United States)

    Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin

    2015-11-01

    Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea

  18. Electron Transfer Triggers Fast Dimer/Monomer Switching of Pyridinium and Quinolinium Cations

    Czech Academy of Sciences Publication Activity Database

    Teplý, Filip; Čížková, Martina; Slavíček, P.; Kolivoška, Viliam; Tarábek, Ján; Hromadová, Magdaléna; Pospíšil, Lubomír

    2012-01-01

    Roč. 116, č. 5 (2012), s. 3779-3786 ISSN 1932-7447 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/09/1614 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : electrochemical reduction * dimerization * radicals * mechanism * N-heteroaromatic cations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.814, year: 2012

  19. Copolymerization preparation of cationic cyclodextrin chiral stationary phases for drug enantioseparation in chromatography

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Ren-Qi Wang, Teng-Teng Ong, Ke Huang, Weihua Tang & Siu-Choon Ng ### Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin (β-CD) onto silica particles with extended linkage, resulting in a chiral stationary phase (IMPCSP) that can be used for the enantioseparation of racemic drugs in both high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Starting ...

  20. Synthesis of a cationic thermoresponsive dendrimer and its self-assembly with apoferritin protein cage

    OpenAIRE

    Välimäki, Salla

    2015-01-01

    The aim of this work was to synthesize cationic dendrimer with a thermoresponsive polymer tail and complex the dendrimer with negatively charged apoferritin protein nanocage. These kind of systems are developed, for example, for biomedical applications. Spermine dendron with atom transfer radical polymerization initiator in focal point was synthesized successfully. Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate) was in situ polymerized to the dendron to form the therm...

  1. Cation dependency of the hydrolytic activity of activated bovine Protein C

    International Nuclear Information System (INIS)

    Hill, K.A.W.

    1986-01-01

    The hydrolytic activity of activated bovine plasma Protein C (APC) is dependent upon monovalent or divalent cations. The kinetics of APC activity were examined with a variety of monovalent and divalent cations, and significant differences were observed. Similar studies were performed with des(1-41, light chain)APC (GDAPC), from which all γ-carboxyglutamic acid residues have been removed. These studies provided useful information concerning the cation dependency. Divalent cations apparently stimulate APC and GDAPC kinetic activity through association at a single γ-carboxyglutamic acid-independent high affinity binding site. A Mn(II) binding site of this nature of GDAPC was determined by EPR spectroscopy, to possess a dissociation constant of 53 +/- 8 uM. Monovalent cations stimulate GDAPC activity through association at an apparently single binding site that is distinct from the divalent cation site. The monovalent cation , Tl(I), was determined, by 205 Tl(I) NMR spectroscopy, to bind to APC and GDAPC with dissociation constants of 16 +/- 8 mM and 32+/- 11 mM, respectively. Both NMR and EPR spectroscopy have been utilized to estimate topographical relationships between divalent cation sites, monovalent cation sites, and the active site of GDAPC. By observing the paramagnetic effects of either Mn(II) or an active site directed spin-label on the longitudinal relaxation rates of Tl(I) nuclei bound to this enzyme, the average interatomic distance between Mn(II) and Tl(I) was calculated to be 8.3 +/- 0.3 A, and the average distance between Tl(I) and the spin-label free electron was estimated to be 3.8 +/- 0.2 A

  2. Crystals of Na(+)/K(+)-ATPase with bound cisplatin.

    Science.gov (United States)

    Huliciak, Miroslav; Reinhard, Linda; Laursen, Mette; Fedosova, Natalya; Nissen, Poul; Kubala, Martin

    2014-12-01

    Cisplatin is the most widely used chemotherapeutics for cancer treatment, however, its administration is connected to inevitable adverse effects. Previous studies suggested that cisplatin is able to inhibit Na(+)/K(+)-ATPase (NKA), the enzyme responsible for maintaining electrochemical potential and sodium gradient across the plasma membrane. Here we report a crystallographic analysis of cisplatin bound to NKA in the ouabain bound E2P form. Despite a moderate resolution (7.4 Å and 7.9 Å), the anomalous scattering from platinum and a model representation from a recently published structure enabled localization of seven cisplatin binding sites by anomalous difference Fourier maps. Comparison with NKA structures in the E1P conformation suggested two possible inhibitory mechanisms for cisplatin. Binding to Met151 can block the N-terminal pathway for transported cations, while binding to Met171 can hinder the interaction of cytoplasmic domains during the catalytic cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Curvature bound from gravitational catalysis

    Science.gov (United States)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  4. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  5. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...... and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...

  6. Star-like superalkali cations featuring planar pentacoordinate carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Tian, Wen-Juan; Zhao, Xue-Feng; Wu, Yan-Bo, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn; Li, Si-Dian, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Wang, Ying-Jin [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhai, Hua-Jin, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe{sub 5} can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) cations containing a CBe{sub 5} moiety. Polyhalogenation and polyalkalination on the CBe{sub 5} unit may help eliminate the high reactivity of bare CBe{sub 5} molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe{sub 5}X{sub 5}{sup +} range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12–2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76–11.07 eV for X = F, Cl, Br and 4.99–6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be–X–Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe{sub 5} motif is robust in the

  7. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  9. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  10. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  11. Cation coordination in oxychloride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Holland, D [Physics Department, Warwick University, Coventry (United Kingdom); Bland, J [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom); Johnson, C E [Physics Department, Northern Illinois University, DeKalb, IL (United States); Thomas, M F [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom)

    2003-02-19

    Glasses containing mixtures of cations and anions of nominal compositions [Sb{sub 2}O{sub 3}]{sub x} - [ZnCl{sub 2}]{sub 1-x} where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb){sub 2}(OZn)] and [Zn(ClZn){sub 2}(OSb){sub 2}].

  12. Cation coordination in oxychloride glasses

    International Nuclear Information System (INIS)

    Johnson, J A; Holland, D; Bland, J; Johnson, C E; Thomas, M F

    2003-01-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb 2 O 3 ] x - [ZnCl 2 ] 1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb) 2 (OZn)] and [Zn(ClZn) 2 (OSb) 2

  13. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  14. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  15. Dissociative Photoionization of the Elusive Vinoxy Radical.

    Science.gov (United States)

    Adams, Jonathan D; Scrape, Preston G; Lee, Shih-Huang; Butler, Laurie J

    2017-08-24

    These experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH 3 + CO or H + ketene. Photoionization of these stable vinoxy radicals, identified by their velocities, which are momentum-matched with the higher-kinetic-energy Cl atom photofragments, shows that the vinoxy radicals dissociatively photoionize to give signal at m/z = 15 and 29. We calibrated the partial photoionization cross section of vinoxy to CH 3 + relative to the bandwidth-averaged photoionization cross section of the Cl atom at 13.68 eV to put the partial photoionization cross sections on an absolute scale. The resulting bandwidth-averaged partial cross sections are 0.63 and 1.3 Mb at 10.5 and 11.44 eV, respectively. These values are consistent with the upper limit to the cross section estimated from a study by Savee et al. on the O( 3 P) + propene bimolecular reaction. We note that the uncertainty in these values is primarily dependent on the signal attributed to C-Cl primary photofission in the m/z = 35 (Cl + ) time-of-flight data. While the value is a rough estimate, the bandwidth-averaged partial photoionization cross section of vinoxy to HCO + calculated from the signal at m/z = 29 at 11.53 eV is approximately half that of vinoxy to CH 3 + . We also present critical points on the potential energy surface of the vinoxy cation calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory to support the observation of dissociative ionization of vinoxy to both CH 3 + and HCO + .

  16. Bound states in string nets

    Science.gov (United States)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  17. On functions of bounded semivariation

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes

    2015-01-01

    Roč. 40, č. 2 (2015), s. 233-276 ISSN 0147-1937 Institutional support: RVO:67985840 Keywords : semivariation * functions of bounded variation * regulated functions Subject RIV: BA - General Mathematics http://projecteuclid.org/euclid.rae/1491271216

  18. Computational Lower Bounds Using Diagonalization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...

  19. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  20. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  1. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  2. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  3. Electronic spectra of astrophysically interesting cations

    Energy Technology Data Exchange (ETDEWEB)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch; Johnson, Anatoly, E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel (Switzerland)

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  4. Stabilization of sulfide cations: mechanisms relevant to oxidation of peptides and proteins containing methionine

    International Nuclear Information System (INIS)

    Bobrowski, K.; Hug, G.L.; Pogocki, D.; Horner, G.; Marciniak, B.; Schoneich, C.

    2006-01-01

    Sulfide radical cations (R 2 S +. ) have recently attracted considerable attention. In particular they are implicated in assorted biological electron transfers where they are likely intermediates in biological redox-processes. There is unambigous theoretical and experimental evidence that R 2 S +. can be stabilized through intramolecular complexation with nucleophiles that are present in neighboring groups. Reactions of this type are of special interest to biology when stabilization of sulfide radical cations derived from methionine, Met(>S +. ) occurs in peptides and proteins. The methionine (Met) residues in these biopolymers are susceptible to attack by Reactive Oxygen Species (ROS) during oxidative stress and biological aging. Moreover, the pathogenesis of some neurodegenerative diseases (Alzheimer's, Jacob-Creutzfeld's, and Parkinson's) seems to be strongly linked to the presence in brain tissue of β-amyloid peptide (βAP), human prion protein (hPrP), and an aggregated form of α-synuclein, respectively. These macro- molecules contain methionine(s) with βAP having a Met 35 residue in its C-terminal α-helical domain, hPrP having three out of nine Met-residues (namely Met 205 , Met 206 , and Met 213 ) located within its α-helical segments, and α-synuclein having four Met-residues. The effective neighboring-group interactions would likely involve nucleophilic functionalities in the side chain of amino acids residues. However, very often heteroatoms in peptide bonds are the only nucleophiles present in the vicinity of Met(>S +. ). In this regard, it was recently shown that such interactions play an important role in N-acetylmethione amide and in oligopeptides of the form N-Ac-Gly-Met-Gly and N-Ac-Gly-(Gly) 2 -Met-(Gly) 3 . Intramolecularly bonded sulfide radical cations, Met(>S +. ), were directly observed in these systems with the bonding partner being either the carbonyl oxygen or the amide nitrogen of a peptide bond. Cyclic dipeptides are suitable model

  5. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  6. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  7. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  8. Third-order nonlinear optical properties of open-shell supermolecular systems composed of acetylene linked phenalenyl radicals.

    Science.gov (United States)

    Nakano, Masayoshi; Kishi, Ryohei; Yoneda, Kyohei; Inoue, Yudai; Inui, Tomoya; Shigeta, Yasuteru; Kubo, Takashi; Champagne, Benoît

    2011-08-11

    The third-order nonlinear optical (NLO) properties, at the molecular level, the static second hyperpolarizabilities, γ, of supermolecular systems composed of phenalenyl and pyrene rings linked by acetylene units are investigated by employing the long-range corrected spin-unrestricted density functional theory, LC-UBLYP, method. The phenalenyl based superethylene, superallyl, and superbutadiene in their lowest spin states have intermediate diradical characters and exhibit larger γ values than the closed-shell pyrene based superpolyene systems. The introduction of a positive charge into the phenalenyl based superallyl radical changes the sign of γ and enhances its amplitude by a factor of 35. Although such sign inversion is also observed in the allyl radical and cation systems in their ground state equilibrium geometries, the relative amplitude of γ is much different, that is, |γ(regular allyl cation)/γ(regular allyl radical)| = 0.61 versus |γ(phenalenyl based superallyl cation)/γ(phenalenyl based superallyl radical)| = 35. In contrast, the model ethylene, allyl radical/cation, and butadiene systems with stretched carbon-carbon bond lengths (2.0 Å), having intermediate diradical characters, exhibit similar γ features to those of the phenalenyl based superpolyene systems. This exemplifies that the size dependence of γ as well as its sign change by introducing a positive charge on the phenalenyl based superpolyene systems originate from their intermediate diradical characters. In addition, the change from the lowest to the highest π-electron spin states significantly reduces the γ amplitudes of the neutral phenalenyl based superpolyene systems. For phenalenyl based superallyl cation, the sign inversion of γ (from negative to positive) is observed upon switching between the singlet and triplet states, which is predicted to be associated with a modification of the balance between the positive and negative contributions to γ. The present study paves the way

  9. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  10. Muoniated acyl and thioacyl radicals

    International Nuclear Information System (INIS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-01-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14 N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14 N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy

  11. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  12. Free radical formation in deoxyguanosine-5'-monophosphate γ-irradiated in frozen solution. A computer-assisted analysis of temperature-dependent ESR spectra

    International Nuclear Information System (INIS)

    Gregoli, S.; Olast, M.; Bertinchamps, A.

    1977-01-01

    Deoxyguanosine-5'-monophosphate (dGMP) was γ-irradiated at 77 K in frozen aqueous solution and then annealed in a stepwise fashion up to the melting point. During this process, the primary radicals formed in DGMP at 77 K are progressively converted into secondary radical species. This is observed as changes in the spectrum intensity and conformation. Computer-assisted analysis of these temperature-dependent spectra permitted us to identify the transient radical species involved and to draw up single-radical concentration kinetics vs temperature. The radiation chemical behavior of dGMP was found to be quite similar to that of dAMP, investigated previously. In both these purine derivatives, radical anions are converted into radicals of H-addition to C-8, and radical cations are converted into radicals of OH-addition to the same position. In dGMP, however, the cationic channel is only induced under certain experimental conditions (alkaline pH, presence of electron scavengers). At neutral pH, G + radicals are quite stable and finally become deactivated without being converted into secondary GOH radicals. Specific deuterium substitution at carbon C-8, and irradiation in H 2 O or in D 2 O, confirmed that both H + and OH - attachments do occur at C-8, and that both the H + and OH - groups come from the aqueous medium

  13. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  14. Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry.

    Science.gov (United States)

    Silva, Eduarda M P; Serra, Vanda Vaz; Ribeiro, Anderson O; Tomé, João P C; Domingues, Pedro; Faustino, M Amparo F; Neves, M Graça P M S; Tomé, Augusto C; Cavaleiro, José A S; Ferrer-Correia, António J; Iamamoto, Yassuko; Domingues, M Rosário M

    2006-01-01

    Novel cationic porphyrin derivatives having a galactose or a bis(isopropylidene)galactose unit linked directly to a pyridine or to an aminophenyl group were characterized by electrospray tandem mass spectrometry (ESI-MS/MS). The electrospray mass spectra (ESI-MS) show the M(+) ions, since these porphyrins are already monocharged in solution. The fragmentation of these ions under ESI-MS/MS conditions was studied and it was found that elimination of the sugar residue as a radical (-163 or -243 Da) is a common fragmentation pathway. Loss of the sugar unit as a neutral fragment (-162 or -242 Da) and cross-ring fragmentations typical of glyco-derivatives are also observed for the pyridinium glycoporphyrins, but they are absent in the case of ammonium glycoporphyrins. The cationic beta-pyridiniumvinyl porphyrins show an atypical fragmentation due to the cleavage of the C(5)-C(6) bond of the sugar unit. Overall, the different patterns of fragmentation observed in the ESI-MS/MS spectra of the sugar pyridinium porphyrins and of the sugar ammonium phenyl porphyrins can give important information about the type of spacer between the porphyrin and the sugar unit. Copyright (c) 2006 John Wiley & Sons, Ltd.

  15. Application of the Marcus theory to description of the kinetics of reduction processes of organic cations

    International Nuclear Information System (INIS)

    Bogillo, V.I.; Lobanov, V.V.; Gragerov, I.P.

    1987-01-01

    The calculation of the rate constants for the processes in the reduction of diazonium, tropylium, verdazylium, and pyrylium cations by various organic electron donors, using the equations of the Marcus theory with allowance for the reorganization energy of only the outer coordination sphere, leads to values which are one to seven orders of magnitude higher than the experimental values. By quantum-chemical calculations it was shown that the reduction of diazonium and tropylium cations to the corresponding radicals is accompanied by a substantial change in the structure of the reagents. This leads to high values for the reorganization energy of the inner coordination sphere of the cations, which must be taken into account during calculation of the rate constants. The differences in the rate constants of the processes of direct electron transfer from the electron donors to the organic cations and the recombination of these reagents depend on the dissociation energy of the bond of the cation with the donor leading to the electron transfer products

  16. Photodissociation of the acetone cation at 355 nm using the velocity imaging technique

    Science.gov (United States)

    Jackson, William M.; Xu, Dadong

    2000-09-01

    Photodissociation of acetone cations, CH3COCH3+, at 355 nm has been studied by means of the ion velocity imaging technique. Acetone cations are produced via direct photoionization of a supersonic beam of acetone at 118 nm generated by frequency tripling the 355 nm laser. Only the acetyl cation, CH3CO+, could be detected as a dissociation product in the time-of-flight mass spectrometer. The acetyl ion signal depends upon the fifth power of the 355 nm laser energy, while the acetone ion signal depends upon the third power. This suggests that the fragment ion is produced via two-photon absorption of 355 nm photons by the acetone cation. The total translational energy distribution and angular distribution of acetyl cation were derived from the 2D images of CH3CO+ for the reaction CH3COCH3++2hν355nm→CH3CO++CH3*. The translational energy distribution suggests that methyl radicals are produced in two electronically excited states, the Rydberg 3s 1 2A1' and the valence 1 2A″ states. The anisotropy parameter β shows that the Rydberg state is formed via a perpendicular excitation and the valence state via a parallel transition.

  17. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  18. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  20. Simulation bounds for system availability

    International Nuclear Information System (INIS)

    Tietjen, G.L.; Waller, R.A.

    1976-01-01

    System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed

  1. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  2. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  3. Four-quark bound states

    International Nuclear Information System (INIS)

    Zouzou, S.

    1986-01-01

    In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)

  4. Bound entanglement and local realism

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr

    2002-01-01

    We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation

  5. Cationic polymers and their therapeutic potential

    NARCIS (Netherlands)

    Samal, S.K.; Dash, M.; van Vlierberghe, S.; Kaplan, D.; Chiellini, E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Dubruel, P.

    2012-01-01

    The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent

  6. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  7. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  8. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  9. Photodissociation of anisole and absolute photoionization cross-section of the phenoxy radical.

    Science.gov (United States)

    Xu, Hong; Pratt, S T

    2013-11-21

    We have studied the photodissociation dynamics of anisole (C6H5OCH3) at 193 nm and determined the absolute photoionization cross-section of the phenoxy radical at 118.2 nm (10.486 eV) relative to the known cross-section of the methyl radical. Even at this energy, there is extensive fragmentation of the phenoxy radical upon photoionization, which is attributed to ionizing transitions that populate low-lying excited electronic states of the cation. For phenoxy radicals with less than ∼1 eV of internal energy, we find a cross-section for the production of the phenoxy cation of 14.8 ± 3.8 Mb. For radicals with higher internal energy, dissociative ionization is the dominant process, and for internal energies of ∼2.7-3.7 eV, we find a total cross-section (photoionization plus dissociative ionization) of 22.3 ± 4.1 Mb. The results are discussed relative to the recently reported photoionization cross-section of phenol.

  10. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  11. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  12. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  13. Redox properties of free radicals

    International Nuclear Information System (INIS)

    Neta, P.

    1981-01-01

    Results of electron transfer reactions observed and monitored by pulse radiolysis are reported. This technique allows determination of the first one-electron reduction or oxidation of a compound rather than the overall two-electron transfer usually reported. Pulse radiolysis allows the determination of absolute rate constants for reactions of free radicals and helps elucidate the mechanisms involved. Studies using this technique to study radicals derived from quinones, nitro compounds, pyridines, phenols, and anilines are reported. Radicals of biochemical interest arising from riboflavin, ascorbic acid, vitamin K 3 , vitamin E, MAD + , porphyrins, etc. have also been studied

  14. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  15. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    Science.gov (United States)

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  16. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  17. Semiclassical bounds in magnetic bottles

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Kovařík, H.; Weidl, T.

    2016-01-01

    Roč. 28, č. 1 (2016), s. 1650002 ISSN 0129-055X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : magnetic Laplacian * discrete spectrum * eigenvalue bounds Subject RIV: BE - Theoretical Physics Impact factor: 1.426, year: 2016

  18. Positivity bounds for Sivers functions

    International Nuclear Information System (INIS)

    Kang Zhongbo; Soffer, Jacques

    2011-01-01

    We generalize a positivity constraint derived initially for parity-conserving processes to the parity-violating ones, and use it to derive non-trivial bounds on several Sivers functions, entering in the theoretical description of single spin asymmetry for various processes.

  19. Bound states of 'dressed' particles

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)

  20. Quantum lower bound for sorting

    OpenAIRE

    Shi, Yaoyun

    2000-01-01

    We prove that \\Omega(n log(n)) comparisons are necessary for any quantum algorithm that sorts n numbers with high success probability and uses only comparisons. If no error is allowed, at least 0.110nlog_2(n) - 0.067n + O(1) comparisons must be made. The previous known lower bound is \\Omega(n).

  1. Unconditional lower bounds against advice

    NARCIS (Netherlands)

    Buhrman, H.; Fortnow, L.; Santhanam, R.

    2009-01-01

    We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including: (1) For any constant c, NEXP not in P^{NP[n^c]} (2) For any constant c, MAEXP not in MA/n^c (3) BPEXP not in BPP/n^{o(1)}. It was previously unknown even whether NEXP in

  2. Research concerning ionic and free radical reactions in radiation chemistry. Progress report, September 15, 1974--September 15, 1975

    International Nuclear Information System (INIS)

    Williams, T.F.

    1975-01-01

    The following papers accepted for publication are presented in their entirety: Ligand Electronegativity Effect on the Spin Distribution in Phosphoranyl Radicals; Mercury-201 Quadrupole Interaction in the Electron Spin Resonance of the CH 2 HgCl Radical; Electron Spin Resonance Spectra of F 2 NO and F 3 NO - : A Hypervalent Radical from First-Row Elements; Detection of Thiyl Radicals by Spin Trapping in the Radiolysis of Liquids; Electron Spin Resonance Studies of γ-Irradiated Phosphite and Phosphate Esters: Identification of Phosphinyl, Phosphonyl, Phosphoranyl, and Phosphine Dimer Cation Radicals; and Electron Spin Resonance Studies of γ-Irradiated Phosphorus Compounds Containing Phosphorus-Chlorine Bonds. Abstracts of reports published during the year are included. (LK)

  3. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  4. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2013-01-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  5. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2014-07-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  6. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    Science.gov (United States)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  7. Exchange of interlayer cations in micaceous minerals. Final report, February 1, 1967--August 31, 1976

    International Nuclear Information System (INIS)

    Scott, A.D.

    1976-08-01

    Laboratory experiments were carried out to establish a comprehensive understanding of the processes and factors governing the sorption and release of interlayer cations in micaceous minerals. A diverse approach with several lines of work was used to delineate the effects of different procedures, solution compositions and mineral properties. It was soon clear that the major factors controlling the exchange of interlayer cations are the blocking effects of dissolved fixable cations and the limiting effects of small particles. By using sodium tetraphenylboron to reduce the blocking effects and by excluding particles that were smaller than 2 μm, however, the subtle effects of many other factors were brought out. The redox status of structural iron, the hydroxyl groups, the interlayer spacing and the layer charge of the minerals are indicative of the type of factors involved and the fact that they are mainly interactive in nature. One conclusion from this work is that most experimental results for interlayer cation exchange are bound to reflect some combination of the controlling factors. More important, however, was the observation that proper management of interlayer cation exchange can make micaceous minerals a good sink for cesium and source of potassium

  8. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... Radical change by entrepreneurial design then becomes the focal point, in order to acquaint the reader with the strategies and tactics of well-known entrepreneurs who have been successful in molding...

  9. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...

  10. Radical prostatectomy. Results and indications

    International Nuclear Information System (INIS)

    Jacqmin, D.

    1997-01-01

    Radical prostatectomy is the surgical curative treatment of localized prostate cancer. The survival is good in young patients (<70) with T2 N0M0 tumors and more than 10 year's life expectancy. Side-effects are urinary incontinence, impotence and anastomosis stricture. Quality of life should be considered as an important factor for the choice of the patient between radical prostatectomy, radiotherapy and follow-up. (author)

  11. Radical Islamism and Failed Developmentalism

    OpenAIRE

    Rahnema, Saeed

    2008-01-01

    The rise of radical Islamism in recent years does not limit the applicability of the concept of cultural nationalism. Rather the two are intertwined in ways which this article will attempt to highlight. Islam took specific national forms as modern nation-states arose and the contemporary resurgence of radical Islamism also follows that modern pattern. I examine the emergence of the three most important movements in the Islamic world, namely, the Muslim Brotherhood in Egypt, Jama'at-e Islami i...

  12. A symmetric Roos bound for linear codes

    NARCIS (Netherlands)

    Duursma, I.M.; Pellikaan, G.R.

    2006-01-01

    The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound

  13. Cation transport in isomeric pentanes

    International Nuclear Information System (INIS)

    Gyoergy, Istvan; Gee, Norman; Freeman, G.R.

    1985-01-01

    The cation mobility μsub(+) is measured in n-pentane, isopentane, neo-pentane, and mixtures of n- and neo-pentane over conditions from the normal liquid, through the critical fluid, to the low density gas. Most of the liquid data correlate with the reduced temperature T/Tsub(c). The T/Tsub(c) reflects free volume and viscosity changes. Comparison is made to neutral molecule diffusion. The transition from viscosity control of mobility in the liquid to density control in the dilute gas occurs over the reduced viscosity region 3 > eta/etasub(c) > 0.6, which corresponds to the reduced density region 1.9 > eta/etasub(c) > 0.5. In the saturated gas etaμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average gas nμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average momentum transfer cross sections in the n-/neo-pentane mixtures are similar to those in neo-pentane at low T but similar to those in n-pentane at high T. The present findings are combined with previous electron mobility data in addressing the effect of hydrocarbon molecular (external) shape on the electric breakdown strength of gases

  14. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  15. Laparoscopic radical cystectomy: key points

    Directory of Open Access Journals (Sweden)

    D. V. Perlin

    2018-01-01

    Full Text Available Background. Radical cystectomy remains the golden standard for treatment of muscle invasive bladder cancer. Objective: to duplicate with highest accuracy the open radical cystectomy procedure, which we successfully utilized earlier in our clinic, in the of laparoscopic conditions in order to preserve the advantages of minimally invasive procedures and retain the reliability of the tried and tested open surgery.Materials and methods. In the report were included 35 patients (27 men and 8 women with bladder cancer, who underwent laparoscopic radical cystectomy in Volgograd Regional Center of Urology and Nephrology between April 2013 and March 2016. Only the patients who had been submitted to full intracorporal ileal conduits were included.Results. The mean operative time was 378 minutes, the mean blood loss was 285 millilitres, the mean length of hospital stay was 12.4 days, only 20 % of patients required the narcotic anesthetics. The postoperative complication rate was 11.4 %. However, the majority of the patients were successfully treated with minimally invasive procedures. Generally, our results were similar to other reported studies.Conclusion. Laparoscopic radical cystectomy is a safe and efficient modality of treatment of bladder cancer. However, it needs more procedures and longer observation period to establish laparoscopic radical cystectomy as an alternative to open radical cystectomy.

  16. Stressor states and the cation crossroads.

    Science.gov (United States)

    Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L

    2010-12-01

    Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.

  17. Circumvention of orbital symmetry restraints by 1,3-H-shifts of enolic radical cations.

    Science.gov (United States)

    Hudson, Charles E; McAdoo, David J

    2004-07-01

    The reaction coordinates of 1,3-H-shifts across double bonds are traced by theory for three reactions, CH(3)C(OH)CH(2)(+*) (1) --> CH(3)C(O(+*))CH(3) (2), CH(2)C(OH)(2)(+*) (3) --> CH(3)CO(2)H(+*) (4) and CH(3)C(OH)CH(2)(+*) (1) --> CH(2)C(OH)CH(3)(+*) (1'), to explore how the need to conserve orbital symmetry influences the pathways for these reactions. In the first and second reactions, prior to the start of the H-transfer the methylene rotates from being in the skeletal plane to being bisected by it. Thus these reactions are neither antarafacial nor suprafacial, but precisely between those possibilities. This stems from a counterbalancing between the need to conserve orbital symmetry and the large distorting forces required to attain an allowed antarafacial transition state. In contrast to the first two reactions, 1 --> 1' follows a suprafacial pathway. However, this pathway does not violate conservation of orbital symmetry, as it utilizes lower lying orbitals of appropriate symmetry rather than the antisymmetric uppermost occupied allyl-type orbital. Changes in geometry which presumably produce asymmetric vibrational excitation and the unequal losses of methyl that follow 1 --> 2, i.e., nonergodic behavior, are also characterized.

  18. Double hydrogen atom transfer in lactamide radical cations via ion-neutral complexes

    Science.gov (United States)

    Friedrichs, Heike; McGibbon, Graham A.; Schwarz, Helmut

    1996-02-01

    Tandem mass spectrometry experiments on lactamide and deuterium-labelled isotopomers show that the reaction of metastable ions CH3CH(OH)CONH2·+ --> CH3CO· + HC(OH)NH2+ occurs via ion-neutral complexes. The experimental findings are complemented by density functional theory calculations.

  19. Electrochemistry and Spectroelectrochemistry of Polynuclear Zinc Phthalocyanines: Formation of Mixed Valence Cation Radical Species.

    Science.gov (United States)

    1988-02-25

    No. No. Copies Cpe Office of Naval Research 2 Dr. David You.)g Attn: Code 1113 Code 334 800 N. Quinc’ Street NORDA Arlington, Virginia 22217-5000 NSTL...Naval Surface Weapons Center Chapel Hill, North Carolina 27514 Silver Spring, Maryland 20910 Or. R. A. Marcus Dr. Michael J. Weaver Department of...Microprocessor model 340 spectrometer. Cyclic and dif, rential pulse voltammetry were performed with a Princeton Applied Research (PARC) model 174A

  20. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  1. Evidence for radical-oxidation of plasma proteins in humans

    International Nuclear Information System (INIS)

    Wang, D.; Davies, M.; Dean, R.; Fu, S.; Taurins, A.; Sullivans, D.

    1998-01-01

    Oxidation of proteins by radicals has been implicated in many pathological processes. The hydroxyl radical is known to generate protein-bound hydroxylated derivatives of amino acids, for example hydroxyvaline (from Val), hydroxyleucine (from Leu), o-tyrosine (from Phe), and DOPA (from Tyr). In this study, we have investigated the occurrence of these oxidised amino acids in human plasma proteins from both normal subjects and dialysis patients. By employing previously established HPLC methods [Fu et al. Biochemical Journal, 330, 233-239, 1998], we have found that oxidised amino acids exist in normal human plasma proteins (n=32). The level of these oxidised amino acids is not correlated to age. Similar levels of oxidised amino acids are found in the plasma proteins of the dialysis patients (n=6), but a more detailed survey is underway. The relative abundance of the oxidised amino acids is similar to that resulting from oxidation of BSA by hydroxy radicals or Fenton systems [Fu et al. Biochemical Journal, 333, 519-525, 1998]. The results suggest that metal-ion catalysed oxyl-radical chemistry may be a key contributor to the oxidative damage in plasma proteins in vivo in humans

  2. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  3. Radioimmunoassay of human eosinophil cationic protein

    International Nuclear Information System (INIS)

    Venge, P.; Roxin, L.E.; Olsson, I.

    1977-01-01

    A radioimmunosorbent assay has been developed which allows the detection in serum of a cationic protein derived from eosinophil granulocytes. In 34 healthy individuals the mean level was 31 μg/l. with a range of 5 to 55 μg/l. The serum concentration of 'eosinophil' cationic protein was correlated (P<0.001) to the number of eosinophil granulocytes in peripheral blood. Quantitiation of 'eosinophil' cationic protein in serum might be useful in the study of eosinophil granulocyte turnover and function in vivo. (author)

  4. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  5. Computer simulation of bounded plasmas

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail

  6. Bounded Rationality in Transposition Processes

    DEFF Research Database (Denmark)

    Vollaard, Hans; Martinsen, Dorte Sindbjerg

    2014-01-01

    Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first that con......Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first...... that concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...

  7. The games radicals play : special issue on free radicals and radical ions

    OpenAIRE

    Walton, J.C.; Williams, F.

    2015-01-01

    Chemistry and Physics have aptly been described as “most excellent children of Intellect and Art” [1]. Both these “children” engage with many playthings, and molecules rank as one of their first favorites, especially radicals, which are amongst the most lively and exciting. Checking out radicals dancing to the music of entropy round their potential energy ballrooms is surely both entertaining and enlightening. Radicals’ old favorite convolutions are noteworthy, but the new styles, modes and a...

  8. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...

  9. Spectrum of gluino bound states

    International Nuclear Information System (INIS)

    Chanowitz, M.; Sharpe, S.; California Univ., Berkeley

    1983-01-01

    Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)

  10. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  11. Effects of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrins.

    Science.gov (United States)

    Gsponer, Natalia S; Spesia, Mariana B; Durantini, Edgardo N

    2015-03-01

    The effect of divalent cations, EDTA and chitosan (CS) on the uptake and photoinactivation of Escherichia coli produced by 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)), 5,10-di(4-methylphenyl)-15,20-di(4-N,N,N-trimethylammoniumphenyl)porphyrin (MPAP(2+)) and 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)) were examined under different conditions. These porphyrins were rapidly bound to E. coli cells (TMAP(4+), MPAP(2+) and TPPS(4-), respectively. The addition of Ca(2+) or Mg(2+) to the cultures enhanced the uptake of MPAP(2+) and TPPS(4-) by cells. In contrast, the amount of TMAP(4+) bound to cells was decreased. The presence of EDTA produced an increase in the uptake of porphyrins by cells, while CS mainly enhanced the amount of TPPS(4-) bound to E. coli. The photoinactivation of E. coli cells mediated by TMAP(4+) was highly effective even at low concentration (1μM) and short irradiation period (5min). However, a reduction in the phototoxicity was found for TMAP(4+) in presence of Ca(2+) and Mg(2+). In contrast, the phototoxic activity mediated by MPAP(2+) and TPPS(4-) was increased. Addition of EDTA did not show effect on the photoinactivation induced by cationic porphyrins, while a small enhance was found for TPPS(4-). Moreover, inactivation of E. coli cells was achieved in the presence CS. This cationic polymer was antimicrobial by itself in the dark. Using a slightly toxic CS concentration, the phototoxic activity induced by TMAP(4+) was diminished. This effect was mainly observed at lower concentration of TMAP(4+) (0.5-1μM). In contrast, an increase in E. coli photoinactivation was obtained for MPAP(2+) and TPPS(4-) in presence of CS. Thus, this natural polymeric destabilizer agent mainly benefited the photoinactivation mediated by TPPS(4-). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.219, year: 2015

  13. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  14. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  15. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  16. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  17. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  18. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.

    Science.gov (United States)

    Zhang, Tengfei; Liu, Lihu; Tan, WenFeng; Suib, Steven L; Qiu, Guohong; Liu, Fan

    2018-05-24

    As important components with excellent oxidation and adsorption activity in soils and sediments, manganese oxides affect the transportation and fate of nutrients and pollutants in natural environments. In this work, birnessite was formed by photocatalytic oxidation of Mn2+aq in the presence of nitrate under solar irradiation. The effects of concentrations and species of interlayer cations (Na+, Mg2+, and K+) on birnessite crystal structure and micromorphology were investigated. The roles of adsorbed Mn2+ and pH in the transformation of the photosynthetic birnessite were further studied. The results indicated that Mn2+aq was oxidized to birnessite by superoxide radicals (O2•-) generated from the photolysis of NO3- under UV irradiation. The particle size and thickness of birnessite decreased with increasing cation concentration. The birnessite showed a plate-like morphology in the presence of K+, while exhibited a rumpled sheet-like morphology when Na+ or Mg2+ was used. The different micromorphologies of birnessites could be ascribed to the position of cations in the interlayer. The adsorbed Mn2+ and high pH facilitated the reduction of birnessite to low-valence manganese oxides including hausmannite, feitknechtite, and manganite. This study suggests that interlayer cations and Mn2+ play essential roles in the photochemical formation and transformation of birnessite in aqueous environments.

  19. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Science.gov (United States)

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  20. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  1. Diazonium cation-exchanged clay: an efficient, unfrequented route for making clay/polymer nanocomposites.

    Science.gov (United States)

    Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M

    2013-11-05

    We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.

  2. Matrix radiolysis and photoionization of CFCl3. Infrared spectra of CFCl+2 and the parent cation

    International Nuclear Information System (INIS)

    Prochaska, F.T.; Andrews, L.

    1978-01-01

    The ''Freon'' compound CFCl 3 has been subjected to radiolysis and photoionization during condensation with excess argon at 15 K. Infrared spectra of the matrix samples identified stable and free radical products and new absorptions which are attributed to charged species. The molecular ion bands exhibited three different behavior patterns on filtered mercury arc photolysis: The most photosensitive bands, destroyed by 420--1000 nm light, are assigned to the parent cation; several absorptions which photodissociated with 290--1000 nm radiation are due to a molecular anionic species; and new bands reduced by 220--1000 nm light are assigned to the daughter cation CFCl + 2 . The vibrational assignments were confirmed by carbon-13 substitution

  3. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  4. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  5. Bounded queries in recursion theory

    CERN Document Server

    Gasarch, William I

    1999-01-01

    One of the major concerns of theoretical computer science is the classifi­ cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function.

  6. The algebras of bounded and essentially bounded Lebesgue measurable functions

    Directory of Open Access Journals (Sweden)

    Mortini Raymond

    2017-04-01

    Full Text Available Let X be a set in ℝn with positive Lebesgue measure. It is well known that the spectrum of the algebra L∞(X of (equivalence classes of essentially bounded, complex-valued, measurable functions on X is an extremely disconnected compact Hausdorff space.We show, by elementary methods, that the spectrum M of the algebra ℒb(X, ℂ of all bounded measurable functions on X is not extremely disconnected, though totally disconnected. Let ∆ = { δx : x ∈ X} be the set of point evaluations and let g be the Gelfand topology on M. Then (∆, g is homeomorphic to (X, Τdis,where Tdis is the discrete topology. Moreover, ∆ is a dense subset of the spectrum M of ℒb(X, ℂ. Finally, the hull h(I, (which is homeomorphic to M(L∞(X, of the ideal of all functions in ℒb(X, ℂ vanishing almost everywhere on X is a nowhere dense and extremely disconnected subset of the Corona M \\ ∆ of ℒb(X, ℂ.

  7. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  8. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    Science.gov (United States)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  9. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  10. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  11. Radical feminists & trans activists truce

    OpenAIRE

    Mackay, F.

    2014-01-01

    #GenderWeek: Truce! When radical feminists and trans feminists empathise\\ud Feminist Times\\ud By Finn Mackay \\ud read all #GenderWeek articles.\\ud We wanted to explore the ground between the polarised, entrenched positions in the so-called “TERF-war”. Radical feminists on one pole, trans-inclusionary feminists and trans activists on the other. The disputed territory being women-only space, language and the ever changing legal framework surrounding gender.\\ud Entrenchment leads to stalemate. S...

  12. Voronoi Diagrams Without Bounding Boxes

    Science.gov (United States)

    Sang, E. T. K.

    2015-10-01

    We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).

  13. Sensitivity analysis using probability bounding

    International Nuclear Information System (INIS)

    Ferson, Scott; Troy Tucker, W.

    2006-01-01

    Probability bounds analysis (PBA) provides analysts a convenient means to characterize the neighborhood of possible results that would be obtained from plausible alternative inputs in probabilistic calculations. We show the relationship between PBA and the methods of interval analysis and probabilistic uncertainty analysis from which it is jointly derived, and indicate how the method can be used to assess the quality of probabilistic models such as those developed in Monte Carlo simulations for risk analyses. We also illustrate how a sensitivity analysis can be conducted within a PBA by pinching inputs to precise distributions or real values

  14. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.

    2009-01-01

    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...... quantities of interest. To be able to utilise the evidence about the derivative it is suggested to adapt the ‘conventional’ problem statement to variational calculus and the way to do so is demonstrated. A number of examples are given throughout the paper....

  15. Removal of bound metal fasteners

    Science.gov (United States)

    Kramer, R. F.

    1981-04-01

    This project explored the removal of bound metal fasteners through the use of ultrasonically assisted wrenches. Two wrenches were designed, fabricated and tested. Previous studies had indicated an increase in thread tension for a given torque application under the influence of ultrasonics. Based on this, the loosening of seized and corroded fasteners with the aid of ultrasonics was explored. Experimental data confirmed our prior analysis of the torque-tension relationship under the influence of ultrasonics; however, our progress did not satisfy the requirements necessary to loosen seized studs in a shipyard environment.

  16. Space mappings with bounded distortion

    CERN Document Server

    Reshetnyak, Yu G

    1989-01-01

    This book is intended for researchers and students concerned with questions in analysis and function theory. The author provides an exposition of the main results obtained in recent years by Soviet and other mathematicians in the theory of mappings with bounded distortion, an active direction in contemporary mathematics. The mathematical tools presented can be applied to a broad spectrum of problems that go beyond the context of the main topic of investigation. For a number of questions in the theory of partial differential equations and the theory of functions with generalized derivatives, this is the first time they have appeared in an internationally distributed monograph.

  17. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    Tweedle, M.F.

    1985-01-01

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99m Tc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  18. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex.

    Science.gov (United States)

    Laursen, Mette; Gregersen, Jonas Lindholt; Yatime, Laure; Nissen, Poul; Fedosova, Natalya U

    2015-02-10

    Cardiotonic steroids (CTSs) are specific and potent inhibitors of the Na(+),K(+)-ATPase, with highest affinity to the phosphoenzyme (E2P) forms. CTSs are comprised of a steroid core, which can be glycosylated, and a varying number of substituents, including a five- or six-membered lactone. These functionalities have specific influence on the binding properties. We report crystal structures of the Na(+),K(+)-ATPase in the E2P form in complex with bufalin (a nonglycosylated CTS with a six-membered lactone) and digoxin (a trisaccharide-conjugated CTS with a five-membered lactone) and compare their characteristics and binding kinetics with the previously described E2P-ouabain complex to derive specific details and the general mechanism of CTS binding and inhibition. CTSs block the extracellular cation exchange pathway, and cation-binding sites I and II are differently occupied: A single Mg(2+) is bound in site II of the digoxin and ouabain complexes, whereas both sites are occupied by K(+) in the E2P-bufalin complex. In all complexes, αM4 adopts a wound form, characteristic for the E2P state and favorable for high-affinity CTS binding. We conclude that the occupants of the cation-binding site and the type of the lactone substituent determine the arrangement of αM4 and hypothesize that winding/unwinding of αM4 represents a trigger for high-affinity CTS binding. We find that the level of glycosylation affects the depth of CTS binding and that the steroid core substituents fine tune the configuration of transmembrane helices αM1-2.

  19. Determining Normal-Distribution Tolerance Bounds Graphically

    Science.gov (United States)

    Mezzacappa, M. A.

    1983-01-01

    Graphical method requires calculations and table lookup. Distribution established from only three points: mean upper and lower confidence bounds and lower confidence bound of standard deviation. Method requires only few calculations with simple equations. Graphical procedure establishes best-fit line for measured data and bounds for selected confidence level and any distribution percentile.

  20. On semidefinite programming bounds for graph bandwidth

    NARCIS (Netherlands)

    de Klerk, E.; Nagy, M.; Sotirov, R.

    2013-01-01

    In this paper, we propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds reported in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala,

  1. Observational Bounds on Cosmic Doomsday

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2003-07-11

    Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t{sub c} {approx} 10{sup 10}-10{sup 11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V({phi}) = V{sub 0}(1 + {alpha}{phi}). This model can describe the present stage of acceleration of the universe if {alpha} is small enough. However, eventually the field {phi} rolls down, V({phi}) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t{sub c} {approx_equal} 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the ''doomsday'' time to tc 40 billion years at the 95% confidence level.

  2. Quantum bounds on Bell inequalities

    Science.gov (United States)

    Pál, Károly F.; Vértesi, Tamás

    2009-02-01

    We have determined the maximum quantum violation of 241 tight bipartite Bell inequalities with up to five two-outcome measurement settings per party by constructing the appropriate measurement operators in up to six-dimensional complex and eight-dimensional real-component Hilbert spaces using numerical optimization. Out of these inequalities 129 have been introduced here. In 43 cases higher-dimensional component spaces gave larger violation than qubits, and in three occasions the maximum was achieved with six-dimensional spaces. We have also calculated upper bounds on these Bell inequalities using a method proposed recently. For all but 20 inequalities the best solution found matched the upper bound. Surprisingly, the simplest inequality of the set examined, with only three measurement settings per party, was not among them, despite the high dimensionality of the Hilbert space considered. We also computed detection threshold efficiencies for the maximally entangled qubit pair. These could be lowered in several instances if degenerate measurements were also allowed.

  3. Gas phase chemistry of N-benzylbenzamides with silver(I) cations: characterization of benzylsilver cation.

    Science.gov (United States)

    Sun, Hezhi; Jin, Zhe; Quan, Hong; Sun, Cuirong; Pan, Yuanjiang

    2015-03-07

    The benzylsilver cation which emerges from the collisional dissociation of silver(I)-N-benzylbenzamide complexes was characterized by deuterium-labeling experiments, theoretical calculations, breakdown curves and substituent effects. The nucleophilic attack of the carbonyl oxygen on an α-hydrogen results in the generation of the benzylsilver cation, which is competitive to the AgH loss with the α-hydrogen.

  4. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits

    Science.gov (United States)

    2016-01-01

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the “stiffness site” affects filament mechanical properties. Incorporating a magnesium ion in the “polymerization site” does not seem to require any large-scale change to an actin subunit’s conformation. Binding of a magnesium ion in the “stiffness site” adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  5. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, H.; Davies, M.J.; Andersen, Henrik Jørgen

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  6. Laparoscopically assisted vaginal radical trachelectomy

    International Nuclear Information System (INIS)

    Bielik, T.; Karovic, M.; Trska, R.

    2013-01-01

    Purpose: Radical trachelectomy is a fertility-sparing procedure with the aim to provide adequate oncological safety to patients with cervical cancer while preserving their fertility. The purpose of this study was to retrospectively evaluate, in a series of 3 patients, the feasibility, morbidity, and safety of laparoscopically assisted vaginal radical trachelectomy for early cervical cancer. Patients and Methods: Three non consecutive patients with FIGO stage IA1 and IB1 cervical cancer was evaluated in a period of years 2008 - 2011. The patients underwent a laparoscopic pelvic lymphadenectomy and radical parametrectomy class II procedure according to the Piver classification. The section of vaginal cuff, trachelectomy, permanent cerclage and isthmo-vaginal anastomosis ware realised by vaginal approach. Results: The median operative time, the median blood loss and the mean number of resected pelvic nodes was comparable with published data. Major intraoperative complications did not occur and no patient required a blood transfusion. The median follow-up time was 33 (38-59) months. One vaginal recurrence occurred in 7 months after primary surgery. The patient was underwent a radicalisation procedure and adjuvant oncologic therapy and now is free of disease. Conclusions: Laparoscopically assisted vaginal radical trachelectomy (LAVRT)may be an alternative in fertility-preserving surgery for early cervical cancer. The procedure offers patients potential benefits of minimally invasive surgery with adequate oncological safety, but it should be reserved for oncologic surgeons trained in advanced laparoscopic procedures. (author)

  7. Is Radical Innovation Management Misunderstood?

    DEFF Research Database (Denmark)

    Kristiansen, Jimmi Normann; Gertsen, Frank

    2015-01-01

    This paper poses a critical view on radical innovation (RI) management research and practice. The study investigates how expected RI performance influences firms’ under- standing of their RI capability. RI performance is often based on output measures such as market shares or fiscal return...

  8. Exploring the Theories of Radicalization

    Directory of Open Access Journals (Sweden)

    Maskaliūnaitė Asta

    2015-12-01

    Full Text Available After the London bombings in July 2005, the concern of terrorism scholars and policy makers has turned to “home-grown” terrorism and potential for political violence from within the states. “Radicalization” became a new buzz word. This article follows a number of reviews of the literature on radicalization and offers another angle for looking at this research. First, it discusses the term “radicalization” and suggests the use of the following definition of radicalization as a process by which a person adopts belief systems which justify the use of violence to effect social change and comes to actively support as well as employ violent means for political purposes. Next, it proposes to see the theories of radicalization focusing on the individual and the two dimensions of his/her motivation: whether that motivation is internal or external and whether it is due to personal choice or either internal (due to some psychological traits or external compulsion. Though not all theories fall neatly within these categories, they make it possible to make comparisons of contributions from a variety of different areas thus reflecting on the interdisciplinary nature of the study of terrorism in general and radicalization as a part of it.

  9. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  10. Erectile function after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Frey, Anders; Jakobsen, Henrik

    2016-01-01

    collected database and a cross-sectional, questionnaire-based study in patients following radical prostatectomy. Erectile function was assessed with the IIEF-5 and the question "Is your erectile function as good as before the surgery (yes/no)". Patients were included if they were sexually active before...

  11. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods.

    Science.gov (United States)

    Çelik, Ecem Evrim; Gökmen, Vural; Fogliano, Vincenzo

    2013-10-30

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of the insoluble fraction was measured by the QUENCHER procedure using ABTS(•+) or DPPH(•) radicals. After measurement, the insoluble residue was washed out to remove the excess of radicals and treated with pure antioxidant solution or antioxidant-rich beverage to regenerate depleted antioxidants on the fiber. Results revealed that the antioxidant capacity of compounds chemically bound to the insoluble moiety could be reconstituted in the presence of other hydrogen-donating substances in the liquid phase. Regeneration efficiency was found to range between 21.5 and 154.3% depending on the type of insoluble food matrix and regeneration agent. Among the food matrices studied, cereal products were found to have slightly higher regeneration efficiency, whereas antioxidant-rich beverages were more effective than pure antioxidants as regeneration agents. Taking wheat bran as reference insoluble material, the regeneration abilities of beverages were in the following order: green tea > espresso coffee > black tea > instant coffee > orange juice > red wine. These results highlighted the possible physiological relevance of antioxidants bound to the insoluble food material in the gastrointestinal tract. During the digestion process they could react with the free radicals and at the same time they can be regenerated by other soluble antioxidant compounds present in the meal.

  12. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  13. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  14. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    International Nuclear Information System (INIS)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-01-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au 3 + and Ag 3 + clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au 3 + the cluster itself acts as reactive species that facilitates the formation of CO 2 from N 2 O and CO, for silver the oxidized clusters Ag 3 O x + (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N 2 O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  15. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    Science.gov (United States)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au3+ and Ag3+ clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au3+ the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidized clusters Ag3Ox+ (n = 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  16. Structural studies of Langmuir-Blodgett films containing rare-earth metal cations

    DEFF Research Database (Denmark)

    Khomutov, G.B.; Antipina, M.N.; Bykov, I.V.

    2002-01-01

    Comparative structural study of gadolinium stearate Langmuir-Blodgett (LB) films formed by monolayer deposition from either aqueous gadolinium acetate or gadolinium chloride solutions have been carried out. Structure of the films was characterized by X-ray diffraction, Fourier transform infrared...... spectroscopy, high-energy electron diffraction, atomic force microscopy and scanning electron microscopy. It was found that when subphase pH had a value at which all monolayer stearic acid molecules were ionized and bound with Gd3+ cations (pH > 5), the LB films deposited from gadolinium acetate and gadolinium....... The data obtained indicate that the control of multivalent metal cations complexes formation in the subphase and at the monolayer surface can be an instrument for optimization, the conditions to form metal-containing LB film with regulated structure and properties....

  17. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations

    International Nuclear Information System (INIS)

    Sandvig, K.; Olsnes, S.

    1988-01-01

    Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45 Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed

  18. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  19. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  20. Synthesis and application of new polymer bound catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, Brandon Michael [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light on the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes are useful homogeneous catalysts that activate atoms in other reagents, thus enhancing their reactivity. The next chapters deal with two such reactions with aldehydes and ketones, namely silylcyanations with trialkylsilylcyanides (Chapters 5 and 6) and reductions with poly(methylhydrosiloxane), in Chapter 7. In Chapter 5, Zhigang Wang performed the initial optimization and scoping of the reaction, while repetitions of the scoping experiments for reproducibility, determination of diastereomeric ratios, and experiments aimed at elucidating aspects of the mechanism were performed by me. The proazaphosphatrane coordinates to the silicon atom in both cases, thereby allowing the aforementioned reactions to proceed under

  1. VORONOI DIAGRAMS WITHOUT BOUNDING BOXES

    Directory of Open Access Journals (Sweden)

    E. T. K. Sang

    2015-10-01

    Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.

  2. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  3. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    International Nuclear Information System (INIS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-01-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH . radical and H 3 O + surface defects. The coupling of incoming CO molecules with the surface OH . radicals on the ice clusters yields the formation of the COOH . radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol –1 and –22 kcal mol –1 , respectively. The COOH . radicals couple with incoming NH=CH 2 molecules (experimentally detected in the ISM) to form the NHCH 2 COOH . radical glycine through energy barriers of 12 kcal mol –1 , exceedingly high at ISM cryogenic temperatures. Nonetheless, when H 3 O + is present, one proton may be barrierless transferred to NH=CH 2 to give NH 2 =CH 2 + . This latter may react with the COOH . radical to give the NH 2 CH 2 COOH +. glycine radical cation which can then be transformed into the NH 2 CHC(OH) 2 +. species (the most stable form of glycine in its radical cation state) or into the NH 2 CHCOOH . neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H 3 O

  4. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    Science.gov (United States)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  5. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Rimola, Albert; Sodupe, Mariona [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ugliengo, Piero, E-mail: albert.rimola@uab.cat [Dipartimento di Chimica, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR Torino, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  6. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  7. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  8. O conceito de mal radical The concept of radical evil

    Directory of Open Access Journals (Sweden)

    Adriano Correia

    2005-01-01

    Full Text Available A noção de mal radical aparece em Kant no contexto da discussão da religião nos limites da simples razão e busca dar conta da complexa relação entre o respeito pela lei moral e o amor-próprio na definição do móbil para a ação. Na busca por identificar o fundamento da propensão para o mal no homem, Kant se vê diante da dificuldade de ter de articular natureza e liberdade, e ainda que a noção de mal radical possa conservar algumas ambigüidades, permite conceber uma noção de responsabilidade compatível com uma inata propensão para o mal. Neste texto busco explicitar alguns passos fundamentais na construção do conceito por Kant.The concept of radical evil appears in Kant's theory when he discusses the religion in the limits of the mere reason and aims explain the complex relationship between respect for the moral law and the self-love, for establish the motive of the action. By aiming identify the basis of human inclination to evil, Kant is faced with the trouble of have to put nature and freedom in connection. Despite of the concept of radical evil retain some ambiguity, it allows conceive a notion of responsibility suitable to an inherent inclination to evil. In this paper is my purpose to explain some basic moments of Kantian formulation of that notion.

  9. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  10. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  11. Comparison between methods using copper, lanthanum, and colorimetry for the determination of the cation exchange capacity of plant cell walls.

    Science.gov (United States)

    Wehr, J Bernhard; Blamey, F Pax C; Menzies, Neal W

    2010-04-28

    The determination of the cation exchange capacity (CEC) of plant cell walls is important for many physiological studies. We describe the determination of cell wall CEC by cation binding, using either copper (Cu) or lanthanum (La) ions, and by colorimetry. Both cations are strongly bound by cell walls, permitting fast and reproducible determinations of the CEC of small samples. However, the dye binding methods using two cationic dyes, Methylene Blue and Toluidine Blue, overestimated the CEC several-fold. Column and centrifugation methods are proposed for CEC determination by Cu or La binding; both provide similar results. The column method involves packing plant material (2-10 mg dry mass) in a chromatography column (10 mL) and percolating with 20 bed volumes of 1 mM La or Cu solution, followed by washing with deionized water. The centrifugation method uses a suspension of plant material (1-2 mL) that is centrifuged, and the pellet is mixed three times with 10 pellet volumes of 1 mM La or Cu solution followed by centrifugation and final washing with deionized water. In both methods the amount of La or Cu bound to the material was determined by spectroscopic methods.

  12. Free radicals in health and disease

    International Nuclear Information System (INIS)

    Gonet, B.

    1993-01-01

    Free radicals appear in the cells as the result of exogenic factors (ionizing radiation, UV) or reactions naturally occurring in the cell. Free radical reactions may cause destruction of macromolecules (DNA, lipids, proteins). Free radical pathology is important in many diseases and aging processes in organisms

  13. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  14. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  15. A muoniated radical in selenium

    International Nuclear Information System (INIS)

    Reid, I.D.; Cox, S.F.J.; Jayasooriya, U.A.; Zimmermann, U.

    2003-01-01

    We report new 0.3 T transverse-field μSR experiments in crystalline Se which show only a small, slowly relaxing muon signal at 300 K, accounting for about 30% of the incoming muon polarization. However, at 90 K signals are observed around 74 and 157 MHz, characteristic of a radical with a hyperfine coupling of 231 MHz. Very fast relaxation which increases with temperature makes these signals impossible to follow beyond 200 K. Above 400 K a quickly relaxing diamagnetic signal becomes visible, its relaxation falling with increasing temperature. In the melt (>490 K) just a single non-relaxing diamagnetic signal is seen. These observations may be explained by electron spin-exchange with a muoniated radical

  16. The applications of VIP 397/418 bulbs in free radical white pigmented coatings: UV curing evaluation for different free radical white pigmented formulations (I)

    International Nuclear Information System (INIS)

    Rong Bao; McCartney, R.

    1999-01-01

    White pigmented coatings have gained commercial success using a Gallium doped microwave F600-V bulb. A novel VIP 397/418 bulb has been made recently, by Fusion UV Systems, to increase UV curing efficiency of white pigmented coatings. Previous research work has shown that the VIP 397/418 bulb can cure cationic white pigmented coatings 40-60% faster than a F600-V bulb. Further evaluations of free radical white pigmented coatings have produced significant data indicating that better physical properties (40-50%) or higher cure speeds (50%) can be obtained by using the VIP 397/418 bulb than a F600-V bulb

  17. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Directory of Open Access Journals (Sweden)

    Yamuna Kunhi Mouvenchery

    Full Text Available It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM molecules via cation bridges (CaB. The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+, Ca(2+ or Na(+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h than deprotonation of functional groups (<2 h and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB and molecular mobility of water (NMR analysis suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is

  18. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  19. Anatomical landmarks of radical prostatecomy.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  20. Radical Smiles Rearrangement: An Update

    Directory of Open Access Journals (Sweden)

    Ingrid Allart-Simon

    2016-07-01

    Full Text Available Over the decades the Smiles rearrangement and its variants have become essential synthetic tools in modern synthetic organic chemistry. In this mini-review we summarized some very recent results of the radical version of these rearrangements. The selected examples illustrate the synthetic power of this approach, especially if it is incorporated into a domino process, for the preparation of polyfunctionalized complex molecules.

  1. Free radical reactions of daunorubicin

    International Nuclear Information System (INIS)

    Houee-Levin, C.

    1991-01-01

    Daunorubicin is an antitumor antibiotic activated in vivo by reduction. Its mechanism of action involves DNA and topoisomerase attack, but side effects are cytotoxicity related to free radical formation. Therefore the mechanism of the one-electron reduction of the drug and the reactions of the daunorubicin transients towards compounds of biological interest have been studied by the methods of radiolysis, in order to provide possible explanations of the drug mechanism of action. Their relative importance in cellular conditions is discussed [fr

  2. Geoscientists and the Radical Middle

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.

  3. Adsorption of cationic amylopectin on microcrystalline cellulose.

    NARCIS (Netherlands)

    Steeg, van de H.G.M.; Keizer, de A.; Cohen Stuart, M.A.; Bijsterbosch, B.H.

    1993-01-01

    The effects of electrolyte concentration and pH on the adsorption of cationic amylopectin on microcrystalline cellulose were investigated. The adsorbed amount in the pseudo-plateau of the isotherm showed a maximum as a function of the electrolyte concentration. We compared the data with a recent

  4. Alkynylcarbenium ions and related unsaturated cations

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A [Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don (Russian Federation)

    1998-10-31

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references.

  5. Alkynylcarbenium ions and related unsaturated cations

    International Nuclear Information System (INIS)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A

    1998-01-01

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references

  6. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  7. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  8. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  9. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  11. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  12. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  13. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  14. Distribution of free radical products among the bases of x-irradiated DNA model systems: an ESR study

    International Nuclear Information System (INIS)

    Spalletta, R.A.

    1984-01-01

    Exposure of solid state DNA to ionizing radiation results in an ESR spectrum that has been attributed to a nonstoichiometric distribution of free radicals among the bases. At low temperatures radical cations appear to be stabilized on the purines while radical anions are stabilized on the pyrimidines. This distribution could arise from at least two different mechanisms. The first, charge transfer, involves the transfer of electrons and/or holes between stacked bases. In the second, saturation asymmetry, the free radical distribution arises from differences in the dose saturation characteristics of individual bases. The present study addresses the relative importance of charge transfer versus saturation asymmetry in the production of these population differences. Radicals formed by dissolving irradiated polycrystalline pyrimidines in aqueous solutions containing NtB or PBN spin traps were analyzed using ESR. The relative importance of the two free radical production and distribution mechanisms was assessed using DNA model systems. Saturation asymmetry plays a significant role in determining the free radical population while charge transfer was unambiguously observed in only one, the complex of dAMP and TMP. The results demonstrate that any quantitative analysis of charge transfer must take saturation asymmetry into account

  15. Bounded elements in Locally C*-algebras

    International Nuclear Information System (INIS)

    El Harti, Rachid

    2001-09-01

    In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)

  16. Fuzzy upper bounds and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com

    2008-04-15

    This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.

  17. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  18. Bounded cohomology of discrete groups

    CERN Document Server

    Frigerio, Roberto

    2017-01-01

    The author manages a near perfect equilibrium between necessary technicalities (always well motivated) and geometric intuition, leading the readers from the first simple definition to the most striking applications of the theory in 13 very pleasant chapters. This book can serve as an ideal textbook for a graduate topics course on the subject and become the much-needed standard reference on Gromov's beautiful theory. -Michelle Bucher The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate student...

  19. [Noncovalent cation-π interactions--their role in nature].

    Science.gov (United States)

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  20. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  1. The nature of resonance in allyl ions and radical.

    Science.gov (United States)

    Linares, Mathieu; Humbel, Stéphane; Braïda, Benoît

    2008-12-18

    A recent valence bond scheme based on Lewis structures, the valence bond BOND (VBB) method (BOND: Breathing Orbitals Naturally Delocalized) method (Linares, M.; Braida, B.; Humbel, S. J. Phys. Chem. A 2006, 110, 2505-2509), is applied to explore the nature of resonance in allyl systems. Whereas allyl radical is correctly described by the resonance between the two traditional Lewis structures, a third "long-bonded" structure, which apparently creates a pi bond between the two distant carbon atoms, appears to plays an important role in allyl ions description. The similar vertical resonance energy (VRE) for both allyl ions is rather moderate (approximately 37 kcal/mol) in the two-structure description but is significantly enhanced when the long-bonded structure is included into the VBB wave function (by up to 20 kcal/mol). The allyl radical is much less resonant and is correctly described by the traditional two-structure picture. The development of VBB Lewis structures into "pure" valence bond determinants enlightens the role of the third structure in the description of allyl ions. The existence of a long bond between the two distant carbon atoms is clearly ruled out. Charge equilibration effect is shown to be a minor factor. The third structure is finally attributed to one- and three-electron bonding character revealed in the pi systems of the cation and anion, respectively. This makes these systems two surprising examples of odd electron bonding within a singlet state. Last, the two-structure description of allyl radical is improved by addition of missing ionic structures.

  2. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  3. Studies on cationic UV curing of epoxidised palm oil (EPO) for surface coatings

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Wan Rosli Wan Daud; Kumar, R.N.

    2000-01-01

    Epoxidised palm oil (EPO) resin can be cured by ultraviolet (UV) radiation either by radical, cationic or hybrid system. Cationic curing system has been chosen in this study due to the fact that epoxy groups present in EPO can be utilised directly to form crosslinking. Curing was done by means of a 20 cm wide UV IST machine with the conditions of 7.5 A current and 4 m/min conveyor speed. Sulphonium and ferrocenium salts were used as cationic photoinitiator. A formulations study was performed on the selected grades of EPO with other materials. These include types and concentration of photoinitiator, monomers, concentration of EPO and post-cure. The properties of the cured film such as pendulum hardness, percentage of gel content and tensile strength were determined. It was found that triarylsulphonium hexafluorophosphate has a very low solubility in EPO. Addition of vinyl ether monomer to the formulation did not enhance pendulum hardness and gel content of the cured films. It is also found that the post cure temperature has no significant effect on the cured film

  4. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  5. Electron beam induced cationic polymerization of epoxy resins. Dependence of Tg on conversion

    International Nuclear Information System (INIS)

    Degrand, H.; Cazaux, F.; Coqueret, X.

    2002-01-01

    Complete text of publication follows. The high-energy radiation curing of monomer blends polymerizing by a free radical or by a cationic mechanism receives increasing attention in the perspective of high performance composite materials. In the present work, we have focused our attention on epoxy formulations as models of the matrices polymerizing by a cationic mechanism that could be used in fiber-reinforced composites for aerospace applications. We have examined the progress of the electron beam (EB) induced polymerization of diglycidylether of bisphenol A (DGEBA) in the presence of a diaryliodonium salt (DAIS) by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results allow to draw the gradual increase of the temperature for the network thermomechanical transition (T a , associated with the glass transition temperature T g ) over a broad range of conversion (p) and reveal a peculiar behavior at high conversion. In this domain (p > 0.90), the material's T g is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective 'dark curing', appears to induce a decrease of T g , with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerisation, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior

  6. Youth De-Radicalization: A Canadian Framework

    Directory of Open Access Journals (Sweden)

    Hafal (Haval Ahmad

    2017-09-01

    Full Text Available Youth radicalization leading to violence has become a growing fear among Canadians, as terrorist attacks are carried out in Western states. Although Canada has suffered relatively fewer acts of violence, this fear has intensified and a de-radicalization strategy is needed in the Canadian context. In a qualitative case study methodology, interviews were conducted with school counsellors, religious leaders, and academics to explore solutions to youth radicalization. Youth de-radicalization approaches from the United Kingdom were analyzed and found that community-based initiatives were missing from programming. Social identity theory is used to explain that youth join radicalized groups to feel a sense of belonging and have to be provided an alternative and moderate group identity to de-radicalize. This study found youth de-radicalization in Canada is best served through a community collaboration approach.

  7. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  8. FAR RIGHT RADICALIZATION AND SOCIALIST RADICALIZATION IN INTERWAR ROMANIA

    Directory of Open Access Journals (Sweden)

    IONUŢ BUTOI

    2017-03-01

    Full Text Available In his comments on Mircea Vulcănescu. O microistorie a interbelicului românesc (Eikon, 2015, Emanuel Copilaş states that, regarding the cause of the far right radicalization manifested in the interwar Romania, I share the same historical explanation about fascism as Ernst Nolte. In this concise answer, I explain why this is an unsuitable comparison by summarizing the historiographical perspective I use in the cited volume. Nevertheless, Copilaş’s comments are reopening a debate about how to explain the Romanian fascism

  9. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Gélvez-Rueda, María C; Hutter, Eline M; Cao, Duyen H; Renaud, Nicolas; Stoumpos, Constantinos C; Hupp, Joseph T; Savenije, Tom J; Kanatzidis, Mercouri G; Grozema, Ferdinand C

    2017-11-30

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  10. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    International Nuclear Information System (INIS)

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; Renaud, Nicolas; Stoumpos, Constantinos C.

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  11. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  12. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  13. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    Science.gov (United States)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  14. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo [Massachusetts Institute of Technology, Department of Chemistry (United States); Sergeyev, Ivan V. [Bruker Biospin (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2016-03-15

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.

  15. Variational lower bound on the scattering length

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1975-01-01

    The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable

  16. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  17. Ligand-free, protein-bound technetium-99m iron-dextran enhancement of technetium pyrophosphate uptake in tumours

    International Nuclear Information System (INIS)

    Pojer, P.M.; Jakovljevic, A.C.; Wise, K.N.

    1985-01-01

    The biodistribution of technetium-99m was studied in T-cell lymphoma and selected organs of iron-dextran treated and control mice given technetium-99m pyrophosphate. The results showed that high serum iron levels increased tumour uptake of technetium pyrophosphate. This supports the hypothesis that technetium, in common with other metal-based tumour seeking radiopharmaceuticals, is transported to tumours as a ligand-free protein-bound cation. (U.K.)

  18. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites.

  19. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    Science.gov (United States)

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  20. Photochemistry and reactivity of the phenyl radical-water system: a matrix isolation and computational study.

    Science.gov (United States)

    Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram

    2010-08-02

    The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.

  1. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  2. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  3. A strongly quasiconvex PAC-Bayesian bound

    DEFF Research Database (Denmark)

    Thiemann, Niklas; Igel, Christian; Wintenberger, Olivier

    2017-01-01

    We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Ku...

  4. On the range of completely bounded maps

    Directory of Open Access Journals (Sweden)

    Richard I. Loebl

    1978-01-01

    Full Text Available It is shown that if every bounded linear map from a C*-algebra α to a von Neumann algebra β is completely bounded, then either α is finite-dimensional or β⫅⊗Mn, where is a commutative von Neumann algebra and Mn is the algebra of n×n complex matrices.

  5. Bounds in the location-allocation problem

    DEFF Research Database (Denmark)

    Juel, Henrik

    1981-01-01

    Develops a family of stronger lower bounds on the objective function value of the location-allocation problem. Solution methods proposed to solve problems in location-allocation; Efforts to develop a more efficient bound solution procedure; Determination of the locations of the sources....

  6. Experimental evidence for bounds on quantum correlations.

    Science.gov (United States)

    Bovino, F A; Castagnoli, G; Degiovanni, I P; Castelletto, S

    2004-02-13

    We implemented the experiment proposed by Cabello in the preceding Letter to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Tsirelson's bound of the Clauser-Horne-Shimony-Holt inequality (2 x square root of 2) is not reached by any quantum states.

  7. Exponential Lower Bounds For Policy Iteration

    OpenAIRE

    Fearnley, John

    2010-01-01

    We study policy iteration for infinite-horizon Markov decision processes. It has recently been shown policy iteration style algorithms have exponential lower bounds in a two player game setting. We extend these lower bounds to Markov decision processes with the total reward and average-reward optimality criteria.

  8. Conductivity bound from dirty black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bitaghsir Fadafan, Kazem, E-mail: bitaghsir@shahroodut.ac.ir

    2016-11-10

    We propose a lower bound of the dc electrical conductivity in strongly disordered, strongly interacting quantum field theories using holography. We study linear response of black holes with broken translational symmetry in Einstein–Maxwell-dilaton theories of gravity. Using the generalized Stokes equations at the horizon, we derive the lower bound of the electrical conductivity for the dual two dimensional disordered field theory.

  9. No-arbitrage bounds for financial scenarios

    DEFF Research Database (Denmark)

    Geyer, Alois; Hanke, Michael; Weissensteiner, Alex

    2014-01-01

    We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial applications. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities...

  10. Selective alkylation by photogenerated aryl and vinyl cation

    NARCIS (Netherlands)

    Slegt, Micha

    2006-01-01

    Seven para-substituted phenyl cations and the parent phenyl cation were prepared from iodonium salt precursors. Product studies revealed remarkable chemoselectivity and regioselectivity that could be related to the spin multiplicity of the cations. Also an universal method to fingerprint singlet and

  11. Radical probing of spliceosome assembly.

    Science.gov (United States)

    Grewal, Charnpal S; Kent, Oliver A; MacMillan, Andrew M

    2017-08-01

    Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  13. Remembering Dutch-Moluccan radicalism

    DEFF Research Database (Denmark)

    Marselis, Randi Lorenz

    2016-01-01

    This article examines memory politics in relation to radical actions of young Dutch-Moluccans, more specifically a train hijacking in 1977 at the village of De Punt in the Netherlands. The article examines how these historical events were remembered in the drama-documentary television film, De Punt...... of the web debate examines how viewers reacted to this interpretation. The web debate functioned as a participatory forum, where collective and national memories and postcolonial history were intensely discussed, and the debate made room for some degree of reconciliation between viewers of Dutch......-Moluccan and of Dutch majority background...

  14. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  15. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  16. Radical constructivism: Between realism and solipsism

    Science.gov (United States)

    Martínez-Delgado, Alberto

    2002-11-01

    This paper criticizes radical constructivism of the Glasersfeld type, pointing out some contradictions between the declared radical principles and their theoretical and practical development. These contradictions manifest themselves in a frequent oscillation between solipsism and realism, despite constructivist claims to be an anti-realist theory. The paper also points out the contradiction between the relativism of the radical constructivist principles and the constructivist exclusion of other epistemological or educational paradigms. It also disputes the originality and importance of the radical constructivist paradigm, suggesting the idea of an isomorphism between radical constructivist theory and contemplative realism. In addition, some pedagogical and scientific methodological aspects of the radical constructivist model are examined. Although radical constructivism claims to be a rational theory and advocates deductive thinking, it is argued that there is no logical deductive connection between the radical principles of constructivism and the radical constructivist ideas about scientific research and learning. The paper suggests the possibility of an ideological substratum in the construction and hegemonic success of subjective constructivism and, finally, briefly advances an alternative realist model to epistemological and educational radical constructivism.

  17. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.

    Science.gov (United States)

    Thiede, Erik; VAN Koten, Brian; Weare, Jonathan

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.

  18. New bounds on isotropic Lorentz violation

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc

    2006-01-01

    Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD

  19. Covariant entropy bound and loop quantum cosmology

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2008-01-01

    We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.

  20. Formation and reactivity of free radicals in 5-hydroxymethyl-2-furaldehyde--the effect on isoprenaline photostability.

    Science.gov (United States)

    Brustugun, Jørgen; Tønnesen, Hanne H; Edge, Ruth; Navaratnam, Suppiah

    2005-05-13

    Solutions of glucose are used as diluents for drugs in various drug infusions. When sterilized by heat small amounts of the substance 5-hydroxymethyl-2-furaldehyde (5-HMF) is produced from glucose. At a hospital ward such infusions may be exposed to irradiation; including UV-light. The photoreactivity of the furaldehyde is investigated. It is shown to photodestabilize the catecholamine isoprenaline. It is shown to be a producer, but also a consumer, of singlet oxygen. The excited triplet, cation and anion radical have been produced by pulse radiolysis and flash photolysis and their absorbance characteristics have been determined. The triplet absorption spectrum showed absorption bands at 320 and 430 nm with molar absorption coefficients of 4700 and 2600 M-1 cm-1, respectively. The anion radical showed absorption bands at 330 and 420 nm with molar absorption coefficients of 2000 and 300 M-1 cm-1, respectively. The cation radical had an absorption band at 320 nm with a molar absorption coefficient of 5000 M-1 cm-1. The quantum yield for the production of singlet oxygen, sensitized by the 5-HMF triplet, was determined to be 0.6, whilst the quantum yield for the triplet formation was 1.0. Aqueous solutions of 5-HMF were found to photoionize to yield the hydrated electron and the cation radical of 5-HMF in a biphotonic process. The influences of pH, buffer and glucose on the formation of transients were evaluated. The reactions between 5-HMF and the solvated electron, the hydroxyl radical and the superoxide were also studied.