WorldWideScience

Sample records for radical anion formed

  1. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  2. ESR study of the anion radicals of 5-nitropyrimidines: conversion to iminoxy radicals

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Clark, C.; Failor, R.

    1976-01-01

    The anion radicals of a number of 5-nitropyrimidines have been investigated by ESR spectroscopy. The anions are formed by electrolysis in dimethylformamide and by electron attachment in aqueous glasses, 12 M LiCl--D 2 O and 8 M NaOD. The electrolysis of 5-nitrouracil and 5-nitro-6-methyluracil results in relatively stable anion radicals. The results for 5-nitrouracil give evidence for two or perhaps three anions which differ only by the degree of ring nitrogen protonation. The results for 5-nitro-6-methyluracil suggest that the nitro group of the anion is twisted so that it is coupled only weakly to the ring π-electron system. The anions of 5-nitrouracil, 5-nitroorotic acid, 5-nitrobarbituric acid, and 5-nitro-6-methyluracil have been produced in the alkaline and neutral aqueous glasses. The anisotropic spectra found have been analyzed with the aid of computer simulations which assume axial symmetry. For example, the analysis of the spectrum of 5-nitrouracil anion in 12 M LiCl yields A/sub parallel//sup N/ = 33; A/sub perpendicular to//sup N/ = 5, a 6 /sup H/ = 5.5 G, g/sub parallel/ = 2.0016, and g/sub perpendicular to/ = 2.0059. A concentration dependence in the splittings is noted and discussed. Ultraviolet photolysis of the anions of 5-nitro-6-methyluracil and 5-nitrobarbituric acid results in the formation of iminoxy radicals. Mechanisms of formation of the iminoxy radicals are discussed and results found in this work are compared to results found in single crystals and aqueous solution

  3. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  4. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  5. Effect of carbonyl group on the lifetimes of pentafluoroacetophenone and pentafluorobenzaldehyde radical anions in aqueous solution: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Shoute, L.C.T.

    1996-01-01

    Hydrated electrons react with pentafluoroacetophenone (PFA) to form radical anion. Evidence for the formation of the radical anion was obtained from observation of intermolecular electron transfer from PFA .- to p-benzoquinone (Q) and methyl viologen (MV 2+ ) to form Q .- and MV .+ . The radical anion lose fluoride with a rate constant of 5x10 4 s -1 . The radical anion has a pK a =7.5. Radical anion of pentafluorobenzaldehyde (PFB) was observed on reduction PFB with hydrated electron. It has a pK a =7.2. It loses fluoride with a rate constant of 1.2x10 5 s -1 . The studies show that substitution of a carbonyl group in the aromatic ring of a perfluorinated compound led to dramatic increase in the lifetime of the radical anion formed on electron addition due to decrease in the rate of fluoride elimination. This led to the possibility of observing their reactions with other solute present in the solution. (author). 6 refs., 1 tab

  6. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  7. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  8. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    Science.gov (United States)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  9. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  10. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  11. (Ph4P)S6—A Compound Containing the Cyclic Radical Anion S6.−

    NARCIS (Netherlands)

    Neumuller, F.; Schmock, R.; Kirmse, A.; Voigt, A.; Diefenbach, A.; Bickelhaupt, F.M.; Dehnicke, K.

    2000-01-01

    Two long S−S bonds link the two S3 fragments in the cyclic radical anion S6.−. This forms as orange‐red crystals with PPh4+ as the counterion in the reaction of sulfane with (tetraphenylphosphonium) hydrogen diazide. The anion has a chair conformation with C2h symmetry (see picture).

  12. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  13. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  14. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  15. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  16. Radical anion structure of β-halogen-substituted acetamides in X-ray-irradiated single crystals: an INDO and EPR study

    International Nuclear Information System (INIS)

    Samskog, P.O.; Kispert, L.D.

    1984-01-01

    The anion radicals of bromodifluoroacetamide and chlorodifluoroacetamide are investigated by using the INDO method and EPR spectroscopy. INDO calculations for the anions give a spin density distribution in agreement with that suggested from experiment. Results of the analyses show that the unpaired electron occupies the sigma* orbital composed of the rho orbitals, along the C/sub β/-X bond, on the carbon and the unique halogen atoms. The results are compared to the radical anion in trifluoroacetamide. The electronic structure of SCF 2 CONH 2 - radical anions is a π-radical anion when X = F and a sigma*-radical anion when X = Cl and Br. 2 figures, 4 tables

  17. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  18. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  19. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  20. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  1. Effects of microsolvation on uracil and its radical anion: Uracil.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2006-10-01

    Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYP /DZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24eV) was higher than that of thymine by 0.04eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil•(H2O)5, namely, 0.96eV. The VDEs range from 0.76to1.78eV.

  2. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  3. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    International Nuclear Information System (INIS)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J.; Gonzalez, Ignacio; Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos; Ribeiro, Rogerio Tavares; Longo, Ricardo L.; Navarro, Marcelo; Frontana, Carlos

    2010-01-01

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A 2- + A → 2A· - ). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  4. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization.

    Science.gov (United States)

    Roy, Amit Saha; Saha, Pinaki; Adhikary, Nirmal Das; Ghosh, Prasanta

    2011-03-21

    The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these

  5. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  6. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Apartado Postal 55-534, 09340, D.F. (Mexico); Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Tabuleiro do Martins, Maceio, AL, 57072-970 (Brazil); Ribeiro, Rogerio Tavares; Longo, Ricardo L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Navarro, Marcelo, E-mail: navarro@ufpe.b [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico)

    2010-11-30

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A{sup 2-} + A {yields} 2A{center_dot}{sup -}). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  7. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  8. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  9. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  10. Quantum Chemical Investigation on the Antioxidant Activity of Neutral and Anionic Forms of Juglone: Metal Chelation and Its Effect on Radical Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Aymard Didier Fouegue Tamafo

    2017-01-01

    Full Text Available The chelation ability of divalent Mg, Ca, Fe, Co, Ni, Cu, Zn, and monovalent Cu ions by neutral and anionic forms of juglone has been investigated at DFT/B3LYP/6-31+G(d,p level of theory in gas and aqueous phases. It is noteworthy that only the 1 : 1 stoichiometry was considered herein. The effects of these metals on the radical scavenging activity of neutral juglone were evaluated via the usual descriptors of hydrogen atom transfer. According to our results, metal chelation by the two forms of juglone was spontaneous and exothermic in both media. Based on the binding energies, Cu(II ion showed the highest affinity for the ligands. QTAIM analyses identified the metal-ligand bonds as intermediate type interactions in all the chelates, except those of Ca and Mg. It was also found that the chelates were better radical scavengers than the ligands. In the gas phase, the scavenging activity of the compounds was found to be governed by direct hydrogen atom transfer, the Co(II chelate being the most reactive. In the aqueous phase also, the sequential proton loss electron transfer was preferred by all the molecules, while the Cu(II chelates were the most reactive.

  11. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    Science.gov (United States)

    Dixon, Andrew Robert

    We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1

  12. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  13. Fast reactions of organic anion radicals with organic halides in hexamethylphosphoric triamide studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Honda, Eiji; Tokuda, Masao; Yoshida, Hiroshi; Ogasawara, Masaaki

    1987-01-01

    Fast reactions of diethyl fumarate anion radical (DEF - ) and fluorenone anion radical (Fl - ) with various organic halides (RX) in hexamethylphosphoric triamide have been studied by means of ns pulse radiolysis at room temperature. Reactions of acetophenone anion radical were also studied for comparison. It was found that the reaction rate of Fl - was subject to the steric and resonance effects of R groups of RX in accord with the classical concept of S N 2 reactions: the rate constant was reduced by 2 orders of magnitude by the steric effect when R was changed from ethyl to bulky isopropyl or t-butyl, and it was still large by the resonance effect of R even if R was changed from ethyl to an allyl or a benzyl group. While the reaction rate of DEF - was not much affected when R was changed to more bulky groups, the rate constant was correlated to the reduction potential of RX. The results were interpreted in terms of a VB correlation diagram approach or rate-equilibrium relationship within a framework of S N 2 reactions. (author)

  14. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  15. Free radicals in an adamantane matrix. XIII. Electron paramagnetic resonance study of sigma* - π* orbital crossover in fluorinated pyridine anions

    International Nuclear Information System (INIS)

    Yim, M.B.; DiGregorio, S.; Wood, D.E.

    1977-01-01

    Pentafluoropyridine,2,3,4,6-tetrafluoropyridine, 2,6-difluoropyridine, and 2-fluoropyridine anion radicals were produced by x irradiation of an adamantane matrix which was doubly doped with the aromatic precursors and Me 3 NBH 3 and their EPR spectra obtained. The large fluorine hyperfine splitting constants (hfsc) of penta- and 2,3,4,6-tetrafluoropyridine anions and the small fluorine hfsc's of 2,6-di- and 2-fluoropyridine anions suggest that the former two are sigma radicals while the latter two are π radicals. The sigma*-π* orbital crossover phenomenon observed in these fluorinated pyridine anions is explained in terms of the combined effects of stabilization of sigma* orbitals and destabilization of π* orbitals. The EPR results show that nitrogen has a negligible contribution to the unpaired electron sigma* orbitals. INDO calculations were performed for the various states and the results compared with experiment

  16. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  17. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  18. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  19. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  20. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  1. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  2. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design.

    Science.gov (United States)

    Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua

    2013-07-01

    The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  4. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  5. The strong influence of the solvent on the electron spin resonance spectra of semiquinone radical anions

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2013-01-01

    ). The proton hyperfine constants predicted for the chrysazin semiquinone radical anion were highly sensitive to the assumed dielectric constant ε of the solvent continuum, inverting the relative magnitudes of the hyperfine constants and thereby leading to agreement with the observed data published by Stegmann...

  6. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  7. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  8. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  9. Antioxidant Effects of Herbal Tea Leaves from Yacon (Smallanthus sonchifolius) on Multiple Free Radical and Reducing Power Assays, Especially on Different Superoxide Anion Radical Generation Systems.

    Science.gov (United States)

    Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin

    2015-11-01

    Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea

  10. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  11. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  12. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  13. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  14. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  15. Microhydration of cytosine and its radical anion: Cytosine.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2007-02-01

    Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n =5) is bound by 7-10kcalmol-1 to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48eV, it is predicted to increase to 1.27eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03to0.61eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].

  16. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  17. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  18. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  19. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  20. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  1. Free radicals in dicarboxylic acids: an e.s.r. study of radical conversions in γ-irradiated single crystals of glutaric acid and glutaric-2,2,4,4-d4 acid

    International Nuclear Information System (INIS)

    Bergene, R.; Minegishi, A.; Riesz, P.

    1980-01-01

    The γ-radiation-induced free radicals in single crystals of glutaric acid and glutaric-2,2,4,4-d 4 acid were studied in the temperature range 77-300 K by e.s.r. techniques. At 77 K the decarboxylation radical and the anion are stabilized. At higher temperatures the decarboxylation radical is found to be converted into a hydrogen abstraction radical with an activation energy of 6.3 +- 0.5 kcal/mole for the non-deuterated crystal. This radical is stable at room temperature. The anion seems to be converted to a unidentified intermediate radical which in turn is converted to the σ-acyl radical. An analysis of the g-value anisotropy and of the 13 C hyperfine splitting variation for this radical in the deuterated crystal is consistent with the assigned radical structure. By heat treatment the σ-acyl radical is converted to another form of the hydrogen abstraction radical with an activation energy of 9.6 +- 0.6 kcal/mole in the deuterated crystal. U.V.-light (lambda= 254 nm) transforms one of the room temperature radicals into the other. (author)

  2. cis-Thioindigo (TI) - a new ligand with accessible radical anion and dianion states. Strong magnetic coupling in the {[TI-(μ2-O),(μ-O)]Cp*Cr}2 dimers.

    Science.gov (United States)

    Konarev, Dmitri V; Khasanov, Salavat S; Shestakov, Alexander F; Fatalov, Alexey M; Batov, Mikhail S; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2017-10-24

    Reaction of decamethylchromocene (Cp* 2 Cr) with thioindigo (TI) yields a coordination complex {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 ·C 6 H 14 (1) in which one Cp* ligand in Cp* 2 Cr is substituted by TI. TI adopts cis-conformation in 1 allowing the coordination of both carbonyl groups to chromium. Additionally, one oxygen atom of TI becomes a μ 2 -bridge for two chromium atoms to form {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 dimers with a CrCr distance of 3.12 Å. According to magnetic data, diamagnetic TI 2- dianions and two Cr 3+ atoms with a high S = 3/2 spin state are present in a dimer allowing strong antiferromagnetic coupling between two Cr 3+ spins with an exchange interaction of -35.4 K and the decrease of molar magnetic susceptibility below 140 K. Paramagnetic TI˙ - radical anions with the S = 1/2 spin state have also been obtained and studied in crystalline {cryptand[2,2,2](Na + )}(TI˙ - ) (2) salt showing that both radical anion and dianion states are accessible for TI.

  3. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  4. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  5. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  6. Nitroxide radicals formed in situ as polymer chain growth regulators

    International Nuclear Information System (INIS)

    Kolyakina, Elena V; Grishin, Dmitry F

    2009-01-01

    Published data on controlled synthesis of macromolecules using nitroxide radicals, formed in situ during polymerization, as polymer chain growth regulators are systematized and generalized. The attention is focused on the mechanism of polymer chain growth control during reversibly inhibited radical homopolymerization and the effect of structure of precursors and regulating additives on the polymerization kinetics of monomers of different nature and the molecular-mass characteristics of the polymers thus formed. The key methods for generation of nitroxide radicals directly during polymerization are considered. The prospects for development and practical use of these approaches for the synthesis of new polymeric materials are evaluated.

  7. Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH anion radical production

    International Nuclear Information System (INIS)

    Allan, I.M.; Vaughan, A.T.M.; Milner, A.E.; Lunec, J.; Bacon, P.A.

    1988-01-01

    Normal human lymphocytes were exposed to OH anion radicals produced indirectly by exposure to H 2 O 2 or directly by gamma irradiation. Using a flow cytometry technique to measure changes in nucleoid size, it was found that generation of OH anion in each system produced a characteristic relaxation in nuclear supercoiling. Exposure of cells to H 2 O 2 produced a metal-dependent step-wise relaxation in extracted nucleoids, while gamma irradiation induced a gradual dose-dependent increase in nucleoid size. The site-specific metal-dependent changes produced in lymphocytes incubated in H 2 O 2 should also occur in gamma irradiated cells, but the characteristic effects on nuclear supercoiling would not be detected within the background of random DNA damage. The importance of metals in maintaining the supercoiled loop configuration of DNA within the protein matrix suggests that free radical damage at metal locations may be particularly toxic for the cell. (author)

  8. Investigation into complexing of pentavalent actinide forms with some anions of organic acids by the coprecipitation method

    International Nuclear Information System (INIS)

    Moskvin, A.I.; Poznyakov, A.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1979-01-01

    Complexing of pentavolent forms of Np, Pu, Am actinides with anions of acetic, oxalic acids and EDTA is studied using the method of coprecipitation with iron hydroxide. Composition and stability constants of the actinide complexes formed are determined. The acids anions are arranged in a row in the order of decrease of complexing tendency that is EDTA anion>C 2 O 4 2- >CH 3 COO -

  9. Free radicals formed by H(Mu) addition to triphenylene and dodecahydrotriphenylene

    Energy Technology Data Exchange (ETDEWEB)

    Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca; Schueth, Joachim [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)

    2006-03-31

    Muonium has been used as an H atom analogue to investigate the free radicals formed by H addition to the fused polyaromatic hydrocarbon triphenylene. Although there are three inequivalent sites of attack in this molecule, only two radicals were detected. Muon and proton hyperfine constants were determined by transverse field {mu}SR and LCR, respectively. With the help of quantum calculations, all the signals can be assigned to radicals formed by Mu addition to C-H sites, while there is no evidence for addition to the tertiary carbons at ring junctions. To force attack on a tertiary carbon, a complementary study was conducted on the dodecahydrotriphenylene molecule. As expected, only one radical is formed. From LCR measurements the number of non-equivalent protons are interpreted as the results of the conformational effect of the saturated side rings.

  10. Free radicals formed by H(Mu) addition to triphenylene and dodecahydrotriphenylene

    International Nuclear Information System (INIS)

    Brodovitch, Jean-Claude; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W.; Schueth, Joachim

    2006-01-01

    Muonium has been used as an H atom analogue to investigate the free radicals formed by H addition to the fused polyaromatic hydrocarbon triphenylene. Although there are three inequivalent sites of attack in this molecule, only two radicals were detected. Muon and proton hyperfine constants were determined by transverse field μSR and LCR, respectively. With the help of quantum calculations, all the signals can be assigned to radicals formed by Mu addition to C-H sites, while there is no evidence for addition to the tertiary carbons at ring junctions. To force attack on a tertiary carbon, a complementary study was conducted on the dodecahydrotriphenylene molecule. As expected, only one radical is formed. From LCR measurements the number of non-equivalent protons are interpreted as the results of the conformational effect of the saturated side rings

  11. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  12. Cement matrix for immobilisation of spent anionic resins in borate form arising from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    In water cooled reactors boron is added as boric acid to control nuclear reactor power levels. The boric acid concentration in coolant/moderator water, is controlled by using strongly basic anionic resins in borate (H 2 BO 3 - ) form. The spent anionic resins in borate form contain 131 Iodine, 99 Technitium and 137 Cesium activities. Direct immobilisation of anionic resins in borate form in Ordinary Portland Cement (OPC) and Slag Cement was investigated using vermiculite, bentonite, calcium oxide and silica as admixtures. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate for slag cement matrix were 0.029 and 0.00064 g.cm 2 .d -1 respectively for 95 days of leaching. The volume reduction factor achieved by direct immobilisation of anionic resins in borate form was 0.48. Immobilisation of pyrolysis residues from these resins in OPC matrix was also studied. Leaching of matrix blocks was carried out for 180 days in DM water to optimise the matrix formulation. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate were 0.076 and 0.00054 respectively for 180 days leaching. The volume reduction factor achieved by immobilisation of pyrolysis residues was 2.4. OPC is non compatible to cationic resins loaded with alkali in absence of specific admixtures. Hence cationic resins loaded with alkali and anionic resins in borate form can not be immobilised together. (author)

  13. Nitroxyl free radicals formed from hindered amine light stabilizers under 60Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Wang Huiliang; Chen Wenxiu

    2006-01-01

    Nitroxyl free radicals formed from several low molecular weight (LMW) hindered amine light stabilizers (HALS) under 60 Co γ-ray irradiation was studied with electron spin resonance (ESR) spectroscopy. All the HALSs irradiated in air formed nitroxyl free radicals under irradiation in air. For most of the HALSs, concentration of the nitroxyl free radicals increased linearly and quickly with absorbed dose in 0-10 kGy range, but increased slowly, or even kept constant, with doses of greater than 10 kGy. Concentration of nitroxyl free radicals formed from LMW HALS was usually higher than high molecular weight HALS. Tetramethyl HALS was easier to form nitroxyl free radicals than pentamethyl HLAS. Concentration of nitroxyl free radicals formed from the samples irradiated in oxygen was about two times higher than that the samples irradiated in air. Mechanisms of the nitroxyl free radical formation from the γ-ray irradiated HALSs were was discussed. (authors)

  14. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  15. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  16. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  17. The nature of the CO{sub 2}{sup −} radical anion in water

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ireneusz; Tripathi, G. N. R. [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2016-04-21

    The reductive conversion of CO{sub 2} into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO{sub 2}{sup −} as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm{sup −1}, attributed to the symmetric CO stretch, which is at ∼45 cm{sup −1} higher frequency than in inert matrices. Isotopic substitution at C ({sup 13}CO{sub 2}{sup −}) shifts the frequency downwards by 22 cm{sup −1}, which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm{sup −1} band also appears at 742 cm{sup −1} and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO{sub 2}{sup −}(C{sub 2v}/C{sub s}) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (C{sub s}) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO{sub 2}{sup −} moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pK{sub a} (−0

  18. Research concerning ionic and free radical reactions in radiation chemistry. Progress report, September 15, 1976--September 15, 1977

    International Nuclear Information System (INIS)

    Williams, T.F.

    1977-01-01

    Progress is reported on ESR studies of fluorocarbon radicals and intermediate radicals. A detailed study was made of the dimethyl, diethyl, and di-n-propyl carbonates. Studies were continued on hydrogen-atom abstraction reactions at low temperatures with view to evaluating the contribution from quantum-mechanical tunneling. Detection of the transient dimer radical anion of acetonitrile in the upper crystalline phase at -50 0 C is reported. Abstracts of current reports are included on electron attachment to fluorocarbons hydrogen atom abstraction by methyl radicals. EPR spectra of the tetrafluoroethylene radical anion, and addition of tetrafluoroethylene to the tetrafluoroethylene radical anion

  19. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    Science.gov (United States)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  20. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  1. Radiolytic reduction of nifurtimose by CO2-· free radicals

    International Nuclear Information System (INIS)

    Filali-Mouhim, A.; Champion, B.; Jore, D.; Ferradini, C.; Hickel, B.

    1991-01-01

    Nifurtimox is an antiparasitic drug often used in the treatment of the Chagas disease. Its therapeutic action seems to involve its monoelectronic reduction leading to a reduced radical capable of providing superoxide anion by reaction with oxygen. The oxidation reduction mechanisms involved in this action have been studied by steady state and pulse radiolysis methods. This study is devoted to the monoelectronic exchanges observed in the absence of air, the reducing radicals being the CO 2 - · anions [fr

  2. Investigations of structure, bonding, and reactions of radiation-induced free radicals in the solid state using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Hudson, R.L.

    1978-01-01

    Electron spin resonance spectroscopy (ESR) has been used to study the structure, bonding, and reactions of several types of free radicals produced by γ irradiation of solids at 77K. Well-defined spectral patterns and the use of photolysis and annealing treatments assisted the analyses and interpretations. The radical anion BF 3 - was generated and identified unequivocally in a matrix of tetramethylsilane at 77K. Both the ESR data and theoretical calculations support a pyramidal structure with a bond angle of about 110 0 . The present experiments showed that BF 3 - has ESR parameters consistent with those of the isoelectronic radicals CF 3 , NF 3 + , and F 2 NO. γ irradiation of polycrystalline trimethyl borate at 77K gave an ESR spectrum which was assigned to the dimer radical anion [(MeO) 3 B.B(OMe) 3 ] - . Radical anions of dialkyl carbonates were observed for the first time and found to undergo a β-scission reaction to produce alkyl radicals. This free radical reaction is unusual in that it proceeds both thermally and photochemically. For the dimethyl carbonate radical anion, 13 C parameters were obtained from a 13 C enriched sample. The photolysis of trapped radicals in γ irradiated carboxylic esters, RC(O)OR', was studied by ESR spectroscopy and two different reactions were characterized. Two hypervalent silicon radical anions were prepared and examined in SI(OCH 3 ) 4 . The results of the present work thus represent the first complete sets of data on the silicon 3s and 3p spin densities for such species. The first PL 3 - radical anion was prepared by the γ irradiation of crystalline trimethylphosphite, and identified through its photolysis reactions and from the results of radiation chemical experiments

  3. E. s. r. of free radicals in irradiated uracil-. beta. -D-arabinofuranoside

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, R [Oslo Univ. (Norway). Fysisk Institutt; Vaughan, R A

    1976-02-01

    Electron-spin-resonance measurements have been made on single crystals of uracil-..beta..-D-arabinofuranoside, which were irradiated by 4.0 MeV electrons at 77 K. At low temperatures, two radicals have been identified, one attributed to a hydrogen abstraction of 05' in the sugar moiety and the other to a radical anion located on the pyrimidine ring. The former was very unstable and seemed to act as a precursor to other unidentified radical species stable at 77 K. At room temperature, the main resonance was due to hydrogen addition to C5 and was probably produced by protonation of the anion. This same radical was also produced by irradiation at room temperature.

  4. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  5. Electron gain and electron loss radicals stabilized on the purine and pyrimidine of a cocrystal exhibiting base-base interstacking: ESR-ENDOR of X-irradiated adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.; Bernhard, W.A.

    1983-01-01

    The predominant free radicals trapped in cocrystals of adenosine:5-bromouracil X-irradiated at 12 0 K were identified by ESR-ENDOR spectroscopy and the radical reactions were followed upon annealing to 480 0 K. The dominant electron abstraction and electron addition products stabilized on the bases at 12 0 K are observed to be the bromouracil π-cation and the adenine π-cation and π-anion. The formation of an anion on bromouracil is inferred from the presence of a radical formed by deuterium addition to C 6 of bromouracil at higher temperatures. Above 40 0 K the bromouracil π-cation appears to decay by recombination and is reduced to undetectable levels at approx.170 0 K. Both adenine π-ions are also observed to decay within the same temperature range. Above 200 0 K hydrogen adducts are stabilized on the bases. Experiments using partially deuterated cocrystals indicate that the H-adducts are formed via both hydrogen addition and protonation of the respective anions. Two hydrogen abstraction radicals stabilized on the sugar residue are detectable at temperatures above 200 0 K, but these may be present at much lower temperatures. The results presented here question the generally accepted hypothesis that, in the presence of purine:pyrimidine stacking interactions, holes are predominantly transferred to the purines while electrns are predominantly transferred to the pyrimidines

  6. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  7. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  8. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  9. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Science.gov (United States)

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  10. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    Science.gov (United States)

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  11. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  12. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  13. Encapsulation of Gibbsite platelets with free radical and controlled radical emulsion polymerization approaches, a small review

    NARCIS (Netherlands)

    Loiko, O.P.; Spoelstra, A.B.; van Herk, A.M.; Meuldijk, J.; Heuts, J.P.A.

    2016-01-01

    Water-borne anisotropic polymer-Gibbsite latex particles were prepared by a conventional and an atom transfer radical polymerisation (ATRP) based starved-feed emulsion polymerisation without any chemical modification of the platelet surface. Anionic co-oligomers, synthesised via ATRP, were used in

  14. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  15. The Effect of Nitrogen-Doped ATO Nanotubes on Radical Multiplication of Buffer Media by Visible Light Photocatalysis Rather UV

    Directory of Open Access Journals (Sweden)

    Kan-Hung Hu

    2012-01-01

    Full Text Available The use of TiO2 in photodynamic therapy for the treatment of cancer has generally been studied in cultured cancer cells in serum-containing RPMI 1640 medium under visible light application rather than ultraviolet (UV light. An ordered channel array of N-doped anodic titanium dioxide (ATO has been successfully made for visible light application. ATO nanotubes in the anatase form with a length of 10 μm are more effective than nanotubes of 1.8 μm in length as a photocatalyst for radical multiplication in buffer solution by generating hydroxyl radicals and superoxide radical anions under UV-A exposure. Only the N-doped ATO is applicable to visible light photocatalysis for radical multiplication in RPMI 1640+1% FBS and acrylamide, a free radical carrier.

  16. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  17. The role of anions on the indoor air quality; De rol van negatieve ionen op de binnenluchtkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Havermans, J. [Afdeling Energie, Comfort en Binnenmilieu, TNO Bouw en Onderzoek, Delft (Netherlands)

    2010-11-15

    Anions may contribute to a more comfortable indoor environment. Even a simple apparatus as a lamp with semi conductor technique produces easily anions. Such ions will react with particles forming agglomerates that will precipitate. Also a reaction with oxygen and moist will result in the formation of a superoxide radical and peroxides. These radicals easily react with e.g. organic volatiles and possible also with spores and allergens. Depending on the concentration of the radicals, these compounds can be deteriorated fully. However, as a potential negative side effect the radicals can produce irritating substances by reaction with chemicals in the air. It is not clear yet if all cleaners, based on ionization, will cause this effect. Therefore more research is needed. [Dutch] Negatieve ionen (anionen) in de lucht kunnen een belangrijke bijdrage leveren aan een comfortabeler binnenmilieu en kunnen op een eenvoudige wijze worden geproduceerd. Bijvoorbeeld met lamp waarbij naast verlichting ook via (smd) halfgeleidertechniek negatieve ionen worden gevormd. Negatieve ionen reageren met deeltjes waardoor deze clusteren en deze uit de binnenlucht worden verwijderd. Ook kunnen ze met zuurstof en vocht reageren, waarbij reactief superoxide en peroxides worden gevormd. Deze radicalen zijn verantwoordelijk voor het verwijderen van bijvoorbeeld ongewenste geuren en mogelijk ook allergenen en schimmels. Ze kunnen ook als negatief bijeffect potentieel irriterende stoffen vormen door reactie met chemicalien in de lucht. Of dit het geval is met alle op ionisatie gebaseerde luchtzuiveringsapparaten dient nader te worden onderzocht.

  18. Five Stereoactive Orbitals on Silicon: Charge and Spin Localization in the n-Si4Me10(-•) Radical Anion by Trigonal Bipyramidalization.

    Science.gov (United States)

    MacLeod, Matthew K; Michl, Josef

    2013-05-16

    RIUMP2/def2-TZVPPD calculations show that in addition to its usual conformation with charge and spin delocalized over the Si backbone, the isolated Si4Me10(-•) radical anion also has isomeric conformations with localized charge and spin. A structure with localization on a terminal Si atom has been examined in detail. In vacuum, it is calculated to lie 11.5 kcal/mol higher in energy than the charge-and-spin delocalized conformation, and in water the difference is as little as 1.6 kcal/mol. According to natural orbital and localized orbital analyses, the charge-and-spin-carrying terminal Si atom uses five stereoactive hybrid orbitals in a trigonal bipyramidal geometry. Four are built mostly from 3s and 3p atomic orbitals (AOs) and are used to attach a Si3(CH3)7 and three CH3 groups, whereas the larger equatorial fifth orbital is constructed from 4s and 4p AOs and acts as a nonbonding (radical) hybrid orbital with an occupancy of about 0.65 e.

  19. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    Science.gov (United States)

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  20. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian; Rueping, Magnus

    2016-01-01

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  1. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora

    2016-05-02

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  2. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  3. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  4. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  5. Oxidation of caffeine by phosphate radical anion in aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    reactions in our body generate reactive oxygen species mainly comprising free radicals .... caffeine might be acting as a sensitizer to transfer energy to PDP to produce phosphate ... The lifetime of the excited singlet 21 state of caffeine is of the.

  6. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  7. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  8. Role of free radicals in radiation chemical aging

    Energy Technology Data Exchange (ETDEWEB)

    Greenstock, C L

    1986-01-01

    Ionizing radiation initiates chemical changes in DNA, phospholipid membranes and other critical cell targets, that, if allowed to accumulate unrepaired, may lead to aging and other chronic effects. The chemical effects are free radical mediated, the principal damaging species being radical OH and to a lesser extent O2-anion radical and the molecular product H/sub 2/O/sub 2/. Many compounds can act in combination with ionizing radiation, to amplify the potential oxidative stress. Chemicals, ultra-violet light, lipid peroxides and their breakdown products may increase the extent of acute and chronic radiobiological effects.

  9. Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA

    Science.gov (United States)

    Hashiya, Fumitaka; Saha, Abhijit; Kizaki, Seiichiro; Li, Yue; Sugiyama, Hiroshi

    2014-01-01

    In a previous study, we found that 2-deoxyribonolactone is effectively generated in the specific 5-bromouracil (BrU)-substituted sequence 5′-(G/C)[A]n = 1,2BrUBrU-3′ and proposed that a formed uracil-5-yl radical mainly abstracts the C1′ hydrogen from the 5′-side of BrUBrU under 302-nm irradiation condition. In the present work, we performed photoirradiation of BrU-substituted DNA in the presence of a hydrogen donor, tetrahydrofuran, to quench the uracil-5-yl radical to uracil and then subjected the sample to uracil DNA glycosylase digestion. Slab gel sequence analysis indicated that uracil residues were formed at the hot-spot sequence of 5′-(G/C)[A]n = 1,2BrUBrU-3′ in 302-nm irradiation of BrU-substituted DNA. Furthermore, we found that the uracil residue was also formed at the reverse sequence 5′-BrUBrU[A]n = 1,2(G/C)-3′, which suggests that both 5′-(G/C)[A]n = 1,2BrUBrU-3′ and 5′-BrUBrU[A]n = 1,2(G/C)-3′ are hot-spot sequences for the formation of the uracil-5-yl radical. PMID:25398904

  10. The first report of a muoniated free radical formed from reaction of Mu with Br2

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; Cottrell, Stephen P.; Fleming, Donald; Johnson, Clive

    2006-01-01

    In this paper, we report preliminary data for the first direct evidence of a free radical formed from Mu reactivity with Br 2 in the gas phase, in N 2 moderator at a total pressure of 3 bar. A new experimental setup and target vessel for μSR studies of reactive compounds, such as the halogens and hydrogen halides, suitable as well for RF measurements, is described. The experimental data, obtained from a longitudinal field repolarization curve, yields a hfc of 1770 MHz. We tentatively identify this as the [BrMuBr] radical, a non-conventional bond system, arising from the combination of a van der Waals interaction and dynamics on a repulsive surface. Studies of the dynamics and hfcs of possible radicals, which in principal could form, are also outlined here

  11. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  12. Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes

    NARCIS (Netherlands)

    Donkers, E.H.D.; Willemse, R.X.E.; Klumperman, B.

    2005-01-01

    The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition-fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated

  13. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  14. Distribution of free radical products among the bases of x-irradiated DNA model systems: an ESR study

    International Nuclear Information System (INIS)

    Spalletta, R.A.

    1984-01-01

    Exposure of solid state DNA to ionizing radiation results in an ESR spectrum that has been attributed to a nonstoichiometric distribution of free radicals among the bases. At low temperatures radical cations appear to be stabilized on the purines while radical anions are stabilized on the pyrimidines. This distribution could arise from at least two different mechanisms. The first, charge transfer, involves the transfer of electrons and/or holes between stacked bases. In the second, saturation asymmetry, the free radical distribution arises from differences in the dose saturation characteristics of individual bases. The present study addresses the relative importance of charge transfer versus saturation asymmetry in the production of these population differences. Radicals formed by dissolving irradiated polycrystalline pyrimidines in aqueous solutions containing NtB or PBN spin traps were analyzed using ESR. The relative importance of the two free radical production and distribution mechanisms was assessed using DNA model systems. Saturation asymmetry plays a significant role in determining the free radical population while charge transfer was unambiguously observed in only one, the complex of dAMP and TMP. The results demonstrate that any quantitative analysis of charge transfer must take saturation asymmetry into account

  15. Formation and transformations of radicals in frozen aqueous solutions of components of nucleic acids and H3PO4

    International Nuclear Information System (INIS)

    Minkhadzhidinova, D.R.; Chefranova, O.A.; Sharpatyj, V.A.

    1977-01-01

    Radiolysis of frozen aqueous solutions of 6-16 M H 3 PO 4 and 5 M NaH 2 PO 4 was studied, as well as radiolysis of these systems in the presence of nitrous bases and glucose. In aqueous solutions of H 3 PO 4 and NaH 2 PO 4 irradiated at 77 K, two groups of radicals formed as a result of interaction of the oxidative component of radiolysis of water with phosphate ions were identified. Their photolytic properties were studied. Primary products of radiolysis of the nitrous bases in phosphoric- acid solutions are anion- and cation-radicals. The molal absorption coefficients of the particles were determined

  16. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  17. On the reasons of radical forms of social protest: Reflections about principles of ‘Malthusian trap’ and demographic factors

    Directory of Open Access Journals (Sweden)

    E E Shults

    2017-12-01

    Full Text Available The article considers reasons for radical mass forms of social protest in the context of the ‘Malthusian trap’ and structural-demographic theory of Jack Goldstone, which have become popular in the last two decades. The author critically evaluates these two conceptions and comes to the conclusion that the principles they underline are just concomitant factors, i.e. additional risk factors for political systems and regimes, rather than causes of radical mass forms of social protest. The author suggests a method of analysis that consists of studying the circumstances, i.e. the wide historical context, in which mass forms of social protest usually emerge, and provides a large number of illustrative examples. The scientific approach to the identification of social-historical determinants of radical forms of social protest implies that if something is a reason/cause of an event, then this reason/cause must be present whenever there is such an event both alone or within a complex of concomitant factors. The ‘Malthusian trap’ and demographic factors cannot be traced in all manifestations of radical mass forms of social protest in modern and contemporary history. Moreover, the ‘Malthusian trap’ and demographic pressure on the economy and social system do not always lead to mass forms of social protest. The wave of radical forms of social protest in the last decade, i.e. the so-called ‘color revolutions’, ‘Arab spring’, protest actions in France, England and the USA, once again confirms the relevance of the author’s approach and the importance of critical study of the traditional conceptions.

  18. Theoretical investigation of radical species formed from L-α-alanine under gamma-irradiation

    International Nuclear Information System (INIS)

    Simion, C.

    2008-01-01

    Gamma-irradiated L-α-alanine used in EPR-coupled dosimetry has a complex EPR spectrum at room temperature. Changing the temperature or other conditions of the irradiated samples leads to varied EPR spectrum, i.e., some components disappear and/or new ones are formed. We used both molecular mechanics (MM+) and semiempirical (AM1) methods to perform a theoretical investigation of the seven radical species that have been experimentally detected. We established their order of priority in the given simulation conditions (at 0 K, in vacuo). The formation stages advanced for these long-lived radical species were characterized by a theoretical determination of the reaction enthalpies. (author)

  19. The first report of a muoniated free radical formed from reaction of Mu with Br{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar [Department of Chemistry, Mount Allison University, 63C York Street, Sackville (Canada)]. E-mail: kghandi@mta.ca; Cottrell, Stephen P. [ISIS, CCLRC Rutherford Appleton Laboratory, Chilton (United Kingdom); Fleming, Donald [Department of Chemistry, University of British Columbia and TRIUMF, Vancouver, NB E4L 1G8 (Canada); Johnson, Clive [ISIS, CCLRC Rutherford Appleton Laboratory, Chilton (United Kingdom)

    2006-03-31

    In this paper, we report preliminary data for the first direct evidence of a free radical formed from Mu reactivity with Br{sub 2} in the gas phase, in N{sub 2} moderator at a total pressure of 3 bar. A new experimental setup and target vessel for {mu}SR studies of reactive compounds, such as the halogens and hydrogen halides, suitable as well for RF measurements, is described. The experimental data, obtained from a longitudinal field repolarization curve, yields a hfc of 1770 MHz. We tentatively identify this as the [BrMuBr] radical, a non-conventional bond system, arising from the combination of a van der Waals interaction and dynamics on a repulsive surface. Studies of the dynamics and hfcs of possible radicals, which in principal could form, are also outlined here.

  20. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  1. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  2. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  3. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  4. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  5. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  6. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.

    Science.gov (United States)

    Szymanski, Eric S; Kimsey, Isaac J; Al-Hashimi, Hashim M

    2017-03-29

    The replicative and translational machinery utilizes the unique geometry of canonical G·C and A·T/U Watson-Crick base pairs to discriminate against DNA and RNA mismatches in order to ensure high fidelity replication, transcription, and translation. There is growing evidence that spontaneous errors occur when mismatches adopt a Watson-Crick-like geometry through tautomerization and/or ionization of the bases. Studies employing NMR relaxation dispersion recently showed that wobble dG·dT and rG·rU mismatches in DNA and RNA duplexes transiently form tautomeric and anionic species with probabilities (≈0.01-0.40%) that are in concordance with replicative and translational errors. Although computational studies indicate that these exceptionally short-lived and low-abundance species form Watson-Crick-like base pairs, their conformation could not be directly deduced from the experimental data, and alternative pairing geometries could not be ruled out. Here, we report direct NMR evidence that the transient tautomeric and anionic species form hydrogen-bonded Watson-Crick-like base pairs. A guanine-to-inosine substitution, which selectively knocks out a Watson-Crick-type (G)N2H 2 ···O2(T) hydrogen bond, significantly destabilized the transient tautomeric and anionic species, as assessed by lack of any detectable chemical exchange by imino nitrogen rotating frame spin relaxation (R 1ρ ) experiments. An 15 N R 1ρ NMR experiment targeting the amino nitrogen of guanine (dG-N2) provides direct evidence for Watson-Crick (G)N2H 2 ···O2(T) hydrogen bonding in the transient tautomeric state. The strategy presented in this work can be generally applied to examine hydrogen-bonding patterns in nucleic acid transient states including in other tautomeric and anionic species that are postulated to play roles in replication and translational errors.

  7. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  8. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    OpenAIRE

    Suvankar Das; Cristiane J. da Silva; Marina de M. Silva; Maria Dayanne de A. Dantas; Ângelo de Fátima; Ana Lúcia T. Góis Ruiz; Cleiton M. da Silva; João Ernesto de Carvalho; Josué C.C. Santos; Isis M. Figueiredo; Edeildo F. da Silva-Júnior; Thiago M. de Aquino; João X. de Araújo-Júnior; Goutam Brahmachari; Luzia Valentina Modolo

    2018-01-01

    Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (·O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine...

  9. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  10. Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions

    OpenAIRE

    Lu, Zhou

    2007-01-01

    Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...

  11. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2016-12-01

    Full Text Available In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA and vertical electron affinities (VEA, as well as vertical detachment energy (VDE. To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+ and Parr (P+ functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  12. Free radicals from irradiated lyophilized DNA: influence of water of hydration

    International Nuclear Information System (INIS)

    Huettermann, J.; Roehrig, M.; Koehnlein, W.

    1992-01-01

    Lyophilized DNA equilibrated with water vapour at various relative humidities (0-95% H 2 O or D 2 O) was X-irradiated at 77 K and analysed for free radicals by electron paramagnetic resonance (EPR) spectroscopy in the temperature range 77-280 K. Analysis of spectra according to variation in humidity, microwave power and temperature generally yielded a doublet and a triplet spectrum at 77 K. The doublet partially converted into the 5-thymyl radical (TH . ). DNA containing deuterated thymine (dTDNA) revealed that the doublet of ''normal'' DNA should be composed of two similar doublets, one of which should be assigned to the thymine anion, the other possibly the cytosine anion. The triplet signal was more stable and could be related to the guanine cation or its deprotonated successor. Several other patterns were detected among them an allyl radical in highly aquated DNA (95% humidity). Other features occurred either predominantly or exclusively in DNA equilibrated above 66% relative humidity and were ascribed to an influence of the secondary structure. (author)

  13. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  14. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  15. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  16. Pulse radiolysis study on several fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Yao Side [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Haixia; Song Xiyu; Liu Yancheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Wang Wenfeng, E-mail: wangwenfeng@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-04-15

    Reactions of several fluoroquinolones (FQs), including enoxacin, norfloxacin, and ciprofloxacin, with various reactive species such as e{sub aq}{sup -}, N{sup {center_dot}}{sub 3}, and {sup {center_dot}O}H are investigated by pulse radiolysis techniques. The FQ radical anions formed in the reactions of FQs with e{sub aq}{sup -} could either be protonated or deprotonated, and the absorption of FQ radical anions was located around 370 nm. The absorption of the neutral radicals produced in the protonation, and the radical dianions produced in the deprotonation of FQ radical anions were located in the 500-750 nm region. The FQ radical cations formed in the reactions of FQs with N{sub 3}{sup {center_dot}} showed an absorption band around 360 nm. Due to the strong bleaching below 350 nm, the absorption maxima ({lambda}{sub max}) of FQ radical anions, and the {lambda}{sub max} of FQ radical cations were not confirmed. The absorption of the FQ radical anions and cations was clearly pH dependent. Under neutral conditions, the reaction rate constants of FQs with e{sub aq}{sup -} and {sup {center_dot}O}H, which are diffusion controlled, were determined.

  17. An electron spin resonance study of radicals formed from tetrolic acid by radiolysis in a freon matrix

    International Nuclear Information System (INIS)

    Rhodes, C.J.

    1989-01-01

    In the present study, e.s.r. spectra have been observed following γ-irradiation of dilute frozen solutions of tetrolic acid, MeC≡CCO 2 H, in CFCl 3 at 77 K. A typical spectrum is shown which we interpret in terms of an isotropic quartet from the parent radical cation. MeC≡CCo 2 H +· , and an anisotropic triplet arising from the propargyl radical, ·CH 2 C≡CCO 2 H, formed by deprotonation of the parent cation. This appears to be the first example of an alkyne radical cation to be observed in a CFCl 3 matrix. (author)

  18. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    This thesis is concerned with the study of the dynamics of radical pair recombination reactions in solution by flash photolysis Electron Spin Resonance (ESR) and the influence of low static external magnetic fields upon them (MFE). An outline of the concepts of ESR is presented, followed by the theories of Chemically Induced Dynamic Electron Polarisation (CIDEP) of transient radical pairs. This is then followed by a brief review of the flash photolysis ESR apparatus and application of the Bloch equations to solve the equations of time-resolved ESR. Completing the theory section is an overview of the mechanisms by which magnetic fields alter the course of a geminate radical pair reaction in solution. Experimental CIDEP observations of the radical pair produced on photolysis of 1,3-dihydroxypropanone are simulated using polarisation theory and applied to a random-walk diffusion model to find, for the first time, the geminate reaction probability in solutions of varying viscosity. CIDEP spectra of the radical pair formed on photolysis of hydroxypropanone in contrast are not accounted for by current polarisation theory. The discrepancy is due to moderately fast relaxation of the acyl radical, CH 3 CO·, which alters the relative intensities in the ST 0 RPM pattern of the counter radical. Calculations taking into account this now provide an adequate basis for simulation of the spectrum. This method also, in principle, represents a new method for the measurement of phase relaxation times. Concluding the ESR work is a CIDEP study of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. Unusual spin polarisation phenomena are found. The time-resolved optical absorption spectroscopy technique used for detecting low magnetic field effects on neutral radical pair reactions is described. Various improvements to the experiment are discussed which result in the observation of the low field effect for a neutral radical pair produced by Norrish type II chemistry. This is followed by an

  19. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  20. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study

    International Nuclear Information System (INIS)

    O'Neill, P.; Chapman, P.W.

    1985-01-01

    Using the technique of pulse radiolysis, it has been demonstrated that the interaction of hydroxyl-radical adducts of dG and dGMP with a series of reductants with different oxidation potentials at pH 7.0-7.4 proceeds via an electron transfer process (k approx. 1.4-34 x 10 8 dm 3 mol -1 s -1 ). The one-electron oxidation of dGMP (dG) by Br2-anion radicals was shown to result in the formation of a species, the properties of which are similar to those of the OH-radical adduct of dGMP with oxidizing properties based upon both spectral and kinetic information. The nature of the dGMP species produced on interaction with Br2-anion radicals to produce specific base damage. The implications of these findings are presented in terms of potential free radical repair of hydroxyl radical damage and of synergistic effects whereby one reductant may be regenerated at the expense of another reductant. (author)

  1. Ability of nitrones of various structures to control the radical polymerization of styrene mediated by in situ formed nitroxides.

    NARCIS (Netherlands)

    Sciannamea, V.; Guerrero-Sanchez, C.A.; Schubert, U.S.; Catala, J.-M.; Jerome, R.; Detrembleur, C.

    2005-01-01

    The ability of several nitrones to control the radical polymerization of styrene at 110 °C has been investigated by high-throughput experimentation. The nitrone/free radical initiator pair dictates the structure of the nitroxide and the alkoxyamine formed in situ, which determines the position of

  2. Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.

    Science.gov (United States)

    Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka

    2006-01-01

    This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.

  3. Muonium and muonic radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Geeson, D.; Symons, M.C.R.

    1985-01-01

    An energetic positive muon which is injected in a liquid sample of substrate molecules (S) creates an ionization track consisting of substrate cations (S + ) and electrons. Near the end of this track the muon may combine with an electron to form muonium (Mu) which is observable in inert liquids, but which reacts by addition to form a radical. Alternatively, the electron can add to S to form S - , which then combines with the muon to form the radical. Furthermore, instead of ending up in Mu or in a radical the muon may stay in a diamagnetic environment as a solvated muon, or as a muon substituting a proton in a molecule. Of interest in these schemes are the mechanisms and rates of formation of muonated radicals and in particular the rate constants for their reactions to products. Investigations are based on the observation of Mu and the radical by means of the μSR technique in transverse magnetic fields. (Auth.)

  4. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).

    Science.gov (United States)

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo

    2005-04-06

    Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.

  5. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  6. ESR investigation of radicals formed in γ-irradiated vinylidene fluoride based copolymer: P(VDF-co-HFP)

    International Nuclear Information System (INIS)

    Dumas, Ludovic; Albela, Belén; Bonneviot, Laurent; Portinha, Daniel; Fleury, Etienne

    2013-01-01

    Samples of copolymer based on vinylidene fluoride and hexafluoropropene P(VDF-co-HFP) were exposed to γ-radiation performed under an inert atmosphere and the total amount of radicals was quantified by electron spin resonance spectroscopy (ESR). An in-depth study of recorded ESR spectra allowed the identification of several types of radical species formed during radiolysis. Starting from an ESR simulation model established for irradiated PVDF, seven radical species have been identified in the case of P(VDF-co-HFP): five of them are related to the VDF units while the two others are derived from the HFP unit. The model used to simulate the complex superimposed ESR signals is presented. The proportions of each species are discussed and correlated to the amount of HFP units contained in the copolymer, and to the stability of each species depending on their local environment. Furthermore, the evolution of radical density with radiation dose and the decay resulting from annealing at a given temperature are presented. Corresponding spectral evolution shows the progressive predominance of most stable species. - Highlights: ► ESR signal of γ-irradiated P(vinylidene fluoride-co-hexafluoropropene) containing 6 wt% of hexafluoropropene is modeled. ► The formation of seven major radical species is proposed for the first time. ► Despite a low comonomer content, 43% of radicals are localized on hexafluoropropene. ► Effect of dose and annealing highlight radical stability. ► Radical stability is found to depend on both chemical environment and chain location

  7. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  8. Stability of [MeBu3N][Tf2N] under gamma irradiation

    International Nuclear Information System (INIS)

    Bosse, E.; Berthon, L.; Zorz, N.; Monget, J.; Berthon, C.; Bisel, I.; Legand, S.; Moisy, P.

    2008-01-01

    The stability of the ionic liquid [MeBu 3 N][Tf 2 N], dry or after contact with water (where [MeBu 3 N] + is the methyl-tributyl-ammonium cation and [Tf 2 N] - is the bistriflimide anion), was studied under 137 Cs gamma irradiation in argon and in air. In a quantitative study with an absorbed dose of 2 MGy this ionic liquid was highly stable regardless of the radiolysis conditions. The radiolytic disappearance yields determined by ESI-MS were -0.38 and -0.25 μmolJ -1 for the cation and anion, respectively. ESI-MS, NMR, and liquid chromatography coupled with ESI-MS identified a large number of degradation products in very small quantities for the same dose. The cation radicals were formed by the loss of a Bu-radical group, the Me-radical group, or two H-radical atoms to form a double bond with the butyl chain. Radiolysis of the anion produced mainly F-radical and CF 3 -radicals. The anion radicals recombined with the cation to form a wide range of secondary degradation products regardless of the radiolysis conditions. (authors)

  9. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  10. Multiple free-radical scavenging (MULTIS) capacity in cattle serum.

    Science.gov (United States)

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

  11. Free radical formation in deoxyguanosine-5'-monophosphate γ-irradiated in frozen solution. A computer-assisted analysis of temperature-dependent ESR spectra

    International Nuclear Information System (INIS)

    Gregoli, S.; Olast, M.; Bertinchamps, A.

    1977-01-01

    Deoxyguanosine-5'-monophosphate (dGMP) was γ-irradiated at 77 K in frozen aqueous solution and then annealed in a stepwise fashion up to the melting point. During this process, the primary radicals formed in DGMP at 77 K are progressively converted into secondary radical species. This is observed as changes in the spectrum intensity and conformation. Computer-assisted analysis of these temperature-dependent spectra permitted us to identify the transient radical species involved and to draw up single-radical concentration kinetics vs temperature. The radiation chemical behavior of dGMP was found to be quite similar to that of dAMP, investigated previously. In both these purine derivatives, radical anions are converted into radicals of H-addition to C-8, and radical cations are converted into radicals of OH-addition to the same position. In dGMP, however, the cationic channel is only induced under certain experimental conditions (alkaline pH, presence of electron scavengers). At neutral pH, G + radicals are quite stable and finally become deactivated without being converted into secondary GOH radicals. Specific deuterium substitution at carbon C-8, and irradiation in H 2 O or in D 2 O, confirmed that both H + and OH - attachments do occur at C-8, and that both the H + and OH - groups come from the aqueous medium

  12. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  13. A new method for measuring scavenging activity of antioxidants to the hydroxyl radical formed by gamma-irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Hiroe; Ohashi, Yasunori

    2000-01-01

    A new method using ESR spin trapping was proposed for measuring scavenging activity of antioxidants to the hydroxyl (OH) radical. (-)-epigallocatechin gallate (EGCg) and 5,5-dimethyl-l-pyrroline N-oxide (DMPO) were used as an antioxidant and a spin trapping agent, respectively. Conventional method using a Fenton reaction had some defects on the estimation of the activity, because antioxidant disturbed the generating system of OH radical besides it scavenged the spin adduct (DMPO-OH). This method used intense γ-irradiation as OH radical generating system, and the intensity decrease of DMPO-OH after the end of the irradiation was followed to obtain the rate constant of the scavenging of DMPO-OH with EGCg and to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful to compare precisely the OH radical scavenging activity of various antioxidants. (author)

  14. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  15. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    International Nuclear Information System (INIS)

    Schittl, H.; Quint, R.M.; Getoff, N.

    2007-01-01

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N 2 O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N 2 O (used to convert e aq - into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions

  16. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  17. Matrix isolation spectroscopic studies of the radical ions of 2,5-diphenyloxazole (Preprint No. RC-15)

    International Nuclear Information System (INIS)

    Wani, A.M.

    1988-02-01

    The radical ions of 2,5-diphenyloxazole (PPO) produced upon γ-irradiation were studied at 77 K in organic glasses by optical absorption spectroscopy. The dependence of absorption spectra on the nature of the matrix, electron and hole scavengers is interpretted and the absorption bands are assigned to the anionic and cationic radical species of PPO. (author). 6 refs

  18. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  19. METRONIDAZOLE RADICAL ANION FORMATION STUDIED BY MEANS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Sokolová, Romana; Kolivoška, Viliam; Morovská Turoňová, A.; Ambrová, M.; Híveš, J.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1607-1617 ISSN 0010-0765 R&D Projects: GA ČR GP203/09/P502; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : radicals * radiopharmaceuticals * electron transfer Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  20. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  1. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schittl, H. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Quint, R.M. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Getoff, N. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria)]. E-mail: nikola.getoff@univie.ac.at

    2007-10-15

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N{sub 2}O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N{sub 2}O (used to convert e{sub aq} {sup -} into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions.

  2. Migratory Insertion of Hydrogen Isocyanide in the Pentacyano(methyl)cobaltate(III) Anion

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille Hanne; Larsen, Sine

    2003-01-01

    The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been spectrosco......The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been...

  3. 4-Amino-3H-pyrimidin-2-one ('isocytosine') is a short-lived non-radical intermediate formed in the pulse radiolysis of cytosine in aqueous solution

    International Nuclear Information System (INIS)

    Nien Schuchmann, Man; Naumov, Sergej; Schuchmann, Heinz-Peter; Sonntag, Justus von; Sonntag, Clemens von

    2005-01-01

    In the pulse radiolysis of 2'-deoxycytidine (dCyd) in N 2 O-saturated solutions containing 0.5M tertiary butanol to completely scavenge the water radicals, a short-lived intermediate (λmax=287nm) is observed by UV spectroscopy which is attributed to dCydH + , generated in the reaction of dCyd with H + formed during the pulse. By reacting with OH - , which is formed in the pulse in amounts matching that of H + , this intermediate disappears in the μs time range without a change of the spectrum. Similarly, cytosine (Cyt) gives rise to CytH + which, in contrast, in part transforms into another species (λmax=286nm) which can be assigned to isocytosine 1, 4-amino-3H-pyrimidin-2-one, a tautomer of Cyt which is formed by two routes (i) deprotonation of CytH + at N(1) by OH - and (ii) deprotonation of Cyt and reprotonation of the Cyt anion by water at N(3). Compared to Cyt, 1 is richer in Gibbs' free enthalpy by 14kJmol -1 . Its presence in low equilibrium concentrations has also been observed by conventional UV spectroscopy, making use of the increase of its equilibrium concentration with increasing temperature. From these data, an absorption coefficient of 3.3x10 4 dm 3 mol -1 cm -1 at 286nm has been calculated. Supporting quantum chemical calculations are also reported

  4. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  5. The fluoride content of an anion exchange resin in the fluoride form

    International Nuclear Information System (INIS)

    Kleijn, J.P. de; Zanten, B. van

    1977-01-01

    The fluoride content of an anion exchange resin in the F - -form depends on the material of the equipment used for the preparation. If a glass equipment is used too much fluorine is introduced. The experimental results are explained by taking into account a competition of F - and SiF 6 2- for the hydroxyl positions of the resin (OH - ). Because SiF 6 2- is bivalent and has a lower hydration energy than F - , the resin has a much larger affinity for this species than for F - . If a higher concentration of SiF 6 2- is generated by an intensive contact of the HF solution with glass, two OH-groups may be replaced by one SiF 6 2- . This results in a resin with 3 times as much fluorine as calculated from the chloride capacity. If the formation of SiF 6 2- is impossible as for example in teflon equipment, the same capacity is obtained for chloride and fluoride. (T.G.)

  6. Muonium-containing vinyl radicals

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Symons, M.C.R.; Roduner, E.; Heming, M.

    1987-01-01

    Exposure of trimethylsilylacetylene and bis(trimethylsilyl)acetylene to positive muons gave radicals whose muon-electron hyperfine coupling constants establish that the corresponding vinyl radicals were formed. (author)

  7. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  8. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  9. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  10. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  11. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  12. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  13. Hydroxyl-radical-induced oxidation of cyclic dipeptides: Reactions of free peptide radicals and their peroxyl radicals

    International Nuclear Information System (INIS)

    Mieden, O.J.

    1989-01-01

    In the course of this study investigations were carried out into the reactions of hydroxyl radicals and hydrogen atoms with cyclic dipeptides as well as the subsequent reactions of peptide radicals and their peroxyl radicals in aqueous solution. The radiolysis products formed in the absence and presence of oxygen or transient metal complexes were characterized and determined on a quantitative basis. The linking of information from product analyses to the kinetic data for transient species obtained by time-resolving UV/VIS and conductivity measurements (pulse radiolysis) as well as computer-assisted simulations of individual events during the reaction permitted an evaluation of the mechanisms underlying the various processes and an identification of interim products with short life-times, which did or did not belong to the group of radicals. Through the characterization of key reactions of radicals and peroxyl radicals of this substance class a major advance has been made towards a better understanding of the role of radicals in the peptide compound and the mechanisms involved in indirect radiation effects on long-chain peptides and proteins. (orig.) [de

  14. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor.

    Science.gov (United States)

    El-Agamey, Ali; McGarvey, David J

    2016-01-01

    The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of

  15. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  16. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  17. Peculiarities of the free radical processes in rat liver mitochondria under toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2016-04-01

    Full Text Available The rate of superoxide anion radical, hydroxyl radical and hydrogen peroxide generation, the level of oxidative modification of mitochondrial proteins in the liver of rats with toxic hepatitis was investigated on the background of alimentary protein deficiency. We did not find significant increases of the intensity of free radical processes in liver mitochondria of rats maintained on the protein-deficient ration. The most significant intensification of free radical processes in liver mitochondria is observed under the conditions of toxic hepatitis, induced on the background of alimentary protein deprivation. Under these conditions the aggravation of all studied forms of reactive oxygen species generation was observed in liver mitochondria. The generation rates were increased as follows: O2 – by 1.7 times, Н2О2 – by 1.5 times, •ОН – practically double on the background of accumulation of oxidized mitochondria-derived proteins. The established changes in thiol groups’ redox status of respiratory chain proteins insoluble in 0.05 M sodium-phosphate buffer (pH 11.5, and changes of their carbonyl derivatives content may be considered as one of the regulatory factors of mitochondrial energy-generating function.

  18. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    International Nuclear Information System (INIS)

    Montana, P.; Pappano, N.; Debattista, N.; Avila, V.; Posadaz, A.; Bertolotti, S.G.; Garcia, N.A.

    2003-01-01

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet ( 1 Rf*) and triplet ( 3 Rf*) excited states (with bimolecular rate constants in the order of 10 9 M -1 s -1 ) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of ( 1 Rf*) When the concentration of the flavones is in the mM range or lower, ( 3 Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O 2 .- , which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  19. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    Science.gov (United States)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  20. The radiation chemistry of poly(arylene ether phosphine oxide)s

    International Nuclear Information System (INIS)

    Hill, D.J.T.; Hopewell, J.L.; O'Donnell, J.H.; Pomery, P.J.

    1995-01-01

    Electron spin resonance spectroscopy has been used to study the radicals which are formed on the gamma radiolysis of selected poly(arylene ether phosphene oxide)s which have been irradiated either at 77 or 303 K. At 77 K both neutral and anionic radicals are formed, but the anionic radicals are unstable above 200 K. Two types of neutral radicals were observed. They were the phenyl and phenoxyl radicals formed by homolytic scission of the backbone ether bonds. 31 P NMR spectroscopy showed that no new structures involving phosphorus were formed, but there was an indication that crosslinking may take place at aromatic rings adjacent to phosphorus atoms. Solution viscosity measurements indicated that the polymers undergo nett chain scission on irradiation, but the nett scission yield is very small. (author)

  1. Free Br atom and free radical reactions in the radiolysis of 1,2 dibromoethane (DBE) in air free aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1986-01-01

    G(Br - ) have been reported in the free radical degradation of 1,2 DBE in Ar - and N 2 O-saturated solutions. It is clear from the results that a small chain reaction occurs, t-butanol radical reacts with 1,2 DBE to give Br - . At pH 12.3, high (Br - ) are attributed to another chain reaction involving O - radical anion. Dose rate studies confirm the occurrence of chain reaction. (author). 5 refs

  2. Effect of Structure on Charge Distribution in the Isatin Anions in Aprotic Environment: Spectral Study

    Directory of Open Access Journals (Sweden)

    Pavol Tisovský

    2017-11-01

    Full Text Available Five isatin anions were prepared by deprotonation of initial isatins in aprotic solvents using basic fluoride and acetate anions (F− and CH3COO−. The F− basicity is sufficient to deprotonate isatin NH hydrogen from all the studied compounds. This process is reversible. In the presence of proton donor solvents, the anions form the corresponding isatins. The isatin hydrogen acidity depends on the overall structure of the isatin derivatives. The anions were characterized by ultraviolet–visible (UV–Vis, Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopy. Interestingly, the anions form aggregates at concentrations above 10−3 mol·dm−3. Further, the effect of cations on the UV–Vis spectra of the studied anions was studied. Charge transfer and its distribution in the anion depends on the radius and the cation electron configuration. The alkali metal cations, tetrabutylammonium (TBA+, Mg2+ and Ag+, interact with the C-2 carbonyl oxygen of the isatin anion. The interaction has a coulombic character. On the other hand, Cd2+, Zn2+, Hg2+, Co2+, and Cu+ cations form a coordinate bond with the isatin nitrogen.

  3. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  4. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  5. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series

    International Nuclear Information System (INIS)

    Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.

    2014-01-01

    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z − and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results

  6. Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    T. Y. Kuznetsova

    2017-12-01

    Full Text Available Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH and melatonin (MLT molecules with oxygen radicals (•OH and • OOˉ it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves. This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.

  7. Reduction of lumichrome by the radical anions of CO2 and lipoamide

    International Nuclear Information System (INIS)

    Ahmad, R.; Armstrong, D.A.

    1984-01-01

    The uptake of reducing equivalents of .CO 2 - by lumichrome in spectrophotometric titrations has been re-examined in the light of a recently reported extinction coefficient of 10 500 M -1 cm -1 at pH 6, which is in agreement with 10 270 +- 100 M -1 cm -1 determined here. The average uptake was 1.8 +- 0.1, independent of pH in the range 6.3-9.0. The major product appears to be a dihydro-alloxazine, which can be reoxidized quantitatively to lumichrome by .Br 2 - radicals or by O 2 . As in the case of dihydroflavins, oxidation by O 2 is biphasic. As in the case of flavins, a two electron reduction of lumichrome was also observed with the disulphide monoanion of lipoamide (LS. 2 - ), but that reduction does not go to 100 per cent yield. Contrary to our earlier conclusions, which were based on an erroneous extinction coefficient, the combination of lumichrome radicals (2.LcH→HLc-LcH) was of relatively little (< approx. 20 per cent) importance, and the behaviour of lumichrome on treatment with reducing species was rather similar to that of flavins. (author)

  8. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties

    Science.gov (United States)

    Witwicki, Maciej; Jezierska, Julia

    2012-06-01

    Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.

  9. An Anthracene-Based Tripodal Chemosensor for Anion Sensing

    Directory of Open Access Journals (Sweden)

    Whitney A. Quinn

    2010-05-01

    Full Text Available An anthracene-based tripodal ligand was synthesized from the condensation of tren with 9-anthraldehyde, and the subsequent reduction with sodium borohydride. The neutral ligand was protonated from the reaction with p-toluenesulfonic acid to give a triply charged chemosensor that was examined for its anion binding ability toward fluoride, chloride, bromide, sulfate and nitrate by the fluorescence spectroscopy in DMSO. The addition of an anion to the ligand resulted in an enhancement in fluorescence intensity at the excitation of 310 nm. Analysis of the spectral changes suggested that the ligand formed a 1:1 complex with each of the anions, showing strong affinity for fluoride and sulfate in DMSO. The unsubstituted tren was reacted with sulfuric acid to form a sulfate complex and the structure was determined by the X-ray crystallography. Analysis of the complex revealed that three sulfates are held between two ligands by multiple hydrogen bonding interactions with protonated amines.

  10. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  11. A study of quasi reversible nitro radical anion from β-nitrostyrene at ...

    Indian Academy of Sciences (India)

    Unknown

    pound 1a nor 1b may be usable as a source of free radicals and hence would not be suitable as thera- peutic agents.23–26 In our study we report that this need not be true as it depends on the type of elec- trode system employed. Evidently, it depends upon the rate of charge transfer and at WICPE it follows slow kinetics.

  12. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  13. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  14. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  15. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    Science.gov (United States)

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  16. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  17. DFT Study on Molecular Structures and ROS Scavenging Mechanisms of Novel Antioxidants from Lespedeza Virgata

    Science.gov (United States)

    Li, Min-jie; Zhang, Liang-miao; Liu, Wei-xia; Lu, Wen-cong

    2011-04-01

    The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O—H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.

  18. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  19. Formation and reactivity of free radicals in 5-hydroxymethyl-2-furaldehyde--the effect on isoprenaline photostability.

    Science.gov (United States)

    Brustugun, Jørgen; Tønnesen, Hanne H; Edge, Ruth; Navaratnam, Suppiah

    2005-05-13

    Solutions of glucose are used as diluents for drugs in various drug infusions. When sterilized by heat small amounts of the substance 5-hydroxymethyl-2-furaldehyde (5-HMF) is produced from glucose. At a hospital ward such infusions may be exposed to irradiation; including UV-light. The photoreactivity of the furaldehyde is investigated. It is shown to photodestabilize the catecholamine isoprenaline. It is shown to be a producer, but also a consumer, of singlet oxygen. The excited triplet, cation and anion radical have been produced by pulse radiolysis and flash photolysis and their absorbance characteristics have been determined. The triplet absorption spectrum showed absorption bands at 320 and 430 nm with molar absorption coefficients of 4700 and 2600 M-1 cm-1, respectively. The anion radical showed absorption bands at 330 and 420 nm with molar absorption coefficients of 2000 and 300 M-1 cm-1, respectively. The cation radical had an absorption band at 320 nm with a molar absorption coefficient of 5000 M-1 cm-1. The quantum yield for the production of singlet oxygen, sensitized by the 5-HMF triplet, was determined to be 0.6, whilst the quantum yield for the triplet formation was 1.0. Aqueous solutions of 5-HMF were found to photoionize to yield the hydrated electron and the cation radical of 5-HMF in a biphotonic process. The influences of pH, buffer and glucose on the formation of transients were evaluated. The reactions between 5-HMF and the solvated electron, the hydroxyl radical and the superoxide were also studied.

  20. The entry of free radicals into polystyrene latex particles

    International Nuclear Information System (INIS)

    Adams, M.E.; Trau, M.; Gilbert, R.C.; Napper, D.R.

    1988-01-01

    Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24 ± 3 kJ mol -1 , consistent with entry being controlled by a physical (e.g. diffusional) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by collision of free radicals with the latex particles, surfactant desorption, and an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure

  1. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  2. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  3. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  4. Radiation-induced cleavage of disulfide bonds in proteins. Clivage radiolytique des ponts disulfure des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V; Tourbez, H; Lhoste, J M [Paris-11 Univ., 91 - Orsay (FR); Houee-Levin, C [Paris-5 Univ., 75 (FR)

    1991-06-01

    The reduction of the disulfide bonds in apo-Riboflavin-Binding Protein (apoRBP) by the CO{sub 2}{sup -}{center dot} radical occurred under {gamma}-ray irradiation as a chain reaction whose efficiency increased upon acidification of the medium. Pulse-radiolysis analysis showed a rapid one-electron oxidation of the disulfide bonds yielding the anionic or protonated form of the disulfide radical. The main decay path of this radical under acidic conditions consisted of the rapid formation of a thiyl radical intermediate in equilibrium with the closed, cyclic form. At pH 8 the disulfide radical anion decayed via intramolecular and/or intermolecular routes including disproportionation, protein-protein crosslinking, non-dismutative recombination processes, and reaction with sulfhydryl groups in pre-reduced systems.

  5. Direct and ketone-sensitized photoconversion of 1-nitro-9,10-anthraquinone to 1-amino-9,10-anthraquinone mediated by donor radicals

    International Nuclear Information System (INIS)

    Goerner, Helmut; Gruen, Henry

    2010-01-01

    The full photoreduction of 1-nitro-2-R-9,10-anthraquinone (R = H: N1, methyl: N2) was studied in benzene, acetonitrile and acetonitrile-water mixtures in the presence of 2-propanol and triethylamine (TEA). The major photoproduct is the fluorescing 1-amino-2-R-AQ (A1, A2). The quantum yield of full reduction increases with the donor concentration, approaching Φ NH 2 =0.1. The intermediates involved are assigned on the basis of spectral and kinetic characteristics. The short-lived triplet state (≤20 ns) of N2 can be intercepted by 2-propanol or TEA, thereby forming the spectroscopically hidden donor radicals and the nitroAQ radicals which absorb at 400 and 540 nm; the latter band is due to the radical anion. The triplet state of N1 was not observed at room temperature, but the radical properties and decay in the nitrosoAQ are similar for N1 and N2. For donors in lower concentrations Φ NH 2 is strongly increased in the presence of benzophenone, acetophenone or acetone, approaching 0.22. The results under direct and sensitized conditions are compared and major dependences and the effects of mixtures of acetonitrile with water are outlined.

  6. Direct and ketone-sensitized photoconversion of 1-nitro-9,10-anthraquinone to 1-amino-9,10-anthraquinone mediated by donor radicals

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, Helmut, E-mail: goerner@mpi-muelheim.mpg.de [Max-Planck-Institut fuer Bioanorganische Chemie, D-45413 Muelheim an der Ruhr (Germany); Gruen, Henry [Max-Planck-Institut fuer Bioanorganische Chemie, D-45413 Muelheim an der Ruhr (Germany)

    2010-02-18

    The full photoreduction of 1-nitro-2-R-9,10-anthraquinone (R = H: N1, methyl: N2) was studied in benzene, acetonitrile and acetonitrile-water mixtures in the presence of 2-propanol and triethylamine (TEA). The major photoproduct is the fluorescing 1-amino-2-R-AQ (A1, A2). The quantum yield of full reduction increases with the donor concentration, approaching {Phi}{sub NH{sub 2}}=0.1. The intermediates involved are assigned on the basis of spectral and kinetic characteristics. The short-lived triplet state ({<=}20 ns) of N2 can be intercepted by 2-propanol or TEA, thereby forming the spectroscopically hidden donor radicals and the nitroAQ radicals which absorb at 400 and 540 nm; the latter band is due to the radical anion. The triplet state of N1 was not observed at room temperature, but the radical properties and decay in the nitrosoAQ are similar for N1 and N2. For donors in lower concentrations {Phi}{sub NH{sub 2}} is strongly increased in the presence of benzophenone, acetophenone or acetone, approaching 0.22. The results under direct and sensitized conditions are compared and major dependences and the effects of mixtures of acetonitrile with water are outlined.

  7. Unconventional field induced phases in a quantum magnet formed by free radical tetramers

    Science.gov (United States)

    Saúl, Andrés; Gauthier, Nicolas; Askari, Reza Moosavi; Côté, Michel; Maris, Thierry; Reber, Christian; Lannes, Anthony; Luneau, Dominique; Nicklas, Michael; Law, Joseph M.; Green, Elizabeth Lauren; Wosnitza, Jochen; Bianchi, Andrea Daniele; Feiguin, Adrian

    2018-02-01

    We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate are different than those participating in the high-field one.

  8. Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals

    Science.gov (United States)

    Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.

    2018-05-01

    The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.

  9. Stability of [MeBu3N][Tf2N] under gamma irradiation

    International Nuclear Information System (INIS)

    Bosse, Emilie; Berthon, Laurence; Zorz, Nicole; Monget, Julie; Berthon, Claude; Bisel, Isabelle; Legand, Solene; Moisy, Philippe

    2008-01-01

    The stability of the ionic liquid [MeBu 3 N][Tf 2 N], dry or after contact with water (where [MeBu 3 N] + is the methyl-tributyl-ammonium cation and [Tf 2 N] - is the bistriflimide anion), was studied under 137 Cs gamma irradiation in argon and in air. In a quantitative study with an absorbed dose of 2 MGy this ionic liquid was highly stable regardless of the radiolysis conditions. The radiolytic disappearance yields determined by ESI-MS were -0.38 and -0.25 μmol*J -1 for the cation and anion, respectively. ESI-MS, NMR, and liquid chromatography coupled with ESI-MS identified a large number of degradation products in very small quantities for the same dose. The cation radicals were formed by the loss of a Bu . group, the Me . group, or two H . atoms to form a double bond with the butyl chain. Radiolysis of the anion produced mainly F . and CF 3 . radicals. The anion radicals recombined with the cation to form a wide range of secondary degradation products regardless of the radiolysis conditions. (authors)

  10. Pulse radiolysis of solutions of trans-stilbene

    International Nuclear Information System (INIS)

    Langan, J.R.; Salmon, G.A.

    1982-01-01

    On pulse radiolysis of solutions of trans-stilbene (t-St) in THF the radical-anion of t-St is formed by reaction of e - sub(s) with t-St. The transient absorption spectrum observed with lambdasub(max) at 500 and 720 nm is attributed to the unassociated St - . The subsequent decay of the radical-anion is accounted for by reaction with the counter-cation of THF formed on radiolysis and with radiolytically generated radicals; rate constants for these processes are estimated. Addition of sodium tetrahydridoaluminate (NAH) results in the radical-anion being associated with Na + as a contact ion-pair and a shift of lambdasub(max) to 490 nm. In the presence of the lithium salt the absorption spectrum of the radical-anion reverts to 500 nm. On pulse radiolysis of solutions containing NAH the main reaction forming St - is that of (Na + , e - sub(s))ion pairs with t-St. In addition there is a delayed formation of St - over a period of microseconds. The presence of tetrahydridoaluminate salts also greatly enhances the stability of St - and at high doses per pulse little decay was observed over 700 μs. The variation of G(St - ) with [NAH] was studied and was found to attain a plateau value of 2.0 at the higher concentrations. (author)

  11. Muon level crossing resonance spectroscopy applied to free-radical formation

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Barnabas, M.V.; Walker, D.C.

    1989-01-01

    Muon Level Crossing Resonance Spectroscopy has been used to explore two aspects of muonium chemistry: unique free radicals and muonated radical yields. (1) A variety of new free-radicals have been seen by LCR. For instance, in thioacetamide the only radical produced from muonium is the S sm-bullet radical formed when Mu adds to the C of the C=S bond. In allylbenzene a whole range of radicals form with substantial yields (two side-chain and three ring additions); whereas in styrene, 85% of the radicals have Mu bonded to the end C of the side-chain and there is no meta-adduct at all. (2) Absolute yields of the radicals formed by interaction of muonium atoms in water with acrylamide as a solute (and with benzene in n-hexane) have shown that all muons not directly incorporated into diamagnetic molecules (such as MuH) appear as muonated free radicals. i.e. the missing fraction is found

  12. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  13. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. First examples of intramolecular addition of primary amidyl radicals to olefins

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, P.; Drouin, C.; Lessard, J. [Sherbrooke Univ., PQ (Canada). Dept. de Chimie

    2005-07-01

    This paper presents the first examples of radical cyclization involving a primary amidyl radical and a pendant olefin. Amidyl radicals have attracted interest in terms of their structure, reactivity, and ways to generate them. The intramolecular addition of an amidyl radical on a pendant olefin appears to be a powerful synthetic tool for creating nitrogen-containing heterocycles. Although several examples of cyclization involving secondary amidyl radicals are cited in the the literature, there are no examples of a successful cyclization involving a primary amidyl radical. This is because all attempts to prepare the usual radical precursors have failed when applied to olefinic primary amides. This study reveals that N-(phenylthio) derivatives of olefinic primary amides can be easily prepared and that nitrogen heterocycles resulting from their radical cyclization can be obtained in good to very good yields. Four olefinic primary amides were chosen as models for radical cyclization of primary amidyl radicals. They were prepared from the corresponding carboxylic acids via the acid chlorides. Conversion of primary amides into suitable amidyl radical precursors was also examined. The study showed that N-(phenylthio) amides could be easily prepared by following a slightly modified protocol developed by Esker and Newcomb, by reacting the anion of the amide with phenylsulfenyl chloride. In particular, olefinic N-(phenylthio) amides were prepared and used as primary amidyl radical precursors in a reaction with a solution of 2,2'-azobis(isobutyronitrile) in catalytic quantities and tributyltin hydride in benzene. The resulting yields of cyclic products ranged from 63 to 85 per cent. The intent of the study was to demonstrate that it is no longer necessary to prepare an N-protected precursor and then remove the protecting group after cyclization. Further studies are currently underway. 10 refs., 1 tab.

  15. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  16. Synthesis, crystal structure and properties of K2Ta2S10: A novel ternary tantalum polysulfide with TaS8 polyhedra forming infinite anionic chains

    International Nuclear Information System (INIS)

    Wu Yuandong; Naether, Christian; Bensch, Wolfgang

    2005-01-01

    The new ternary alkali tantalum polysulfide K 2 Ta 2 S 10 has been synthesized by reacting TaS 2 with an in situ formed melt of K 2 S 3 and S at 773K. The compound crystallizes with four formula units in the monoclinic space group P2 1 /n (No. 14) with lattice parameters of a=14.9989(13)A,b=6.4183(4)A,c=15.1365(13)A,β=117.629(9) o . The structure contains two different zigzag chain anions [TaS 5 ] - , running parallel to the crystallographic b-axis separated by potassium cations. The two crystallographically independent tantalum atoms are in a distorted bi-capped trigonal prismatic environment of eight sulfur atoms which was never observed before. The TaS 8 polyhedra share three S atoms on each side to form the anionic chains. The compound was characterized with FIR and Raman spectroscopy

  17. Electroreduction mechanism of N-phenylhydroxylamines in aprotic solvents: N-(2-nitrophenyl)- and N-(3-nitrophenyl)hydroxylamines

    International Nuclear Information System (INIS)

    Mendkovich, Andrey S.; Syroeshkin, Mikhail A.; Nasybullina, Darya V.; Mikhailov, Mikhail N.; Gultyai, Vadim P.; Rusakov, Alexander I.

    2017-01-01

    In continuation of our previous studies on N-(4-nitrophenyl)hydroxylamine (1), we investigated the electroreduction of N-(2- (2) and N-(3-nitrophenyl)hydroxylamines (3) in N,N-dimethylformamide/Bu_4NClO_4, using chronoamperometry, cyclic voltammetry, digital simulation and quantum chemical calculations. It was shown that anion radical 3 is rather stable and does not eliminate a hydroxide anion, unlike 2 whose electroreduction mechanism is similar to that previously observed for 1. At the same time, the elimination reaction is observed for dianion of 3 formed at potentials of the first electron transfer by disproportionation of anion radicals. Results of quantum-chemical calculations show that the high stability of anion radical 3 results from the absence of unpaired electron density on its hydroxylamine group.

  18. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  19. Corynebacterium jeikeium jk0268 constitutes for the 40 amino acid long PorACj, which forms a homooligomeric and anion-selective cell wall channel.

    Directory of Open Access Journals (Sweden)

    Narges Abdali

    Full Text Available Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.

  20. Photoinduced electron transfer to fullerene C70 (An in situ EPR study)

    International Nuclear Information System (INIS)

    Brezova, V.; Dvoranova, D.; Kostova, B.; Stasko, A.

    1999-01-01

    The photoexcitation of fullerene C 70 by monochromatic light (λ = 546 nm) in the presence of electron donating substrate 3,3',5,5'-tetramethyl-benzidine (TMB) resulted in the charge-transfer, quenching the fullerene triplet state and forming corresponding C 70 anion-radicals. Analogously to the photo-reduction of C 60 , two EPR signal were observed upon in situ irradiation in the cavity of EPR spectrometer. EPR singlet A characterized by g-value, g A = 2.0009 and peak-to-peak line-width, pp A = 0.013 mT was assigned to the C 70 mono-anion. Signal B (g B = 2.0011; pp B = 0.011 mT) was tentatively attributed to the C 70 di-anion or to the associated forms of mono-anions. The stabilization of photo-generated anion-radicals significantly depends on solvent polarity. (authors)

  1. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, H.; Davies, M.J.; Andersen, Henrik Jørgen

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  2. The effects of ionizing radiation on deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Cullis, P.M.; Jones, G.D.D.; Lea, J.; Symons, M.C.R.; Sweeney, M.

    1987-01-01

    Exposure of frozen, deoxygenated, aqueous solutions of DNA to 60 Co γ-rays at 77 K results in the formation of guanine-centred radical-cations (Gsup(radical +)) and thymine-centred radical-anions (Tsup(radical -)). Both these primary centres are thought to be capable of inducing DNA strand-breaks, both single (SSB) and double (DSB). When low concentrations of a range of water-soluble thiols were added, there was no change in the initial yield of Gsup(radical +) and Tsup(radical -) as judged from the e.s.r. spectra. However, on annealing, the normal pattern of radical reactions was abruptly modified at ca. 200 ± 5 K, with the DNA-centred radicals being dramatically reduced in concentration with the concomitant growth of e.s.r. signals characteristic of RSsup(radical) - SR - radical-anions. For example, for solutions containing one thiol molecule per 25 base-pairs, there was a loss of ca. 50% in the concentration of DNA radicals at this temperature. Using plasmid DNA, the change in the numbers of SSBs and DSBs was monitored when various thiols were present. There was a marked fall in the yields of both these events, in accord with the e.s.r. results. It is concluded that these thiols react by hydrogen-atom donation to various DNA radicals thereby forming RSsup(radical) radicals which rapidly form RSsup(radical)SR - radical-anions. It seems that, under our conditions, neither of these sulphur radicals is able to react with DNA. In the presence of oxygen, the results are less definitive, the degree of repair being a function of the relative concentrations of oxygen and thiol. E.s.r. evidence for the formation of DNA-centred peroxy radicals and their reaction with thiols is presented, and also there is evidence for the addition of oxygen to RSsup(radical) radicals to give RSOsup(anion radical) 2 radicals. The latter are probably able to react with DNA. (author)

  3. Generation and reactivity of ketyl radicals with lignin related structures. On the importance of the ketyl pathway in the photoyellowing of lignin containing pulps and papers.

    Science.gov (United States)

    Fabbri, Claudia; Bietti, Massimo; Lanzalunga, Osvaldo

    2005-04-01

    [reaction: see text] Ketyl radicals with lignin related structures have been generated by means of radiation chemical and photochemical techniques. In the former studies ketyl radicals are produced by reaction of alpha-carbonyl-beta-aryl ether lignin models with the solvated electron produced by pulse radiolysis of an aqueous solution at pH 6.0. The UV-vis spectra of ketyl radicals are characterized by three main absorption bands. The shape and position of these bands slightly change when the spectra are recorded in alkaline solution (pH 11.0) being now assigned to the ketyl radical anions and a pKa = 9.5 is determined for the 1-(3,4,5-trimethoxyphenyl)-2-phenoxyethanol-1-yl radical. Decay rates of ketyl radicals are found to be dose dependent and, at low doses, lie in the range (1.7-2.7) x 10(3) s(-1). In the presence of oxygen a fast decay of the ketyl radicals is observed (k2 = 1.8-2.7 x 10(9) M(-1) s(-1)) that is accompanied by the formation of stable products, i.e., the starting ketones. In the photochemical studies ketyl radicals have been produced by charge-transfer (CT) photoactivation of the electron donor-acceptor salts of methyl viologen (MV2+) with alpha-hydroxy-alpha-phenoxymethyl-aryl acetates. This process leads to the instantaneous formation of the reduced acceptor (methyl viologen radical cation, MV+*), as is clearly shown in a laser flash photolysis experiment by the two absorption bands centered at 390 and 605 nm, and an acyloxyl radical [ArC(CO2*))(OH)CH2(OC6H5)], which undergoes a very fast decarboxylation with formation of the ketyl radicals. Steady-state photoirradiation of the CT ion pairs indicates that 1-aryl-2-phenoxyethanones are formed as primary photoproducts by oxidation of ketyl radicals by MV2+ (under argon) or by molecular oxygen. Small amounts of acetophenones are formed by further photolysis of 1-aryl-2-phenoxyethanones and not by beta-fragmentation of the ketyl radicals. The high reactivity of ketyl radicals with oxygen coupled

  4. Hybrid molecular materials based upon organic pi-electron donors and inorganic metal complexes. Conducting salts of bis(ethylenediseleno)tetrathiafulvalene (BEST) with the octahedral anions hexacyanoferrate(III) and nitroprusside

    CERN Document Server

    Clemente-Leon, M; Galan-Mascaros, J R; Giménez-Saiz, C; Gómez-García, C J; Fabre, J M; Mousdis, G A; Papavassiliou, G C

    2002-01-01

    The synthesis, structure and physical characterization of three new radical salts formed by the organic donor bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF or BEST) and the paramagnetic hexacyanoferrate(III) anion [Fe(CN) sub 6] sup 3 sup - or the photochromic nitroprusside anion [Fe(CN) sub 5 NO] sup 2 sup - are reported: (BEST) sub 4 [Fe(CN) sub 6] (1), (BEST) sub 3 [Fe(CN) sub 6] sub 2 centre dot H sub 2 O (2) and (BEST) sub 2 [Fe(CN) sub 5 NO] (3). Salts 1 and 3 show a layered structure with alternating organic (beta-type packing) and inorganic slabs. Salt 2 shows an original interpenetrated structure probably due to the unprecedented presence of (BEST) sup 2 sup + dications. The three salts are semiconductors although salt 1 exhibits a high room temperature conductivity and a semiconducting-semiconducting transition at ca. 150 K which has been attributed to a dimerization in the organic sublattice.

  5. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  6. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  7. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    International Nuclear Information System (INIS)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju

    2016-01-01

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN"- selective, colorimetric sensor either without or with UV irradiation

  8. E. S. R. study of free radicals formed in the irradiated DNA-Ro 7-0582 complex

    Energy Technology Data Exchange (ETDEWEB)

    Washino, K; Kuwabara, M; Yoshii, G [Hokkaido Univ., Sapporo (Japan)

    1979-01-01

    The effect of Ro 7-0582 (1-(2-hydroxy-3-methoxypropyl)-2-nitro-imidazole) on the formation of free radicals in ..gamma..-irradiated dry DNA has been investigated. Dry samples of DNA-Ro 7-0582 and DNA nucleotide-Ro 7-0582 were prepared, and e.s.r. spectra observed at 77 K immediately after gamma-irradiation. The samples were then warmed to 297 K for 30 min, and the spectra again observed at 77 K. The sensitizer brought about an increase of 30 to 40% in radical formation in DNA. The results indicated that Ro 7-0582 acts as an efficient electron scavenger on the TMP and dAMP moieties, increasing the incidence of sugar damage. Since TMP and dAMP form a complementary pair in the DNA double helix, the increase in double strand breaks induced by electron-affinic compounds seems to be responsible for the molecular mechanism of radiosensitization in living cells.

  9. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  10. Radiation Chemistry of Xenon Trioxide, Xenate and Perxenate and Photochemistry of Perxenate - A Pulse Radiolysis and Laser Flash-Photolysis Study

    DEFF Research Database (Denmark)

    Kläning, U. K.; Sehested, Knud; Wolff, T.

    1982-01-01

    O2–6 are assumed. HXeO3 and H3XeO2–6 are formed in reactions of the hydrated electron with XeO3 and HXeO3–6, respectively. HXeO4 and H3XeO2–7 are formed in reactions of the hydroxyl radical with XeO3 and HXeO3–6 in which the hydroxyl radical adds to a ligand oxygen atom to form peroxy compounds. HXe......O2–5 is formed in a reaction with the hydroxyl radical anion in which the hydroxyl radical anion adds to the xenon atom and by photolysis of HXeO3–6: HXeO3–6 [graphic omitted] HXeO2–5+ O–. XeV, XeVII and XeIX and corresponding iodine species in the oxidation states four, six and eight have similar...

  11. Study the active site of flavonoid applying radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jilan; Sun Gang; Zhang Fugen; He Yongke; Li Jiuqiang [Department of Technical Physics, Peking Univ., Beijing (China)

    2000-03-01

    Flavonoid are a large and important class of naturally occurring, low molecular weight benzo-{gamma}-pyrone derivatives which are reported to have a myriad of biological activities, but the study on the active sites of flavonoids is still ambiguous. In this paper, rutin, quercetin and baicalin have been selected as model compounds. It is well known that rutin is used in inhibiting arteriosclerosis and baicalin is antibacterial and antiviral. They have similar basic structure, but their medicinal properties are so different, why? As most flavonoids contain carbonyl group, which can capture electron effectively, we predict that flavonoids can capture electron to form radical anion. The formation of anion radical may have influence on the mitochondrial electron transport chain. The difference in the ability of forming anion radical may cause the difference in their medicinal effects. (author)

  12. Study the active site of flavonoid applying radiation chemistry

    International Nuclear Information System (INIS)

    Wu Jilan; Sun Gang; Zhang Fugen; He Yongke; Li Jiuqiang

    2000-01-01

    Flavonoid are a large and important class of naturally occurring, low molecular weight benzo-γ-pyrone derivatives which are reported to have a myriad of biological activities, but the study on the active sites of flavonoids is still ambiguous. In this paper, rutin, quercetin and baicalin have been selected as model compounds. It is well known that rutin is used in inhibiting arteriosclerosis and baicalin is antibacterial and antiviral. They have similar basic structure, but their medicinal properties are so different, why? As most flavonoids contain carbonyl group, which can capture electron effectively, we predict that flavonoids can capture electron to form radical anion. The formation of anion radical may have influence on the mitochondrial electron transport chain. The difference in the ability of forming anion radical may cause the difference in their medicinal effects. (author)

  13. New electrochemical oscillator based on the cation-catalyzed reduction of nitroaromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana; Fanelli, N.

    2009-01-01

    Roč. 54, č. 22 (2009), s. 4991-4996 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400802; GA AV ČR IAA400400505; GA ČR GA203/08/1157; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : nitroaromatic radical * cationic catalysis * electrochemical impendance * oscillation Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  14. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  15. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  16. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  17. Stability of [MeBu{sub 3}N][Tf{sub 2}N] under gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, Emilie; Berthon, Laurence; Zorz, Nicole; Monget, Julie; Berthon, Claude; Bisel, Isabelle; Legand, Solene; Moisy, Philippe [CEA Marcoule, DCRP/SCPS, BP 17171, 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    The stability of the ionic liquid [MeBu{sub 3}N][Tf{sub 2}N], dry or after contact with water (where [MeBu{sub 3}N]{sup +} is the methyl-tributyl-ammonium cation and [Tf{sub 2}N]{sup -} is the bistriflimide anion), was studied under {sup 137}Cs gamma irradiation in argon and in air. In a quantitative study with an absorbed dose of 2 MGy this ionic liquid was highly stable regardless of the radiolysis conditions. The radiolytic disappearance yields determined by ESI-MS were -0.38 and -0.25 {mu}mol*J{sup -1} for the cation and anion, respectively. ESI-MS, NMR, and liquid chromatography coupled with ESI-MS identified a large number of degradation products in very small quantities for the same dose. The cation radicals were formed by the loss of a Bu{sup .} group, the Me{sup .} group, or two H{sup .} atoms to form a double bond with the butyl chain. Radiolysis of the anion produced mainly F{sup .} and CF{sub 3}{sup .} radicals. The anion radicals recombined with the cation to form a wide range of secondary degradation products regardless of the radiolysis conditions. (authors)

  18. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  19. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  20. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    Science.gov (United States)

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  1. Photoredox Generated Radicals in Csp2-Csp3 Bond Construction

    Science.gov (United States)

    Primer, David Neal

    The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a

  2. Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Siewe, Arlette Deukam; Kim, Seul Gi; Choi, Kyu Seong [Kyungnam University, Changwon (Korea, Republic of); Lee, Shim Sung [Gyeongsang National University, Jinju (Korea, Republic of)

    2014-09-15

    Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}-Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}- macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer [Hg{sub 2}(L)I{sub 4}]·CHCl{sub 3}n in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer ([Hg{sub 2}(L)(DMF){sub 6}](ClO{sub 4}){sub 4}·2DMF)n instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure.. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies

  3. Formation and spectroscopy of {alpha}-muoniated radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, I.; Brodovitch, J.C.; Ghandi, K.; Kecman, S.; Percival, P.W

    2003-02-01

    Several novel {alpha}-muoniated radicals have been produced by the reaction of muonium with compounds containing diazo, isocyanate or carbene functional groups. In {alpha}-muoniated radicals the muon is attached directly to the radical centre; they can be formed either directly or indirectly via a {beta}-muoniated radical intermediate. The hyperfine coupling constants of the resulting radicals have been measured by transverse field muon spin rotation and muon avoided level-crossing resonance. The effect of muonium substitution was investigated for cases where ESR data are available for comparison.

  4. Formation and spectroscopy of α-muoniated radicals

    International Nuclear Information System (INIS)

    McKenzie, I.; Brodovitch, J.C.; Ghandi, K.; Kecman, S.; Percival, P.W.

    2003-01-01

    Several novel α-muoniated radicals have been produced by the reaction of muonium with compounds containing diazo, isocyanate or carbene functional groups. In α-muoniated radicals the muon is attached directly to the radical centre; they can be formed either directly or indirectly via a β-muoniated radical intermediate. The hyperfine coupling constants of the resulting radicals have been measured by transverse field muon spin rotation and muon avoided level-crossing resonance. The effect of muonium substitution was investigated for cases where ESR data are available for comparison

  5. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L. (Florence Univ. (IT)); Rey, P. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (FR). Dept. de Recherche Fondamentale)

    1988-12-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals.

  6. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    International Nuclear Information System (INIS)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P.

    1988-01-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals

  7. Reactions of inorganic free radicals with liver protecting drugs

    International Nuclear Information System (INIS)

    Gyoergy, I.; Foeldiak, G.; Blazovics, A.; Feher, J.

    1990-01-01

    Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivatives, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3 , (SCN) 2 - , OH, Trp, CO 2 - , O 2 - ) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems. (author)

  8. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  9. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  10. Exceptional Structural Compliance of the B12F122- Superweak Anion.

    Science.gov (United States)

    Peryshkov, Dmitry V; Strauss, Steven H

    2017-04-03

    The single-crystal X-ray structures, thermogravimetric analyses, and/or FTIR spectra of a series of salts of the B 12 F 12 2- anion and homoleptic Ag(L) n + cations are reported (L = CH 2 Cl 2 , n = 2; L = PhCH 3 , n = 3; L = CH 3 CN; n = 2-4; L = CO, n = 1, 2). The superweak-anion nature of B 12 F 12 2- (Y 2- ) was demonstrated by the rapid reaction of microcrystalline Ag 2 (Y) with 1 atm of CO to form a nonclassical silver(I) carbonyl compound with an FTIR ν(CO) band at 2198 cm -1 (and with the proposed formula [Ag(CO) n ] 2 [Y]). In contrast, microcrystalline Ag 2 (B 12 Cl 12 ) did not exhibit ν(CO) bands and therefore did not form Ag(CO) + species, even after 32 h under 24 atm of CO. When Ag 2 (Y) was treated with carbon monoxide pressures higher than 1 atm, a new ν(CO) band at 2190 cm -1 appeared, which is characteristic of a Ag(CO) 2 + dicarbonyl cation. Both Ag 2 (CH 3 CN) 8 (Y) and Ag 2 (CH 3 CN) 5 (Y) rapidly lost coordinated CH 3 CN at 25 °C to form Ag 2 (CH 3 CN) 4 (Y), which formed solvent-free Ag 2 (Y) only after heating above 100 °C. Similarly, Ag 2 (PhCH 3 ) 6 (Y) rapidly lost coordinated PhCH 3 at 25 °C to form Ag 2 (PhCH 3 ) 2 (Y), which formed Ag 2 (Y) after heating above 150 °C, and Ag 2 (CH 2 Cl 2 ) 4 (Y) rapidly lost three of the four coordinated CH 2 Cl 2 ligands between 25 and 100 °C and formed Ag 2 (Y) when it was heated above 200 °C. Solvent-free Ag 2 (Y) was stable until it was heated above 380 °C. The rapid evaporative loss of coordinated ligands at 25 °C from nonporous crystalline solids requires equally rapid structural reorganization of the lattice and is one of three manifestations of the structural compliance of the Y 2- anion reported in this work. The second, more quantitative, manifestation is that Ag + bond-valence sums for Ag 2 (CH 3 CN) n (Y) are virtually constant, 1.20 ± 0.03, for n = 8, 5, 4, because the Y 2- anion precisely compensated for the lost CH 3 CN ligands by readily forming the necessary number of weak

  11. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  12. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  13. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  14. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  15. High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.

    Science.gov (United States)

    Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D

    2006-06-01

    The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.

  16. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  17. Cation-enhanced capillary electrophoresis separation of atropoisomer anions.

    Science.gov (United States)

    Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W

    2015-12-01

    CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  19. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  20. Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals

    Directory of Open Access Journals (Sweden)

    A. Jammoul

    2009-07-01

    Full Text Available The interactions between triplet state benzophenone and halide anion species (Cl, Br and I have been studied by laser flash photolysis (at 355 nm in aqueous solutions at room temperature. The decay of the triplet state of benzophenone was followed at 525 nm. Triplet lifetime measurements gave rate constants, kq (M−1 s, close to diffusion controlled limit for iodide (~8×109 M−1 s, somewhat less for bromide (~3×108 M−1 s and much lower for chloride (<106 M−1 s. The halide (X quenches the triplet state; the resulting product has a transient absorption at 355 nm and a lifetime much longer than that of the benzophenone triplet state, is formed. This transient absorption feature matches those of the corresponding radical anion (X2. We therefore suggest that such reactive quenching is a photosensitized source of halogen in the atmosphere or the driving force for the chemical oxidation of the oceanic surface micro layer.

  1. ESR studies of radiation induced radical products from linoleic acid and linolenic acid and the radioprotective effect by α-tocopherol

    International Nuclear Information System (INIS)

    Zhu Younan; Tu Tiecheng; Dong Jirong; Zhang Jiashan; Li Nianyun

    1993-01-01

    Primary radicals from the γ-radiolysis of air-saturated linoleic acid and linolenic acid at 77 K, and the subsequent secondary radicals appeared during the course of variable temperature elevation were investigated by ESR. The ESR spectrum from samples irradiated and observed at 77 K shows the presence of the radical anion doublet arise from the electron adducts of the carboxy groups and the poorly resolved broad singlet results from some carbon-centered radicals. Annealing to approximately 125 K which allows for molecular oxygen migration results in the formation of peroxyl radicals. At 247 K, the ESR spectrum is a multi-line pattern which is attributable to structure of the α-carbon radical superimposed on the pentadienyl radicals. The ESR spectra from linoleic acid-α-tocopherol and linolenic acid-α-tocopherol binary systems irradiated at 77 K and recorded at 140 K or 215 K revealed the characteristic similarity to that from α-tocopherol alone, no trace of ESR signal from either peroxyl or the composite pattern from superposition of pentadienyl radical and α-carbon radicals can be found out. Therefore α-tocopherol has exerted radioprotection effect on peroxidation of linoleic acid and linolenic acid

  2. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  3. Reactions of carbonate radical with cobalt(II) aminopolycarboxylates

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1992-01-01

    Reactions of carbonate (CO 3 - radical) and bicarbonate (HCO 3 radical) radicals generated by photolysis of a carbonate or bicarbonate solution at pH 11.2 and 8.5, respectively, with Co(II) complexes of iminodiacetic acid (IDA) and ethylenediaminetetraacetic acid (EDTA) have been studied. The rate constants for the reactions were in the order of 10 6 -10 7 dm 3 mol -1 s -1 . From the time-resolved spectroscopy of the products formed after reaction of CO 3 - radical or HCO 3 radical, it is observed that CO 3 - radical or HCO 3 radical oxidize the metal center to its higher oxidation state. (author) 26 refs.; 2 figs.; 1 tab

  4. Generation and propagation of radical reactions on proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    2001-01-01

    The oxidation of proteins by free radicals is thought to play a major role in many oxidative processes within cells and is implicated in a number of human diseases as well as ageing. This review summarises information on the formation of radicals on peptides and proteins and how radical damage may...... be propagated and transferred within protein structures. The emphasis of this article is primarily on the deleterious actions of radicals generated on proteins, and their mechanisms of action, rather than on enzymatic systems where radicals are deliberately formed as transient intermediates. The final section...

  5. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  6. The Rise of Radicals in Bioinorganic Chemistry

    OpenAIRE

    Gray, Harry B.; Winkler, Jay R.

    2016-01-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O_2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) a...

  7. A photoelectron imaging and quantum chemistry study of the deprotonated indole anion.

    Science.gov (United States)

    Parkes, Michael A; Crellin, Jonathan; Henley, Alice; Fielding, Helen H

    2018-05-29

    Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

  8. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  9. El decadentismo en la derecha radical contemporánea

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Simón Gómez

    2007-07-01

    Full Text Available The main concern this articles deals with is, first, the elusive conceptual definition of the «radical right». In the last years a, so called, new consensus, has been developed in the literature of this field. The core of this new consensus about the radical right is the palingentic form of nationalism, form this pant of view the decadentism and the claim for a social renewal is a central point in the political thought of the radical right. In this article we deal with the decadent subjects of the radical right, pointing mainly to the apocalyptic tone of some major contributors of the radical right in the interwar France and Germany. In the second part we analyze the role of decadentism in the cotemporary work of some relevant authors of the European radical right, Alain de Benoist and Julius Evola. Finally we translate their idea of decadence of Europe to the political arena as shown the discourses of some right extremist European parties.

  10. Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.

    Science.gov (United States)

    Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie

    2012-01-01

    A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.

  11. Mechanisms for radiation damage in DNA. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1975-01-01

    A mechanism is proposed for radiation damage to DNA and a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanism is described. Investigations completed or nearing completion are: studies of electron transfer reactions in dinucleoside phosphates; studies of the anions of 5-nitropyrimidines and their reactions; and studies of protonation reactions at carbon sites in anion radicals of certain model compounds and aromatic amino acids. In the first study, the relative electron affinities of the DNA bases were determined in a model system of the DNA strand. In addition, study of the reactions of these anions showed that the thymine anion is the most reactive of the DNA bases in this model system. In the second study anisotropic and isotropic spectra of the anion radicals of 5-nitropyrimidines were characterized by newly developed computer simulation programs. Several of the anions were found to react to form iminoxy radicals. The third study showed that protonation reactions at carbon sites in anions are reactions which are general for molecules with unsaturated linkages. Thus, this mechanism is of significance to the radiolysis of many biological molecules, including DNA. (U.S.)

  12. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  13. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    Directory of Open Access Journals (Sweden)

    Suvankar Das

    2018-01-01

    Full Text Available Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH and the anion radical superoxide (·O2−. The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb and GI50 for several human cancer cell was observed.

  14. Quantification of Radicals Generated in a Sonicator

    Directory of Open Access Journals (Sweden)

    Kassim Badmus

    2016-06-01

    Full Text Available The hydroxyl radical (OH• is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA and potassium iodide dosimetry were used to quantify and investigate the behaviour of the generated OH radical in a laboratory scale sonicator. The 2-hydroxyl terephthalic acid (HTA formed during terephthalic acid dosimetry was determined by optical fibre spectrometer. The production rate of HTA served as a means of evaluating and characterizing the OH• generated over given time in a sonicator. The influence of sonicator power intensity, solution pH and irradiation time upon OH• generation were investigated. Approximately 2.2 ´ 10-9 M s-1 of OH radical was generated during the sonication process. The rate of generation of the OH radicals was established to be independent of the concentration of the initial reactant. Thus, the rate of generation of OH• can be predicted by zero order kinetics in a sonicator.

  15. The alkylation of imine anions formation of enamines

    NARCIS (Netherlands)

    Heiszwolf, G.J.; Kloosterziel, H.

    1970-01-01

    The ambident anions derived from imines were alkylated using a variety of solvents and alkylating agents. Under reactive conditions enamines (N-alkylation) are formed as the main products instead of the usually obsd. homologous imines (C-alkylation). The influence of the type of imine, solvent, and

  16. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ESR study of electron reactions with esters and triglycerides

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Morehouse, K.M.; Swarts, S.

    1981-01-01

    Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by β scission: RC(O - )OR' → RCO 2 - + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an α-carbon site, R'.+ R''CH 2 CO 2 R' → R''CHCO 2 R', or in the case of ethyl formate from the formate hydrogen, CH 3 CH 2 .+ HCO 2 C 2 H 5 → C 2 H 6 +.CO 2 C 2 H 5 . Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH 2 CH(Ac)CH 2 (Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the α-carbon radical, .CH 2 CO 2 R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the α carbon in the propionate side groups producing CH 3 CHCO 2 R. Studies of a γ-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to γ-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis

  18. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  19. Some redox chemistry of HPO2-. and .PO32- radicals. A pulse radiolysis study

    International Nuclear Information System (INIS)

    Packer, J.E.; Anderson, R.F.

    1990-01-01

    The HO . radical oxidises hypophosphite and phosphite anions to HPO 2 -. and . PO 3 2- respectively, but Br 2 -. and N 3 . do not. The rates of oxidation of HPO 2 -. by a series of oxidising agents of known one electron redox potentials decrease with decreasing potential while the corresponding rates for oxidation of . PO 3 2- remain close to the diffusion controlled limit. . PO 3 2- will oxidise cysteine but HPO 2 -. does not. . PO 3 2- did not oxidise ABTS, ascorbate, or the anion of the vitamin E analogue, trolox. It reduced traces of TMPD +. in TMPD rather than oxidising the substrate. The one electron redox potentials for oxidation and reduction of . PO 3 2- are calculated in light of recently published redox data on penicillamine. (author)

  20. User involvement competence for radical innovation

    DEFF Research Database (Denmark)

    Lettl, Christopher

    2007-01-01

    -assisted navigation systems. The case study analysis reveals that firms who closely interact with specific users benefit significantly for their radical innovation work. These users have a high motivation toward new solutions, are open to new technologies, possess diverse competencies, and are embedded into a very......One important market related capability for firms which seek to develop radical innovations is the competence to involve the 'right' users at the 'right' time in the 'right' form. While former studies have identified a rather passive role of users in the radical innovation process, this paper...

  1. User involvement competence for radical innovation

    DEFF Research Database (Denmark)

    Lettl, Christopher

    2007-01-01

    One important market related capability for firms which seek to develop radical innovations is the competence to involve the 'right' users at the 'right' time in the 'right' form. While former studies have identified a rather passive role of users in the radical innovation process, this paper......-assisted navigation systems. The case study analysis reveals that firms who closely interact with specific users benefit significantly for their radical innovation work. These users have a high motivation toward new solutions, are open to new technologies, possess diverse competencies, and are embedded into a very...

  2. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-04-01

    Full Text Available The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC fingerprinting of Indigofera tinctoria (I. tinctoria. Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH, nitric oxide (NO and superoxide anion (O2− radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g, flavonoids (75.43±3.36 mg/g and antioxidants (349.11±8.04 mg/g. The extract was found to have DPPH (52.08%, NO (23.12% and O2− (26.79% scavenging activities at the concentration of 250 μg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05. HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

  3. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electron transfer oxidation of DNA radicals by paranitroacetophenone

    Energy Technology Data Exchange (ETDEWEB)

    Whillans, D W; Adams, G E [Mount Vernon Hospital, Northwood (UK)

    1975-12-01

    The reaction of a typical electron-affinic sensitizer, paranitroacetophenone (PNAP) with the model compounds thymine, thymidine, thymidylic acid, deoxyribose and single and double-stranded DNA has been investigated by pulse radiolysis. Radicals formed by one-electron reduction of the bases and of DNA reacted rapidly and efficiently with PNAP by electron transfer. A small yield of transfer (< 10 per cent) was also observed arising from oxidation of the radicals formed by the small proportion of OH which reacted at the sugar moieties in DNA. In contrast, electron transfer oxidation by PNAP of radicals formed by the addition of OH to the base moieties, e.g. thymine, was not an efficient process. Further, addition of the sensitizer to the thymine OH-adduct proceeded at a rate that was too low to measure the pulse radiolysis. We conclude that, since the major sites of OH reaction by DNA are the heterocyclic bases (> 80 per cent), oxidation of the resultant radicals is unlikely to be a major step in the mechanism of sensitization by this typical hypoxic-cell sensitizer.

  5. Stabilizers of edaravone aqueous solution and their action mechanisms. 2. Glutathione

    OpenAIRE

    Tanaka, Masahiko; Motomiya, Satsuki; Fujisawa, Akio; Yamamoto, Yorihiro

    2017-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has garnered attention since its approval for amyotrophic lateral sclerosis in Japan (2015) and the United States (2017). Edaravone is administered intravenously, and as such, is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because they present as edaravone anions, which become edaravone radicals when the anion donates an electron to free radicals including oxygen. In this study, gluta...

  6. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    Science.gov (United States)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  7. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  8. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan

    2018-02-13

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical properties are observed that are consistent with absorption of the constituent anions into the polymer network. This absorption is ascribed to host-guest interactions involving the tetracationic macrocyclic receptor. Removal of the anions may then be achieved by lifting the resulting hydrogels out of the aqueous phase. Treating the anion-containing hydrogels with dilute HCl leads to the protonation-induced release of the bound anions. This allows the hydrogels to be recycled for reuse. The present polymer network thus provides a potentially attractive approach to removing undesired anions from aqueous environments.

  9. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)], E-mail: tpvalsala@yahoo.co.in; Joseph, Annie [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-02-15

    Transition metal ferrocyanides have important applications in the selective removal of radioactive caesium from low level and intermediate level radioactive liquid waste streams. The microcrystalline nature of these materials renders them useless for application in column mode operations. Special preparation procedures have been developed to prepare granular solids by in situ precipitation of metal ferrocyanides on organic anion exchangers, which is suitable for column mode operations. The elemental compositions of the metal ferrocyanides precipitated inside the pores of anion exchanger were determined by analysing the dissolved samples using ICP-AES system and flame photometer. From the XRD and EDX analyses and the elemental composition of the synthesized materials, the nature of the compound formed inside the anion exchanger was found to be cobalt ferrocyanide. From SEM analysis of the samples, the particle size of the cobalt ferrocyanide precipitated inside the anion exchanger was found to be much less than that of cobalt ferrocyanide precipitated outside. The efficiency of these materials for removal of Cs was evaluated by measuring the distribution coefficient (Kd), ion exchange capacity and kinetics of Cs uptake. The Kd of the materials loaded on anion exchanger was found to be of the order of 10{sup 5} ml/g. The Cs uptake kinetics of the materials loaded on anion exchanger was slower than that of precipitated materials. The ion exchange capacity of the cobalt ferrocyanide loaded on anion exchanger was found to be much higher than that of the precipitated cobalt ferrocyanide.

  11. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3

    Science.gov (United States)

    Chen, Hungru; Umezawa, Naoto

    2014-07-01

    Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.

  12. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  13. Glutathione as a radical scavenger and the biological consequences of thiyl radical production

    International Nuclear Information System (INIS)

    Winterbourn, C.C.

    1996-01-01

    A large number of compounds that have toxic effects can be metabolised to free radicals and secondary reactive oxygen species. These may be directly damaging or affect cell function by altering regulatory mechanisms through changing redox status. Protection is provided by an integrated system of antioxidant defenses. This includes reduced glutathione (GSH), one of the functions of which is as a free radical scavenger. For GSH to be an effective radical scavenging antioxidant, therefore, it must act in concert with superoxide dismutase to remove the superoxide so generated. Superoxide is produced in a variety of metabolic processes. It is also a secondary product of radicals reacting with oxygen either directly or through GSH. The biological reactivity of superoxide has been the subject of much debate ever since the discovery of superoxide dismutase in 1968. It has more recently become apparent that its rapid reaction with nitric oxide to give peroxynitrite, and its ability to reversibly oxidise and inactivate iron sulphur enzymes, contribute to the toxicity of superoxide. Another mechanism that could be important involves addition reactions of superoxide with other radicals to give organic peroxides. This reaction, to form a tyrosine peroxide, has come to authors attention through the study of the scavenging of tyrosyl radicals by GSH. It is also shown that a tyrosine peroxide is a major product of the oxidation of tyrosine by neutrophils

  14. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  15. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.

    Science.gov (United States)

    Irikura, Karl K

    2013-03-14

    The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.

  16. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  17. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Science.gov (United States)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  18. Detection of free radicals by radical trapping and 15N NMR spectroscopy in copolymerization of methyl acrylate and styrene

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2003-01-01

    The macroradicals taking part in the copolymn. of Me acrylate and styrene were trapped by reaction with a 15N labeled stable nitroxyl radical at 70 DegC. The nitroxyl radical is formed in situ from a thermally instable alkoxyamine precursor. 15N NMR spectroscopy is applied to detect the trapping

  19. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  20. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  1. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali; Khashab, Niveen M.; Fahrenbach, Albert C.; Friedman, Douglas C.; Colvin, Michael T.; Coti, Karla K.; Bení tez, Diego S.; Tkatchouk, Ekaterina; Olsen, John Carl; Belowich, Matthew E.; Carmieli, Raanan; Khatib, Hussam A.; Goddard, William Andrew III; Wasielewski, Michael R.; Stoddart, Fraser Fraser Raser

    2009-01-01

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  2. Generation of counter ion radical (Br2(•-)) and its reactions in water-in-oil (CTAB or CPB)/n-butanol/cyclohexane/water) microemulsion.

    Science.gov (United States)

    Guleria, Apurav; Singh, Ajay K; Sarkar, Sisir K; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2011-09-15

    Herein we report the generation of counterion radicals and their reactions in quaternary water-in-oil microemulsion. Hydrated electrons in the microemulsion CTAB/H(2)O/n-butanol/cyclohexane have a remarkably short half-life (∼1 μs) and lower yield as compared to that in the pure water system. Electrons are solvated in two regions: one is the water core and other the interface; however, the electrons in the water core have a shorter half-life than those in the interface. The decay of the solvated electrons in the interface is found to be water content dependent and it has been interpreted in terms of increased interfacial fluidity with the increase in water content of the microemulsion. Interestingly another species, dibromide radical anion (Br(2)(•-)) in CTAB and CPB microemulsions have been observed after the electron beam irradiation. Assuming that the extinction coefficient of the radicals is the same as that in the aqueous solution, the yields of the radicals per 100 eV are 0.29 and 0.48 for the Br(2)(•-) radical in CTAB and CPB containing microemulsions (W(0) = 40), respectively, under N(2)O saturated conditions. Further, we intended to study electron transfer reactions, which occur at and through the interface. The reaction of the Br(2)(•-) radical anion with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] has been studied to generate the ABTS radical in the water core, and further, its reaction has been investigated with the water-insoluble molecule vitamin E (tocopherol) and water-soluble vitamin C (ascorbic acid). In the present study, we were able to show that, even for molecules which are completely insoluble in water, ABTS scavenging assay is possible by pulse radiolysis technique. Furthermore, these results show that it is possible to follow the reaction of the hydrated inorganic radical with solutes dissolved in the organic phase in a microemulsion without use of a phase transfer catalyst. © 2011 American Chemical Society

  3. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  4. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao

    1997-01-01

    Free radicals in crosslinked PTFE which formed by 60 Co γ-rays irradiation at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110 o C) due to the molecular motion of α-relaxation. (Author)

  5. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  6. Electronic structure of Co islands grown on the {radical}3 x {radical}3-Ag/Ge(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiao-Lan; Chou, Chi-Hao; Lin, Chun-Liang; Tomaszewska, Agnieszka; Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw

    2011-09-30

    By means of room temperature scanning tunneling spectroscopy (RT STS), we have studied the electronic structure of two different Ag/Ge(111) phases as well as Co islands grown on the {radical}3 x {radical}3-Ag/Ge (111) forming either {radical}13 x {radical}13 or 2 x 2 patterns. The spectrum obtained from 4 x 4-Ag/Ge(111) structure shows the existence of a shoulder at 0.7 V which is also present in the electronic structure of the Ge(111)-c2 x 8 and indicates donation of Ge electrons to electronic states of the Ag-driven phase. However, this fact is not supported by the electronic spectrum taken from the {radical}3 x {radical}3-Ag/Ge (111). The complexity of the Co-{radical}13 x {radical}13 islands bonding with the substrate is mirrored by a large number of peaks in their electronic spectra. The spectra obtained from the Co-2 x 2 islands which had grown on the step differ from those taken from Co-2 x 2 islands located along the edge of the terrace by a number of peaks at negative sample bias. This discrepancy is elucidated in terms of dissimilarities of Co-substrate interaction accompanying Co islands growth on different areas of the stepped surface.

  7. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  8. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  9. The free radical process for the polymer surface treated by radio frequency plasma

    International Nuclear Information System (INIS)

    Ma Yuguang; Yang Meiling; Shen Jiacong; Zheng Yingguang

    1992-01-01

    The formation and translation of the free radicals on the polymer surface treated by plasmas were studied and observed by ESR measurement. The results show that C-C bond split was main reaction in the process of the polymer irradiated by plasma, by which a stable alkyl free radical was formed. When alkyl free radical contacted with air, they translate into peroxide radical instantaneously. The peroxide radical was not as stable as radical in vacuum, they can react each other to form some polar-groups on polymer surface. The interaction between the peroxide free radical and polymer chain was correlative not only to the structure of polymer but also to the molecular motion of the polymer chain. The nature of plasma treating polymer surface was that the peroxide radicals were led onto polymer surface

  10. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  11. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  12. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  13. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  14. Radical Islamism and Failed Developmentalism

    OpenAIRE

    Rahnema, Saeed

    2008-01-01

    The rise of radical Islamism in recent years does not limit the applicability of the concept of cultural nationalism. Rather the two are intertwined in ways which this article will attempt to highlight. Islam took specific national forms as modern nation-states arose and the contemporary resurgence of radical Islamism also follows that modern pattern. I examine the emergence of the three most important movements in the Islamic world, namely, the Muslim Brotherhood in Egypt, Jama'at-e Islami i...

  15. Radicalization as a Vector: Exploring Non-Violent and Benevolent Processes of Radicalization.

    Directory of Open Access Journals (Sweden)

    Ken Reidy

    2018-03-01

    Full Text Available Successful radicalization posits three outcomes: extremism, terrorism or both. As these are undesirable, radicalization is understood as wholly malevolent and governments work to prevent and/or stop it. Nonetheless, a handful of scholars have recognized that the same radicalization process which results in either outcome may, theoretically at least, also have beneficial outcomes such as environmental awareness or human rights. This article explores one such outcome. Based on interviews with British Muslim aid workers (n=6 operating in Jihadist conflict zones post Arab spring and using constructivist grounded theory, it illustrates how the research participants radicalized to humanitarianism which resulted in them assisting the most plighted of Muslims by deploying to the most wanton of areas: ones commonly referred to as Jihadist conflict zones. Evidently, these destinations are shared with Jihadists and given the array of other observable similarities (socio-demographics and [pre-]mobilization behaviours, these morally opposed groups become conflated by the security services. This is further compounded by the fact that Jihadists manipulate and/or impersonate aid workers so as to funnel people and funds. To distinguish both, this article documents the benevolent pathway of the research participants and juxtaposes it to scholarly knowledge on Jihadist pathways. Socialization was revealed to be the key distinguishing feature rather than descriptive risk factors (such as ideology or moral outrage because the process of radicalization was not found to be the start of the radicalized pathway. It concludes that benevolently radicalized Islamic groups constitute an effective means of pathway divergence for particular typologies by offering an attractive and prosocial alternative to Jihadism. This strengths-based preventative approach (“what’s right” takes the form of a community-centric market competitor to Jihadism rather than a problem

  16. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.

  17. Quantification of hydroxyl radical produced during phacoemulsification.

    Science.gov (United States)

    Gardner, Jonathan M; Aust, Steven D

    2009-12-01

    To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.

  18. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    International Nuclear Information System (INIS)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na; Wang Aihua

    2008-01-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo

  19. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding

    Directory of Open Access Journals (Sweden)

    Steve Scheiner

    2018-05-01

    Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  20. Radical inactivation of a biological sulphydryl molecule

    International Nuclear Information System (INIS)

    Lin, W.S.; Lal, M.; Gaucher, G.M.; Armstrong, D.A.

    1977-01-01

    Reactive species produced from the free radical-induced chain oxidation of low molecular weight sulphydryl-containing molecules in aerated solutions deactivate the sulphydryl-containing enzyme papain, forming both reparable mixed disulphides and non-reparable products. This inactivation is highly efficient for penicillamine and glutathione, but almost negligible with cysteine, which is a protector of papain for [cysteine] / [papain] >= 5 under all conditions used. In the case of glutathione, superoxide dismutase caused only a small reduction in the inactivation and peroxide yields were small, implying that the deactivating species are not .O 2 - but RSOO. radicals or products from them. For penicillamine, however, dimutase was highly effective and the peroxide yields were relatively large, demonstrating that .O 2 - or a radical with similar capabilities for forming H 2 O 2 and being deactivated by dismutase was involved. Although in the presence of dismutase penicillamine is a better protector of non-reparable papain inactivation than glutathione, it suffers from a deficiency in that the papain-penicillamine mixed disulphide, which is always formed, cannot be repaired by spontaneous reaction with RSH molecules. (author)

  1. Management Approaches to Radical Social Media Activism: the responses of BP, HSBC and Nestlé to Greenpeace

    OpenAIRE

    Grant, Bettina

    2010-01-01

    Corporate directed radical activism has been reframed by the internet and social media, which provide radical activists with new tools to mount innovative attack forms against corporations. These attack forms (herein termed by author as radical social media activism) happen in the digital sphere and augment radical attack forms in the physical world. Corporations are challenged with a new age of radical activism and, thus far, have displayed low competence at using social media to manage this...

  2. A pulse radiolysis study of the OH radical induced autoxidation of methanesulfinic acid

    DEFF Research Database (Denmark)

    Sehested, K.; Holcman, J.

    1996-01-01

    Methanesulfinic acid, CH3SO2H, reacts with OH radicals at pH 7 forming CH3SO2 radicals with a rate constant k = (6.0 +/- 1.0) x 10(9) M(-1) s(-1). The CH3SO2 radical absorbs at 325 nm with an extinction coefficient of 900 +/- 100 M(-1) cm(-1) and disappears in a second order self-reaction with k...... takes place. During the course of the chain oxidation a peroxyacid, presumably methaneperoxymonosulfonic acid, is formed and accumulated. This acid absorbs in the UV and eventually decays by reaction with excess methanesulfinic acid k = 5 x 10(3) M(-1) s(-1). The final product of the chain autoxidation...... = (1.0 +/- 0.2) x 10(9) M(-1) s(-1). This radical reacts with oxygen, k = (1.2 +/- 0.3) x 10(9) M(-1) s(-1), forming a peroxy radical which absorbs in the UV below 300 nm. The peroxy radical reacts in turn with methanesulfinic acid reforming the CH3SO2 radical whereby a chain oxidation of sulfinic acid...

  3. Free Radicals and Extrinsic Skin Aging

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2012-01-01

    Full Text Available Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR. It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−•, hydrogen peroxide (H2O2, hydroxyl radical (OH•, and singlet oxygen (1O2. The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants and antioxidants we consume from the food (vitamin A, C, E, etc.. The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.

  4. Radical reactions in vivo - an overview

    International Nuclear Information System (INIS)

    Saran, M.; Bors, W.

    1990-01-01

    Generation of radicals in vivo depends on metabolic activities. The reactions are usually influenced by (i) the presence and concentration of oxygen, (ii) the availability of transition metals (effects of binding and compartimentalization), (iii) the level of reductants and antioxidants (e.g. nutritional effects). The effects of radicals are thought to be due to (i) membrane damage (affecting passive or active transport through altered fluidity/function interrelationships, intercellular messenging through modifications in the synthesis of prostaglandins and leukotrienes); (ii) protein damage (e.g. affecting membrane transporters, channel proteins, receptor or regulatory proteins, immunomodulators); (iii) damage to DNA. Defense mechanisms consist of (i) prevention of the 'spreading' of primary damage by low molecular weight antioxidants (e.g. vitamin E, GSH, vitamin C, β-carotene, uric acid); (ii) prevention or limitation of 'secondary' damage by enzymes (e.g. GSH-peroxidase, catalase, superoxide dismutase, DT-diaphorase) and/or chelators; (iii) repair processes, e.g. lipid degradation/membrane repair enzymes (phospholipases, peroxidases, some transferases and reductases), protein disposal or repair enzymes (proteases, GSSG-reductase), DNA degradation or repair enzymes (exonucleases III, endonucleases III and IV, glycosylases, polymerases). Recent hypotheses on a messenging function of the superoxide anion O 2 - are discussed and possible implications of cross-reactions between O 2 - and nitric oxide (endothelium-derived relaxing factor EDRF) are shortly mentioned. (orig.)

  5. Ammonia-hydrogen bromide and ammonia-hydrogen iodide complexes: anion photoelectron and ab initio studies.

    Science.gov (United States)

    Eustis, S N; Whiteside, A; Wang, D; Gutowski, M; Bowen, K H

    2010-01-28

    The ammonia-hydrogen bromide and ammonia-hydrogen iodide, anionic heterodimers were studied by anion photoelectron spectroscopy. In complementary studies, these anions and their neutral counterparts were also investigated via ab initio theory at the coupled cluster level. In both systems, neutral NH(3)...HX dimers were predicted to be linear, hydrogen-bonded complexes, whereas their anionic dimers were found to be proton-transferred species of the form, (NH(4)(+)X(-))(-). Both experimentally measured and theoretically predicted vertical detachment energies (VDE) are in excellent agreement for both systems, with values for (NH(4)(+)Br(-))(-) being 0.65 and 0.67 eV, respectively, and values for (NH(4)(+)I(-))(-) being 0.77 and 0.81 eV, respectively. These systems are discussed in terms of our previous study of (NH(4)(+)Cl(-))(-).

  6. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  7. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  8. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  9. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  10. Method for recovering or recirculating stable nitroxide radicals

    NARCIS (Netherlands)

    Heeres, Andre; Van Doren, Hendrik Arend; Bleeker, Ido Pieter; Gotlieb, Kornelis Fester.

    1996-01-01

    The invention relates fo a method for recovering stable nitroxide radicals, wherein at least a part of a reaction mixt. consisting of a soln. or suspension, or a filtrate or supernatant of a suspension, in which stable nitroxide radicals are present in non-solid form, is subjected to an azeotropic

  11. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  12. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  13. Preparation of anionic clay–birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    International Nuclear Information System (INIS)

    Arulraj, James; Rajamathi, Michael

    2013-01-01

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni 3 Zn 2 (OH) 8 (OAc) 2 ·2H 2 O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: ► Anionic and cationic layered solid composites prepared. ► Ni–Zn hydroxyoxalate reacted with KMnO 4 to deposit MnO 2 in the interlayer. ► Birnessite layers coexist with anionic clay layers in the composites. ► Birnessite/anionic clay ratio controlled by amount of KMnO 4 used and reaction time

  14. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.

    Science.gov (United States)

    Villegas-Guzman, Paola; Hofer, Florian; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2017-12-01

    Taking ciprofloxacin (CIP) as a fluoroquinolone antibiotic model, this work explores the role of common anions (sulfate, nitrate, and chloride) during the application of photoelectro-Fenton (PEF) at natural pH to degrade this type of compound in water. The system was composed of an IrO 2 anode, Ti, or gas diffusion electrode (GDE) as cathode, Fe 2+ , and UV (254 nm). To determine the implications of these anions, the degradation pathway and efficiency of the PEF sub-processes (UV photolysis, anodic oxidation, and electro-Fenton at natural pH) were studied in the individual presence of the anions. The results highlight that degradation routes and kinetics are strongly dependent on electrolytes. When chloride and nitrate ions were present, indirect electro-chemical oxidation was identified by electro-generated HOCl and nitrogenated oxidative species, respectively. Additionally, direct photolysis and direct oxidation at the anode surface were identified as degradation routes. As a consequence of the different pathways, six primary CIP by-products were identified. Therefore, a scheme was proposed representing the pathways involved in the degradation of CIP when submitted to PEF in water with chloride, nitrate, and sulfate ions, showing the complexity of this process. Promoted by individual and synergistic actions of this process, the PEF system leads to a complete elimination of CIP with total removal of antibiotic activity against Staphylococcus aureus and Escherichia coli, and significant mineralization. Finally, the role of the anions was tested in seawater containing CIP, in which the positive contributions of the anions were partially suppressed by its OH radical scavenger action. The findings are of interest for the understanding of the degradation of antibiotics via the PEF process in different matrices containing sulfate, nitrate, and chloride ions.

  15. Intramolecular anionic diels-alder reactions of 1-aryl-4-oxahepta-1,6-diyne systems in DMSO.

    Science.gov (United States)

    Kudoh, Takayuki; Mori, Tomoko; Shirahama, Mitsuhito; Yamada, Masashi; Ishikawa, Teruhiko; Saito, Seiki; Kobayashi, Hisayoshi

    2007-04-25

    Base-promoted cycloaddition reactions of 1-aryl- or 1-aryl-7-substituted-4-oxahepta-1,6-diyne systems in DMSO have proven to involve an anionic intramolecular Diels-Alder process taking place even at room temperature in spite of the reaction suffering from temporary disruption of aromaticity. Although initially formed alpha-arylallenide anion can be protonated by DMSO, it can be back to the allenide anion probably because of a small acidity difference between alpha-arylallene and DMSO. The alpha-arylallenide anion in combination with the alpha-aryl substituent can constitute an anionic diene structure that undergoes the intramolecular Diels-Alder reaction involving the C(6)-yne part, a very fast process probably because of the increased HOMO-1 level of the anionic diene, as shown by DFT calculations. Diversified substituted naphthalenes, benzofurans, phenanthrenes, and quinolines, including biaryl architectures, are available from 4-oxahepta-1,6-diynes in a highly expeditious way.

  16. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product.

    Science.gov (United States)

    de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca

    2018-03-01

    Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  19. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang; Fei, Zhuping; Lin, Yen-Hung; Martin, Jaime; Tuna, Floriana; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  20. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  1. THE POSSIBLE INTERSTELLAR ANION CH2CN–: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    International Nuclear Information System (INIS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Crawford, T. Daniel

    2013-01-01

    The A 1 B 1 ⇽ X-tilde 1 A' excitation into the dipole-bound state of the cyanomethyl anion (CH 2 CN – ) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde 1 A' CH 2 CN – in order to assist in laboratory studies and astronomical observations.

  2. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    The A\\ ^1B_1 \\leftarrow \\tilde{X}\\ ^1A^{\\prime } excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for \\tilde{X}\\ ^1A^{\\prime } CH2CN- in order to assist in laboratory studies and astronomical observations.

  3. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    Science.gov (United States)

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 4-(2-Tetrathiafulvalenyl-ethenyl)pyridine (TTF-CH=CH-Py) radical cation salts containing poly(beta-diketonate) rare earth complexes: synthesis, crystal structure, photoluminescent and magnetic properties.

    Science.gov (United States)

    Pointillart, Fabrice; Maury, Olivier; Le Gal, Yann; Golhen, Stéphane; Cador, Olivier; Ouahab, Lahcène

    2009-08-03

    The reactions between the redox-active 4-(2-tetrathiafulvalenyl-ethenyl)pyridine ligand (TTF-CH=CH-Py) and the tris(1,1,1,5,5,5-hexafluoroacetylacetonate)Ln(III) (Ln = La and Nd) lead to the formation of compounds with the formulas {[La(hfac)(5)][(TTF-CH=CH-Py(*+))](2)} (1), {[Nd(hfac)(4)(H(2)O)][(TTF-CH=CH-Py(*+))]}(2) (2), and {[Nd(hfac)(4)(H(2)O)][(TTF-CH=CH-Py(*+))]}(2)(H(2)O)(C(6)H(14))(0.5) (3) (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion). These compounds have been characterized by single-crystal X-ray diffraction, optical, and magnetic measurements. Compounds 1, 2, and 3 crystallize in the monoclinic C2/c, triclinic P1, and monoclinic P2(1)/c space groups, respectively. La(III) adopts a tetradecahedral geometry, while Nd(III) stands in a distorted capped square antiprism one. In 1, the inorganic network is formed by the [La(hfac)(5)](2-) dianionic complexes, while it is formed by a pseudo-dimeric dianionic unit of formula {[Nd(hfac)(4)(H(2)O)](2)}(2-) in 2 and 3. In all crystal structures, the organic network is constituted by the TTF-CH=CH-Py(*+) radical cations. The inorganic and organic networks interact through intermolecular contacts between the pyridine moieties of the TTF-CH=CH-Py(*+) radical cations and the Ln(III) ions. The luminescence properties of the Nd(III) ions (9400 cm(-1)) and fluorescence band of the TTF-CH=CH-Py(*+) radical cations (10200 cm(-1)) have been observed and studied for compound 2. Complexes 2 and 3 are paramagnetic because of Nd(III) ions. Compound 2 is a paramagnetic luminescent TTF-radical-cation-based material. Resistivity measurements have also been performed on these materials.

  5. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  6. A pulse radiolysis study of the reaction of the sulphate radical ion in aqueous solutions of styrene

    International Nuclear Information System (INIS)

    McAskill, N.A.; Sangster, D.F.

    1979-01-01

    The ultraviolet absorption spectra of the transient species formed during the pulse radiolysis of styrene and peroxydisulfate solutions showed that a benzyl-type radical was formed from styrene and the SO 4 - radical. The effect of adding Cl - was also studied. These results are in conflict with the claim that a phenylethyl radical was formed from SO 4 - via the styrene cation radical. That study was made on acetonitrile solutions of styrene, S 2 O 8 2- CUCl 2 and LiCl and the present results suggest that up to 70% of the SO 4 - radicals may have been converted into Cl 2 - radical which then reacted with styrene

  7. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  8. Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Bhardwaj, Y.K.; Mohan, H.; Sabharwal, S.; Majali, A.B.

    2000-01-01

    Radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution has been investigated by steady state and pulse radiolysis techniques. Effect of dose, dose rate, monomer concentration, pH and ambient conditions on polymerization was investigated. The reactions of primary radicals of water radiolysis such as OH radical, e - aq , H atom, O· - and some oxidizing radicals like N· 3 , Cl· - 2 ,Br· - 2 , and reducing specie like CO· - 2 with SSS have also been investigated. SSS reacts with OH radical with a rate constant of 5.9x10 9 dm 3 mol -1 s -1 at pH 6.3. The results indicate that ∼83% of OH radicals undergo electron transfer reaction resulting in a cation radical species while remaining ∼17% react via addition reaction. The hydrated electron reacts with SSS with a rate constant 1.3x10 10 dm 3 mol -1 s -1 to form an anion that undergoes fast protonation to form H-adduct at pH 6.3. At high pH (>10) the anion is able to transfer electron to methyl vilogen and p-nitro aceto phenone (p-NAP) where as H-adduct is unable to transfer electron. At pH ∼1 H atom reaction with SSS is diffusion controlled with a rate constant of 5x10 9 dm 3 mol -1 s -1 and results in formation of H adduct. It was seen that anion reacts with solute an order faster than cation generated radiolytically indicating anionic initiation of polymerization of SSS. Molecular weight of the polymer formed by radiation polymerization, determined by viscosity measurement, are of the order of 10 7 and higher molecular weight polymers are obtained at lower dose rates. In presence of a crosslinking agent gelation of polymer is much faster than the monomer and a polymer concentration ∼20% is most efficiently crosslinked. (author)

  9. Radical production in the radiolysis of benzene

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Araos, M.S.

    1998-01-01

    Complete text of publication follows. Benzene is the prototypical aromatic compound and yet the radiation chemistry of the radicals formed in its radiolysis is not well understood. Temporal information on the yield of phenyl radical, the major radical produced in the radiolysis, is important for understanding the radiation chemistry of many other types of aromatic compounds including some polymers. The effects of track structure on the production of phenyl radicals have been examined using iodine-scavenging techniques. The variation of the yields of iodobenzene and the other major molecular products such as biphenyl as a function of iodine concentration gives a good indication of the competition kinetics occurring in particle tracks. Experimental results of the scavenger experiments will be shown and their implications in the radiolysis of condensed hydrocarbons will be discussed

  10. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: a combined experimental and theoretical study.

    Science.gov (United States)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-25

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion(-1) and anion(-2) conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. (1)H and (13)C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  12. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Arulraj, James [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India); Rajamathi, Michael, E-mail: mikerajamathi@rediffmail.com [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India)

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  13. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  14. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  15. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  16. Strapped Calix[4]pyrroles Bearing an 1,3-Indanedione at a β-Pyrrolic Position: Chemodosimeters for the Cyanide Anion

    Science.gov (United States)

    Kim, Sook-Hee; Hong, Seong-Jin; Yoo, Jaeduk; Kim, Sung Kuk; Sessler, Janathan L.; Lee, Chang-Hee

    2014-01-01

    A strapped calix[4]pyrrole bearing an 1,3-indanedione group at a β-pyrrolic position has been synthesized and studied as a ratiometric cyanide selective chemosensor. A concentration-dependent bleaching of the initial yellow color was observed upon addition of the cyanide anion. The bleaching, which was observed exclusively with the cyanide anion, occurred even in the presence of other anions. Spectroscopic studies provides support for a mechanistic interpretation wherein the cyanide anion forms a complex with the receptor (K = 2.78 × 104 M-1) through a fast equilibrium, which is followed by slow nucleophilic addition to the β-position of the 1,3-indanedione group. A minimum inhibitory effect from other anions was observed, a feature that could be beneficial in the selective sensing of the cyanide anion. PMID:19639968

  17. Efficiency of radical yield in alkylthymine and alkyluracil by high-LET irradiation

    International Nuclear Information System (INIS)

    Nakagawa, Seiko; Ohta, Nobuaki; Murakami, Takeshi

    2010-01-01

    Penthylthymines and hexyl-, nonyl-, and decyl- uracils were irradiated by C-ion (3.5 GeV) and γ-ray at 77 K. ESR spectra were measured to study radiation induced radicals in the temperature range from 108 to 273 K. A dihydro-5-yl (5-yl) radical formed by H addition to C6 carbon and a secondary alkyl radical by C-H bond fission at the second carbon from the end of the alkyl group were produced at 108 K. A dihydrouracil-6-yl (6-yl) radical formed by H addition to C5 carbon increased with increasing temperature for alkyluracils. The spectral feature obtained by C-ion irradiation was coincident with that by γ-irradiation. Total radical yields increased by alkylation and with increasing the length of alkyl chain. Yields of both 5-yl and secondary alkyl radicals irradiated by C-ion were less than those by γ-ray for penthylthymines and hexyluracil. On the contrary, radical yields were almost the same between ion and γ-ray irradiation for nonyl- and decyl-uracil. Mechanism of radical formation and effect of high-LET irradiation were discussed.

  18. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Melo, R.; Leal, J.P.; Takacs, E.; Wojnarovits, L.

    2009-01-01

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  19. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Leal, J.P. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Centro Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Takacs, E., E-mail: takacs@iki.kfki.hu [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary)

    2009-12-30

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  20. The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors

    International Nuclear Information System (INIS)

    Liu Weihua; Wang Mouhua; Xing Zhe; Wu Guozhong

    2012-01-01

    Free radicals in vacuum, air and oxygen atmospheres were studied using electron spin resonance (ESR). Mainly two types of radicals, namely alkyl radicals and polyimine radicals, are formed in polyacrylonitrile (PAN) fibers after γ-ray irradiation. The G value of the radical formation was calculated to be 2.1 (number of radicals per 100 eV absorbed) in air at room temperature based on the ESR measurements. The radical stability and decay behaviors at room temperature and elevated temperatures were also investigated under different atmospheres. The alkyl radicals were found to be rather stable when stored in vacuum at room temperature, but they decayed via reaction with oxygen when stored in air. The alkyl radicals disappeared completely after a thermal treatment at 110 °C in vacuum, but only 15% of the polyimine radicals decayed; this indicates that polyimine radicals are more stable compared to the alkyl radicals due to their lower mobility. - Highlights: ► Radicals formed by radiation were assigned to polyimine and alkyl radicals. ► G-value of radicals was measured to be 2.1 per 100 eV. ► The radicals were found to be extremely stable in vacuum at room temperature. ► Effect of oxygen on radical decay under various conditions was studied.

  1. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  2. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  3. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  5. Radical Ions of 3-Styryl-quinoxalin-2-one Derivatives Studied by Pulse Radiolysis in Organic Solvents.

    Science.gov (United States)

    Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Álvaro; Berrios, Eduardo; Bobrowski, Krzysztof

    2018-04-12

    The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH 3 , -OCH 3 , and -N(CH 3 ) 2 ) or electron-withdrawing (R = -OCF 3 ) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH 3 ), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O 2 ) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ •- ) are characterized by two absorption maxima located at λ max = 470-490 nm and λ max = 510-540 nm, with the respective molar absorption coefficients ε 470-490 = 8500-13 100 M -1 cm -1 and ε 510-540 = 6100-10 300 M -1 cm -1 , depending on the substituent (R). All 4R-SQ •- decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) × 10 6 s -1 . In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH • ), which are characterized by weak absorption bands with λ max = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ •+ ) are characterized by a strong absorption with λ max = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN •+ ) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) × 10 5 s -1 measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (ρ = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R

  6. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  8. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  9. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions

    International Nuclear Information System (INIS)

    Qi Kai; Qiu Yubing; Chen Zhenyu; Guo Xingpeng

    2012-01-01

    Highlights: ► Corrosive galvanic cells form on PPy film with the electrochemical reduction of O 2. ► Suitable electrochemical stimulation can inhibit the PPy’s corrosion. ► PPy film doped with larger sized anions has better corrosion resistance performance. - Abstract: The effects of environmental factors, electrochemical stimulation, and doping anions on the corrosion behaviour of conductive polypyrrole (PPy) films in alkaline aqueous media were studied with cyclic voltammetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. High concentrations of electrolyte, low dissolved oxygen and low temperatures enhance the stability of PPy. Polarising PPy at a negative potential inhibits its corrosion obviously. PPy doped with large counter anions shows better corrosion resistance than PPy doped with small counter ions. The possible mechanism involved in PPy corrosion process is discussed.

  11. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  13. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  14. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  15. Oxygen uptake during the γ-irradiation of fatty acids

    International Nuclear Information System (INIS)

    Metwally, M.M.K.; Moore, J.S.

    1987-01-01

    The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)2 -anion radicals, Br 2 - anion radicals and N 3 -anion radicals, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented the O 2- anion radicals may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)2 - anion radicals and Br 2 - anion radicals with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10 7 mol-? 1 dm 3 s -1 , below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation. (author)

  16. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    Science.gov (United States)

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  17. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.

    Science.gov (United States)

    Royer, Mariana; Diouf, Papa Niokhor; Stevanovic, Tatjana

    2011-09-01

    The crude ethanol and water extracts of different red maple (Acer rubrum L.) tissues: whole branches (WB), wood of branches (BW), bark of branches (BB), stem bark (SB) and whole twigs (T), were examined in order to determine their phenolic contents as well as their radical scavenging capacities. The total phenols (TP), total extractable tanins (TET) and non-precipitable phenols (NPP), were determined by combination of spectrophotometric and precipitation methods, while total flavonoids, hydroxy cinanmic acids and proanthocyanidins were determined spectrophotometrically. The radical scavenging activities of the extracts were determined against five reactive oxygen species (ROS): superoxide anion (O(2)(·-)), hydroxyl radical (HO(·)), peroxyl radical (ROO(·)), hypochlorite ion (ClO(-)), and hydrogen peroxide (H(2)O(2)) and one reactive nitrogen species (RNS): nitric oxide (NO). The extracts of stem bark were significantly more efficient (exhibiting the highest antioxidant efficiencies, AE) than the other studied extracts against all ROS (at p<0.05, Duncan statistical tests), except against NO. The correlation coefficients determined between total phenolic (TP) content and antiradical efficiencies were R(2)=0.12 for O(2)(·-); R(2)=0.29 for HO(·); R(2)=0.40 for H(2)O(2); R(2)=0.86 for ROO(·); R(2)=0.03 for NO(·) and R(2)=0.73 for ClO(-). Our results indicate potential utilisation of extracts as natural antioxidants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The nature of resonance in allyl ions and radical.

    Science.gov (United States)

    Linares, Mathieu; Humbel, Stéphane; Braïda, Benoît

    2008-12-18

    A recent valence bond scheme based on Lewis structures, the valence bond BOND (VBB) method (BOND: Breathing Orbitals Naturally Delocalized) method (Linares, M.; Braida, B.; Humbel, S. J. Phys. Chem. A 2006, 110, 2505-2509), is applied to explore the nature of resonance in allyl systems. Whereas allyl radical is correctly described by the resonance between the two traditional Lewis structures, a third "long-bonded" structure, which apparently creates a pi bond between the two distant carbon atoms, appears to plays an important role in allyl ions description. The similar vertical resonance energy (VRE) for both allyl ions is rather moderate (approximately 37 kcal/mol) in the two-structure description but is significantly enhanced when the long-bonded structure is included into the VBB wave function (by up to 20 kcal/mol). The allyl radical is much less resonant and is correctly described by the traditional two-structure picture. The development of VBB Lewis structures into "pure" valence bond determinants enlightens the role of the third structure in the description of allyl ions. The existence of a long bond between the two distant carbon atoms is clearly ruled out. Charge equilibration effect is shown to be a minor factor. The third structure is finally attributed to one- and three-electron bonding character revealed in the pi systems of the cation and anion, respectively. This makes these systems two surprising examples of odd electron bonding within a singlet state. Last, the two-structure description of allyl radical is improved by addition of missing ionic structures.

  19. Diffusion and retention of organic anions in Callovian-Oxfordian clay rock

    International Nuclear Information System (INIS)

    Rasamimanana, Sabrina

    2016-01-01

    The Callovo-Oxfordian mud-stone (CO_x) is studied as a possible host rock for a deep disposal of radioactive waste (Cigeo project). Indeed, besides being very weakly permeable, it presents a high content of clayey minerals, capable of retaining radionuclides under cationic form and to delay strongly their transport. Nevertheless, some waste packages may release a significant amount of organic molecules, capable of complexing these radionuclides and drastically increase their mobility. So, the objective of this work was to better understand the diffusive behavior of several organic molecules of interest in this mudstone, by investigating at first their affinity with the host rock. The retention of organic molecules under anionic form (acetate, phthalate, adipate, benzoate, and citrate) was quantified on to the dispersed CO_x mudstone using adsorption/desorption batch experiments. Experiments on de-carbonated rock and clay fraction only (≤ 2μm) were also performed to identify solid phases and chemical functions responsible for the retention. a correlation of the intensity of retention, R_d, was pointed out whit the dipole moment μ(Orga.), providing a qualitative estimate of retention capacity for polar hydrophilic organic molecules. So, phthalate, slightly polar, displays a reversible retention (R_d ≅1,6 L.kg"-"1), mainly on clayey phases. Citrate, very polar and strongly adsorbed (R_d ≅ 40 L.kg"-"1), displays a persistent desorption hysteresis and an affinity to different solid phases (clayey minerals and minor oxides). Lastly, acetate, adipate and benzoate, weakly polar, display a lower affinity with rock (R_d ≤ 0,2 L.kg"-"1). The diffusive behavior in compact rock of these organic anions was then studied. The effective diffusion coefficient and retardation factor values were quantified. The low diffusivity, [D_e/D_0](Organic Anions) ≅ 0,1 a0,25 * [D_e/D_0](Water) evidences an effect of anionic exclusion, with a same intensity as that observed for

  20. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  1. Psychopathology according to behaviorism: a radical restatement.

    Science.gov (United States)

    Pérez-Alvarez, Marino

    2004-11-01

    This article is a radical restatement of the predominant psychopathology, which is characterized by nosological systems and by its approach towards a neurobiological conception of the so-called mental disorders. The "radical" sense of this restatement is that of radical behaviorism itself. As readers will recall, "radical" applied to behaviorism means total (not ignoring anything that interests psychology), pragmatic (referring to the practical sense of knowledge), and it also derives from the Latin word for "root" (and thus implies change beginning at a system's roots or getting to the root of things, in this case, of psychological disorders). Based on this, I introduce the Aristotelian distinction of material and form, which, besides being behaviorist avant la lettre, is used here as a critical instrument to unmask the hoax of psychopathology as it is presented. The implications of this restatement are discussed, some of them already prepared for clinical practice.

  2. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2004-01-01

    To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates

  3. On the Importance of Nonbonding Donor-Acceptor Interactions Involving PO2. Radicals: An ab Initio Study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2017-08-18

    In this study, several σ-type and π-hole bonding complexes between PO 2 . radicals and electron-rich entities have been optimized at the RI-MP2/aug-cc-pVQZ level of theory. We have used Cl - , Br - , I - anions, and ethene, ethyne, HCN, HF, and H 2 O as Lewis bases. In addition, we have performed natural bond orbital (NBO) and Mulliken spin density analyses, highlighting the donor-acceptor nature of the interaction. Moreover, an interesting retro-donation from the single electron lone pair of the PO 2 . radical to the Lewis base also contributes to the stabilization of the complexes studied herein. Finally, the Bader's atoms-in-molecules (AIM) analysis of several complexes has been performed to further characterize the interactions discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Direct synthesis of ligand-based radicals by the addition of bipyridine to chromium(II) compounds.

    Science.gov (United States)

    Zhou, Wen; Desnoyer, Addison N; Bailey, James A; Patrick, Brian O; Smith, Kevin M

    2013-03-04

    The reaction of 2,2'-bipyridine (bpy) with monomeric chromium(II) precursors was used to prepare the S = 1 complexes Cr(tBu-acac)2(bpy) (1) and (η(5)-Cp)(η(1)-Cp)Cr(bpy) (3), as well as the S = 2 compound Cr[N(SiMe3)2]2(bpy) (4). The crystallographically determined bond lengths indicate that the bpy ligands in 1 and 3 are best regarded as radical anions, while 4 shows no structural evidence for electron transfer from Cr(II) to the neutral bpy ligand.

  5. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  6. Von Glaserfeld`s Radical Constructivism: A Critical Review

    Science.gov (United States)

    Hardy, Michael D.

    We explore Ernst von Glaserfelds radical constructivism, its criticisms, and our own thoughts on what it promises for the reform of science and mathematics teaching. Our investigation reveals that many criticisms of radical constructivism are unwarranted; nevertheless, in its current cognitivist form radical constructivism may be insufficient to empower teachers to overcome objectivist cultural traditions. Teachers need to be empowered with rich understandings of philosophies of science and mathematics that endorse relativist epistemologies; for without such they are unlikely to be prepared to reconstruct their pedagogical practices. More importantly, however, is a need for a powerful social epistemology to serve as a referent for regenerating the culture of science education. We recommend blending radical constructivism with Habermas theory of communicative action to provide science teachers with a moral imperative for adopting a constructivist epistemology.

  7. Acyclic diastereoselection in prochiral radical addition to prochiral olefins.

    Science.gov (United States)

    Sibi, Mukund P; Rheault, Tara R; Chandramouli, Sithamalli V; Jasperse, Craig P

    2002-03-27

    The stereochemical preference (syn or anti) when prochiral radicals add to prochiral acceptors is of fundamental interest. The primary focus of this research was to determine which factors influence the relative stereochemistry between the beta and gamma chiral centers when these are formed concurrently. While moderate diastereoselectivity was found for addition of alkyl (6a-d) and alpha-alkoxy radicals (16a-c) (15:1 anti). Steric influence in alkyl radical additions was difficult to evaluate due to decreased reactivity when using bulky reaction partners; however, more reactive alpha-alkoxy radicals, it was found that increasing steric bulk leads to moderate increases in selectivity. In addition, higher selectivity was observed when employing lanthanide Lewis acids whose environment (reactivity) was modified using achiral additives, suggesting a potentially simple means for selectivity enhancements in radical reactions. Overall these results indicate that significant stereoelectronic effects are necessary to achieve high levels of selectivity in prochiral radical additions to prochiral acceptors.

  8. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  9. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  10. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  11. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)

  12. Macrocyclic bis(ureas as ligands for anion complexation

    Directory of Open Access Journals (Sweden)

    Claudia Kretschmer

    2014-08-01

    Full Text Available Two macrocyclic bis(ureas 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3 molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO and dimethylformamide (DMF and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3−, HSO4−. The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions.

  13. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    Science.gov (United States)

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  14. EPR studies of the free radicals generated in gamma irradiated amino acid derivatives

    Science.gov (United States)

    Osmanoğlu, Y. Emre; Sütçü, Kerem

    2017-10-01

    Gamma irradiated powder forms of N-acetyl-DL-aspartic acid, N-carbamoyl-DL-aspartic acid and N-methyl-L-serine were investigated by electron paramagnetic resonance spectroscopy (EPR) at room temperature. In these compounds, the paramagnetic centers formed after irradiation were attributed to the HOOCCH2ĊHCOOH, COOHĊHCHNH and HOCH2ĊHCOOH radicals, respectively. The g values and the hyperfine coupling constants for the radical species are with values of g = 2.0038 ± 0.0005, aα = 2.15 mT, aβ(1) = 3.84 mT and aβ(2) = 2.15 for the first radical, g = 2.0039 ± 0.0005, aα = 1.7 mT, aß(1) = 0.62 mT, aß(2) = 0.54 mT, aγ = 0.53 mT for the second radical and g = 2.0039 ± 0.0005, aβ(1) = 2.40 mT, aβ(2) = 1.83 mT and aα = 1.83 mT for the third radical. The free radicals formed in three compounds were found to be stable for three months at room temperature. It was concluded that, spin density was concentrated predominantly in the 2pπ orbital of the carbon atom.

  15. Radical chemistry of epigallocatechin gallate and its relevance to protein damage

    DEFF Research Database (Denmark)

    Hagerman, Ann E; Dean, Roger T; Davies, Michael Jonathan

    2003-01-01

    The radical chemistry of the plant polyphenolics epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were investigated using electron paramagnetic resonance spectroscopy. Radical species formed spontaneously in aqueous solutions at low pH without external oxidant and were spin stabilized...... redox potentials of EGCG and EGC varied from 1000 mV at pH 3 to 400 mV at pH 8. The polyphenolics did not produce hydroxyl radicals unless reduced metal ions such as iron(II) were added to the system. Zinc(II)-stabilized EGCG radicals were more effective protein-precipitating agents than unoxidized EGCG...

  16. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Glutathione mediation of papain inactivation by hydrogen peroxide and hydroxyl radicals

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1977-01-01

    Glutathione reacts with papainCys 25 SOH, formed by the reaction of papain with hydrogen peroxide, to give papainCys 25 SSG. Subsequent reaction of this mixed disulfide with glutathione is slow (k -1 sec -1 ). However, at 30 0 C it is readily cleaved by cysteine to form active papain, i.e., papainCys 25 SH. Glutathione resembles cysteine in protecting papain by the scavenging of .OH radicals, but, unlike cysteine, glutathione gave no evidence for the repair of enzyme radical lesions or for the conversion of papainCys 25 S. radicals to repairable derivatives. Its overall effectiveness for reducing the radiation inactivation of papain in aqueous solution is much less than that of cysteine

  18. Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces

    OpenAIRE

    Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.

    2012-01-01

    We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region ...

  19. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    Science.gov (United States)

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  20. Electron paramagnetic resonance study of radicals formed by radiolysis at 77 K of nitroalkanes and of their solutions in organic glasses. Chromatography analysis of radiolysis products of nitromethane in ethanol solution in a vitreous medium

    International Nuclear Information System (INIS)

    Rosilio, C.

    1969-01-01

    With a view to explaining the formation of the final products resulting from the photolysis and the radiolysis of nitro-alkanes, we have attempted to identify the paramagnetic species formed as intermediates during the radiolysis. Our work has covered the structure and the reactivity of the radicals formed by 7 irradiation of the nitrogen containing derivatives at 77 K, and on the mechanism of formation and of disappearance of these radicals in the various matrices used. The radicals resulting from the removal of a hydrogen atom in the α position of the NO 2 group, and the radicals resulting from addition reactions on the nitrogen group characterized by an unpaired electron on the nitrogen have been identified, either during the radiolysis of pure nitroalkanes, or during the radiolysis of nitro-alkanes in solution in organic glasses at 77 K. A study has been made of the conformation and the movements of radicals in the matrices, and the mechanism of formation of the observed radicals produced generally by the capture by the nitro-alkanes of primary radiolysis species. The nitro-alkanes in ethanol solution can behave as traps both for electrons and for free radicals. The study of the radiolysis of nitro-alkanes in solution in a polar ethanol glass has been completed with chemical analyses on the final radiolysis products; it has been possible to deduce the capture efficiency of trapped electrons and of free radicals by nitro-alkanes in ethanol. For this we have determined the radio-chemical yields of hydrogen, acetaldehyde and glycol as a function of the capture agent concentration, for the nitro-methane-ethanol system. A mechanism for the disappearance of the observed radicals is proposed. (author) [fr

  1. Spin trapping study on the nature of radicals generated by X radiolysis and peroxidation of linolenic acid

    International Nuclear Information System (INIS)

    Azizova, O.A.; Osipov, A.N.; Zubarev, V.E.; Yakhyaev, A.V.; Vladimirov, Yu.A.; Savov, V.M.; Kagan, V.E.

    1983-01-01

    The radicals of linolenic acid and their spin adducts (SA) with PBN formed during X radiolysis of linolenic acid and in lipid peroxidation with ferrous ions were investigated and identified. It was found that in the absence of oxygen in pure linolenic acid at 77 K X irradiation produces alkyl and carboxyl radicals. In the presence of the spin trap alkyl radical spin adducts were formed. Irradiation of linolenic acid in the presence of oxygen at 77 K also resulted in the formation of alkyl radicals. These radicals were transformed into peroxy radicals in the interaction of alkyl radical with oxygen upon heating to 117 K. In the presence of spin trap X irradiation of linolenic acid and heating of the sample up to 300 K gave rise to EPR spectra of SA alkyl and unidentified radicals. Lipid peroxidation of linolenic acid induced by ferrous ions in the presence of spin trap also formed radicals and SA of linolenic acid. The spectral parameters of SA generated with ferrous ions in lipid peroxidation and of those generated during X radiolysis do not differ. The similarity of spectral parameters of SA in these two cases suggests a similarity in the structure of linolenic acid radicals. (author)

  2. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  3. Thermal evolution of the morphology of Ni/Ag/Si(111)-{radical}3 Multiplication-Sign {radical}3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Tomaszewska, Agnieszka; Huang, Xiao-Lan; Chang, Kuo-Wei; Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw

    2012-08-31

    The temperature-driven changes in morphology of the interface formed by room temperature (RT) deposition of Ni atoms onto an Ag/Si(111)-{radical}3 Multiplication-Sign {radical}3 surface were investigated by scanning tunneling microscopy. Roughly 70% of Ni deposition diffused into bulk substrate within the temperature range between RT and 573 K. The images as obtained after annealing up to 670 K correspond to the formation of nano-sized islands of nickel silicides. Two types of islands, large triangular islands typical of the whole range of applied coverage, and smaller islands of different shapes, coexist at Ni coverage higher than 1 monolayer. Annealing above 870 K led to the formation of a 7 Multiplication-Sign 7 phase in coexistence with small 5 Multiplication-Sign 5 domains at the expense of a complete disappearance of the {radical}3 Multiplication-Sign {radical}3 phase. Also, formation of Ni,Si alloy was observed at the temperature, along with segregation of bulk-dissolved Ni species onto the surface. - Highlights: Black-Right-Pointing-Pointer We examine changes in morphology of Ni/Ag/Si(111)-{radical}3 Multiplication-Sign {radical}3 surface upon annealing. Black-Right-Pointing-Pointer 70% of deposited Ni atoms diffuse into the bulk after annealing at 570 K. Black-Right-Pointing-Pointer A variety of nano-sized Ni, Si islands develops after annealing at 670 K. Black-Right-Pointing-Pointer 5 Multiplication-Sign 5 reconstruction as an evidence for mass transport during the island growth.

  4. Contribution of attendant anions on cadmium toxicity to soil enzymes.

    Science.gov (United States)

    Tian, Haixia; Kong, Long; Megharaj, Mallavarapu; He, Wenxiang

    2017-11-01

    Sorption and desorption are critical processes to control the mobility and biotoxicity of cadmium (Cd) in soils. It is known that attendant anion species of heavy metals could affect metal adsorption on soils and might further alter their biotoxicity. However, for Cd, the influence of attendant anions on its sorption in soils and subsequent toxicity on soil enzymes are still unknown. In this work, four Cd compounds with different salt anions (SO 4 2- , NO 3 - , Cl - , and Ac - ) were selected to investigate their impact of on the sorption, soil dehydrogenase activity (DHA) and alkaline phosphatase activity (ALP). Thus, a series of simulated Cd pollution batch experiments including measuring adsorption-desorption behavior of Cd on soils and soil enzyme activities were carried out. Results showed that CdSO 4 exhibited highest sorption capacity among the tested soils except in Hunan soil. The Cd sorption with NO 3 - displayed a similar behavior with Cl - on all tested soils. Compared with soil properties, all four kinds of anions on Cd sorption played a more significant role affecting Cd ecological toxicity to soil DHA and ALP. Cd in acetate or nitrate form appears more sensitive towards DHA than sulphate and chloride, while the later pair is more toxic towards ALP than the former. These results have important implications for evaluation of Cd contamination using soil enzyme as bioindicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Radiation-induced polymerisation of 2,3-dihydrofuran: free-radical or cationic mechanism?

    International Nuclear Information System (INIS)

    Janovsky, Igor; Naumov, Sergej; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    Concentrated (10 mol%) solutions of 2,3-dihydrofuran in CFCl 2 CF 2 Cl matrix were irradiated at 77 K and several intermediates (dimer radical cation, dihydrofuryl radical, and polymer radicals) were observed by low-temperature EPR spectroscopy. The irradiated solutions yielded after melting a polymeric product, which was characterised by IR spectroscopy and gel permeation chromatography. The polydisperse polymer is assumed to be formed mainly by a cationic process initiated by a dimer carbocation. The free-radical mechanism via the dihydrofuryl radical leads to low molecular weight oligomers only. Quantum chemical calculations support the interpretation of the experimental results

  6. Introduction: Radical Teaching About Human Rights Part II

    Directory of Open Access Journals (Sweden)

    Michael Bennett

    2016-02-01

    Full Text Available In our introduction to the first of these two issues of Radical Teacher devoted to “Radical Teaching About Human Rights,” we cautioned that all forms of Human Rights Education (HRE are not radical.  The problem, we pointed out, with rights discourse is that it can mask the politics of how rights are defined, whose rights are recognized, and how they are enforced.  This problem becomes evident when HRE is bound up with a neoliberal, or worse than neoliberal, perspective that points fingers at others and rallies troops for supposedly humanitarian interventions while eliding the role of the United States as an imperializing settler colonial state.  Fortunately, we have once again received several essays that seem to us to be aware of this danger and provide admirable examples of radical teaching about human rights.

  7. Effect of indifferent anions on reactions of cadmium ferrocyanide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gyunner, Eh A; Mel' nichenko, L M; Vel' mozhnyj, I S [Simferopol' skij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-08-01

    To clarify the effect of indifferent anions on the processes of cadmium ferrocyanide precipitation the interaction in six systems of the type CdXsub(m)-Msub(4)R-Hsub(2)O (X-Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/; M-K/sup +/, NH/sub 4//sup +/; R-(Fe(CN)/sub 6/)/sup 4 -/) is studied using the methods of physicochemical analysis (the method of residual concentrations, refractometry). Composition and formation regions of low-soluble interaction products are determined. Effect of anion X nature on interaction character is stated in the series Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/ in mixtures with incomplete Cd/sup 2 +/ precipitation a tendency for the increase of Cd/sup 2 +/:R/sup 4 -/ ratios in precipitates formed is observed.

  8. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  9. Distribution of anionic sites in Bruch's membrane of the rabbit eye.

    Science.gov (United States)

    Essner, E; Pino, R M

    1982-06-01

    The organization of anionic (negatively charged) sites in Bruch's membrane of the rabbit eye at various stages of postnatal development was studied using the cationic polymer, polyethyleneimine (PEI). PEI-positive sites were demonstrable as rows of particles (diameter ca. 18 nm) located at intervals along either side of the basal laminae of the retinal pigment epithelium and choriocapillary endothelium. In tangential sections through Bruch's membrane, stained particles appeared to be arranged in a semi-regular, lattice-like pattern in which the sites were separated from each other by an interval of approximately 50 nm. PEI-positive particles were also observed on collagen fibers where they were distributed at regular intervals along the length of the fiber. In tangential sections, collagen fibers formed a loosely packed meshwork in the central zone of Bruch's membrane. In addition, individual fibers were frequently oriented so that one end was located close to or within the substance of the basal laminae, a result suggesting that the anionic sites on these fibers might contribute to the network present in the basal laminae. The findings lend further support to the suggestion that anionic sites in Bruch's membrane may serve as a charge barrier which retards the movement of anionic molecules that are in transit from the choriocapillaris to the retinal pigment epithelium and outer neural retina.

  10. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  11. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  12. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  13. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  14. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.

    2017-01-01

    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  15. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3.

    Science.gov (United States)

    Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin

    2018-03-02

    The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.

  16. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  17. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  18. Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies

    Directory of Open Access Journals (Sweden)

    A. Mouithys-Mickalad

    1997-01-01

    Full Text Available Sphingolipids inhibit the activation of the neutrophil (PMN NADPH oxidase by protein kinase C pathway. By electron spin resonance spectroscopy (ESR and chemiluminescence (CL, we studied the effects of sphingosine (SPN and ceramide analogues on phorbol 12-myristate 13-acetate (PMA, 5 × 10-7M stimulated PMN (6 × 106 cells. By ESR with spin trapping (100 mM DMPO: 5,5-dimethyl-1-pyrroline-Noxide, we showed that SPN (5 to 8 × 10-6M, C2-ceramide (N-acetyl SPN and C6-ceramide (N-hexanoyl SPN at the final concentration of 2 × 10-5 and 2 × 10-4M inhibit the production of free radicals by stimulated PMN. The ESR spectrum of stimulated PMN was that of DMPO-superoxide anion spin adduct. Inhibition by 5 × 10-6M SPN was equivalent to that of 30 U/ml SOD. SPN (5 to 8 × 10-6M has no effect on in vitro systems generating superoxide anion (xanthine 50 mM/xanthine oxidase 110 mU/ml or hydroxyl radical (Fenton reaction: 88 mM H2O2, 0.01 mM Fe2+ and 0.01 mM EDTA. SPN and N-acetyl SPN also inhibited the CL of PMA stimulated PMN in a dose dependent manner (from 2 × 10-6 to 10-5M, but N-hexanoyl SPN was less active (from 2 × 10-5 to 2 × 10-4M. These effects were compared with those of known PMN inhibitors, superoxide dismutase, catalase and azide. SPN was a better inhibitor compared with these agents. The complete inhibition by SPN of ESR signal and CL of stimulated PMN confirms that this compound or one of its metabolites act at the level of NADPH-oxidase, the key enzyme responsible for production of oxygen-derived free radicals.

  19. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Savel'yeva, Ekaterina L; Lankin, Vadim Z; Yegorov, Yegor E

    2012-10-01

    Advanced glycation Maillard reaction end products (AGEs) are causing the complications of diabetes and skin aging, primarily via adventitious and cross-linking of proteins. Long-lived proteins such as structural collagen are particularly implicated as pathogenic targets of AGE processes. The formation of α-dicarbonyl compounds represents an important step for cross-linking proteins in the glycation or Maillard reaction. The purpose of this study was to investigate the contribution of glycation coupled to the glycation free-radical oxidation reactions as markers of protein damage in the aging of skin tissue proteins and diabetes. To elucidate the mechanism for the cross-linking reaction, we studied the reaction between a three-carbon α-dicarbonyl compound, methylglyoxal, and amino acids using EPR spectroscopy, a spectrophotometric kinetic assay of superoxide anion production at the site of glycation and a chemiluminescence technique. The transglycating activity, inhibition of transition metal ions peroxidative catalysts, resistance to hydrolysis of carnosine mimetic peptide-based compounds with carnosinase and the protective effects of carnosine, carcinine and related compounds against the oxidative damage of proteins and lipid membranes were assessed in a number of biochemical and model systems. A 4-month randomized, double-blind, controlled study was undertaken including 42 subjects where the oral supplement of non-hydrolized carnosine (Can-C Plus® formulation) was tested against placebo for 3 months followed by a 1-month supplement-free period for both groups to assess lasting effects. Assessment of the age-related skin parameters and oral treatment efficacy measurements included objective skin surface evaluation with Visioscan® VC 98 and visual assessment of skin appearance parameters. The results together confirm that a direct one-electron transfer between a Schiff base methylglyoxal dialkylimine (or its protonated form) and methylglyoxal is responsible for

  20. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  1. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  2. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    Science.gov (United States)

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  3. Dissociation of metastable CH3CO radicals studied by time-resolved photofragment imaging

    Science.gov (United States)

    Suzuki, Toshinori; Shibata, Takeshi; Li, Haiyang

    1998-05-01

    A novel experimental technique to measure the energy- dependent unimolecular dissociation rate k(E) of radical species is presented. Internally excited CH3CO radicals were formed by ultraviolet photodissociation of CH3COCl, and the subsequent decay of these radicals was detected by subpicosecond time-clocked photofragment imaging. The CH3CO radicals with different internal energies were dispersed in space by their recoil velocities, and their decay rates were measured for each internal energy.

  4. EPR assessment of the free radicals in irradiated foodstuffs

    International Nuclear Information System (INIS)

    Tencheva, S.; Katsareva, Ts.; Malinovski, A.; Kabasanov, K.

    1985-01-01

    In the hygienic assessment of radiation treated foodstuffs the study of free radicals formed during radiation exposure, their concentration and disintegration kinetics are of particular interest. In the work presented the concentration of the free radicals in irradiated prunes, nuts and corn is determined using EPR spectroscopy. The following doses are applied: 2, 10 and 20 kGy for prunes, 1, 10 and 20 kGy for nuts, and 0.75, 10 and 20 kGy for corn. EPR measurements are done immediately after the irradiation: 24 hours, and 3, 6, 9 and 15 days after the exposure. In the small radiation doses the formation of single radicals is observed. In doses of 10 kGy the spectra get complicated with the occurence of radicals R 1 , R 2 , R 3 and R 4 . The assessment of radicals proves to be a prospective method for the identification and determination of the preservation terms of foodstuffs

  5. Radicalization In Pakistan And The Spread Of Radical Islam In Pakistan

    Directory of Open Access Journals (Sweden)

    Bahir ahmad

    2015-08-01

    Full Text Available ABSTRACT It is pertinent to mention that radicalism is not intrinsic to Islam and radical interpretations of the religion or for that matter may occur within any way of life and religion Saikal 2003 and yet the question remains as to why Muslims in certain geographical regions have more radical approaches towards their religion and also that what are the causes of such radicalization. Becoming a radical Muslim is not even a matter of a day nor is it a sudden process. There are several reasons behind making a person radical peaceful angry smiling or tolerant. For knowing the reason behind radicalization or radicals persons one has to understand the causes. Tracing these causes is one of the ways to eliminate such behavior. The first step in the elimination of the radical sentiments in a person is to develop peace in his personality Fair Malhotra amp Shapiro 2010. The chapter which has been addressed here is going to shed light on the roots and symptoms of the radicalism. There will be a brief discussion on how the roots of radicalism can be traced and can be eliminated. The assessment and discussion will be conducted on the parameters of the economy media politics and theology from social cultural point of view. According to the analysis of Ahrari 2000 political factor is one of the major and direct factors which have resulted in causing of the radicalism. These factors however intertwine with one another. Radical actions cannot take place only because of the political factors.

  6. Configuration of a pulse radiolysis system for the study of gas-phase reactions and kinetic investigations of the reactions of hydroxyl radicals with methyl and ethyl radicals

    International Nuclear Information System (INIS)

    Fagerstroem, K.

    1993-01-01

    The work that is presented in this thesis deals with the assembling and testing of a pulse radiolysis system for kinetic studies of gas-phase reactions as well as with the kinetics of the gas-phase reactions of hydroxyl radicals with methyl and ethyl radicals. These radicals are very important as these are formed at an early stage in hydrocarbon combustion processes. The two studied reactions are key reactions in those processes. (6 refs., 4 figs., 2 tabs.)

  7. ESR and spin-trapping study of room-temperature radicals in γ-irradiated polycrystalline pyrimidine nucleotides

    International Nuclear Information System (INIS)

    Zhang, Z.; Kuwabara, M.; Yoshii, G.

    1983-01-01

    Free radicals produced in γ-irradiated polycrystalline 5'-dCMP (free acid and 2Na), 3'-CMP (free acid and Li), and 5'-UMP (2Na) were studied by ESR and spin-trapping. The results were compared with those of previous single-crystal studies. Furthermore, attempts to identify free radicals in γ-irradiated 5'-dUMP (2Na), 5'-CMP (free acid and 2Na), and 3'-UMP (Na), which have not been the subject of single-crystal studies to date, were made. After γ-irradiation at room temperature to a dose of 100 kGy, the polycrystalline samples were dissolved in aqueous solutions of t-nitrosobutane in the presence or absence of oxygen. The presence or absence of oxygen was helpful in analyzing the presence of more than one radical species. Thus two types of radicals could be established for all samples. Radical -C 5 H-C 6 H 2 -, formed by H addition to the double bond of the base, was observed in the presence of oxygen, and radical -C/sub 5'/H 2 , formed by the transformation of the radical due to loss of an H atom at the C/sub 5'/ position of the sugar moiety, was observed in the absence of oxygen. In some cases, radicals located at the C/sub 1'/, C/sub 4'/, and C/sub 5'/ of the sugar moiety were tentatively identified. For the ESR spectrum associated with radical at C/sub 1'/ the possibility of another explanation was also discussed in relation to the spectrum due to radical at C 5 of the base. Radical -C 5 H 2 -C 6 H-, formed by H addition to the double bond of the base, was not identified

  8. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  9. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  10. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  11. Radical Documentaries, Neoliberal Crisis and Post-Democracy

    Directory of Open Access Journals (Sweden)

    Eugenia Siapera

    2017-12-01

    Full Text Available This article examines radical documentaries in Greece as a response to neoliberal crisis and post democracy. In a context where mainstream media have made themselves irrelevant, facing historical lows in trust and credibility, we found that radical documentaries have emerged outside the commodification of information and form part of the growing social or solidarity economy in Greece. Our analysis shows that these documentaries operate through a different political economy, that involves collaborative practices and that they are firmly oriented towards society rather than the political sphere. Overall, we found that radical documentaries are seeking to recuperate the media through engaging professional media workers, journalists, film directors, academics and actors; they operate through reclaiming media know-how; through radicalizing the financing, production and distribution by refusing to participate in commodification processes; and through recreating commonalities by thematizing the common, the public, and responsibility towards others.Their specific political role is found to be one of helping to restore the social body and to contribute to processes of commoning, whereby solidarity and social trust is recovered.

  12. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  13. The roles of anion and solvent transport during the redox switching process at a poly(butyl viologen) film studied by an EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Yu.; Liao, Chun-Hao [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Ho, Kuo-Chuan [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China)

    2008-02-15

    In this study, three electrolytes (KCl, LiCl, and KNO{sub 3}, each at 0.5 M in aqueous solution) were chosen to study the ion and solvent effect on the redox performance of poly(butyl viologen) (PBV) thin-films between its di-cation and radical-cation state, which is referred as its first redox couple. Before considering the role of ionic transport on the redox process, the exchange between ferrocyanide and anion should be completed. Since the deposition solution of PBV contains potassium ferrocyanide, the residual ferrocyanides inside the films would be exchanged by smaller anions from the bulk solution during the redox reaction of PBV. From cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) results, the exchange was almost complete around 50 cycles when scanning the potential within its first redox range. After completion of the exchange process, the transfer would reach a steady state. At 50 cycles, the EQCM results suggested that the transport involves anions and water only for both being extracted upon reduction and being inserted upon oxidation. Therefore, we could obtain the molar fluxes of Cl{sup -}, NO{sub 3}{sup -}, and water. Besides, the average numbers of accompanying water were calculated to be about 24.8 per Cl{sup -} and 14.2 per NO{sub 3}{sup -} upon redox switching process. The instantaneous water to anion molar ratios at any potential were also obtained for Cl{sup -} and NO{sub 3}{sup -}. (author)

  14. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  15. Mu (H) radical addition to flat and curved polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Addison-Jones, B.; Brodovitch, J.C.; Ghandi, K.; Percival, P.W.; Schuth, J. [Simon Fraser Univ., Dept. of Chemistry, Burnaby, BC (Canada)

    1998-09-01

    A study was conducted in which muonium-substituted free radicals formed from fullerenes, pyrene and pyrenophane were examined to determine how curvature of an unsaturated carbon skeleton affects radical adduct formation. The question is of relevance to C{sub 70}. It was demonstrated that in order to mimic a fullerene it is necessary to introduce curvature to the pyrene system. 2 figs.

  16. Hegel’s Gesture Towards Radical Cosmopolitanism

    Directory of Open Access Journals (Sweden)

    Shannon Brincat

    2009-09-01

    Full Text Available This is a preliminary argument of a much larger research project inquiring into the relation betweenHegel’s philosophical system and the project of emancipation in Critical International Relations Theory. Specifically, the paper examines how Hegel’s theory of recognition gestures towards a form of radical cosmopolitanism in world politics to ensure the conditions of rational freedom for all humankind. Much of the paper is a ground-clearing exercise defining what is ‘living’ in Hegel’s thought for emancipatory approaches in world politics, to borrow from Croce’s now famous question. It focuses on Hegel’s unique concept of freedom which places recognition as central in the formation of self-consciousness and therefore as a key determinant in the conditions necessary forhuman freedom to emerge in political community. While further research is needed to ascertain the precise relationship between Hegel’s recognition theoretic, emancipation and cosmopolitanism, it is contended that the intersubjective basis of Hegel’s concept of freedom through recognition necessitates some form of radical cosmopolitanism that ensures successful processes of recognition between all peoples, the precise institutional form of which remains unspecified.

  17. γ-Ray radiolysis and theoretical study on radical ions of star-shaped oligofluorenes having a truxene or isotruxene as a core

    International Nuclear Information System (INIS)

    Fujitsuka, Mamoru; Tojo, Sachiko; Yang, Jye-Shane; Majima, Tetsuro

    2013-01-01

    Highlights: ► Radiolysis provides absorption spectra of radical ions of star-shaped oligofluorenes. ► Absorption spectroscopic properties depend on oligomer size extensively. ► TDDFT provides reasonable assignments to the visible and near-IR absorption bands. ► Extensive charge delocalization was indicated by planarization of oligomers. - Abstract: Poly- and oligofluorenes have been intensively studied for years, because of their excellent properties as photo- and electro-functional materials. Especially, star-shaped oligofluorenes as two-dimensional oligomers are interesting materials for wide researchers. To understand their electronic properties in charged states, absorption spectra of radical cation and radical anion of star-shaped oligomers with varied size were investigated by means of γ-ray radiolysis. The absorption spectra of their radical ions ranged from the visible to near-IR regions were successfully obtained. By using the theoretical calculation, the observed peaks were assigned. It is indicated that the transition between HOMO and LUMO of the original neutral state plays a significant role in the visible region. Furthermore, it is indicated that the star-shaped oligofluorenes tend to take a planar structure upon oxidation and reduction

  18. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  19. Energetics and chemical bonding of the 1,3,5-tridehydrobenzene triradical and its protonated form

    International Nuclear Information System (INIS)

    Hue Minh Thi Nguyen; Hoeltzl, Tibor; Gopakumar, G.; Veszpremi, Tamas; Peeters, Jozef; Minh Tho Nguyen

    2005-01-01

    Quantum chemical calculations were applied to investigate the electronic structure of the parent 1,3,5-tridehydrobenzene triradical (C 6 H 3 , TDB) and its anion (C 6 H 3 - ), cation (C 6 H 3 + ) and protonated form (C 6 H 4 + ). Our results obtained using the state-averaged complete active space self-consistent-field (CASSCF) followed by second-order multi-state multi-configuration perturbation theory, MS-CASPT2, and MRMP2 in conjunction with the large ANO-L and 6-311++G(3df,2p) basis set, confirm and reveal the followings: (i) TDB has a doublet 2 A 1 ground state with a 4 B 2 - 2 A 1 energy gap of 29kcal/mol, (ii) the ground state of the C 6 H 3 - anion in the triplet 3 B 2 being 4kcal/mol below the 1 A 1 state. (iii) the electron affinity (EA), ionization energy (IE) and proton affinity (PA) are computed to be: EA=1.6eV, IE=7.2eV, PA=227kcal/mol using UB3LYP/6-311++G(3df,2p)+ZPE; standard heat of formation ΔH f(298K,1atm) (TDB)=179+/-2kcal/mol was calculated with CBS-QB3 method. An atoms-in-molecules (AIM) analysis of the structure reveals that the topology of the electron density is similar in all compounds: hydrogens connect to a six-membered ring, except for the case of the 2 A 2 state of C 6 H 4 + (MBZ + ) which is bicyclic with fused five- and three-membered rings. Properties of the chemical bonds were characterized with Electron Localization Function (ELF) analysis, as well as Wiberg indices, Laplacian and spin density maps. We found that the radicals form separate monosynaptic basins on the ELF space, however its pair character remains high. In the 2 A 1 state of TDB, the radical center is mainly localized on the C1 atom, while in the 2 B 2 state it is equally distributed between the C3 and C5 atoms and, due to the symmetry, in the 4 B 2 state the C1, C2 and C3 atoms have the same radical character. There is no C3-C5 bond in the 2 A 1 state of TDB, but the interaction between these atoms is strong. The ground state of cation C 6 H 3 + (DHP), 1 A 1 , is

  20. Engineering radical polymer electrodes for electrochemical energy storage

    Science.gov (United States)

    Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.

    2017-06-01

    In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.

  1. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  2. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Li-Wei [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Luo, Tzuoo-Tsair [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Wang, Chih-Min [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lee, Gene-Hsiang; Peng, Shie-Ming [Department of Chemistry, National Taiwan University, Taipei 107, Taiwan (China); Liu, Yen-Hsiang [Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan (China); Lee, Sheng-Long [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Lu, Kuang-Lieh [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  3. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  4. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  5. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    NARCIS (Netherlands)

    Kuipers, G.K.; Slotman, B.J.; Reitsma-Wijker, CA; Andel, R.J.; Poldervaart, H.A.; Lafleur, M.V.M.

    2004-01-01

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals

  6. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    Science.gov (United States)

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  7. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  8. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-06-15

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent.

  9. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-06-01

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  10. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  11. Activism and radical politics in the digital age: Towards a typology

    DEFF Research Database (Denmark)

    Neumayer, Christina; Jakob, Svensson

    2014-01-01

    This article aims to develop a typology for evaluating different types of activism in the digital age, based on the ideal of radical democracy. Departing from this ideal, activism is approached in terms of processes of identification by establishing conflictual frontiers to outside others as either...... in radical democracy concerning developing frontiers. The second axis, about readiness to engage in civil disobedience, is derived from a review of studies of different forms of online activism. The article concludes by suggesting that the different forms of political engagement online have to be taken...

  12. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  13. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  14. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Paul M.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J., E-mail: p.woods@qub.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-11-10

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  15. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    International Nuclear Information System (INIS)

    Woods, Paul M.; Viti, Serena; Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J.

    2013-01-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints

  16. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    Science.gov (United States)

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap

  17. Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion.

    Science.gov (United States)

    Zhong, Yishun; Chen, Gen; Liu, Xiaohe; Zhang, Dan; Zhang, Ning; Li, Junhui; Liang, Shuquan; Ma, Renzhi; Qiu, Guanzhou

    2017-06-22

    Conical structures with hollow interiors, namely, nanocones (NCs), may exhibit better carrier transport properties than nanorods or nanotubes, which make them promising candidates for potential applications in optical/display devices, electronics and optoelectronics. Generally, conical structures belong to a metastable state between lamellar and tubular forms due to the extreme curvature causing the increase of internal strain energy. Therefore, it is very difficult to prepare NCs in high yield and purity under mild conditions. Here we firstly demonstrate a general strategy for the synthesis of layered rare-earth hydroxide (LRH) NCs intercalating dodecyl sulfate anions (C 12 H 25 SO 4 - , DS - ) using hexamethylenetetramine (C 6 H 12 N 4 , HMT) hydrolysis. The rare-earth cations (RE 3+ ) in the host layer can be conveniently modified and/or doped, resulting in a large family of monometallic (Y, Tb, Er), bi- (Y-Tb, Y-Er) and even tri-metallic (Y-Yb-Er) LRH NCs with adjustable ratios. Moreover, the DS - -intercalated LRH NCs can be readily modified with various inorganic or organic anions (e.g., NO 3 - , Cl - , and CH 3 COO - , etc.) through a conventional anion-exchange procedure, and the original conical morphology can be perfectly maintained. The anion-exchanged product, for example, NO 3 - -intercalated NCs, can be more easily and topotactically transformed into oxide NCs than the original DS - -intercalated form, exempt from the formation of rare-earth oxysulfates induced by the combustion of interlayer DS anions. Taking advantage of this protocol, tri-metallic (Y-Yb-Er) LRH NCs were anion-exchanged into the NO 3 - -intercalated form and subsequently calcined into Y 2 O 3 :Yb,Er oxide NCs, which showed efficient upconversion photoluminescence properties. The current strategy may become a general method for the designed synthesis of other related hydroxide and oxide NCs for a wide range of potential applications.

  18. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stabilizers of edaravone aqueous solution and their action mechanisms. 1. Sodium bisulfite

    OpenAIRE

    Tanaka, Masahiko; Sugimura, Natsuhiko; Fujisawa, Akio; Yamamoto, Yorihiro

    2017-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used as a free radical scavenging drug for the treatment of acute ischemic stroke in Japan since 2001. Edaravone is given to patients intravenously; therefore, it is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because it is present as edaravone anion, which is capable of transferring an electron to free radicals including oxygen, and becomes edaravone radical. We observed the...

  20. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.

    Science.gov (United States)

    Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe

    2017-08-29

    A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  2. Salts of Dodecamethylcarba-closo-dodecaborate(-) Anion, CB11Me12-, and the Radical Dodecamethylcarba-closo-dodecaboranyl, CB11Me12

    Czech Academy of Sciences Publication Activity Database

    Clayton, J. R.; King, B. T.; Zharov, I.; Fete, M. G.; Volkis, V.; Douvris, C.; Valášek, Michal; Michl, Josef

    2010-01-01

    Roč. 35, - (2010), s. 56-63 ISSN 0073-8077 Grant - others:NSF(US) CHE0446688; NSF(US) CHE0848477 Institutional research plan: CEZ:AV0Z40550506 Keywords : boron clusters * methylation * stable free radical Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    Science.gov (United States)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  4. Prospects of radical-interacting porphyrin photosensitizers and their possible use in photodynamic therapy

    Science.gov (United States)

    Gal, Dezso; Shuliakovskaya, T.; Vidoczy, Tamas; Elzemzam, Saleh; Vasvari, Gabor; Suemegi, L.; Kuti, Zsolt

    1994-03-01

    Based on literature data obtained in various fields with respect to studies on the role of free radicals in biology and on the kinetics of triplet-doublet interactions, it is suggested that excited photosensitizers react in vivo with free radicals formed in malignant tissues during photodynamic therapy (PDT) and this interaction competes with sensitizer-radical + molecule and the singlet oxygen mediated effects. Experimental results by laser flash photolysis and electron spin resonance revealed that sensitizer applied in PDT react with stable free radicals presumably both by energy transfer and electron transfer.

  5. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  6. Radical fragmentation of six-membered oxygen-containing heterocycles

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kosobutskij, V.S.; Shadyro, O.I.

    1982-01-01

    Using chromatography, the composition and radiation-chemical yields of final products of desctruction of six-member saturated oxygen-containing heterocycles (the effect of #betta#-radiation on aqueous solutions of tetrahydropyran, 1,3-dioxane, 2,2 dimethyl-1,3 dioxane, 1,4-dioxane, paraldehyde) have been determined. It is established that the identified products are formed at the expense of decomposition of primary radicals of the initial compounds and point to the realization of the following fragmentation ways: 1) #betta#-scattering, 2) #betta#-scattering with a subsequent 1,5 migration of an H atom, 3) simultaneous rupture of two vicinal, relative to the radical center, bonds. A formation mechanism of the substances desctruction products is suggested. Material balance of the product yields of 1,3-dioxane radical synchronous decomposition is presented

  7. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  8. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  9. Ruthenium(II) 2,2'-bibenzimidazole complex as a second-sphere receptor for anions interaction and colorimeter.

    Science.gov (United States)

    Cui, Ying; Niu, Yan-Li; Cao, Man-Li; Wang, Ke; Mo, Hao-Jun; Zhong, Yong-Rui; Ye, Bao-Hui

    2008-07-07

    A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.

  10. Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals

    Science.gov (United States)

    Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III

    Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron

  11. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  12. CRC handbook of methods for oxygen radical research

    National Research Council Canada - National Science Library

    Greenwald, Robert A

    1985-01-01

    .... This volume is divided into five sections. Section I deals with preparative methodology for isolation and purification of the components of the oxy radical experimental systems used most frequently, including all the three forms of SOD...

  13. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  14. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  15. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    Energy Technology Data Exchange (ETDEWEB)

    Hissung, A; Isildar, M; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenforschung; Witzel, H [Biochemisches Institut der Westfaelischen Wilhelms-Universitaet, Muenster, West Germany

    1981-02-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N/sub 2/O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10/sup 5/s/sup -1/) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10/sup 3/ M/sup -1/s/sup -1/ was estimated. Compound 4 has also been investigated by product analysis after 60-Co-..gamma..-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O/sub 2/ to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA.

  16. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    International Nuclear Information System (INIS)

    Hissung, A.; Isildar, M.; Sonntag, C. von; Witzel, H.

    1981-01-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N 2 O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10 5 s -1 ) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10 3 M -1 s -1 was estimated. Compound 4 has also been investigated by product analysis after 60-Co-γ-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O 2 to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA. (author)

  17. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  18. Sign of the electron exchange coupling in random radical encounter pairs in solution

    International Nuclear Information System (INIS)

    Thurnauer, M.C.; Chiu, T.M.; Trifunac, A.D.

    1985-01-01

    An important parameter in the study of reacting radical systems is the electron exchange interaction, J. The properties of interest are the sign and magnitude of J, and its functional dependence on distance between radicals. One source of information about J is from understanding the Chemically Induced Dynamic Electron Polarization (CIDEP) which is observed in the EPR spectra of reactive radical systems. For radicals reacting in solution to form new covalent bonds, it has generally been found that J O. It is suggested that F-pairs react at a separation greater than that at which spin correlated (geminate) pairs of the same radicals are formed, so that the intervening solvent molecules become involved in the exchange interaction giving rise to J>O via some sort of superexchange process. This is an interesting proposition since superexchange via solvent molecules may play a role in rates of long-distance electron transfer reactions and in the electron transfer reactions of photosynthesis. However, the model suggested runs contrary to all F-air radicals are produced. In order to clarify this important point, the authors present here a definitive study in which we examine several systems of radgenerated independently (exclusive F-pairs) by pulsed laser photolysis and pulsed radiolicals generatedysis in aqueous, alcoholic and hydrocarbon solvents

  19. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    Science.gov (United States)

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  20. THE POSSIBLE INTERSTELLAR ANION CH{sub 2}CN{sup -}: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Crawford, T. Daniel, E-mail: Ryan.C.Fortenberry@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 (United States)

    2013-01-10

    The A {sup 1}B{sub 1} Leftwards-Open-Headed-Arrow X-tilde{sup 1}A' excitation into the dipole-bound state of the cyanomethyl anion (CH{sub 2}CN{sup -}) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde{sup 1} A' CH{sub 2}CN{sup -} in order to assist in laboratory studies and astronomical observations.

  1. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; McGinnes, D.F.

    1988-07-01

    Organic anion exchange resins are evaluated for 99-TcO 4 - (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I - , NO 3 - , SO 4 = , CO 3 = , Cl - and OH - . Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  2. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  3. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  4. EPR study of gamma induced radicals in amino and iminodiacetic acid derivatives

    International Nuclear Information System (INIS)

    Aydin, Murat; Baskan, M. Halim; Osmanoglu, Y. Emre

    2009-01-01

    In this study, electron paramagnetic resonance spectroscopy was used to investigate free radicals formed in gamma irradiated L-glutamine hydrochloride, iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders. The free radicals produced in L-glutamine hydrochloride powders were attributed to the CH 2 CHCOOH radical; and those in iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders to the HNCHCH 2 (CO OH) 2 and HOCH 2 CH 2 NCHCH 2 (CO OH) 2 , respectively. The g-values of the radicals and the hyperfine structure constants of the free electron with the environmental protons and 14 N nucleus were determined. The samples were not displayed before they were not irradiated. The free radicals were found stable at room temperature for more than six months. Some spectroscopic properties and suggestions concerning possible structure of the radicals are discussed in this paper. (author)

  5. BF2 complex of fluorinated dipyrrolyldiketone: a new class of efficient receptor for acetate anions.

    Science.gov (United States)

    Maeda, Hiromitsu; Ito, Yoshihiro

    2006-10-02

    The beta-fluorinated derivative (2b) of the 1,3-dipyrrolyl-1,3-propanedione BF2 complex has been prepared from 3,4-difluoropyrrole and malonyl chloride, followed by treatment with BF3.OEt2. Despite the simple, acyclic, and neutral structure, 2b exhibits efficient 1:1 binding for anions in CH2Cl2 using the bridging CH and pyrrole NH as interaction sites. The binding constant (Ka) of 2b for acetate (CH3CO(2-)), associating more effectively than anions such as F-, Cl-, Br-, H2PO(4-), and HSO(4-), is estimated to be 9.6 x 10(5) M(-1), approximately 9 times larger than that of the beta-H derivative 2a (1.1 x 10(5) M(-1)). The UV-vis and fluorescence spectral changes of 2b elucidate the effective recognition of an amino acid, such as phenylalanine, in the anionic form; this is also supported by CD spectral changes with mirror images by L- and D-isomers. Furthermore, in the solid state, BF2 complex 2b provides Cl- -bridged supramolecular networks and, in sharp contrast, deprotonated "anionic" self-assembled structures by F- binding.

  6. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  7. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Cohn Corey A

    2008-02-01

    Full Text Available Abstract Background Reactive oxygen species including hydroxyl radicals can cause oxidative stress and mutations. Inhaled particulate matter can trigger formation of hydroxyl radicals, which have been implicated as one of the causes of particulate-induced lung disease. The extreme reactivity of hydroxyl radicals presents challenges to their detection and quantification. Here, three fluorescein derivatives [aminophenyl fluorescamine (APF, amplex ultrared, and dichlorofluorescein (DCFH] and two radical species, proxyl fluorescamine and tempo-9-ac have been compared for their usefulness to measure hydroxyl radicals generated in two different systems: a solution containing ferrous iron and a suspension of pyrite particles. Results APF, amplex ultrared, and DCFH react similarly to the presence of hydroxyl radicals. Proxyl fluorescamine and tempo-9-ac do not react with hydroxyl radicals directly, which reduces their sensitivity. Since both DCFH and amplex ultrared will react with reactive oxygen species other than hydroxyl radicals and another highly reactive species, peroxynitite, they lack specificity. Conclusion The most useful probe evaluated here for hydroxyl radicals formed from cell-free particle suspensions is APF due to its sensitivity and selectivity.

  8. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  9. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, {beta}''-(DODHT){sub 2}TaF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, H; Oshio, H; Yasuzuka, S [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Higa, M; Kondo, R; Kagoshima, S [Department of Basic Science, University of Tokyo, Tokyo 153-8902 (Japan); Nakao, A; Sawa, H [Photon Factory, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Murata, K [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)], E-mail: nishikaw@chem.tsukuba.ac.jp

    2008-10-15

    Physical properties of isostructural {beta}''-(DODHT){sub 2}X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF{sub 6}, AsF{sub 6}, and SbF{sub 6}] at ambient pressure have been compared. The insulating phase of {beta}''-(DODHT){sub 2}PF{sub 6} salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of {beta}''-(DODHT){sub 2}SbF{sub 6} salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF{sub 6} salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, {beta}''-(DODHT){sub 2}TaF{sub 6}, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of {beta}''-(DODHT){sub 2}SbF{sub 6} salt.

  10. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    Science.gov (United States)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  11. The Rise of Radicals in Bioinorganic Chemistry.

    Science.gov (United States)

    Gray, Harry B; Winkler, Jay R

    2016-10-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O 2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O 2 -reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O 2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O 2 reduction.

  12. Application of PhSCF2CF2SiMe3 as a Tandem Anion and Radical Tetrafluoroethylene Equivalent: Fluoride-Catalyzed Addition to N-Substituted Cyclic Imides Followed by Radical Cyclization

    Czech Academy of Sciences Publication Activity Database

    Chernykh, Yana; Opekar, Stanislav; Klepetářová, Blanka; Beier, Petr

    2012-01-01

    Roč. 23, č. 8 (2012), s. 1187-1190 ISSN 0936-5214 R&D Projects: GA ČR GAP207/11/0421 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleophilic addition * radical reaction * fluorine * heterocycles * imides Subject RIV: CC - Organic Chemistry Impact factor: 2.655, year: 2012

  13. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  14. Kinetics of free radical reactions in irradiated crystalline L-leucine

    International Nuclear Information System (INIS)

    Dole, M.; Mahdavi, M.

    1983-01-01

    Four aspects of the radiation chemistry of crystalline L-leucine are presented. They are as follows: the transformation of one type of free radical into another as observed by following the ESR spectrum of individual peaks in the initial stages of the free radical decay at room or higher temperatures after a gamma irradiation at 77K; the catalytic effect of hydrogen gas in significantly accelerating the free radical decay; the unexpected effect of argon gas in decreasing the rate of the free radical decay; and the accurate agreement of the decay data with the diffusion controlled second order Waite equation when the latter is expressed in the linear form. The major free radical which exists in irradiated L-leucine gives rise to a spectrum of 8 Doublets for a total of 16 lines. Numbering the peaks from the least intense to the strongest, peaks numbers 3, 4, 6, and 7, initially increase in intensity before decreasing while peak number 5 rapidly decreases. However, during this initial period the total free radical concentration as measured by the total moment of the ESR spectrum decreases. The kinetics of these effects are discussed. (author)

  15. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and