WorldWideScience

Sample records for radical anion adduct

  1. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  2. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study

    International Nuclear Information System (INIS)

    O'Neill, P.; Chapman, P.W.

    1985-01-01

    Using the technique of pulse radiolysis, it has been demonstrated that the interaction of hydroxyl-radical adducts of dG and dGMP with a series of reductants with different oxidation potentials at pH 7.0-7.4 proceeds via an electron transfer process (k approx. 1.4-34 x 10 8 dm 3 mol -1 s -1 ). The one-electron oxidation of dGMP (dG) by Br2-anion radicals was shown to result in the formation of a species, the properties of which are similar to those of the OH-radical adduct of dGMP with oxidizing properties based upon both spectral and kinetic information. The nature of the dGMP species produced on interaction with Br2-anion radicals to produce specific base damage. The implications of these findings are presented in terms of potential free radical repair of hydroxyl radical damage and of synergistic effects whereby one reductant may be regenerated at the expense of another reductant. (author)

  3. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    Science.gov (United States)

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  4. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  5. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  6. ESR study of the anion radicals of 5-nitropyrimidines: conversion to iminoxy radicals

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Clark, C.; Failor, R.

    1976-01-01

    The anion radicals of a number of 5-nitropyrimidines have been investigated by ESR spectroscopy. The anions are formed by electrolysis in dimethylformamide and by electron attachment in aqueous glasses, 12 M LiCl--D 2 O and 8 M NaOD. The electrolysis of 5-nitrouracil and 5-nitro-6-methyluracil results in relatively stable anion radicals. The results for 5-nitrouracil give evidence for two or perhaps three anions which differ only by the degree of ring nitrogen protonation. The results for 5-nitro-6-methyluracil suggest that the nitro group of the anion is twisted so that it is coupled only weakly to the ring π-electron system. The anions of 5-nitrouracil, 5-nitroorotic acid, 5-nitrobarbituric acid, and 5-nitro-6-methyluracil have been produced in the alkaline and neutral aqueous glasses. The anisotropic spectra found have been analyzed with the aid of computer simulations which assume axial symmetry. For example, the analysis of the spectrum of 5-nitrouracil anion in 12 M LiCl yields A/sub parallel//sup N/ = 33; A/sub perpendicular to//sup N/ = 5, a 6 /sup H/ = 5.5 G, g/sub parallel/ = 2.0016, and g/sub perpendicular to/ = 2.0059. A concentration dependence in the splittings is noted and discussed. Ultraviolet photolysis of the anions of 5-nitro-6-methyluracil and 5-nitrobarbituric acid results in the formation of iminoxy radicals. Mechanisms of formation of the iminoxy radicals are discussed and results found in this work are compared to results found in single crystals and aqueous solution

  7. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  8. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  9. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  10. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  11. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  12. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  13. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  14. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  15. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  16. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  17. Radical anion structure of β-halogen-substituted acetamides in X-ray-irradiated single crystals: an INDO and EPR study

    International Nuclear Information System (INIS)

    Samskog, P.O.; Kispert, L.D.

    1984-01-01

    The anion radicals of bromodifluoroacetamide and chlorodifluoroacetamide are investigated by using the INDO method and EPR spectroscopy. INDO calculations for the anions give a spin density distribution in agreement with that suggested from experiment. Results of the analyses show that the unpaired electron occupies the sigma* orbital composed of the rho orbitals, along the C/sub β/-X bond, on the carbon and the unique halogen atoms. The results are compared to the radical anion in trifluoroacetamide. The electronic structure of SCF 2 CONH 2 - radical anions is a π-radical anion when X = F and a sigma*-radical anion when X = Cl and Br. 2 figures, 4 tables

  18. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  19. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  20. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    Science.gov (United States)

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  1. Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA?

    International Nuclear Information System (INIS)

    Nese, C.; Yuan, Z.; Schuchmann, M.N.; Sonntag, C. von

    1992-01-01

    Electron transfer to 5-bromouracil (5-BrU) from nucleobase (N) electron adducts (and their protonated forms) has been studied by product analysis and pulse radiolysis. When an electron is transferred to 5-BrU, the ensuing 5-BrU radical anion rapidly loses a bromide ion; the uracilyl radical thus formed reacts with added t-butanol, yielding uracil. From the uracil yields measured as the function of [N]/[5-BrU] after γ-radiolysis of Ar-saturated solutions it is concluded that thymine and adenine electron adducts and their heteroatom-protonated forms transfer electrons quantitatively to 5-BrU. The data raise the question whether in DNA the guanine moiety may act as the ultimate sink of the electron in competition with other processes such as protonation at C(6) of the thymine electron adduct. (Author)

  2. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  3. Hypervalent Compounds as Ligands: I 3 -Anion Adducts with Transition Metal Pentacarbonyls

    KAUST Repository

    Rogachev, Andrey Yu.

    2013-06-17

    Just a couple of transition metal complexes of the familiar triiodide anion are known. To investigate the bonding in these, as well as isomeric possibilities, we examined theoretically adducts of I3 - with model organometallic fragments, [Cr(CO)5] and [Mn(CO) 5]+. Bonding energy computations were augmented by a Natural Bond Orbital (NBO) perturbation theory analysis and Energy Decomposition Analysis (EDA). The bonding between I3 - and the organometallic fragment is substantial, especially for the electrostatically driven anion-cation case. "End-on" coordination is favored by 5-13 kcal/mol over "side-on" (to the central I of I3 -), with a ∼10 kcal/mol barrier for isomerization. A developing asymmetry in the I-I bonding of "end-on" coordinated I 3 - led us to consider in some detail the obvious fragmentation to a coordinated I- and free I2. While the signs of incipient fragmentation in that direction are there, these is a definite advantage to maintaining some I- to I2 bonding in triiodide complexes. © 2013 American Chemical Society.

  4. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  5. Effect of carbonyl group on the lifetimes of pentafluoroacetophenone and pentafluorobenzaldehyde radical anions in aqueous solution: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Shoute, L.C.T.

    1996-01-01

    Hydrated electrons react with pentafluoroacetophenone (PFA) to form radical anion. Evidence for the formation of the radical anion was obtained from observation of intermolecular electron transfer from PFA .- to p-benzoquinone (Q) and methyl viologen (MV 2+ ) to form Q .- and MV .+ . The radical anion lose fluoride with a rate constant of 5x10 4 s -1 . The radical anion has a pK a =7.5. Radical anion of pentafluorobenzaldehyde (PFB) was observed on reduction PFB with hydrated electron. It has a pK a =7.2. It loses fluoride with a rate constant of 1.2x10 5 s -1 . The studies show that substitution of a carbonyl group in the aromatic ring of a perfluorinated compound led to dramatic increase in the lifetime of the radical anion formed on electron addition due to decrease in the rate of fluoride elimination. This led to the possibility of observing their reactions with other solute present in the solution. (author). 6 refs., 1 tab

  6. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  7. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    Science.gov (United States)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  8. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization.

    Science.gov (United States)

    Roy, Amit Saha; Saha, Pinaki; Adhikary, Nirmal Das; Ghosh, Prasanta

    2011-03-21

    The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these

  9. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  10. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  11. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    Science.gov (United States)

    Dixon, Andrew Robert

    We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1

  12. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  13. Electron gain and electron loss radicals stabilized on the purine and pyrimidine of a cocrystal exhibiting base-base interstacking: ESR-ENDOR of X-irradiated adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.; Bernhard, W.A.

    1983-01-01

    The predominant free radicals trapped in cocrystals of adenosine:5-bromouracil X-irradiated at 12 0 K were identified by ESR-ENDOR spectroscopy and the radical reactions were followed upon annealing to 480 0 K. The dominant electron abstraction and electron addition products stabilized on the bases at 12 0 K are observed to be the bromouracil π-cation and the adenine π-cation and π-anion. The formation of an anion on bromouracil is inferred from the presence of a radical formed by deuterium addition to C 6 of bromouracil at higher temperatures. Above 40 0 K the bromouracil π-cation appears to decay by recombination and is reduced to undetectable levels at approx.170 0 K. Both adenine π-ions are also observed to decay within the same temperature range. Above 200 0 K hydrogen adducts are stabilized on the bases. Experiments using partially deuterated cocrystals indicate that the H-adducts are formed via both hydrogen addition and protonation of the respective anions. Two hydrogen abstraction radicals stabilized on the sugar residue are detectable at temperatures above 200 0 K, but these may be present at much lower temperatures. The results presented here question the generally accepted hypothesis that, in the presence of purine:pyrimidine stacking interactions, holes are predominantly transferred to the purines while electrns are predominantly transferred to the pyrimidines

  14. Fast reactions of organic anion radicals with organic halides in hexamethylphosphoric triamide studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Honda, Eiji; Tokuda, Masao; Yoshida, Hiroshi; Ogasawara, Masaaki

    1987-01-01

    Fast reactions of diethyl fumarate anion radical (DEF - ) and fluorenone anion radical (Fl - ) with various organic halides (RX) in hexamethylphosphoric triamide have been studied by means of ns pulse radiolysis at room temperature. Reactions of acetophenone anion radical were also studied for comparison. It was found that the reaction rate of Fl - was subject to the steric and resonance effects of R groups of RX in accord with the classical concept of S N 2 reactions: the rate constant was reduced by 2 orders of magnitude by the steric effect when R was changed from ethyl to bulky isopropyl or t-butyl, and it was still large by the resonance effect of R even if R was changed from ethyl to an allyl or a benzyl group. While the reaction rate of DEF - was not much affected when R was changed to more bulky groups, the rate constant was correlated to the reduction potential of RX. The results were interpreted in terms of a VB correlation diagram approach or rate-equilibrium relationship within a framework of S N 2 reactions. (author)

  15. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  16. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    Science.gov (United States)

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  17. Free radicals in an adamantane matrix. XIII. Electron paramagnetic resonance study of sigma* - π* orbital crossover in fluorinated pyridine anions

    International Nuclear Information System (INIS)

    Yim, M.B.; DiGregorio, S.; Wood, D.E.

    1977-01-01

    Pentafluoropyridine,2,3,4,6-tetrafluoropyridine, 2,6-difluoropyridine, and 2-fluoropyridine anion radicals were produced by x irradiation of an adamantane matrix which was doubly doped with the aromatic precursors and Me 3 NBH 3 and their EPR spectra obtained. The large fluorine hyperfine splitting constants (hfsc) of penta- and 2,3,4,6-tetrafluoropyridine anions and the small fluorine hfsc's of 2,6-di- and 2-fluoropyridine anions suggest that the former two are sigma radicals while the latter two are π radicals. The sigma*-π* orbital crossover phenomenon observed in these fluorinated pyridine anions is explained in terms of the combined effects of stabilization of sigma* orbitals and destabilization of π* orbitals. The EPR results show that nitrogen has a negligible contribution to the unpaired electron sigma* orbitals. INDO calculations were performed for the various states and the results compared with experiment

  18. (Ph4P)S6—A Compound Containing the Cyclic Radical Anion S6.−

    NARCIS (Netherlands)

    Neumuller, F.; Schmock, R.; Kirmse, A.; Voigt, A.; Diefenbach, A.; Bickelhaupt, F.M.; Dehnicke, K.

    2000-01-01

    Two long S−S bonds link the two S3 fragments in the cyclic radical anion S6.−. This forms as orange‐red crystals with PPh4+ as the counterion in the reaction of sulfane with (tetraphenylphosphonium) hydrogen diazide. The anion has a chair conformation with C2h symmetry (see picture).

  19. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  20. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  1. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  2. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  3. Effects of microsolvation on uracil and its radical anion: Uracil.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2006-10-01

    Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYP /DZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24eV) was higher than that of thymine by 0.04eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil•(H2O)5, namely, 0.96eV. The VDEs range from 0.76to1.78eV.

  4. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  5. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  6. Intermediates of radiolytic transformations of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Pulsed radiolysis method is used to study transformations intermediates of 6-aminophenalenone in ethanol. In alkaline medium the main product is radical-anion of 6-aminophenalenone, which optical absorption spectrum contains two bands with maxima at 355 and 400 nm. The particle precursors are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium radical-anions are protonated in reactions with alcohol and hydrogen ions. The resulting H-adduct of 6-aminophenalenone has optical absorption maxima at 350 and 390 nm. Availability of two maxima is related to two various product structures. Molar extinction coefficients of radical-anions and H-adducts of 6-aminophenalenone and rate constants of reactions with their participation are estimated

  7. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    International Nuclear Information System (INIS)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J.; Gonzalez, Ignacio; Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos; Ribeiro, Rogerio Tavares; Longo, Ricardo L.; Navarro, Marcelo; Frontana, Carlos

    2010-01-01

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A 2- + A → 2A· - ). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  8. Chemical repair activity of free radical scavenger edaravone. Reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Hata, Kuniki; Katsumura, Yosuke; Urushibara, Ayumi; Yamashita, Shinichi; Lin Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu Haiying

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10 8 dm 3 mol -1 s -1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm -3 ) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. (author)

  9. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design.

    Science.gov (United States)

    Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua

    2013-07-01

    The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mass-spectrometric study of volatile uranyl β-diketonates and their adducts

    International Nuclear Information System (INIS)

    Adamov, V.M.; Belyaev, B.N.; Berezinskij, S.O.; Sidorenko, G.V.; Suglobov, D.N.

    1985-01-01

    The mass spectra of a number of uranyl β-diketonates containing methyl, trifluoromethyl and tert-butyl substituents in β-diketonate anion, and their adducts are measured. The form of the unsolvated β-diketonates and their adducts in gas phase is studied. The ways of fragmentation of uranyl β-diketonates and their adducts are investigated. The data concerning the thermal and chemical side reactions proceeding with uranyl β-diketonates and their addicts in an ion source are obtained. The mass spectra of the samples of neptunyl and plutonyl β-diketonate adducts synthesized for the first time are measured

  11. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    Science.gov (United States)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  12. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Apartado Postal 55-534, 09340, D.F. (Mexico); Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Tabuleiro do Martins, Maceio, AL, 57072-970 (Brazil); Ribeiro, Rogerio Tavares; Longo, Ricardo L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Navarro, Marcelo, E-mail: navarro@ufpe.b [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico)

    2010-11-30

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A{sup 2-} + A {yields} 2A{center_dot}{sup -}). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  14. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    Science.gov (United States)

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  16. The strong influence of the solvent on the electron spin resonance spectra of semiquinone radical anions

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2013-01-01

    ). The proton hyperfine constants predicted for the chrysazin semiquinone radical anion were highly sensitive to the assumed dielectric constant ε of the solvent continuum, inverting the relative magnitudes of the hyperfine constants and thereby leading to agreement with the observed data published by Stegmann...

  17. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  18. Photochemical Aryl Radical Cyclizations to Give (E-3-Ylideneoxindoles

    Directory of Open Access Journals (Sweden)

    Michael Gurry

    2014-09-01

    Full Text Available (E-3-Ylideneoxindoles are prepared in methanol in reasonable to good yields, as adducts of photochemical 5-exo-trig of aryl radicals, in contrast to previously reported analogous radical cyclizations initiated by tris(trimethylsilylsilane and azo-initiators that gave reduced oxindole adducts.

  19. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  20. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  1. Antioxidant Effects of Herbal Tea Leaves from Yacon (Smallanthus sonchifolius) on Multiple Free Radical and Reducing Power Assays, Especially on Different Superoxide Anion Radical Generation Systems.

    Science.gov (United States)

    Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin

    2015-11-01

    Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea

  2. Free radicals of an aromatic nature in air samples from iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L M

    1982-01-01

    Free radicals of relatively long life were identified as spin adducts of phenyl-N-tert-butylnitrone. Pyrolysis studies showed the radicals were oxy-radicals. The hyperfine splitting constants of spin adducts of radicals from the pyrolysis in air of benzo(a)pyrene, coal tar pitch, and moulding sand containing hard coal dust were the same as those of the radicals found in foundry air. Since these radicals can bind to DNA, they must be considered when estimating the hazardous effects of polluted air.

  3. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  4. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  5. SYNTHESIS AND INFRARED STUDY OF SOME NEW MOLYBDATO AND HYDROGENOMOLYBDATO ADDUCTS AND COMPLEXES OF COBALT, ZINC, ANTIMONY AND CADMIUM CHLORIDES

    Directory of Open Access Journals (Sweden)

    SERIGNE FALLOU POUYE

    2014-01-01

    Full Text Available Five new molybdato (four and hydrogenomolybdato (one adducts and complexes have been synthesized and studied by infrared spectroscopy. The suggested structures are all discrete, the molybdate anion behaving as a trichelating, a monochelating, a bridging, a tetrachelating and a bichelating ligand. The environment around Zn, Co, Cd is tetrahedral or trigonal bipyramidal also for Zn - while being octahedral for Sb. The Cd pentanuclear adduct has a two metallic components structure, a tetranuclear anionic one with a tetrachelating molybdate, the second being a neutral dehydrated adduct component. The suggested structure for the hydrogenomolybdato adduct is discrete, the hydrogenomolybdate being present as a hydrogen bonded dimer behaves as a bridging bidentate ligand. The water molecules can be considered as a coordinating ligand or lattice. When secondary interactions through hydrogen bonds involving the water molecules are considered supramolecular architectures are obtained.

  6. Microhydration of cytosine and its radical anion: Cytosine.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2007-02-01

    Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n =5) is bound by 7-10kcalmol-1 to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48eV, it is predicted to increase to 1.27eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03to0.61eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].

  7. Pulse radiolysis studies of the interaction of tea polyphenol derivatives with oxidizing OH adduct of thymine

    International Nuclear Information System (INIS)

    Jiang Yue; Li Hucheng; Yao Side; Zuo Zhihua; Wang Zailan; Zhang Jiashan; Lin Nianyun

    1996-01-01

    The electron transfer reactions between oxidizing OH adduct of thymine with tea polyphenol derivatives has been investigated by pulse radiolysis. The tea polyphenol derivatives are identified as good antioxidants for reduction of oxidizing OH adducts of thymine. From buildup kinetic analysis of radical phenoxyl product, the rate constants for reactions of the N 3 radical with tea polyphenol derivatives have been determined to be (8-9) x 10 9 dm 3 /mol s, while the rate constants of electron transfer from tea polyphenol derivatives to oxidizing OH adducts of thymine was obtained to be around 10 9 dm 3 /mol s. Copyright direct C 1996 Elsevier Science Ltd

  8. The fate of H atom adducts to 3'-uridine monophosphate.

    Science.gov (United States)

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  9. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  10. ESR studies of radiation induced radical products from linoleic acid and linolenic acid and the radioprotective effect by α-tocopherol

    International Nuclear Information System (INIS)

    Zhu Younan; Tu Tiecheng; Dong Jirong; Zhang Jiashan; Li Nianyun

    1993-01-01

    Primary radicals from the γ-radiolysis of air-saturated linoleic acid and linolenic acid at 77 K, and the subsequent secondary radicals appeared during the course of variable temperature elevation were investigated by ESR. The ESR spectrum from samples irradiated and observed at 77 K shows the presence of the radical anion doublet arise from the electron adducts of the carboxy groups and the poorly resolved broad singlet results from some carbon-centered radicals. Annealing to approximately 125 K which allows for molecular oxygen migration results in the formation of peroxyl radicals. At 247 K, the ESR spectrum is a multi-line pattern which is attributable to structure of the α-carbon radical superimposed on the pentadienyl radicals. The ESR spectra from linoleic acid-α-tocopherol and linolenic acid-α-tocopherol binary systems irradiated at 77 K and recorded at 140 K or 215 K revealed the characteristic similarity to that from α-tocopherol alone, no trace of ESR signal from either peroxyl or the composite pattern from superposition of pentadienyl radical and α-carbon radicals can be found out. Therefore α-tocopherol has exerted radioprotection effect on peroxidation of linoleic acid and linolenic acid

  11. Probing the reactivation process of sarin-inhibited acetylcholinesterase with α-nucleophiles: hydroxylamine anion is predicted to be a better antidote with DFT calculations.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Lo, Rabindranath; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2011-08-01

    Inactivation of acetylcholinesterase (AChE) due to inhibition by organophosphorus (OP) compounds is a major threat to human since AChE is a key enzyme in neurotransmission process. Oximes are used as potential reactivators of OP-inhibited AChE due to their α-effect nucleophilic reactivity. In search of more effective reactivating agents, model studies have shown that α-effect is not so important for dephosphylation reactions. We report the importance of α-effect of nucleophilic reactivity towards the reactivation of OP-inhibited AChE with hydroxylamine anion. We have demonstrated with DFT [B3LYP/6-311G(d,p)] calculations that the reactivation process of sarin-serine adduct 2 with hydroxylamine anion is more efficient than the other nucleophiles reported. The superiority of hydroxylamine anion to reactivate the sarin-inhibited AChE with sarin-serine adducts 3 and 4 compared to formoximate anion was observed in the presence and absence of hydrogen bonding interactions of Gly121 and Gly122. The calculated results show that the rates of reactivation process of adduct 4 with hydroxylamine anion are 261 and 223 times faster than the formoximate anion in the absence and presence of such hydrogen bonding interactions. The DFT calculated results shed light on the importance of the adjacent carbonyl group of Glu202 for the reactivation of sarin-serine adduct, in particular with formoximate anion. The reverse reactivation reaction between hydroxylamine anion and sarin-serine adduct was found to be higher in energy compared to the other nucleophiles, which suggests that this α-nucleophile can be a good antidote agent for the reactivation process. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Spin Trapping Radicals from Lipid Oxidation in Liposomes in the Presence of Flavonoids

    International Nuclear Information System (INIS)

    Arshad, N.

    2013-01-01

    Interactions of four structurally related flavonoids - quercetin, rutin, morin and catechin with peroxyl radicals using liposome/N-tert-butyl-alpha-phenylnitrone (PBN) and liposome -(4-pyridyl-N-oxide)-N-tert-butylnitrone (POBN)-spin trap systems have been studied through spin trapping ESR. Results obtained were different from that of conjugated diene analysis experiments, where lag phases indicated radical scavenging activity of all the flavonoids. No clear lag phase was observed in ESR experiments under same conditions. In the presence of flavonoids decreasing ESR signals of spin adducts in PBN, while no or negligibly smaller spin adducts with POBN system were observed which may be attributed to the possibility that spin traps interacted with free radicals. Experiments with buffer/spin trap systems without liposome revealed that spin adducts were only stable with catechin and destroyed by quercetin, rutin and morin in buffer/spin trap systems. These results further assured that quercetin, rutin and morin not only interacted with peroxyl radicals but also with spin adducts. (author)

  13. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  14. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  15. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  16. Direct antioxidant properties of methotrexate: Inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging

    Directory of Open Access Journals (Sweden)

    Matthew C. Zimmerman

    2017-10-01

    Full Text Available Methotrexate (MTX is an immunosuppressant commonly used for the treatment of autoimmune diseases. Recent observations have shown that patients treated with MTX also exhibit a reduced risk for the development of cardiovascular disease (CVD. Although MTX reduces systemic inflammation and tissue damage, the mechanisms by which MTX exerts these beneficial effects are not entirely known. We have previously demonstrated that protein adducts formed by the interaction of malondialdehyde (MDA and acetaldehyde (AA, known as MAA-protein adducts, are present in diseased tissues of individuals with rheumatoid arthritis (RA or CVD. In previously reported studies, MAA-adducts were shown to be highly immunogenic, supporting the concept that MAA-adducts not only serve as markers of oxidative stress but may have a direct role in the pathogenesis of inflammatory diseases. Because MAA-adducts are commonly detected in diseased tissues and are proposed to mitigate disease progression in both RA and CVD, we tested the hypothesis that MTX inhibits the generation of MAA-protein adducts by scavenging reactive oxygen species. Using a cell free system, we found that MTX reduces MAA-adduct formation by approximately 6-fold, and scavenges free radicals produced during MAA-adduct formation. Further investigation revealed that MTX directly scavenges superoxide, but not hydrogen peroxide. Additionally, using the Nrf2/ARE luciferase reporter cell line, which responds to intracellular redox changes, we observed that MTX inhibits the activation of Nrf2 in cells treated with MDA and AA. These studies define previously unrecognized mechanisms by which MTX can reduce inflammation and subsequent tissue damage, namely, scavenging free radicals, reducing oxidative stress, and inhibiting MAA-adduct formation.

  17. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    Science.gov (United States)

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  19. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  20. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  1. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  2. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  3. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water

    International Nuclear Information System (INIS)

    Hayon, E.; Rao, P.S.

    1975-01-01

    The one-electron oxidation by hydroxyl radicals of aromatic amines and diamines in water was studied using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The following compounds were examined: N,N,N 1 ,N 1 - tetramethyl-p-phenylenediamine (TMPD), p-phenylenediamine (PD), N,N-dimethyl-p-phenylenediamene (DMPD), N,N,N 1 ,N 1 -tetramethylbenzidine (TMB), and diphenylamine (DPA). The main initial reaction of the OH radicals is suggested to be an addition to these compounds to give absorption spectra which absorb strongly in the visible and uv regions. These OH radical adducts decay by first-order kinetics and have lifetimes of approximately 5-50 μsec, dependent on the pH, buffer concentration, and the nature of the aromatic amines and diamines. They decay to give species with somewhat similar absorption spectra and extinction coefficients, which are very long lived in the absence of oxygen. The latter species are assigned to the cation radicals TMPD. + , PD. + , DMPD. + , TMB. + , and DPA. + . The OH radical adducts and the cation radicals have acid-base properties. The pK/sub a/ values of the cation radicals TMPDH. 2+ , PDH. 2+ , DMPDH. 2+ , TMBH. 2+ , and DPAH. 2+ were found to be 5.3, 5.9, 6.1, 5.1, and 4.2, respectively. The results indicate that these aromatic amines and diamines can be oxidized by free radicals to yield the corresponding cation radicals. (U.S.)

  4. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  5. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  6. Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH anion radical production

    International Nuclear Information System (INIS)

    Allan, I.M.; Vaughan, A.T.M.; Milner, A.E.; Lunec, J.; Bacon, P.A.

    1988-01-01

    Normal human lymphocytes were exposed to OH anion radicals produced indirectly by exposure to H 2 O 2 or directly by gamma irradiation. Using a flow cytometry technique to measure changes in nucleoid size, it was found that generation of OH anion in each system produced a characteristic relaxation in nuclear supercoiling. Exposure of cells to H 2 O 2 produced a metal-dependent step-wise relaxation in extracted nucleoids, while gamma irradiation induced a gradual dose-dependent increase in nucleoid size. The site-specific metal-dependent changes produced in lymphocytes incubated in H 2 O 2 should also occur in gamma irradiated cells, but the characteristic effects on nuclear supercoiling would not be detected within the background of random DNA damage. The importance of metals in maintaining the supercoiled loop configuration of DNA within the protein matrix suggests that free radical damage at metal locations may be particularly toxic for the cell. (author)

  7. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    Science.gov (United States)

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  8. Characterization of free radicals in γ-irradiated polycrystalline uridine 5'-monophosphate: a study combining ESR, spin-trapping and HPLC

    International Nuclear Information System (INIS)

    Hiraoka, W.; Kuwabara, M.; Sato, F.

    1991-01-01

    Free radicals generated in γ-irradiated polycrystalline uridine 5'-monophosphate (5'-UMP) were studied by ESR, spin-trapping and high-performance liquid chromatography (HPLC). Although HPLC ultimately gave four spin-adducts, one component that was originally present disappeared during HPLC. Spin adducts due to two types of C6 radials were identified. One of these was thought to be formed by electron addition and subsequent protonation at the C6 position, and the other was presumed to be produced by electron addition and subsequent protonation at the O 4 position. The spin adducts derived from the C5 and C5' radicals were also identified. The spin adduct that disappeared during HPLC was thought to correspond to the C4'-centred radical. Computer simulation of ESR spectra was carried out to estimate the hyperfine splitting constants. (author)

  9. Formation and reactions of radical cations of substituted benzenes in aqueous media

    International Nuclear Information System (INIS)

    Holcman, J.

    1977-08-01

    Radical cations of anisole, methylated benzenes, ethylbenzene, isopropylbenzene, tert-butylbenzene and N,N-dimethylaniline were studied in aqueous media by pulse radiolytic technique. Absorption spectra and reaction kinetics of the radical cations were recorded. The radical cations are formed from the corresponding OH adducts by the elimination of OH - , either by a simple dissociation or by an acid catalyzed reaction. The rate constants of the formation of the radical cations and their reactions with water, OH - and Fe 2+ , or the reaction of a proton loss, were measured. The rate constants for the reaction with water and OH - , together with the rate constants for the dissociation of the OH adducts, are correlated with the ionization potential of the parent compound. These correlations offer a possibility of predicting the acid-base properties of radical cations of substituted benzenes, or the estimation of their ionization potential. (author)

  10. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  11. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    Science.gov (United States)

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  12. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  13. Spin trapping of cyanoalkyl radicals in the liquid phase γ radiolysis of nitriles

    International Nuclear Information System (INIS)

    Mao, S.W.; Kevan, L.

    1976-01-01

    The following radicals have been identified in the liquid phase γ radiolysis of several nitriles by spin trapping with phenyl tert-butyl nitrone: CH 2 CN in acetonitrile, H and CH 3 CHCN(question) in propionitrile, CH(CN) 2 in malononitrile, and H, CN, and CH 2 CH 2 CN in succinonitrile. γ proton splittings are observed for the CH 2 CN and CH(CH) 2 spin adducts. The results are discussed in comparison with solid phase radiolysis data and with alkyl radical spin adduct splittings

  14. Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Bhardwaj, Y.K.; Mohan, H.; Sabharwal, S.; Majali, A.B.

    2000-01-01

    Radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution has been investigated by steady state and pulse radiolysis techniques. Effect of dose, dose rate, monomer concentration, pH and ambient conditions on polymerization was investigated. The reactions of primary radicals of water radiolysis such as OH radical, e - aq , H atom, O· - and some oxidizing radicals like N· 3 , Cl· - 2 ,Br· - 2 , and reducing specie like CO· - 2 with SSS have also been investigated. SSS reacts with OH radical with a rate constant of 5.9x10 9 dm 3 mol -1 s -1 at pH 6.3. The results indicate that ∼83% of OH radicals undergo electron transfer reaction resulting in a cation radical species while remaining ∼17% react via addition reaction. The hydrated electron reacts with SSS with a rate constant 1.3x10 10 dm 3 mol -1 s -1 to form an anion that undergoes fast protonation to form H-adduct at pH 6.3. At high pH (>10) the anion is able to transfer electron to methyl vilogen and p-nitro aceto phenone (p-NAP) where as H-adduct is unable to transfer electron. At pH ∼1 H atom reaction with SSS is diffusion controlled with a rate constant of 5x10 9 dm 3 mol -1 s -1 and results in formation of H adduct. It was seen that anion reacts with solute an order faster than cation generated radiolytically indicating anionic initiation of polymerization of SSS. Molecular weight of the polymer formed by radiation polymerization, determined by viscosity measurement, are of the order of 10 7 and higher molecular weight polymers are obtained at lower dose rates. In presence of a crosslinking agent gelation of polymer is much faster than the monomer and a polymer concentration ∼20% is most efficiently crosslinked. (author)

  15. Reactions of OH Radicals with Tris (1,10-Phenanthroline) Iron (II) Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Siekierska Floryan, E.; Pagsberg, Palle Bjørn

    1976-01-01

    The reaction of OH radicals with aqueous tris(1,10-phenanthroline)iron(II) leads to the formation of an adduct, which exhibits a broad absorption band at rmpH = 6, λmax = 460 nm, and epsilon (Porson)460 = 6700 (molar, decadic, 1 mol−1 cm−1). The rate of formation of the adduct is first order...... in complex concentration with a bimolecular rate constant Image independent of pH in the range pH 3–11. The adduct decays by mixed-order kinetics, but at 310 nm a second-order formation of a decay product can be directly observed. The reaction of OH radicals with aqueous 1,10-phenanthroline leads also...... to the formation of an adduct which absorbs in the whole visible region with a maximum at 425 nm and ε425 = 2612 (molar, decadic, 1 mol−1 cm−1) in neutral solution. The adduct exhibits a red shift in acidic and alkaline media. The formation is first order in 1,10-phenanthroline with a bimolecular rate constant...

  16. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  17. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    International Nuclear Information System (INIS)

    Jerzykiewicz, Maria; Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-01-01

    Graphical abstract: α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . Display Omitted Highlights: → α-Tocopherol does not inhibit the oxidation of DMSO to ·CH 3 . → α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . → α-Tocopherol does not inhibit the oxidation of PBN. → The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, ·CH 3 to ·OCH 3 but did not prevent the transformation process of N-t-butyl-α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  18. Cytochrome P-450 inactivation by 3-alkylsydnones. Mechanistic implications of N-alkyl and N-alkenyl heme adduct formation

    International Nuclear Information System (INIS)

    Grab, L.A.; Swanson, B.A.; Ortiz de Montellano, P.R.

    1988-01-01

    Incubation of 3-(2-phenylethyl)-4-methylsydnone (PMS) with liver microsomes from phenobarbital-pretreated rats or with reconstituted cytochrome P-450b results in loss of the enzyme chromophore. Chromophore loss is NADPH-dependent even though the sydnone decomposes by an oxygen- but not enzyme-dependent process to give pyruvic acid and, presumably, the (2-phenylethyl)diazonium cation. N-(2-Phenylethyl)protoporphyrin IX and N-(2-phenylethenyl)protoporphyrin IX have been isolated from the livers of rats treated with PMS. Both deuteriums are retained in the N-(2-phenylethyl) adduct derived from 3-(2-phenyl[1,1- 2 H]ethyl)-4-methylsydnone, but one deuterium is lost in the N-(2-phenylethenyl) adduct. The N-(2-phenylethyl) to N-(2-phenylethenyl) adduct ratio is increased by deuterium substitution. Electron paramagnetic resonance (EPR)-spin trapping studies show that carbon radicals are formed in incubations of the sydnones with liver microsomes but by a process that is independent of chromophore destruction. It is proposed that the 2-phenylethyl radical formed by electron transfer to the sydnone-derived (2-phenylethyl)diazonium cation adds to the prosthetic heme group to give the N-(2-phenylethyl) adduct. This alkylation reaction is similar to that observed with (2-phenylethyl)hydrazine. Autoxidation of the Fe-CH(CH 2 Ph)-N bridged species expected from insertion of 2-phenyldiazoethane into one of the heme Fe-N bonds is proposed to explain the unprecedented introduction of a double bond into the N-(2-phenylethenyl)adduct

  19. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  20. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  1. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  2. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    Science.gov (United States)

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  3. The nature of the CO{sub 2}{sup −} radical anion in water

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ireneusz; Tripathi, G. N. R. [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2016-04-21

    The reductive conversion of CO{sub 2} into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO{sub 2}{sup −} as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm{sup −1}, attributed to the symmetric CO stretch, which is at ∼45 cm{sup −1} higher frequency than in inert matrices. Isotopic substitution at C ({sup 13}CO{sub 2}{sup −}) shifts the frequency downwards by 22 cm{sup −1}, which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm{sup −1} band also appears at 742 cm{sup −1} and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO{sub 2}{sup −}(C{sub 2v}/C{sub s}) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (C{sub s}) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO{sub 2}{sup −} moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pK{sub a} (−0

  4. Mu (H) radical addition to flat and curved polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Addison-Jones, B.; Brodovitch, J.C.; Ghandi, K.; Percival, P.W.; Schuth, J. [Simon Fraser Univ., Dept. of Chemistry, Burnaby, BC (Canada)

    1998-09-01

    A study was conducted in which muonium-substituted free radicals formed from fullerenes, pyrene and pyrenophane were examined to determine how curvature of an unsaturated carbon skeleton affects radical adduct formation. The question is of relevance to C{sub 70}. It was demonstrated that in order to mimic a fullerene it is necessary to introduce curvature to the pyrene system. 2 figs.

  5. Research concerning ionic and free radical reactions in radiation chemistry. Progress report, September 15, 1976--September 15, 1977

    International Nuclear Information System (INIS)

    Williams, T.F.

    1977-01-01

    Progress is reported on ESR studies of fluorocarbon radicals and intermediate radicals. A detailed study was made of the dimethyl, diethyl, and di-n-propyl carbonates. Studies were continued on hydrogen-atom abstraction reactions at low temperatures with view to evaluating the contribution from quantum-mechanical tunneling. Detection of the transient dimer radical anion of acetonitrile in the upper crystalline phase at -50 0 C is reported. Abstracts of current reports are included on electron attachment to fluorocarbons hydrogen atom abstraction by methyl radicals. EPR spectra of the tetrafluoroethylene radical anion, and addition of tetrafluoroethylene to the tetrafluoroethylene radical anion

  6. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species

    Science.gov (United States)

    Gorbanev, Yury; Stehling, Nicola; O'Connell, Deborah; Chechik, Victor

    2016-10-01

    Low temperature (‘cold’) atmospheric pressure plasmas have gained much attention in recent years due to their biomedical effects achieved through the interactions of plasma-induced species with the biological substrate. Monitoring of the radical species in an aqueous biological milieu is usually performed via electron paramagnetic resonance (EPR) spectroscopy using various nitrone spin traps, which form persistent radical adducts with the short-lived radicals. However, the stability of these nitroxide radical adducts in the plasma-specific environment is not well known. In this work, chemical transformations of nitroxide radicals in aqueous solutions using a model nitroxide 4-oxo-TEMPO were studied using EPR and LC-MS. The kinetics of the nitroxide decay when the solution was exposed to plasma were assessed, and the reactive pathways proposed. The use of different scavengers enabled identification of the types of reactive species which cause the decay, indicating the predominant nitroxide group reduction in oxygen-free plasmas. The 2H adduct of the PBN spin trap (PBN-D) was shown to decay similarly to the model molecule 4-oxo-TEMPO. The decay of the spin adducts in plasma-treated solutions must be considered to avoid rendering the spin trapping results unreliable. In particular, the selectivity of the decay indicated the limitations of the PTIO/PTI nitroxide system in the detection of nitric oxide.

  7. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  8. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    Science.gov (United States)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  9. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites.

    Science.gov (United States)

    Khan, Saifur R; Morgan, Andrew G M; Michail, Karim; Srivastava, Nutan; Whittal, Randy M; Aljuhani, Naif; Siraki, Arno G

    2016-04-15

    The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    Science.gov (United States)

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap

  12. Reactions of inorganic free radicals with liver protecting drugs

    International Nuclear Information System (INIS)

    Gyoergy, I.; Foeldiak, G.; Blazovics, A.; Feher, J.

    1990-01-01

    Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivatives, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3 , (SCN) 2 - , OH, Trp, CO 2 - , O 2 - ) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems. (author)

  13. Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies

    Directory of Open Access Journals (Sweden)

    A. Mouithys-Mickalad

    1997-01-01

    Full Text Available Sphingolipids inhibit the activation of the neutrophil (PMN NADPH oxidase by protein kinase C pathway. By electron spin resonance spectroscopy (ESR and chemiluminescence (CL, we studied the effects of sphingosine (SPN and ceramide analogues on phorbol 12-myristate 13-acetate (PMA, 5 × 10-7M stimulated PMN (6 × 106 cells. By ESR with spin trapping (100 mM DMPO: 5,5-dimethyl-1-pyrroline-Noxide, we showed that SPN (5 to 8 × 10-6M, C2-ceramide (N-acetyl SPN and C6-ceramide (N-hexanoyl SPN at the final concentration of 2 × 10-5 and 2 × 10-4M inhibit the production of free radicals by stimulated PMN. The ESR spectrum of stimulated PMN was that of DMPO-superoxide anion spin adduct. Inhibition by 5 × 10-6M SPN was equivalent to that of 30 U/ml SOD. SPN (5 to 8 × 10-6M has no effect on in vitro systems generating superoxide anion (xanthine 50 mM/xanthine oxidase 110 mU/ml or hydroxyl radical (Fenton reaction: 88 mM H2O2, 0.01 mM Fe2+ and 0.01 mM EDTA. SPN and N-acetyl SPN also inhibited the CL of PMA stimulated PMN in a dose dependent manner (from 2 × 10-6 to 10-5M, but N-hexanoyl SPN was less active (from 2 × 10-5 to 2 × 10-4M. These effects were compared with those of known PMN inhibitors, superoxide dismutase, catalase and azide. SPN was a better inhibitor compared with these agents. The complete inhibition by SPN of ESR signal and CL of stimulated PMN confirms that this compound or one of its metabolites act at the level of NADPH-oxidase, the key enzyme responsible for production of oxygen-derived free radicals.

  14. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  15. Intermediate products of radiolytic conversions of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Intermediate products of the conversions of 6-aminophenalenone in ethanol were investigated by pulse radiolysis. In alkaline medium the main product is the 6-aminophenalenone radical cation, the optical absorption spectrum of which contains two bands with maxima at 355 and 400 nm. The precursors of this particle are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium, radical cations are protonated in reactions with alcohol and hydrogen ions. The H-adduct of 6-aminophenalenone that arises has optical absorption maxima at 350 and 390 nm. The presence of two maxima is due to two different structures of the product. The molar extinction coefficients of the radical anions and H-adducts of 6-aminophenalenone and the rate constants of the reactions involving them were estimated. 6 refs., 4 figs., 2 tabs

  16. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  17. Spin trapping study on the nature of radicals generated by X radiolysis and peroxidation of linolenic acid

    International Nuclear Information System (INIS)

    Azizova, O.A.; Osipov, A.N.; Zubarev, V.E.; Yakhyaev, A.V.; Vladimirov, Yu.A.; Savov, V.M.; Kagan, V.E.

    1983-01-01

    The radicals of linolenic acid and their spin adducts (SA) with PBN formed during X radiolysis of linolenic acid and in lipid peroxidation with ferrous ions were investigated and identified. It was found that in the absence of oxygen in pure linolenic acid at 77 K X irradiation produces alkyl and carboxyl radicals. In the presence of the spin trap alkyl radical spin adducts were formed. Irradiation of linolenic acid in the presence of oxygen at 77 K also resulted in the formation of alkyl radicals. These radicals were transformed into peroxy radicals in the interaction of alkyl radical with oxygen upon heating to 117 K. In the presence of spin trap X irradiation of linolenic acid and heating of the sample up to 300 K gave rise to EPR spectra of SA alkyl and unidentified radicals. Lipid peroxidation of linolenic acid induced by ferrous ions in the presence of spin trap also formed radicals and SA of linolenic acid. The spectral parameters of SA generated with ferrous ions in lipid peroxidation and of those generated during X radiolysis do not differ. The similarity of spectral parameters of SA in these two cases suggests a similarity in the structure of linolenic acid radicals. (author)

  18. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  19. Alcohol, Aldehydes, Adducts and Airways

    Directory of Open Access Journals (Sweden)

    Muna Sapkota

    2015-11-01

    Full Text Available Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA adduct and hybrid malondialdehyde-acetaldehyde (MAA protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  20. Two novel creatinine adducts of andrographolide in human urine.

    Science.gov (United States)

    Qiu, Feng; Cui, Liang; Chen, Lixia; Sun, Jiawen; Yao, Xinsheng

    2012-09-01

    Andrographolide is a major labdane diterpenoid of the traditional Chinese and Ayurvedic medicine. Andrographis paniculate (Burm) Nees, is used in clinical situations in China mainly to treat fever, cold, and inflammation. In our previous study, fifteen metabolites of andrographolide were identified in human urine. However, there are still two other unknown metabolites. The aim of this study was to elucidate the structures of these two metabolites. 3. The two metabolites which are probably epimers were identified as creatinine adducts, and their structures were determined to be 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide A (Metabolite 1) and 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide B (Metabolite 2) by means of spectroscopic evidences. 4. It is for the first time that the formation of creatinine adducts as a novel metabolic pathway is reported. The mechanism was presumed that β-carbon (C-12) of α, β-unsaturated carbonyl was attacked by a 5-anion intermediate of creatinine formed through elimination of a proton, followed by the double bond migration from 12(13) to 13(14) and elimination of the hydroxyl group at C-14.

  1. Radiolytic reduction of nifurtimose by CO2-· free radicals

    International Nuclear Information System (INIS)

    Filali-Mouhim, A.; Champion, B.; Jore, D.; Ferradini, C.; Hickel, B.

    1991-01-01

    Nifurtimox is an antiparasitic drug often used in the treatment of the Chagas disease. Its therapeutic action seems to involve its monoelectronic reduction leading to a reduced radical capable of providing superoxide anion by reaction with oxygen. The oxidation reduction mechanisms involved in this action have been studied by steady state and pulse radiolysis methods. This study is devoted to the monoelectronic exchanges observed in the absence of air, the reducing radicals being the CO 2 - · anions [fr

  2. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  3. Photochemical reduction of water-soluble C60 derivatives (EPR study)

    International Nuclear Information System (INIS)

    Brezova, V.; Stasko, A.; Dvoranova, D.; Asmus, K.D.; Guldi, D.M.

    1999-01-01

    The photochemical reduction of three bis-functionalized C 60 derivatives resulted in the formation of a single radical product, characterized by relatively narrow EPR line (g M = 2.0007, pp < 0.02 mT). In the irradiated aqueous solutions containing L-ascorbic acid, in the addition to the EPR line related to bis-adduct mono-anion, also 6-line EPR spectrum of ascorbyl radical was observed. Consequently, the photoinduced formation of ascorbyl radical was attributed to the intermolecular quenching of fullerenes excited states. (authors)

  4. Investigations of structure, bonding, and reactions of radiation-induced free radicals in the solid state using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Hudson, R.L.

    1978-01-01

    Electron spin resonance spectroscopy (ESR) has been used to study the structure, bonding, and reactions of several types of free radicals produced by γ irradiation of solids at 77K. Well-defined spectral patterns and the use of photolysis and annealing treatments assisted the analyses and interpretations. The radical anion BF 3 - was generated and identified unequivocally in a matrix of tetramethylsilane at 77K. Both the ESR data and theoretical calculations support a pyramidal structure with a bond angle of about 110 0 . The present experiments showed that BF 3 - has ESR parameters consistent with those of the isoelectronic radicals CF 3 , NF 3 + , and F 2 NO. γ irradiation of polycrystalline trimethyl borate at 77K gave an ESR spectrum which was assigned to the dimer radical anion [(MeO) 3 B.B(OMe) 3 ] - . Radical anions of dialkyl carbonates were observed for the first time and found to undergo a β-scission reaction to produce alkyl radicals. This free radical reaction is unusual in that it proceeds both thermally and photochemically. For the dimethyl carbonate radical anion, 13 C parameters were obtained from a 13 C enriched sample. The photolysis of trapped radicals in γ irradiated carboxylic esters, RC(O)OR', was studied by ESR spectroscopy and two different reactions were characterized. Two hypervalent silicon radical anions were prepared and examined in SI(OCH 3 ) 4 . The results of the present work thus represent the first complete sets of data on the silicon 3s and 3p spin densities for such species. The first PL 3 - radical anion was prepared by the γ irradiation of crystalline trimethylphosphite, and identified through its photolysis reactions and from the results of radiation chemical experiments

  5. One electron oxidation of Ni(II)-iminodiacetate by carbonate radical

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1995-01-01

    Reactions of carbonate radical (CO 3 - ), generated by photolysis or by radiolysis of a carbonate solution with nickel(II)-iminodiacetate (Ni(II)IDA) were studied at pH 10.5 and ionic strength (I)=0.2 mol x dm -3 . The stable product arising from the ligand degradation in the complex is mainly glyoxalic acid. Time-resolved spectroscopy and transient kinetics were studied using flash photolysis. From the kinetic data it was suggested that the carbonate radical initially reacts with Ni(III)IDA with a rate constant (2.4.±0.4) x 10 6 dm 3 x mol -1 x s -1 to form a Ni(II)IDA species which, however, undergoes a first-order transformation (k=2.7 x 10 2 x s -1 ) to give a radical intermediate of the type Ni(II)RNHCHCO - 2 ) which rapidly forms an adduct containing a Ni-C bond. This adduct decays very slowly to give rise to glyoxalic acid. From a consideration of equilibrium between Ni(II)IDA and Ni(III)IDA, the one electron reduction potential for the Ni(III)IDA/Ni(II)IDA couple was determined to be 1.467 V. (author) 30 refs.; 5 figs

  6. E. s. r. of free radicals in irradiated uracil-. beta. -D-arabinofuranoside

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, R [Oslo Univ. (Norway). Fysisk Institutt; Vaughan, R A

    1976-02-01

    Electron-spin-resonance measurements have been made on single crystals of uracil-..beta..-D-arabinofuranoside, which were irradiated by 4.0 MeV electrons at 77 K. At low temperatures, two radicals have been identified, one attributed to a hydrogen abstraction of 05' in the sugar moiety and the other to a radical anion located on the pyrimidine ring. The former was very unstable and seemed to act as a precursor to other unidentified radical species stable at 77 K. At room temperature, the main resonance was due to hydrogen addition to C5 and was probably produced by protonation of the anion. This same radical was also produced by irradiation at room temperature.

  7. Muon level crossing resonance spectroscopy applied to free-radical formation

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Barnabas, M.V.; Walker, D.C.

    1989-01-01

    Muon Level Crossing Resonance Spectroscopy has been used to explore two aspects of muonium chemistry: unique free radicals and muonated radical yields. (1) A variety of new free-radicals have been seen by LCR. For instance, in thioacetamide the only radical produced from muonium is the S sm-bullet radical formed when Mu adds to the C of the C=S bond. In allylbenzene a whole range of radicals form with substantial yields (two side-chain and three ring additions); whereas in styrene, 85% of the radicals have Mu bonded to the end C of the side-chain and there is no meta-adduct at all. (2) Absolute yields of the radicals formed by interaction of muonium atoms in water with acrylamide as a solute (and with benzene in n-hexane) have shown that all muons not directly incorporated into diamagnetic molecules (such as MuH) appear as muonated free radicals. i.e. the missing fraction is found

  8. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation-Anion Network.

    Science.gov (United States)

    Firaha, Dzmitry S; Kavalchuk, Mikhail; Kirchner, Barbara

    We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO 2 ) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO 2 . Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO 2 adduct, the cations create a "cage" around SO 2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO 2 and CO 2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO 2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO 2 can from O(SO 2 )-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO 2 acts in this way was termed a linker effect by us, because the SO 2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO 2 ) hydrogen bond and a S(anion)-S(SO 2 ) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO 2 solubility in these ionic liquids is so high.

  9. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  10. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  11. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  12. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    Science.gov (United States)

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  13. Free radicals in dicarboxylic acids: an e.s.r. study of radical conversions in γ-irradiated single crystals of glutaric acid and glutaric-2,2,4,4-d4 acid

    International Nuclear Information System (INIS)

    Bergene, R.; Minegishi, A.; Riesz, P.

    1980-01-01

    The γ-radiation-induced free radicals in single crystals of glutaric acid and glutaric-2,2,4,4-d 4 acid were studied in the temperature range 77-300 K by e.s.r. techniques. At 77 K the decarboxylation radical and the anion are stabilized. At higher temperatures the decarboxylation radical is found to be converted into a hydrogen abstraction radical with an activation energy of 6.3 +- 0.5 kcal/mole for the non-deuterated crystal. This radical is stable at room temperature. The anion seems to be converted to a unidentified intermediate radical which in turn is converted to the σ-acyl radical. An analysis of the g-value anisotropy and of the 13 C hyperfine splitting variation for this radical in the deuterated crystal is consistent with the assigned radical structure. By heat treatment the σ-acyl radical is converted to another form of the hydrogen abstraction radical with an activation energy of 9.6 +- 0.6 kcal/mole in the deuterated crystal. U.V.-light (lambda= 254 nm) transforms one of the room temperature radicals into the other. (author)

  14. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Science.gov (United States)

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  15. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    Science.gov (United States)

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  16. cis-Thioindigo (TI) - a new ligand with accessible radical anion and dianion states. Strong magnetic coupling in the {[TI-(μ2-O),(μ-O)]Cp*Cr}2 dimers.

    Science.gov (United States)

    Konarev, Dmitri V; Khasanov, Salavat S; Shestakov, Alexander F; Fatalov, Alexey M; Batov, Mikhail S; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2017-10-24

    Reaction of decamethylchromocene (Cp* 2 Cr) with thioindigo (TI) yields a coordination complex {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 ·C 6 H 14 (1) in which one Cp* ligand in Cp* 2 Cr is substituted by TI. TI adopts cis-conformation in 1 allowing the coordination of both carbonyl groups to chromium. Additionally, one oxygen atom of TI becomes a μ 2 -bridge for two chromium atoms to form {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 dimers with a CrCr distance of 3.12 Å. According to magnetic data, diamagnetic TI 2- dianions and two Cr 3+ atoms with a high S = 3/2 spin state are present in a dimer allowing strong antiferromagnetic coupling between two Cr 3+ spins with an exchange interaction of -35.4 K and the decrease of molar magnetic susceptibility below 140 K. Paramagnetic TI˙ - radical anions with the S = 1/2 spin state have also been obtained and studied in crystalline {cryptand[2,2,2](Na + )}(TI˙ - ) (2) salt showing that both radical anion and dianion states are accessible for TI.

  17. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  18. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  19. Macrocyclic bis(ureas as ligands for anion complexation

    Directory of Open Access Journals (Sweden)

    Claudia Kretschmer

    2014-08-01

    Full Text Available Two macrocyclic bis(ureas 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3 molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO and dimethylformamide (DMF and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3−, HSO4−. The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions.

  20. Stepwise radical cation Diels-Alder reaction via multiple pathways.

    Science.gov (United States)

    Shimizu, Ryo; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Herein we disclose the radical cation Diels-Alder reaction of aryl vinyl ethers by electrocatalysis, which is triggered by an oxidative SET process. The reaction clearly proceeds in a stepwise fashion, which is a rare mechanism in this class. We also found that two distinctive pathways, including "direct" and "indirect", are possible to construct the Diels-Alder adduct.

  1. Encapsulation of Gibbsite platelets with free radical and controlled radical emulsion polymerization approaches, a small review

    NARCIS (Netherlands)

    Loiko, O.P.; Spoelstra, A.B.; van Herk, A.M.; Meuldijk, J.; Heuts, J.P.A.

    2016-01-01

    Water-borne anisotropic polymer-Gibbsite latex particles were prepared by a conventional and an atom transfer radical polymerisation (ATRP) based starved-feed emulsion polymerisation without any chemical modification of the platelet surface. Anionic co-oligomers, synthesised via ATRP, were used in

  2. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  3. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  4. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  5. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  6. DNA adducts in senescent cells

    International Nuclear Information System (INIS)

    Gaubatz, J.W.

    1987-01-01

    Perturbations in DNA repair and other metabolic processes during development and aging might affect the steady-state level of genomic damage. The persistence or accumulation of DNA lesions in postmitotic cells could have a significant impact on proper cellular function, interfering with gene regulation for example. To test the notion that DNA damage increases as a function of age in non-dividing cells, DNA was purified from heart tissue of C57BL/6Nia mice at different ages and analyzed by post labeling techniques to detect DNA adducts. In the present experiments, four-dimensional, thin-layer chromatography was used to isolate aromatic adducts that were labeled with carrier-free (γ- 32 P) ATP under DNA-P excess conditions. The complexity and frequency of aromatic adducts varied between DNA samples. Several adducts were present in all preparations and were clearly more abundant in nucleotide maps of mature and old heart DNA. However, a direct correlation with age was not observed. In contrast, experiments in which aromatic adducts were first isolated by phase-transfer to 1-butanol, then labeled with excess (γ- 32 P)ATP indicated that there was an age-related increase in these adducts. The results are consistent with their earlier studies that showed alkyl adducts increased during aging of mouse myocardium and suggest that a common repair pathway might be involved

  7. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  8. Five Stereoactive Orbitals on Silicon: Charge and Spin Localization in the n-Si4Me10(-•) Radical Anion by Trigonal Bipyramidalization.

    Science.gov (United States)

    MacLeod, Matthew K; Michl, Josef

    2013-05-16

    RIUMP2/def2-TZVPPD calculations show that in addition to its usual conformation with charge and spin delocalized over the Si backbone, the isolated Si4Me10(-•) radical anion also has isomeric conformations with localized charge and spin. A structure with localization on a terminal Si atom has been examined in detail. In vacuum, it is calculated to lie 11.5 kcal/mol higher in energy than the charge-and-spin delocalized conformation, and in water the difference is as little as 1.6 kcal/mol. According to natural orbital and localized orbital analyses, the charge-and-spin-carrying terminal Si atom uses five stereoactive hybrid orbitals in a trigonal bipyramidal geometry. Four are built mostly from 3s and 3p atomic orbitals (AOs) and are used to attach a Si3(CH3)7 and three CH3 groups, whereas the larger equatorial fifth orbital is constructed from 4s and 4p AOs and acts as a nonbonding (radical) hybrid orbital with an occupancy of about 0.65 e.

  9. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    International Nuclear Information System (INIS)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke

    2000-01-01

    The interaction of caffeic acid with e aq - , (CH 3 ) 2 (OH) CCH 2 · , CO 2 ·- , H · , ·OH and N 3 · radicals were studied by γ-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/·OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  10. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  11. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  12. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian; Rueping, Magnus

    2016-01-01

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  13. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora

    2016-05-02

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  14. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    International Nuclear Information System (INIS)

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals

  15. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Balchen, T

    1994-01-01

    Systemic administration of salicylate (SA) to rats (100 mg kg-1 i.p. ) was used as an in vivo trap of hydroxyl radicals (.OH). In the brain SA reacts with hydroxyl radicals to form the stable adducts 2, 3- and 2,5 dihydroxybenzoic acid (DHBAs) which can thus be taken as an index of .OH formation...

  16. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  17. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  18. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  19. Oxidation of caffeine by phosphate radical anion in aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    reactions in our body generate reactive oxygen species mainly comprising free radicals .... caffeine might be acting as a sensitizer to transfer energy to PDP to produce phosphate ... The lifetime of the excited singlet 21 state of caffeine is of the.

  20. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  1. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Energy Technology Data Exchange (ETDEWEB)

    Wink, D A [National Cancer Inst., Frederick, MD (United States); Desrosiers, M F [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR{sub 2}{sup -}). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author).

  2. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    International Nuclear Information System (INIS)

    Wink, D.A.; Desrosiers, M.F.

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR 2 - ). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author)

  3. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Science.gov (United States)

    Wink, David A.; Desrosiers, Marc F.

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.

  4. Imidazolidinone adducts of peptides and hemoglobin

    International Nuclear Information System (INIS)

    San George, R.C.; Hoberman, H.D.

    1986-01-01

    Acetaldehyde reacts selectively with the terminal amino groups of the α and β chains of hemoglobin to form stable adducts, the structures of which, based on 13 C NMR studies, are proposed to be diastereomeric 2-methyl imidazolidin-4-ones. In this scheme, acetaldelhyde forms a reversible Schiff base with the α-amino groups of the polypeptide chains which cyclize with the amide nitrogen of the first peptide bond to form the stable imidazolidinone adducts. In support of this mechanism, the authors found that in following the reaction of the peptide val-gly-gly with [1,2- 13 C] acetaldehyde, 13 C NMR resonances attributed to a Schiff base (δ = 170 ppm) were observed which slowly disappeared prior to appearance of resonances from a pair of stable adducts (δ = 70 and 71 ppm) believed to be the diastereomeric imidazolidinones. Schiff base formation appeared to limit the overall rate. Tetraglycine reacted in a similar manner but with a resonance from a single stable adduct observed representing the enantiomeric imidazolidinone adducts of this peptide. Peptides with proline in position 2 should be incapable of forming imidazolidinones, and the authors found that ala-pro-gly did in fact fail to form a stable adduct with acetaldehyde. The 2-methyl imidazolidin-4-one adducts of hemoglobin may be useful in determining the contribution of the amino terminal groups to the structure and functional properties of hemoglobins

  5. Pulse radiolysis of butyl acrylate in aqueous solution

    International Nuclear Information System (INIS)

    Kujawa, P.; Ulanski, P.; Rosiak, J.M.; Mohid, N.; Zaman, K.; Manshol, W.

    1998-01-01

    The pulse radiolysis of n-butyl acrylate (nBA) in aqueous solution was studied. The rate constant of the reaction of nBA with hydroxyl radicals was calculated as 1.5x10 10 dm 3 mol -1 s -1 . The absorption spectrum of the OH · -nBA adduct appeared to have a broad maximum at 300 nm. This spectrum was attributed to the α-carbon centred radicals. It decayed with the first-order rate constant k=1.5x10 4 s -1 (pH 10.8). The rate constant of the nBA reaction with hydrated electrons was determined as k=1.6x10 10 dm 3 mol -1 s -1 . The spectrum of H · -nBA adduct was similar to that recorded for OH · adduct. It decayed with first-order kinetics at k=1.0x10 4 s -1 . Spectra of the electron adduct were characterised by the band with a maximum at 285 nm (pH 10.0) or at 280 nm (pH 4.0) with ε=10500 dm 3 mol -1 cm -1 . In acidic solution, radical anion formed upon addition of hydrated electrons to the nBA molecule, undergoes fast, reversible protonation. The decay of the reversibly protonated electron adduct was a second-order process at k=2.5x10 9 dm 3 mol -1 s -1 . This reaction took place at the carbonyl oxygen. Slow, irreversible protonation of the electron adduct at high pH takes place at the β-carbon atom at k=2.9x10 4 s -1

  6. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The interaction of caffeic acid with e{sub aq}{sup -}, (CH{sub 3}){sub 2}(OH) CCH{sub 2}{sup {center_dot}}, CO{sub 2}{sup {center_dot}}{sup -}, H{sup {center_dot}}, {center_dot}OH and N{sub 3}{sup {center_dot}} radicals were studied by {gamma}-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/{center_dot}OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  7. Role of free radicals in radiation chemical aging

    Energy Technology Data Exchange (ETDEWEB)

    Greenstock, C L

    1986-01-01

    Ionizing radiation initiates chemical changes in DNA, phospholipid membranes and other critical cell targets, that, if allowed to accumulate unrepaired, may lead to aging and other chronic effects. The chemical effects are free radical mediated, the principal damaging species being radical OH and to a lesser extent O2-anion radical and the molecular product H/sub 2/O/sub 2/. Many compounds can act in combination with ionizing radiation, to amplify the potential oxidative stress. Chemicals, ultra-violet light, lipid peroxides and their breakdown products may increase the extent of acute and chronic radiobiological effects.

  8. Electron transfer oxidation of DNA radicals by paranitroacetophenone

    Energy Technology Data Exchange (ETDEWEB)

    Whillans, D W; Adams, G E [Mount Vernon Hospital, Northwood (UK)

    1975-12-01

    The reaction of a typical electron-affinic sensitizer, paranitroacetophenone (PNAP) with the model compounds thymine, thymidine, thymidylic acid, deoxyribose and single and double-stranded DNA has been investigated by pulse radiolysis. Radicals formed by one-electron reduction of the bases and of DNA reacted rapidly and efficiently with PNAP by electron transfer. A small yield of transfer (< 10 per cent) was also observed arising from oxidation of the radicals formed by the small proportion of OH which reacted at the sugar moieties in DNA. In contrast, electron transfer oxidation by PNAP of radicals formed by the addition of OH to the base moieties, e.g. thymine, was not an efficient process. Further, addition of the sensitizer to the thymine OH-adduct proceeded at a rate that was too low to measure the pulse radiolysis. We conclude that, since the major sites of OH reaction by DNA are the heterocyclic bases (> 80 per cent), oxidation of the resultant radicals is unlikely to be a major step in the mechanism of sensitization by this typical hypoxic-cell sensitizer.

  9. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  10. Modification by cystamine of radiation-induced free radical damages to biomolecules in tissues of mouse organs

    International Nuclear Information System (INIS)

    Svistunenko, D.A.; Gudtsova, K.V.

    1989-01-01

    The method of low-temperature ESR-spectroscopy was used to study a modifying effect of cystamine on the yield of radiation-induced free radicals in different biomolecules of liver and spleen tissues of mice. Intraperitoneal administration of cystamine (150 mg/kg) 15 min before isolation and freezing of the tissues was shown to reduce by 11 per cent the yield of radicals of H-adducts of thymine DNA bases, to decrease by 23 per cent the yield of radicals of triacyglycerol and phospholipid radiolysis, and to increase by 24 per cent the yield of radicals of lipid fatty acid residues in splenic tissues. According to the criterion used, cystamine has no modyfying action on the yield of free-radical damages to liver biomolecules

  11. Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes

    NARCIS (Netherlands)

    Donkers, E.H.D.; Willemse, R.X.E.; Klumperman, B.

    2005-01-01

    The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition-fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated

  12. Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Atkinson, Roger; Arey, Janet

    2008-12-15

    Aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), are released into the atmosphere principally during incomplete combustion and account for approximately 20% of nonmethane organic compounds in urban air. Reaction with OH radicals is the dominant atmospheric chemical loss process for aromatic hydrocarbons, leading mainly to the formation of an OH-aromatic or OH-PAH adduct which then reacts with O2 and/or NO2. For OH-monocyclic aromatic adducts, reaction with O2 dominates under atmospheric conditions; however, no data are available concerning the relative importance of reactions of OH-PAH adducts with O2 and NO2. We have measured formation yields of 3-nitrotoluene, 1- and 2-nitronaphthalene, and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene, and biphenyl as a function of NO2 concentration. Our data showthatthe OH-aromatic adduct reactions with O2 and NO2 are of equal importance in the atmosphere at NO2 mixing ratios of approximately 3.3 ppmV for toluene, approximately 0.06 ppmV for naphthalene, and approximately 0.6 ppmV for biphenyl. Ambient concentrations of toluene, naphthalene, and biphenyl and their nitrated products measured at a site in the Los Angeles air basin are consistent with our laboratory measurements.

  13. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  14. Formation of adduct of cerium (4) thenoyltrifluoroacetonate

    International Nuclear Information System (INIS)

    Anyfrieva, S.I.; Polyakova, G.V.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Spitsyn, V.I.

    1981-01-01

    Adduct formation of thenoyltrifluoroacetonate of Ce(4) [Ce(TTFA) 4 ] with seven nitrogen- and oxygen-containing donor additional ligands is studied using the methods of IR-spectroscopy, derivatography, X-ray phase analysis. The presence of formation of Ce(TTFA) 4 adducts with phosphorus-containing additional ligands tributyl phosphate (TBP), trioctylphosphine oxide (TOPO), triphenylphosphine oxide (TPPO); α, α'-dipyridyl (Dipy) and o-phenanthroline (Phen) is established. The adduct Ce(TTFA) 4 stable to reduction is formed with Dipy, and in the case of Phen, TBP, TOPO, TPPO in the process of adduct formation the reduction of Ce(4) to Ce(3) takes place [ru

  15. Redox potentials of free radicals. III. Reevaluation of the method

    International Nuclear Information System (INIS)

    Rao, P.S.; Hayon, E.

    1974-01-01

    A reevaluation of the method described in ref 1 and 2 to determine the redox potentials of free radicals (.RH) in water using the techniques of pulse radiolysis and absorption spectrophotometry is presented. This method is based on the dependence of the percentage efficiency for the one-electron oxidation (or reduction) of .RH radicals on the redox potentials E 01 of the electron acceptors, A. The reaction .RH + A → .A - + R + H + (kappa/sub ox/) is not reversible for most radicals under the experimental conditions used, and the derived potentials are, therefore, not thermodynamic values. A reinterpretation of the results is made on the basis of the kinetic competition between the above reaction and .RH + A → .RHA (kappa/sub add/) (radical adducts). Based on kappa/ sub ox/ and kappa/sub add/, it is concluded that the observed experimental ''titration'' curves do represent a measure of the redox property of the free radicals. From the midpoint on the curves, the kinetic potential, E/sub kappa/ 01 : of the free radicals can be derived based on the known two-electron redox potentials of the electron acceptors. These and other questions are discussed. (U.S.)

  16. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  17. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  18. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  19. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    Science.gov (United States)

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  20. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  1. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    International Nuclear Information System (INIS)

    Shi, Yun-bo.

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  2. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain.......An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side...

  3. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Erben-Russ, Michael; Bors, Wolf; Saran, Manfred

    1987-01-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N 2 O/O 2 -saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N 2 O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N 3 with rate constants exceeding 10 9 dm 3 mol -1 s -1 . Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10 7 dm 3 mol -1 s-? 1 ), with aroxyl radicals to form covalent adducts (> 10 8 dm 3 mol -1 s -1 ), as well as for their bimilecular decay (3.0 x 10 8 dm 3 mol -1 s -1 ). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution. (author)

  4. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  5. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  6. Use of computer graphics for calculation of stability constants of praseodymium tris-(1,1,1,2,2,3,3,5-octafluoro-5-trifluromethyl-4-oxo-8-phenyloctanedion-6,8) adduct with 4-picoline from the NMR spectroscopy data

    International Nuclear Information System (INIS)

    Buiklinskij, V.D.; Kuznetsova, S.L.; Kostyrina, T.V.; Panyushkina, V.T.

    1991-01-01

    Lanthanide shifting reagent (LSR) on the basis of β-diketone of asymmetric structure, containing heteroatom-oxygen in fluorinated radical, has been synthesized. Adduct formation of LSR synthesized with 4-picoline has been studied by the method of NMR spectroscopy. The composition of the adduct formed, being 1:2, is determined. Stability constant of the adduct considered is calculated by previously suggested method, which consists in taking into account of equilibrium concentrations of the substrate in two experiments. Possibilities of computer graphics for the evaluation of paramters of the mathematical model suggested are demonstrated. The values of stability stepped constants of the adduct are calculated: lg K 1 =3.4±0.1; lg K 2 =2.0±0.1

  7. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  8. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    OpenAIRE

    Suvankar Das; Cristiane J. da Silva; Marina de M. Silva; Maria Dayanne de A. Dantas; Ângelo de Fátima; Ana Lúcia T. Góis Ruiz; Cleiton M. da Silva; João Ernesto de Carvalho; Josué C.C. Santos; Isis M. Figueiredo; Edeildo F. da Silva-Júnior; Thiago M. de Aquino; João X. de Araújo-Júnior; Goutam Brahmachari; Luzia Valentina Modolo

    2018-01-01

    Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (·O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine...

  9. Quantum Chemical Investigation on the Antioxidant Activity of Neutral and Anionic Forms of Juglone: Metal Chelation and Its Effect on Radical Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Aymard Didier Fouegue Tamafo

    2017-01-01

    Full Text Available The chelation ability of divalent Mg, Ca, Fe, Co, Ni, Cu, Zn, and monovalent Cu ions by neutral and anionic forms of juglone has been investigated at DFT/B3LYP/6-31+G(d,p level of theory in gas and aqueous phases. It is noteworthy that only the 1 : 1 stoichiometry was considered herein. The effects of these metals on the radical scavenging activity of neutral juglone were evaluated via the usual descriptors of hydrogen atom transfer. According to our results, metal chelation by the two forms of juglone was spontaneous and exothermic in both media. Based on the binding energies, Cu(II ion showed the highest affinity for the ligands. QTAIM analyses identified the metal-ligand bonds as intermediate type interactions in all the chelates, except those of Ca and Mg. It was also found that the chelates were better radical scavengers than the ligands. In the gas phase, the scavenging activity of the compounds was found to be governed by direct hydrogen atom transfer, the Co(II chelate being the most reactive. In the aqueous phase also, the sequential proton loss electron transfer was preferred by all the molecules, while the Cu(II chelates were the most reactive.

  10. Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions

    OpenAIRE

    Lu, Zhou

    2007-01-01

    Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...

  11. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2016-12-01

    Full Text Available In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA and vertical electron affinities (VEA, as well as vertical detachment energy (VDE. To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+ and Parr (P+ functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  12. Free radicals from irradiated lyophilized DNA: influence of water of hydration

    International Nuclear Information System (INIS)

    Huettermann, J.; Roehrig, M.; Koehnlein, W.

    1992-01-01

    Lyophilized DNA equilibrated with water vapour at various relative humidities (0-95% H 2 O or D 2 O) was X-irradiated at 77 K and analysed for free radicals by electron paramagnetic resonance (EPR) spectroscopy in the temperature range 77-280 K. Analysis of spectra according to variation in humidity, microwave power and temperature generally yielded a doublet and a triplet spectrum at 77 K. The doublet partially converted into the 5-thymyl radical (TH . ). DNA containing deuterated thymine (dTDNA) revealed that the doublet of ''normal'' DNA should be composed of two similar doublets, one of which should be assigned to the thymine anion, the other possibly the cytosine anion. The triplet signal was more stable and could be related to the guanine cation or its deprotonated successor. Several other patterns were detected among them an allyl radical in highly aquated DNA (95% humidity). Other features occurred either predominantly or exclusively in DNA equilibrated above 66% relative humidity and were ascribed to an influence of the secondary structure. (author)

  13. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  14. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas

    International Nuclear Information System (INIS)

    Le Goff, J.; Gallois, J.; Pelhuet, L.; Devier, M.H.; Budzinski, H.; Pottier, D.; Andre, V.; Cachot, J.

    2006-01-01

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32 P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32 P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 μg g -1 dry weight) in comparison to individuals from the reference site (0.053 μg g -1 dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10 8 nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 μg g -1 dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 μg g -1 dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10 8 nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32 P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable biomarker to monitor

  15. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Gallois, J. [Laboratory F. Duncombe, Conseil General du Calvados, Caen (France); Pelhuet, L. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Devier, M.H. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Budzinski, H. [LPTC, UMR-5472 CNRS, University Bordeaux I, Bordeaux (France); Pottier, D. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Andre, V. [GRECAN, UPRES EA-1772, University of Caen, Caen (France); Cachot, J. [LEMA, UPRES EA-3222, IFRMP 23, University of Le Havre, 25 rue Philippe Lebon, B.P. 540, 76058 Le Havre Cedex (France)]. E-mail: jerome.cachot@univ-lehavre.fr

    2006-08-12

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a {sup 32}P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of {sup 32}P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 {mu}g g{sup -1} dry weight) in comparison to individuals from the reference site (0.053 {mu}g g{sup -1} dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10{sup 8} nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 {mu}g g{sup -1} dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 {mu}g g{sup -1} dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10{sup 8} nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced {sup 32}P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in

  16. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast

    International Nuclear Information System (INIS)

    Teixeira, Miguel C.; Telo, Joao P.; Duarte, Nuno F.; Sa-Correia, Isabel

    2004-01-01

    The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Δsod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p

  17. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  18. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    Science.gov (United States)

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  19. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  20. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Erben-Russ, M.; Bors, W.; Saran, M.

    1987-09-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N/sub 2/O/O/sub 2/-saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N/sub 2/O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N/sub 3/ with rate constants exceeding 10/sup 9/ dm/sup 3/ mol/sup -1/ s/sup -1/. Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10/sup 7/ dm/sup 3/ mol/sup -1/ s-./sup 1/), with aroxyl radicals to form covalent adducts (> 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/), as well as for their bimilecular decay (3.0 x 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution.

  1. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain....

  2. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    Science.gov (United States)

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  3. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    Science.gov (United States)

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-11-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  4. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  5. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  6. Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.

    Science.gov (United States)

    Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka

    2006-01-01

    This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.

  7. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).

    Science.gov (United States)

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo

    2005-04-06

    Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.

  8. Determination of adducts of polycyclic aromatic hydrocarbons to DNA

    International Nuclear Information System (INIS)

    Bean, R.M.; Chess, E.K.; Thomas, B.L.; Mann, D.B.; Dankovic, D.A.; Franz, J.A.; Springer, D.L.

    1987-01-01

    Adducts to deoxyribonucleic acid (DNA), formed from metabolites of polynuclear aromatic compounds, are relatively persistent and correlate with bioresponse (carcinogenicity). Therefore, qualitative and quantitative analysis of adducts in the DNA of individuals may provide valuable information as to recent exposure to carcinogenic hydrocarbons. Further, the ability to detect adducts in a large segment of a population may have significant epidemiological significance. The current thrust of the analytical development at PNL is to isolate the DNA, liberate the adducted hydrocarbon residue from the DNA with acid hydrolysis, and prepare derivatives of the hydrolyzed species that will enhance its detection, quantitation, and characterization using gas chromatography/mass spectrometry (GC/MS). They have initiated the development of the necessary techniques using benzo[a]pyrene (B[a]P). Samples of DNA adducts of radiolabeled B[a]P have been prepared for study by reacting DNA isolated from calf thymus with benzo[a]pyrene-7,8-diol-9,10-epoxide (the ultimate carcinogenic form of B[a]P). Other DNA/B[a]P samples have been prepared by painting the skin of mice with radiolabeled B[a]P. The ability to prepare research quantities of adducts using the hepatocyte preparation method reported by Dankovic et al is a significant development to their DNA adduct analysis program

  9. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  10. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants. Copyright 2003 Wiley-Liss, Inc.

  11. Linking the generation of DNA adducts to lung cancer.

    Science.gov (United States)

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reoriention of diprotonated DABCO (1,4-Diazabicyclo[2.2.2]octane) cation and proton transfer in organic ferroelectric adduct DABCO-2(2-Chlorobenzoic acid)

    Science.gov (United States)

    Asaji, Tetsuo

    2018-05-01

    Temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T1 were investigated of a ferroelectric molecular adduct with Tc = 323 K, in which 1,4-diazabicyclo[2.2.2]octane (DABCO) is sandwiched between two 2-chlorobenzoic acid (2-ClBA). The NQR frequencies clearly show that proton transfer from 2-ClBA to DABCO is occurred and the molecular adduct consists of diprotonated DABCO cation and two 2-chlorobenzoate anions. The correlation time of reorientational motion of the diprotonated DABCO molecule was determined as a function of temperature. The activation energy Ea of the motion was estimated as 22 kJ mol-1 below Tc. The steep decrease of the NQR T1 with Ea = 50 kJ mol-1, observed above ca. 280 K in the ferroelectric phase, suggests a slow fluctuation of electric field gradient at chlorine nucleus.

  13. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  14. Multiple free-radical scavenging (MULTIS) capacity in cattle serum.

    Science.gov (United States)

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

  15. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  16. Formation of DNA adducts in mouse tissues after 1-nitropyrene administration

    International Nuclear Information System (INIS)

    Mitchell, C.E.

    1986-01-01

    DNA adducts were isolated and characterized in mouse lung, liver and kidney after intratracheal instillation of [ 3 H]-1-nitropyrene (1-NP). HPLC analysis of the enzymatically digested DNA indicated the presence of multiple DNA adducts in mouse lung, liver and kidney. These results indicate that DNA adducts of 1-NP are formed in mouse lung, liver and kidney after intratracheal instillation of 1-NP; the HPLC profiles of the multiple adducts suggests that adducts may be formed via metabolic pathways that involve both nitroreduction and ring-oxidation. 6 references, 1 figure

  17. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  18. Matrix isolation spectroscopic studies of the radical ions of 2,5-diphenyloxazole (Preprint No. RC-15)

    International Nuclear Information System (INIS)

    Wani, A.M.

    1988-02-01

    The radical ions of 2,5-diphenyloxazole (PPO) produced upon γ-irradiation were studied at 77 K in organic glasses by optical absorption spectroscopy. The dependence of absorption spectra on the nature of the matrix, electron and hole scavengers is interpretted and the absorption bands are assigned to the anionic and cationic radical species of PPO. (author). 6 refs

  19. Photochemical sensitization by azathioprine and its metabolites. Part 3. A direct EPR and spin-trapping study of light-induced free radicals from 6-mercaptopurine and its oxidation products.

    Science.gov (United States)

    Moore, D E; Sik, R H; Bilski, P; Chignell, C F; Reszka, K J

    1994-12-01

    Sunlight has been implicated in the high incidence of skin cancer found in patients receiving 6-mercaptopurine (PSH) in the form of its pro-drug azathioprine. In this study we have used EPR spectroscopy in conjunction with the spin-trapping technique to determine whether PSH and its metabolic or photochemical oxidation products generate highly reactive free radicals upon UV irradiation. When an aqueous anaerobic solution (pH 5 or 9) of PSH (pKa = 7.7) and either 2-methyl-2-nitrosopropane (MNP) or nitromethane (NM) were irradiated (lambda > 300 nm) with a Xe arc lamp, the corresponding purine-6-thiyl (PS.) radical adduct and the reduced form of the spin trap (MNP/H. or CH3NO2.-) were observed. However, no radical adducts were detected when PSH and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were irradiated (lambda = 320 nm) in oxygen-free buffer. These findings suggest that PSH does not photoionize but that instead MNP and NM are reduced by direct electron transfer from excited state PSH, 1.3(PSH)*. In aerobic solution, oxygen can act as an electron acceptor and the O2.- and PS. radicals are formed and trapped by DMPO. 6-Mercaptopurine did photoionize when irradiated with a Nd:YAG laser at 355 nm as evidenced by the appearance of the DMPO/H.(eq- + H+) adduct, which decreased in intensity in the presence of N2O. 1.3(6-Mercaptopurine)* oxidized ascorbate, formate and reduced glutathione to the corresponding ascorbyl, CO2.- or glutathiyl radicals. The photochemical behavior of 6-thioxanthine and 6-thiouric acid was similar to PSH. However, the excited states of these metabolic oxidation products exhibited stronger reducing properties than 1.3(PSH)*.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Infrared spectra of volatile adduct of uranyl pivaloyltrifluoroacetonate with hexamethylphosphorotriamide

    International Nuclear Information System (INIS)

    Bukhmarina, V.N.; Dushin, R.B.; Sidorenko, G.V.; Suglobov, D.N.

    1983-01-01

    Adduct of uranyl pivaloyltrifluoroacetonate with hexamethylphosphortriamide (1), sublimated without decomposition and characterized by a high thermal stability, has been synthesized, as well as adducts of uranyl dipivaloylmethanate with hexamethylphosphortriamide (2) and dimethyl sulfoxide (3), sublimated with partial dissociation. IR spectra of crystalline adducts 1-3, their solutions in benzene; gaseous and matrix-isolated adduct 1 have been measured. It is shown that in gaseous phase 1 exists practically completely in non-dissociated form. It is detected that uranyl group in crystalline 1 and 2 and in matrix-isolated 1 in contrast to crystalline 3 and previously studied adducts of uranyl β-diketonates has an asymmetric structure. Strength constants of uranyl group in crystalline 1-3 and matrix-isolated 1 are determined

  1. METRONIDAZOLE RADICAL ANION FORMATION STUDIED BY MEANS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Sokolová, Romana; Kolivoška, Viliam; Morovská Turoňová, A.; Ambrová, M.; Híveš, J.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1607-1617 ISSN 0010-0765 R&D Projects: GA ČR GP203/09/P502; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : radicals * radiopharmaceuticals * electron transfer Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  2. Environmental air pollution and DNA adducts in Copenhagen bus drivers - effect of GSTM1 and NAT2 genotypes on adduct level

    DEFF Research Database (Denmark)

    Nielsen, Per Sabro; de Pater, Nettie; Okkels, Henrik

    1996-01-01

    The lymphocyte bulky PAH-DNA adduct levels have been studied in persons occupationally exposed to ambient air pollution. The exposure group consisted of 90 healthy, nonsmoking bus drivers from the Copenhagen area, divided into three exposure groups according to driving area, and 60 rural controls...... (smokers and non-smokers). PAH-DNA adducts were determined by 32P-postlabelling with the butanol enrichment procedure. The bus drivers answered a comprehensive questionnaire on passive smoking, residential area, diet and other potential confounding variables. A significantly higher adduct level...... was observed in bus drivers working in central Copenhagen (1.214 fmol/microg DNA, n = 49) compared with both those driving in the dormitory (median: 0.507 fmol/microg DNA, P = 0.046, n = 16) and suburban (median: 0.585 fmol/microg DNA, P = 0.041, n = 25) areas. All three groups had higher adduct levels than...

  3. Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongli; Cheng Yan; Wang Haifang; Sun Hongfang; Liu Yuanfang E-mail: yliu@pku.edu.cn; Liu Kexin; Peng Shixiang

    2003-03-01

    Nitrobenzene (NB), a widely used industrial chemical, is a likely human carcinogen. Many dietary constituents can suppress the DNA-adduction, acting as the inhibitors of cancer. In this study, we investigated the inhibitory effects of vitamin C (VC), vitamin E (VE), tea polyphenols (TP), garlic squeeze, curcumin, and grapestone extract on NB-DNA and NB-hemoglobin (Hb) adductions in mice using an ultrasensitive method of accelerator mass spectrometry (AMS) with {sup 14}C-labelled nitrobenzene. All of these dietary constituents showed their inhibitory effects on DNA or Hb adduction. VC, VE, TP and grapestone extract could efficaciously inhibit the adductions by 33-50%, and all of these six agents could inhibit Hb adduction by 30-64%. We also investigated resveratrol, curcumin, VC and VE as inhibitors of NB-DNA adduction in vitro using liquid scintillation counting technique. These agents in the presence of NADPH and S9 components also pronouncedly blocked DNA adduction in a dose-dependent profile. Our study suggests that these seven constituents may interrupt the process of NB-induced chemical carcinogenesis.

  4. Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from a Drug Acyl Glucuronide Metabolite: Multiple Albumin Adductions in Diclofenac Patients

    Science.gov (United States)

    Hammond, Thomas G.; Meng, Xiaoli; Jenkins, Rosalind E.; Maggs, James L.; Castelazo, Anahi Santoyo; Regan, Sophie L.; Bennett, Stuart N. L.; Earnshaw, Caroline J.; Aithal, Guruprasad P.; Pande, Ira; Kenna, J. Gerry; Stachulski, Andrew V.; Park, B. Kevin

    2014-01-01

    Covalent protein modifications by electrophilic acyl glucuronide (AG) metabolites are hypothetical causes of hypersensitivity reactions associated with certain carboxylate drugs. The complex rearrangements and reactivities of drug AG have been defined in great detail, and protein adducts of carboxylate drugs, such as diclofenac, have been found in liver and plasma of experimental animals and humans. However, in the absence of definitive molecular characterization, and specifically, identification of signature glycation conjugates retaining the glucuronyl and carboxyl residues, it cannot be assumed any of these adducts is derived uniquely or even fractionally from AG metabolites. We have therefore undertaken targeted mass spectrometric analyses of human serum albumin (HSA) isolated from diclofenac patients to characterize drug-derived structures and, thereby, for the first time, have deconstructed conclusively the pathways of adduct formation from a drug AG and its isomeric rearrangement products in vivo. These analyses were informed by a thorough understanding of the reactions of HSA with diclofenac AG in vitro. HSA from six patients without drug-related hypersensitivities had either a single drug-derived adduct or one of five combinations of 2–8 adducts from among seven diclofenac N-acylations and three AG glycations on seven of the protein’s 59 lysines. Only acylations were found in every patient. We present evidence that HSA modifications by diclofenac in vivo are complicated and variable, that at least a fraction of these modifications are derived from the drug’s AG metabolite, and that albumin adduction is not inevitably a causation of hypersensitivity to carboxylate drugs or a coincidental association. PMID:24902585

  5. Detection of Riddelliine-Derived DNA Adducts in Blood of Rats Fed Riddelliine

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: We have previously shown that riddelliine, a naturally occurring genotoxic pyrrolizidine alkaloid, induces liver tumors in rats and mice through a genotoxic mechanism mediated by the formation of a set of eight 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine ( DHP-derived DNA adducts. In this study we report the formation of these DHP-derived DNA adducts in blood DNA of rats fed riddelliine. In an adduct formation and removal experiment, male and female F344 rats (8 weeks of age were administered riddelliine by gavage at a single dose of 10.0 mg/kg body weight in 0.1 M phosphate buffer. At 8, 24, 48, and 168 hrs after dosing, the levels of DHP-derived DNA adduct in blood and liver were determined by 32P-postlabeling/HPLC. Maximum DNA adduct formation occurred at 48 hr after treatment. From 48 to 168 hours, the adduct levels in female rat blood were 4-fold greater than those in male rats. In a dose response experiment, female rats were gavaged 0.1 and 1.0 mg/kg doses of riddelliine for three consecutive days and the DHPderived DNA adducts in blood DNA were assayed. The levels of the DHP-derived DNA adducts in blood of rats receiving 0.1 and 1.0 mg/kg doses were 12.9 and 51.8 adducts/107 nucleotides. These results suggest that: (i leucocyte DNA can bind with DHP to form a set of DHP-derived DNA adducts generated in liver; (ii DHP-derived DNA adducts in blood can serve as a potential non-invasive biomarkers for assessing the exposure to riddelliine.

  6. DNA adducts: Mass spectrometry methods and future prospects

    International Nuclear Information System (INIS)

    Farmer, P.B.; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-01-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10 12 nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [ 14 C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [ 14 C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing 32 P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens

  7. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    Science.gov (United States)

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  8. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  9. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    Science.gov (United States)

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  10. One electron reduction and oxidation of 2-, 3- and 4-chlorobenzonitrile in aqueous solution: A pulse radiolysis study

    DEFF Research Database (Denmark)

    Geppert, W.D.; Getoff, N.; Sehested, K.

    2000-01-01

    )-values of 2- and 4-C1BN species are about three orders of magnitude higher than that of 3-C1BN. At low pHs, the 3-CIBN.- transient protonates k = 2.6 x 10(10) dm(3) mol(-1) s(-1) and the resulting species disappears by a second-order process (2k = 2 x 10(9) dm(3) mol(-1) s(-1)). The spectrum...... of the protonated 3-C1BN(.-) transient strongly differs from that of the H-adduct. Hence, the protonation of the radical anions seems to occur at the cyano group. The H-atoms form the respective adducts with rates from 2.2 to 3.4 x 10(9) dm(3) mol(-1) s(-1), which disappear by a second-order process with rate...

  11. Ochratoxin A: In Utero Exposure in Mice Induces Adducts in Testicular DNA

    Directory of Open Access Journals (Sweden)

    Jamie E. Jennings-Gee

    2010-06-01

    Full Text Available Ochratoxin A (OTA is a nephrotoxin and carcinogen that is associated with Balkan endemic nephropathy and urinary tract tumors. OTA crosses the placenta and causes adducts in the liver and kidney DNA of newborns. Because the testis and kidney develop from the same embryonic tissue, we reasoned that OTA also may cause adducts transplacentally in the testis. We tested the hypothesis that acute exposure to OTA, via food and via exposure in utero, causes adducts in testicular DNA and that these lesions are identical to those that can be produced in the kidney and testis by the consumption of OTA. Adult mice received a single dose of OTA (from 0–1,056 µg/kg by gavage. Pregnant mice received a single i.p. injection of OTA (2.5 mg/kg at gestation day 17. DNA adducts were determined by 32P-postlabeling. Gavage-fed animals sacrificed after 48 hours accumulated OTA in kidney and testis and showed DNA adducts in kidney and testis. Some OTA metabolites isolated from the tissues were similar in both organs (kidney and testis. The litters of mice exposed prenatally to OTA showed no signs of overt toxicity. However, newborn and 1-month old males had DNA adducts in kidney and testis that were chromatographically similar to DNA adducts observed in the kidney and testis of gavage-fed adults. One adduct was identified previously as C8-dG-OTA adduct by LC MS/MS. No adducts were observed in males from dams not exposed to OTA. Our findings that in utero exposure to OTA causes adducts in the testicular DNA of male offspring support a possible role for OTA in testicular cancer.

  12. Gold Nanoparticles for the Detection of DNA Adducts as Biomarkers of Exposure to Acrylamide

    Science.gov (United States)

    Larguinho, Miguel Angelo Rodrigues

    The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in

  13. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  14. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  15. Characterization of trypsin-derived peptides acrylamide-adducted hemoglobin

    International Nuclear Information System (INIS)

    Springer, D.L.; Goheen, S.C.; Edmonds, C.G.; McCulloch, M.; Sylvester, D.M.; Sander, C.; Bull, R.J.

    1991-01-01

    Even though there are a number of sources for human exposure to acrylamide, reliable biomarkers of exposure are not available. In an effort to develop such a biomarker, the authors are characterizing peptides derived from trypsin digests of acrylamide-adducted hemoglobin. For this, radiolabeled acrylamide was incubated with this, radiolabeled acrylamide was incubated with purified human hemoglobin (Ao) and decomposition products removed by dialysis. When the adducted hemoglobin was separated by reverse-phase HPLC, radioactivity eluted with the α and β subunits, suggesting covalent binding. Digestion of individual subunits with trypsin followed by reverse phase HPLC, indicated that most of the radioactivity associated with the α subunit co-eluted with a single peptide. Similar results were observed for the β subunit except that significant amounts of radioactivity eluted with the solvent front, suggesting that radioactivity was released by trypsin digestion. Currently, these preparation are under further characterization by electrospray ionization mass spectrometry. This approach will aid in the identification of the adducted will aid in the identification of the adducted peptide and subsequent preparation of an acrylamide-specific antibody

  16. From betaines to anionic N-heterocyclic carbenes. Borane, gold, rhodium, and nickel complexes starting from an imidazoliumphenolate and its carbene tautomer

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2016-12-01

    Full Text Available The mesomeric betaine imidazolium-1-ylphenolate forms a borane adduct with tris(pentafluorophenylborane by coordination with the phenolate oxygen, whereas its NHC tautomer 1-(2-phenolimidazol-2-ylidene reacts with (triphenylphosphinegold(I chloride to give the cationic NHC complex [Au(NHC2][Cl] by coordination with the carbene carbon atom. The anionic N-heterocyclic carbene 1-(2-phenolateimidazol-2-ylidene gives the complexes [K][Au(NHC−2], [Rh(NHC−3] and [Ni(NHC−2], respectively. Results of four single crystal analyses are presented.

  17. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    International Nuclear Information System (INIS)

    Suh, Myungkoo.

    1995-01-01

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ∼ 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2 -dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2 -dG

  18. Detection of carcinogen-DNA adducts by radioimmunoassay

    International Nuclear Information System (INIS)

    Poirier, M.C.; Yuspa, S.H.; Weinstein, I.B.; Blobstein, S.

    1977-01-01

    Covalent binding of carcinogen to nucleic acids is believed to be an essential component of the carcinogenic process, so it is desirable to have highly sensitive and specific methods for detecting such adducts in cells and tissues exposed to known and suspected carcinogens. A radioimmunoassay is here described capable of detecting nanogram amounts of DNA adducts resulting from the covalent binding of the carcinogen N-2-acetylaminofluorene and its activated N-acetoxy derivative. (author)

  19. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I.

    1982-01-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with α, α'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates

  20. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    Science.gov (United States)

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  1. A new method for measuring scavenging activity of antioxidants to the hydroxyl radical formed by gamma-irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Hiroe; Ohashi, Yasunori

    2000-01-01

    A new method using ESR spin trapping was proposed for measuring scavenging activity of antioxidants to the hydroxyl (OH) radical. (-)-epigallocatechin gallate (EGCg) and 5,5-dimethyl-l-pyrroline N-oxide (DMPO) were used as an antioxidant and a spin trapping agent, respectively. Conventional method using a Fenton reaction had some defects on the estimation of the activity, because antioxidant disturbed the generating system of OH radical besides it scavenged the spin adduct (DMPO-OH). This method used intense γ-irradiation as OH radical generating system, and the intensity decrease of DMPO-OH after the end of the irradiation was followed to obtain the rate constant of the scavenging of DMPO-OH with EGCg and to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful to compare precisely the OH radical scavenging activity of various antioxidants. (author)

  2. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    International Nuclear Information System (INIS)

    Montana, P.; Pappano, N.; Debattista, N.; Avila, V.; Posadaz, A.; Bertolotti, S.G.; Garcia, N.A.

    2003-01-01

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet ( 1 Rf*) and triplet ( 3 Rf*) excited states (with bimolecular rate constants in the order of 10 9 M -1 s -1 ) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of ( 1 Rf*) When the concentration of the flavones is in the mM range or lower, ( 3 Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O 2 .- , which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  3. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Myungkoo [Iowa State Univ., Ames, IA (United States)

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  4. Synthesis and physicochemical investigation of adducts of rare earth thenoyltrifluoroacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Anufrieva, S.I.; Snezhko, N.I.; Martynenko, L.I.; Pechurova, N.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-11-01

    Adducts of rare earth thenoyltrifluoroacetonates (3) have been synthesized with tributylphosphate (TBP), trioctylphosphenoxide (TOPO), triphenylphosphenoxide (TPO) of 1:1 and 1:2 composition as well as with ..cap alpha.., ..cap alpha..'-dipyridine (Dipy), o-phenanthroline (Phen) of 1:1 composition. The separated adducts have been studied by methods of element analysis, X-ray phase and derivatographic analyses and IR spectroscopy. It is shown that the adducts are more thermostable compared to the corresponding rare earth thenoyltrifluoroacetonate hydrates.

  5. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    Science.gov (United States)

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  6. Characterization of hemoglobin-benzo[a]pyrene adducts

    International Nuclear Information System (INIS)

    Haugen, D.A.; Myers, S.R.

    1987-01-01

    Cultures of Syrian hamster embryo (SHE) cells were supplemented with human Hb (0.2 mM heme) and [ 3 H]BP (1 μM). After a 24-h incubation, the medium was removed and subjected to cation-exchange liquid chromatography (CM-Sepharose) to resolve hemoglobins from serum proteins in the medium. The BP-treated Hb was subjected to analysis in each of three column chromatographic systems established for isolation and characterization of human hemoglobin and its genetic and post-translationally modified variants. Results demonstrate that hemoglobin-carcinogen adducts can be resolved from native hemoglobin by established conventional and high-performance liquid chromatographic procedures, suggesting the basis for development of general approaches for isolating and characterizing hemoglobin-carcinogen adducts. The results also suggest the basis for a model system in which adducts between carcinogens and human hemoglobin are formed in cultures of mammalian cells or tissues

  7. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    Science.gov (United States)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  8. Environmental, Dietary, Maternal, and Fetal Predictors of Bulky DNA Adducts in Cord Blood

    DEFF Research Database (Denmark)

    Pedersen, Marie; Mendez, Michelle A; Schoket, Bernadette

    2015-01-01

    and drinking-water disinfection by-products, mainly trihalomethanes (THMs), were available for a large proportion of the study population. RESULTS: Greek and Spanish neonates had higher adduct levels than the northern European neonates [median, 12.1 (n = 179) vs. 6.8 (n = 332) adducts per 108 nucleotides, p...... with higher adduct levels in adjusted models. Exposure to fine particulate matter and nitrogen dioxide was associated with significantly higher adducts in the Danish subsample only. Overall, the pooled results for THMs in water show no evidence of association with adduct levels; however, there are country...

  9. Free Br atom and free radical reactions in the radiolysis of 1,2 dibromoethane (DBE) in air free aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1986-01-01

    G(Br - ) have been reported in the free radical degradation of 1,2 DBE in Ar - and N 2 O-saturated solutions. It is clear from the results that a small chain reaction occurs, t-butanol radical reacts with 1,2 DBE to give Br - . At pH 12.3, high (Br - ) are attributed to another chain reaction involving O - radical anion. Dose rate studies confirm the occurrence of chain reaction. (author). 5 refs

  10. Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water.

    Directory of Open Access Journals (Sweden)

    Takayuki Mokudai

    Full Text Available BACKGROUND: Acid electrolyzed water (AEW, which is produced through the electrolysis of dilute sodium chloride (NaCl or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. CONCLUSIONS: It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.

  11. Scavenging of Toxic Acrolein by Resveratrol and Hesperetin and Identification of Adducts.

    Science.gov (United States)

    Wang, Weixin; Qi, Yajing; Rocca, James R; Sarnoski, Paul J; Jia, Aiqun; Gu, Liwei

    2015-11-04

    The objective of this study was to investigate the ability of resveratrol and hesperetin to scavenge acrolein at pH 7.4 and 37 °C. About 6.4 or 5.2% of acrolein remained after reaction with resveratrol or hesperetin for 12 h at equimolar concentrations. An acrolein-resveratrol adduct and two acrolein-hesperetin adducts were isolated. Their structures were elucidated using mass and NMR spectroscopy. Acrolein reacted with resveratrol at the C-2 and C-3 positions through nucleophilic addition and formed an additional heterocyclic ring. Two similar monoacrolein-conjugated adducts were identified for hesperetin. Spectroscopic data suggested each acrolein-hesperetin adduct was a mixture of four stereoisomers due to the existence of two chiral carbon atoms. Yield of adducts was low at pH 5.4 but increased at pH 7.4 and 8.4. Higher pH also promoted the formation of diacrolein adducts. Results suggest that resveratrol and hesperetin exert health benefits in part through neutralizing toxic acrolein in vivo.

  12. Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.

    Science.gov (United States)

    Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2003-06-01

    Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.

  13. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Zhu, Hong; Jia, Zhenquan [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Li, Jianrong [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Misra, Hara P. [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Zhou, Kequan, E-mail: kzhou@wayne.edu [Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202 (United States); Li, Yunbo, E-mail: yli@vcom.vt.edu [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States)

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  14. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    International Nuclear Information System (INIS)

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  15. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Zona, Robert [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Getoff, Nikola [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Sehested, Knud; Holcman, Jerzy [RISO National Laboratory Environmental Science and Technology Department, DK-4000, Roskilde (Denmark)

    2010-05-15

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k({sup c}entre dotOH+substrates)=(4.5-6.2)x10{sup 9} dm{sup 3} mol{sup -1} s{sup -1}, have been studied by pulse radiolysis in N{sub 2}O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320-340 nm. Their decay was according to a second-order reaction, 2k=(1-9)x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}. In the presence of N{sub 2}O/O{sub 2} the formation of peroxyl radicals was detectable for 2-, 4-ClBzA and ClBz, k(OH-adduct+O{sub 2})=(2-4)x10{sup 7} dm{sup 3} mol{sup -1} s{sup -1}, while this reaction for 3-ClBzA was too slow to be registered. In the presence of N{sub 2}O the degradation rates induced by gamma radiation were very similar for all chlorobenzoic acids, yet the chloride formation was distinctly higher for 3-ClBzA. In the presence of oxygen the initial degradation of 2-and 4-ClBzA equaled the OH-radical concentration, whereas in case of 3-ClBzA only approx60% of {sup c}entre dotOH led to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out.

  16. Effects of benzo[a]pyrene-DNA adducts on a reconstituted replication system

    International Nuclear Information System (INIS)

    Brown, W.C.; Romano, L.J.

    1991-01-01

    The authors have used a partially reconstituted replication system consisting of T7 DNA polymerase and T7 gene 4 protein to examine the effect of benzo[a]pyrene (B[a]P) adducts on DNA synthesis and gene 4 protein activities. The gene 4 protein is required for T7 DNA replication because of its ability to act as both a primase and helicase. They show here that total synthesis decreases as the level of adducts per molecule of DNA increases, suggesting that the B[a]P adducts are blocking an aspect of the replication process. By challenging synthesis on oligonucleotide-primed B[a]P-modified DNA with unmodified DNA, they present evidence that the T7 DNA polymerase freely dissociates after encountering an adduct. Prior studies have shown that the gene 4 protein alone does not dissociate from the template during translocation upon encountering an adduct. However, when gene 4 protein primed DNA synthesis is challenged, they observe an increase in synthesis but to a lesser extent than observed on oligonucleotide-primed synthesis. Finally, they have examined DNA synthesis on duplex templates and show the B[a]P adducts inhibit synthesis by the T7 DNA polymerase and gene 4 protein to the same extent regardless of whether the adducts are positioned in the leading or lagging strand, while synthesis by the polymerase alone is inhibited only when the adducts are in the template strand

  17. The role of anions on the indoor air quality; De rol van negatieve ionen op de binnenluchtkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Havermans, J. [Afdeling Energie, Comfort en Binnenmilieu, TNO Bouw en Onderzoek, Delft (Netherlands)

    2010-11-15

    Anions may contribute to a more comfortable indoor environment. Even a simple apparatus as a lamp with semi conductor technique produces easily anions. Such ions will react with particles forming agglomerates that will precipitate. Also a reaction with oxygen and moist will result in the formation of a superoxide radical and peroxides. These radicals easily react with e.g. organic volatiles and possible also with spores and allergens. Depending on the concentration of the radicals, these compounds can be deteriorated fully. However, as a potential negative side effect the radicals can produce irritating substances by reaction with chemicals in the air. It is not clear yet if all cleaners, based on ionization, will cause this effect. Therefore more research is needed. [Dutch] Negatieve ionen (anionen) in de lucht kunnen een belangrijke bijdrage leveren aan een comfortabeler binnenmilieu en kunnen op een eenvoudige wijze worden geproduceerd. Bijvoorbeeld met lamp waarbij naast verlichting ook via (smd) halfgeleidertechniek negatieve ionen worden gevormd. Negatieve ionen reageren met deeltjes waardoor deze clusteren en deze uit de binnenlucht worden verwijderd. Ook kunnen ze met zuurstof en vocht reageren, waarbij reactief superoxide en peroxides worden gevormd. Deze radicalen zijn verantwoordelijk voor het verwijderen van bijvoorbeeld ongewenste geuren en mogelijk ook allergenen en schimmels. Ze kunnen ook als negatief bijeffect potentieel irriterende stoffen vormen door reactie met chemicalien in de lucht. Of dit het geval is met alle op ionisatie gebaseerde luchtzuiveringsapparaten dient nader te worden onderzocht.

  18. Mechanistic aspects of the reaction between Br2 and chalcogenone donors (LE; E=S, Se): competitive formation of 10-E-3, T-shaped 1:1 molecular adducts, charge-transfer adducts, and [ (LE)2]2+ dications.

    Science.gov (United States)

    Aragoni, M C; Arca, M; Demartin, F; Devillanova, F A; Garau, A; Isaia, F; Lelj, F; Lippolis, V; Verani, G

    2001-07-16

    The synthesis and spectroscopic characterisation of the products obtained by treatment of N,N'-dimethylimidazolidine-2-thione (1), N,N'-dimethylimidazolidine-2-selone (2), N,N'-dimethylbenzoimidazole-2-thione (3) and N,N'-dimethylbenzoimidazole-2-selone (4) with Br2 in MeCN are reported, together with the crystal structures of the 10-E-3, T-shaped adducts 2 . Br2 (12), 3 . Br2 (13) and 4 . Br2 (14). A conductometric and spectrophotometric investigation into the reaction between 1-4 and Br2, carried out in MeCN, allows the equilibria involved in the formation of the isolated 10-E-3 (E = S, Se) hypervalent compounds to be hypothesised. In order to understand the reasons why S and Se donors can give different product types on treatment with Br2 and I2, DFT calculations have been carried out on 1-8, 19 and 20, and on their corresponding hypothetical [LEX]+ cations (L = organic framework; E = S, Se; X = Br, I), which are considered to be key intermediates in the formation of the different products. The results obtained in terms of NBO charge distribution on [LEX]+ species explain the different behaviour of 1-8, 19 and 20 in their reactions with Br2 and I2 fairly well. X-ray diffraction studies show 12-14 to have a T-shaped (10-E-3; E = S, Se) hypervalent chalcogen nature. They contain an almost linear Br-E-Br (E = S, Se) system roughly perpendicular to the average plane of the organic molecules. In 12, the Se atom of each adduct molecule has a short interaction with the Br(1) atom of an adjacent unit, such that the Se atom displays a roughly square planar coordination. The Se-Br distances are asymmetric [2.529(1) vs. 2.608(1) A], the shorter distance being that with the Br(1) atom involved in the short intermolecular contact. In contrast, in the molecular adducts 13 and 14, which lie on a two-fold crystallographic axis, the Br-E-Br system is symmetric and no short intermolecular interactions involving chalcogen and bromine atoms are observed. The adducts are arranged in

  19. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  20. Adducts of uranium tetrachloride with neutral Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Doretti, L; Madalosso, F; Sitran, S; Faleschini, S; Vigato, P A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1977-01-01

    Studies are reported of adducts of UCl/sub 4/ with various Schiff base ligands: N-(phenyl)benzalaldimine, N-(propyl) salicylaldimine, N-(phenyl) salicylaldimine, N-(2-hydroxyphenyl)benzalaldimine, N-(4-chlorophenyl)salcylaldimine, N-(4-nitrophenyl)salicylaldimine, N,N'-o-phenylenebis(salycylideneimine). The synthesis and characterization of these ligands is reported, and the preparation and characterization of the relative adducts of UCl/sub 4/: their IR spectra are reported and discussed.

  1. Adducts of uranium tetrachloride with neutral Schiff bases

    International Nuclear Information System (INIS)

    Doretti, L.; Madalosso, F.; Sitran, S.; Faleschini, S.; Vigato, P.A.

    1977-01-01

    Studies are reported of adducts of UCl 4 with various Schiff base ligands: N-(phenyl)benzalaldimine, N-(propyl) salicylaldimine, N-(phenyl) salicylaldimine, N-(2-hydroxyphenyl)benzalaldimine, N-(4-chlorophenyl)salcylaldimine, N-(4-nitrophenyl)salicylaldimine, N,N'-o-phenylenebis (salycylideneimine). The synthesis and characterization of these ligands is reported, and the preparation and characterization of the relative adducts of UCl 4 : their IR spectra are reported and discussed. (author)

  2. Inert Reassessment Document for Poly(oxyethylene) adducts of mixed phytosterols

    Science.gov (United States)

    Poly(oxyethy1ene) adducts of mixed phytosterols is uncategorized as to list classification status. Based upon the reasonable certainty of no harm safety finding, the List 4B classification for poly(oxyethy1ene) adducts of mixed phytosterols is affirmed.

  3. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  4. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series

    International Nuclear Information System (INIS)

    Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.

    2014-01-01

    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z − and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results

  5. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  6. Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    T. Y. Kuznetsova

    2017-12-01

    Full Text Available Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH and melatonin (MLT molecules with oxygen radicals (•OH and • OOˉ it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves. This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.

  7. Reduction of lumichrome by the radical anions of CO2 and lipoamide

    International Nuclear Information System (INIS)

    Ahmad, R.; Armstrong, D.A.

    1984-01-01

    The uptake of reducing equivalents of .CO 2 - by lumichrome in spectrophotometric titrations has been re-examined in the light of a recently reported extinction coefficient of 10 500 M -1 cm -1 at pH 6, which is in agreement with 10 270 +- 100 M -1 cm -1 determined here. The average uptake was 1.8 +- 0.1, independent of pH in the range 6.3-9.0. The major product appears to be a dihydro-alloxazine, which can be reoxidized quantitatively to lumichrome by .Br 2 - radicals or by O 2 . As in the case of dihydroflavins, oxidation by O 2 is biphasic. As in the case of flavins, a two electron reduction of lumichrome was also observed with the disulphide monoanion of lipoamide (LS. 2 - ), but that reduction does not go to 100 per cent yield. Contrary to our earlier conclusions, which were based on an erroneous extinction coefficient, the combination of lumichrome radicals (2.LcH→HLc-LcH) was of relatively little (< approx. 20 per cent) importance, and the behaviour of lumichrome on treatment with reducing species was rather similar to that of flavins. (author)

  8. DNA-nicotine adduction of lung and liver of mice exposed to passive smoking studied by AMS

    International Nuclear Information System (INIS)

    Hou Qin; Sun Hongfang; Shi Jingyuan; Liu Yuanfang; Wang Jianjun; Lu Xiangyang; Li Kun; Zhao Qiang

    1997-01-01

    The author presents the measurement of adduction of mice lung or liver DNA with nicotine by accelerator mass spectrometry (AMS). Mice were exposed in a toxicity infecting chamber filled up with cigarette smoke for a period of time of simulate the exposure of mice to passive smoking. The dose of nicotine inhaled by mice was determined. The results of AMS showed, when the dose of inhaled nicotine ranged from 33 μg/kg to 330 μg/kg, the adducts number of lung DNA was 10 3 -10 4 adducts/10 12 nucleotides, and the adducts increased linearly with increasing dose of nicotine; the adducts number of liver DNA reached to 10 4 -10 5 adducts/10 12 nucleotides, when the dose of nicotine ranged from 99 μg/kg to 330 μg/kg, and the adducts increased vigorously as dose of nicotine increased. Comparing the DNA adducts levels of the same nicotine dose, liver DNA adducts were more than lung DNA adducts. This study also suggested that the other components of cigarette smoke have synergic effect on the formation of nicotine derived DNA adducts

  9. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  10. A study of quasi reversible nitro radical anion from β-nitrostyrene at ...

    Indian Academy of Sciences (India)

    Unknown

    pound 1a nor 1b may be usable as a source of free radicals and hence would not be suitable as thera- peutic agents.23–26 In our study we report that this need not be true as it depends on the type of elec- trode system employed. Evidently, it depends upon the rate of charge transfer and at WICPE it follows slow kinetics.

  11. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.

    Science.gov (United States)

    Yang, Yi; Jiang, Jin; Lu, Xinglin; Ma, Jun; Liu, Yongze

    2015-06-16

    In this work, simultaneous generation of hydroxyl radical (•OH) and sulfate radical (SO4•−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both •OH and SO4•− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for •OH and atrazine forb oth •OH and SO4•−). The yields of •OH and SO4•− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 → −O3SO5−, is assumed as the first step, which further decomposes into SO5•− and O3•−. The subsequent reaction of SO5•− with O3is proposed to generate SO4•−, while O3•− converts to •OH. A definition of R(ct,•OH) and R(ct,SO4•−) (i.e., respective ratios of •OH and SO4•− exposures to O3 exposure) is adopted to quantify relative contributions of •OH and SO4•−. Increasing pH leads to increases in both values of R(ct,•OH) and R(ct,SO4•−) but does not significantly affect the ratio of R(ct,SO4•−) to R(ct,•OH) (i.e., R(ct,SO4•−)/R(ct,•OH)), which represents the relative formation of SO4•− to •OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of •OH for their degradation, which may be attributed to the conversion of both •OH and SO4•− to the more selective carbonate radical (CO3•−).Humic acid promotes O3 consumption to generate •OH and thus leads to an increase in the R(ct,•OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4•−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO

  12. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    Science.gov (United States)

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.

  13. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  14. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  15. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    Science.gov (United States)

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  16. Diagnosis and dosimetry of exposure to sulfur mustard: Development of a standard operating procedure for hemoglobin adducts: Exploratory research on albumin and keratin adducts

    NARCIS (Netherlands)

    Noort, D.; Fidder, A.; Jong, L.P.A. de; Schans, G.P. van der; Benschop, H.P.

    2000-01-01

    A standard operating procedure (SOP) for determination of the sulfur mustard adduct to the N-terminal valine in hemoglobin was developed. By using this SOP, it was found that the Nterminal valine adduct in globin of hairless guinea pigs and marmosets which had been exposed to sulfur mustard (0.5

  17. Decay kinetics of nicotine/NNK-DNA adducts in vivo studied by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Sun, H.F.; He, L.; Liu, Y.F.; Liu, K.X.; Lu, X.Y.; Wang, J.J.; Ma, H.J.; Li, K.

    2000-01-01

    The decay kinetics of nicotine-DNA adducts and NNK-DNA adducts in mice liver after single dosing was studied by accelerator mass spectrometry (AMS). The decay is characterized by a two-stage process. The half-lives of nicotine-DNA adducts are 1.3 d (4-24 h) and 7.0 d (1-21 d), while for NNK-DNA adducts are 0.7 d (4-24 h) and 18.0 d (1-21 d). The relatively faster decay of nicotine-DNA adducts suggests that the genotoxicity of nicotine is weaker than that of NNK. The in vitro study shows that the metabolization of nicotine is necessary for the final formation of nicotine-DNA adducts, and nicotine Δ1'(5') iminium ion is a probable metabolite species that binds to DNA molecule covalently

  18. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  19. Role of the reacting free radicals on the antioxidant mechanism of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Galano, Annia, E-mail: agalano@prodigy.net.mx [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico); Alvarez-Diduk, Ruslan; Ramirez-Silva, Maria Teresa; Alarcon-Angeles, Georgina; Rojas-Hernandez, Alberto [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico)

    2009-09-18

    Density functional theory is used to study the antioxidant mechanism of curcumin. Five different mechanisms are considered: single electron transfer (SET), radical adduct formation (RAF), H atom transfer from neutral curcumin (HAT), H atom transfer from deprotonated curcumin (HAT-D), and sequential proton loss electron transfer (SPLET). The influence of the environment is investigated for polar and non-polar surroundings. The apparent contradictions among previous experimental results are explained by the role of the nature of the reacting free radical on the relative importance of the above mentioned mechanism. It is proposed that the curcumin + DPPH reaction actually takes place mainly through the SPLET mechanism, while the reaction with {sup {center_dot}}OCH{sub 3}, and likely with other alkoxyl radicals, is governed by the HAT mechanism. Branching ratios for the {sup {center_dot}}OCH{sub 3} + curcumin reaction are reported for the first time. The calculated overall rate constants for this reaction are 1.16 x 10{sup 10} (benzene) and 5.52 x 10{sup 9} (water) L mol{sup -1} s{sup -1}. The role of phenolic groups on the antioxidant activity of curcumin has been experimentally confirmed.

  20. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  1. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    Science.gov (United States)

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-01-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established. PMID:821053

  2. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    Science.gov (United States)

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-07-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established.

  3. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice.

    Science.gov (United States)

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-Yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W; Cimino, George D; Tepper, Clifford G; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T

    2017-02-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14 C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [ 14 C]carboplatin or [ 14 C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  5. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  6. Formation and reactivity of free radicals in 5-hydroxymethyl-2-furaldehyde--the effect on isoprenaline photostability.

    Science.gov (United States)

    Brustugun, Jørgen; Tønnesen, Hanne H; Edge, Ruth; Navaratnam, Suppiah

    2005-05-13

    Solutions of glucose are used as diluents for drugs in various drug infusions. When sterilized by heat small amounts of the substance 5-hydroxymethyl-2-furaldehyde (5-HMF) is produced from glucose. At a hospital ward such infusions may be exposed to irradiation; including UV-light. The photoreactivity of the furaldehyde is investigated. It is shown to photodestabilize the catecholamine isoprenaline. It is shown to be a producer, but also a consumer, of singlet oxygen. The excited triplet, cation and anion radical have been produced by pulse radiolysis and flash photolysis and their absorbance characteristics have been determined. The triplet absorption spectrum showed absorption bands at 320 and 430 nm with molar absorption coefficients of 4700 and 2600 M-1 cm-1, respectively. The anion radical showed absorption bands at 330 and 420 nm with molar absorption coefficients of 2000 and 300 M-1 cm-1, respectively. The cation radical had an absorption band at 320 nm with a molar absorption coefficient of 5000 M-1 cm-1. The quantum yield for the production of singlet oxygen, sensitized by the 5-HMF triplet, was determined to be 0.6, whilst the quantum yield for the triplet formation was 1.0. Aqueous solutions of 5-HMF were found to photoionize to yield the hydrated electron and the cation radical of 5-HMF in a biphotonic process. The influences of pH, buffer and glucose on the formation of transients were evaluated. The reactions between 5-HMF and the solvated electron, the hydroxyl radical and the superoxide were also studied.

  7. The entry of free radicals into polystyrene latex particles

    International Nuclear Information System (INIS)

    Adams, M.E.; Trau, M.; Gilbert, R.C.; Napper, D.R.

    1988-01-01

    Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24 ± 3 kJ mol -1 , consistent with entry being controlled by a physical (e.g. diffusional) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by collision of free radicals with the latex particles, surfactant desorption, and an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure

  8. /sup 32/P-postlabelling analysis of aromatic DNA adducts in human oral mucosal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, B.P.; Stich, H.F.

    1986-07-01

    Exfoliated mucosal cells were collected from the oral cavity of three groups at high risk for oral cancer: Indian betel nut chewers, Filipino inverted smokers (burning end of cigar in mouth) and Indian Khaini tobacco chewers. DNA was extracted from these samples, as well as from samples of exfoliated cells of Canadian non-smoking controls. DNA was analyzed for the presence of aromatic DNA adducts using /sup 32/P-postlabelling analysis. Five chromatographically distinct adducts were found in samples from both the high risk groups and the nonsmoking controls. Individual adducts were detectable in approximately 30-95% of samples, depending on the adduct and population group. Estimated levels of specific adducts ranged from non-detectable (prevalence relative to normal nucleotides less than 1 X 10(-9)) to occasionally greater than 1 X 10(-7). No adducts were found in high risk groups which did not also appear in control subjects.

  9. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    Science.gov (United States)

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  10. Adduct formation in Ce(IV) thenolytrifluoroacetonate

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Polyakova, G.V.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Spitsyn, V.I.

    1982-01-01

    The literature contains no information on adduct formation in Ce(IV) β-diketonates with additional ligands. Since tetrakis-β-diketonates of Ce(IV) have four six-membered chelate rings, we can suppose that the introduction of an additional monodentate or bidentate ligand into the coordination sphere of Ce(IV) β-diketonates would lead to an increase in the coordination number (CN) of the Ce(IV) to nine or ten. The possibility of realization of such a high CN for Ce(IV) has not been proved; a study of adduct formation by Ce(IV) tetrakis-β-diketonates is thus of theoretical interest. Such an investigation might also be of practical interest, because the introduction of an additional ligand into the coordination sphere of a rare-earth β-diketonate usually increases the solubility of the β-diketonate in nonpolar solvents and increases the volatility of the compound; such a modification of the properties is important for various practical purposes. The aim of our work was to study the possibility of separating solid adducts of Ce(IV) tetrakis-thenoyltrifluoroacetonate with certain oxygen-containing and nitrogen-containing donor monodentate and bidentate ligands, and also to investigate their properties. As the β-diketone we used thenoyltrifluoroacetone (HTTFA), since in a parallel investigation it was found that Ce(TTFA) 4 has a high oxidation-reduction stability

  11. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    Science.gov (United States)

    2014-06-30

    5453543 aldo -keto reductase family 1 member C1 aldo -keto reductase TRUE 3 156523970 alpha-2-HS-glycoprotein preproprotein 5 4503571 alpha-enolase...enolase, (YISPDQLADLYK), three variants were identified with adducts on the first, second, or both tyrosines (Figure 2), and for one peptide in aldo -keto...suggesting the possibility that DDVP adducts could alter biological activities. The modifications of aldo -keto reductase family 1 members at three

  12. Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals

    Science.gov (United States)

    Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.

    2018-05-01

    The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.

  13. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available A systematic study of the antioxidation mechanisms behind hydroxyl (•OH and hydroperoxyl (•OOH radical scavenging activity of piceatannol (PIC and isorhapontigenin (ISO was carried out using density functional theory (DFT method. Two reaction mechanisms, abstraction (ABS and radical adduct formation (RAF, were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB are considerable in determining the antioxidant activity of PIC and ISO.

  14. Mechanistic Insights into Radical-Mediated Oxidation of Tryptophan from ab Initio Quantum Chemistry Calculations and QM/MM Molecular Dynamics Simulations.

    Science.gov (United States)

    Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L

    2016-05-12

    An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.

  15. Reaction of misonidazole with DNA radicals and its effect on the template activity of DNA

    International Nuclear Information System (INIS)

    Endoh, Daiji; Kuwabara, Mikinori; Sato, Fumiaki; Yoshii, Giichi.

    1985-01-01

    After calf thymus DNA was gamma-irradiated in the solid state in vacuo and subsequently dissolved in aqueous solution containing misonidazole (3 mM) under hypoxic condition, the frequency of single-strand breaks and alkali-labile sites in DNA and the amount of misonidazole bound to DNA were measured. The presence of misonidazole converted the precursor radicals, which otherwise results in single-strand breaks, to alkali-labile sites, and the amount of alkali-labile sites increased linearly with increasing radiation dose. The amount of misonidazole bound to DNA also increased linearly with increasing radiation dose. The biological meaning of the changes in the frequency of single-strand breaks and alkali-labile sites by the reaction of misonidazole with DNA radicals and of binding misonidazole with DNA was examined using a model system to measure the template activity of DNA for RNA synthesis in vitro. The conversion of DNA radicals to alkali-labile sites protected the radiation-induced decrease in the template activity of DNA, while the adduct formation of misonidazole had no effect on it. (author)

  16. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  17. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals

    International Nuclear Information System (INIS)

    Gajewski, E.; Rao, G.; Nackerdien, Z.; Dizdaroglu, M.

    1990-01-01

    Modification of DNA bases in mammalian chromatin in aqueous suspension by ionizing radiation generated free radicals was investigated. Argon, air, N2O, and N2O/O2 were used for saturation of the aqueous system in order to provide different radical environments. Radiation doses ranging from 20 to 200 Gy (J.kg-1) were used. Thirteen products resulting from radical interactions with pyrimidines and purines in chromatin were identified and quantitated by using the technique of gas chromatography/mass spectrometry with selected-ion monitoring after acidic hydrolysis and trimethylsilylation of chromatin. The methodology used permitted analysis of the modified bases directly in chromatin without the necessity of isolation of DNA from chromatin first. The results indicate that the radical environment provided by the presence of different gases in the system had a substantial effect on the types of products and their quantities. Some products were produced only in the presence of oxygen, whereas other products were detected only in the absence of oxygen. Products produced under all four gaseous conditions were also observed. Generally, the presence of oxygen in the system increased the yields of the products with the exception of formamidopyrimidines. Superoxide radical formed in the presence of air, and to a lesser extent in the presence of N2O/O2, had no effect on product formation. The presence of oxygen dramatically increased the yields of 8-hydroxypurines, whereas the yields of formamidopyrimidines were not affected by oxygen, although these products result from respective oxidation and reduction of the same hydroxyl-adduct radicals of purines. The yields of the products were much lower than those observed previously with DNA

  18. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    International Nuclear Information System (INIS)

    Cheng Yan; Wang Haifang; Sun Hongfang; Li Hongli

    2004-01-01

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b 5 (CYb 5 ) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb 5 , whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  19. First examples of intramolecular addition of primary amidyl radicals to olefins

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, P.; Drouin, C.; Lessard, J. [Sherbrooke Univ., PQ (Canada). Dept. de Chimie

    2005-07-01

    This paper presents the first examples of radical cyclization involving a primary amidyl radical and a pendant olefin. Amidyl radicals have attracted interest in terms of their structure, reactivity, and ways to generate them. The intramolecular addition of an amidyl radical on a pendant olefin appears to be a powerful synthetic tool for creating nitrogen-containing heterocycles. Although several examples of cyclization involving secondary amidyl radicals are cited in the the literature, there are no examples of a successful cyclization involving a primary amidyl radical. This is because all attempts to prepare the usual radical precursors have failed when applied to olefinic primary amides. This study reveals that N-(phenylthio) derivatives of olefinic primary amides can be easily prepared and that nitrogen heterocycles resulting from their radical cyclization can be obtained in good to very good yields. Four olefinic primary amides were chosen as models for radical cyclization of primary amidyl radicals. They were prepared from the corresponding carboxylic acids via the acid chlorides. Conversion of primary amides into suitable amidyl radical precursors was also examined. The study showed that N-(phenylthio) amides could be easily prepared by following a slightly modified protocol developed by Esker and Newcomb, by reacting the anion of the amide with phenylsulfenyl chloride. In particular, olefinic N-(phenylthio) amides were prepared and used as primary amidyl radical precursors in a reaction with a solution of 2,2'-azobis(isobutyronitrile) in catalytic quantities and tributyltin hydride in benzene. The resulting yields of cyclic products ranged from 63 to 85 per cent. The intent of the study was to demonstrate that it is no longer necessary to prepare an N-protected precursor and then remove the protecting group after cyclization. Further studies are currently underway. 10 refs., 1 tab.

  20. Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide

    DEFF Research Database (Denmark)

    Bjellaas, Thomas; Olesen, Pelle Thonning; Frandsen, Henrik Lauritz

    2007-01-01

    , a significant positive correlation was found between the AA-Hb adduct concentration and the intake of chips/snacks and crisp bread. GA-Hb adduct did not correlate with consumption of any of the main food groups. Neither AA-Hb nor GA-Hb adduct concentration correlated with total dietary intake of AA...

  1. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts

    DEFF Research Database (Denmark)

    Hemminki, K.; Zhang, L.F.; Krüger, J.

    1994-01-01

    Urinary 1-hydroxypyrene, lymphocyte DNA adducts, serum protein-bound PAH and hemoglobin-bound alkene adducts were analysed from 4 groups of non-smoking men: urban and suburban bus drivers, taxi drivers and suburban controls. The only differences between the groups were in DNA adducts between...... suburban bus drivers and controls, and in DNA adduct and plasma protein PAH-adducts between taxi drivers and controls....

  2. Knee adduction moment and medial contact force--facts about their correlation during gait.

    Directory of Open Access Journals (Sweden)

    Ines Kutzner

    Full Text Available The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2 = 0.56 and during the late stance phase (R(2 = 0.51, a high correlation was observed at the early stance phase (R(2 = 0.76. Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2 = 0.75. These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more

  3. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Bérard, Izabel [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  4. Polycyclic Aromatic Hydrocarbon (PAH Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues

    Directory of Open Access Journals (Sweden)

    M. Margaret Pratt

    2011-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products, considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS. These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.

  5. Aminoazo dye-protein-adduct enhances inhibitory effect on digestibility and damages to Gastro-Duodenal-Hepatic axis.

    Directory of Open Access Journals (Sweden)

    Li-Yun Lin

    Full Text Available 4-Dimethylaminoazobenzene (DAB, methyl yellow, or butter yellow, a human carcinogen, has been banned for use in foods since 1988. In 2014, DAB adulteration in Tofu occurred in Taiwan. We hypothesize that DAB can form [DAB•SBP]adduct adduct with soybean protein (SBP which could damage Gastro-Duodenal-Hepatic axis. Sprague-Dawley rats gavage fed [DAB•SBP]adduct adduct revealed severely reduced body weight and damaged duodenum, liver, hepatic mitochondria, and spleen. Hepatic levels of glutathione and ATP were severely reduced. Serum GOT and GPT were substantially elevated. Analysis by the adsorption isotherm clearly revealed DAB formed very stable [DAB•SBP]adduct adduct at 1:1 molar ration (Phase A. The equilibrium constant of this colloidal adduct [DAB•SBP]adduct was KeqA = ∝, behaving as the most stable and toxic species. At higher protein concentration (Phase C it formed conjugate [DAB×SBPgross]conjugate, with KeqC = 3.23×10-2 mg/mL, implicating a moderately strong adsorption. The in vitro pepsin digestibility test showed apparently reduced digestibility by 27% (by Ninhydrin assay or 8% (by Bradford assay. Conclusively, this is the first report indicating that [DAB•SBP]adduct potentially is capable to damage the Gastro-Duodenal-Hepatic axis.

  6. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate.

    Science.gov (United States)

    Flack, Sheila L; Fent, Kenneth W; Gaines, Linda G T; Thomasen, Jennifer M; Whittaker, Stephen G; Ball, Louise M; Nylander-French, Leena A

    2011-05-01

    We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2-37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r(2) = 0.3, p HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure.

  7. The Effect of Nitrogen-Doped ATO Nanotubes on Radical Multiplication of Buffer Media by Visible Light Photocatalysis Rather UV

    Directory of Open Access Journals (Sweden)

    Kan-Hung Hu

    2012-01-01

    Full Text Available The use of TiO2 in photodynamic therapy for the treatment of cancer has generally been studied in cultured cancer cells in serum-containing RPMI 1640 medium under visible light application rather than ultraviolet (UV light. An ordered channel array of N-doped anodic titanium dioxide (ATO has been successfully made for visible light application. ATO nanotubes in the anatase form with a length of 10 μm are more effective than nanotubes of 1.8 μm in length as a photocatalyst for radical multiplication in buffer solution by generating hydroxyl radicals and superoxide radical anions under UV-A exposure. Only the N-doped ATO is applicable to visible light photocatalysis for radical multiplication in RPMI 1640+1% FBS and acrylamide, a free radical carrier.

  8. Adduction of acrylamide with biomacromolecules at environmental dose level measured by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Xie, Q.Y.; Sun, H.F.; Liu, Y.F.; Ding, X.F.; Fu, D.P.; Liu, K.X.

    2005-01-01

    Acrylamide (AA) is a well-known neurotoxin, which also has developmental, reproductive as well as genetic toxicity. AA has been classified as a probable human carcinogen by IARC in 1994 since its carcinogenic effects in animals were reported after repetitive high level dosing. Over the last 10 years, there have been a large number of studies investigating the effects of AA on rodent reproductive performance. In 2002, the Swedish Food Administration reported the presence of AA in the heat-treated food products. which again elicited great concern on the toxicity of AA. However most of these studies were investigated at a dose level of mg/kg b.w and above, which is much higher than the actual human relevant dose. In this study we investigate the adduction of environmental level AA with biomacromolecules by the ultra-sensitive AMS technique. This may provide some information on the reproductive toxicity of AA under extremely low level exposure. A series doses of [2, 3- 14 C] AA (0, 0.1, 1, 10, 100, 250, 1000 μg/kg bw) were administrated with a single intraperitoneal injection (i.p.) to ICR adult male mice. The blood and spermatozoon were collected 24 h post dosing. Hemoglobin (Hb), serum albumin (SA), protamine, spermatozoon DNA, spermatozoon head and tail were isolated respectively, and then transformed into graphite following our previous procedure, The adduct levels were determined by a 0.6 MV compact AMS facility at the Institute of Heavy Ion Physics of Peking University. The results indicate that: (1) AA adduct number increases with the doses within 0.1-1000 μg/kg b.w. range in a log/log linear mode, except for DNA within 10-1000 μg/kg b.w. range. (2) Comparing protamine, Hb, and SA adducts with that of spermatozoon DNA (see Fig. 1), AA mainly adducts to proteins. For instance, at 1000 μg/kg b.w. dose level, spermatozoon DNA adducts only account for about 0.71%, 1.36% and 0.82% of protamine, Hb and SA adducts, respectively. (3) AA-protamine adducts, AA

  9. DNA adduct formation among workers in a Thai industrial estate and nearby residents.

    Science.gov (United States)

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Meunier, Aurelie; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Boffetta, Paolo

    2008-01-25

    The genotoxic effects of air pollutant exposures have been studied in people living and working in Map Ta Phut, Rayong province, Thailand, a site where is located the Map Ta Phut Industrial Estate (MIE) one of the largest steel, refinery and petrochemical complex in the South-Eastern Asia. This was done by the conduction of a transversal study aimed to compare the prevalence of bulky DNA adducts in groups of subjects experiencing various degree of air pollution. DNA adduct analysis was performed in the leukocytes of 201 volunteers by the (32)P-postlabelling assay: 79 were workers in the MIE complex, including 24 refinery workers, 40 steel workers and 15 tinplate workers, 72 were people residing downwind in the MIE area and 50 were residents in a control district of the same Rayong province but without industrial exposures. The groups of workers were analyzed separately to evaluate if DNA adduct formation differs by the type of industry. The levels of bulky DNA adducts were 1.17+/-0.17 (SE) adducts/10(8) nucleotides in refinery workers, 1.19+/-0.19 (SE) in steel workers, 0.87+/-0.17 (SE) in tinplate workers, 0.85+/-0.07 (SE) in MIE residents and 0.53+/-0.05 (SE) in district controls. No effects of smoking habits on DNA adducts was found. The multivariate regression analysis shows that the levels of DNA adducts were significantly increased among the individuals living near the MIE industrial complex in respect to those resident in a control district (pindustrial air pollution can experiment an excess of DNA adduct formation. The emissions from the MIE complex are the main source of air pollution in this area and can be the cause of such increment in the levels of DNA damage.

  10. Formation of an adduct by clenbuterol, a beta-adrenoceptor agonist drug, and serum albumin in human saliva at the acidic pH of the stomach: evidence for an aryl radical-based process.

    Science.gov (United States)

    Pietraforte, D; Brambilla, G; Camerini, S; Scorza, G; Peri, L; Loizzo, A; Crescenzi, M; Minetti, M

    2008-07-15

    Clenbuterol (CLB) is an antiasthmatic drug used also illegally as a lean muscle mass enhancer in both humans and animals. CLB and amine-related drugs in general are nitrosatable, thus raising concerns regarding possible genotoxic/carcinogenic activity. Oral administration of CLB raises the issue of its possible transformation by salivary nitrite at the acidic pH of gastric juice. In acidic human saliva CLB was rapidly transformed to the CLB arenediazonium ion. This suggests a reaction of CLB with salivary nitrite, as confirmed in aerobic HNO(2) solution by a drastic decrease in nitric oxide, nitrite, and nitrate. In human saliva, both glutathione and ascorbic acid were able to inhibit CLB arenediazonium formation and to react with preformed CLB arenediazonium. The effect of ascorbic acid is particularly pertinent because this vitamin is actively concentrated within the gastric juice. EPR spin trapping experiments showed that preformed CLB arenediazonium ion was reduced to the aryl radical by ascorbic acid, glutathione, and serum albumin, the major protein of saliva. As demonstrated by anti-CLB antibodies and MS, the CLB-albumin interaction leads to the formation of a covalent drug-protein adduct, with a preference for Tyr-rich regions. This study highlights the possible hazards associated with the use/abuse of this drug.

  11. Low-dose DNA adduct dosimetry by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Turteltaub, K.W.; Felton, J.S.; Vogel, J.S.; Gledhill, B.L.; Davis, J.C.; Snyderwine, E.G.; Thorgeirsson, S.S.; Adamson, R.H.

    1991-01-01

    DNA adduction was measured following exposure to low doses of [2- 14 C]-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) [2- 14 C]-2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and [U- 14 C]-2,3,7,8-tetrachlorodibenzo-p-dioxin by AMS, a technique used in the earth sciences but not previously in toxicological research. The ability to measure low concentrations of rare isotopes suggested that biomedical research was a potentially powerful application for this technology. Sensitivity of the method was found to be one adduct per 10 11 nucleotides. No DNA adduct formation could be detected in TCDD treated rodents. DNA adducts in cynomolgus monkey lymphocytes following exposure to 500 μg/kg IQ peaked between 6 and 18 hrs following exposure. Sensitivity was limited mainly by the abundance of 14 C in contemporary carbon. Hosts depleted in radiocarbon are being developed, potentially increasing sensitivity another 3 orders of magnitude. These results demonstrate the high sensitivity of AMS for tracing molecules following administration of low levels of isotopically-labeled xenobiotics. In addition to 14 C measurement, AMS offers potential to conduct studies with other isotopes, particularly 3 H and 41 Ca

  12. DNA-adducts in fish exposed to alkylating carcinogens

    International Nuclear Information System (INIS)

    Giam, C.S.; Holliday, T.L.; Williams, J.L.; Bahnson, A.; Weller, R.; Hinton, D.E.

    1988-01-01

    There are limited studies on DNA-adduct formation following exposure of fish or fish cells to carcinogens. It will be essential to determine if procarcinogens and carcinogens form the same DNA-adducts in different liver cells and how these compare to those reported in mammalian livers. They are also interested in the influence of different alkylating agents on the type and quantity of DNA-adduct formation and repair in fish. While eggs or small fish are ideal for routine screening, large fish such as trout (Salmo gairdneri) is needed initially for the development of analytical procedures for the isolation, quantitation and identification of various adducts. Trout (Salmo gairdneri) weighing approximately 250 grams were acclimatized at 13 degree C before being given i.p. injection of diethylnitrosoamine (DEN). The exposure period varied, though most animals were sacrificed after 24 hours. Their livers were excised and DNA was isolated mainly according the procedure of Croy et al. The neutral thermal hydrolysate and the acid hydrolysate were analyzed by HPLC-Fluorescent detector for 7-ethylguanine and O 6 -ethylguanine, respectively. O 6 -ethylguanine was detected, 7-ethylguanine was not detected. Attempts are being made to improve the detection of the latter compound. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to establish nanogram quantities of the ethylated bases. Laser desorption FT-IC-MS is particularly useful for characterizing thermally-labile and involatile nucleosides or nucleotides. Excretion of DEN was rapid and high. Exposure of trout (and other fish) to various ethylating agents will be discussed

  13. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study

    International Nuclear Information System (INIS)

    Yue Jiang; Lin Weizhen; Yao Side; Lin Nianyun; Zhu Dayuan

    1999-01-01

    Using pulse radiolytic techniques, it has been demonstrated that the interactions of oxidizing OH adducts of DNA (ssDNA and dsDNA), polyA and polyG with hydroxycinnamic acid derivatives proceed via an electron transfer process (k=5-30x10 8 dm 3 mol -1 s -1 ). In addition, the rates for fast repair of OH adducts of dAMP, polyA and DNA (ssDNA and dsDNA) are slower than the corresponding rates for the rest OH adducts of DNA constituents. The slower rates for repair of oxidizing OH adducts of dAMP may be the rate determining step during the interaction of hydroxycinnamic acid derivatives with OH adducts of DNA containing the varieties of OH adducts of DNA constituents

  14. Revisiting the stability of endo/exo Diels-Alder adducts between cyclopentadiene and 1,4-benzoquinone

    International Nuclear Information System (INIS)

    Tormena, Claudio F.; Lacerda Junior, Valdemar; Oliveira, Kleber T. de

    2010-01-01

    In this work it is presented a detailed theoretical analysis of the relative stability of endo/exo Diels-Alder adducts formed by the reaction between cyclopentadiene (1) and 1,4-benzoquinone (2). The intrinsic reaction coordinate (IRC) showed the existence of only one transition state for the reaction studied, for both endo 3 and exo 4 adducts. The energies of both adducts were obtained at high level of theory (CBS-Q) confirming that the endo adduct is more stable than exo, which is in the opposite way to the observed in reactions that usually follow Alder's rule. An electronic structure analysis was performed through NBO methodology, indicating that the attractive delocalization interaction predominates over the steric repulsive interaction in the endo adducts. In summary, for the studied cycloaddition reaction the endo adduct is the thermodynamic and kinetic product, which can be also confirmed by experimental data mentioned in this work. (author)

  15. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts

    International Nuclear Information System (INIS)

    Guengerich, F.P.; Peterson, L.A.; Cmarik, J.L.; Koga, N.; Inskeep, P.B.

    1987-01-01

    Ethylene dibromide (1,2-dibromoethane, EDB) can be activated to electrophilic species by either oxidative metabolism or conjugation with glutathione. Although conjugation is generally a route of detoxication, in this case it leads to genetic damage. The major DNA adduct has been identified as S-[2-(N 7 -guanyl)ethyl]glutathione, which is believed to arise via half-mustard and episulfonium ion intermediates. The adduct has a half-life of about 70 to 100 hr and does not appear to migrate to other DNA sites. Glutathione-dependent DNA damage by EDB was also demonstrated in human hepatocyte preparations. The possible relevance of this DNA adduct to genetic damage is discussed

  16. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.; Chottard, J.C.

    1990-01-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP[d(ApG)] adducts, although they account for only 25% of the lesions formed are ∼5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP[d(ApG)] lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5' base of the adduct. Single A → T transversions are mainly observed (80%), whereas A → G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5' to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP[d(ApG)] adducts are not blocking lesions. The high mutation specificity of cisDDP-[d(ApG)]-induced mutagenesis is discussed in relation to structural data

  17. DNA adduct quantification in Eisenia fetida after subchronic exposures to creosote contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Charrois, J.W.A.; McGill, W.B. [Alberta Univ., Dept. of Renewable Resources, Edmonton, AB (Canada)

    1999-07-01

    Within soil ecosystems contaminant toxicity can vary from acute and chronic, depending on the time of exposure. Due to the long times involved chronic toxicity is difficult to determine. DNA adducts fall into the category of biochemical markers that act as an early warning system in environmental monitoring. It has been proposed that they could be used as a sensitive method to determine environmental exposures to compounds such as polycyclic aromatic hydrocarbons (PAHs), which can occur, although not exclusively, in creosote. In this connection, Benzo[a]pyrene (BaP) is a PAH that can be transformed into an electrophilic metabolite, which ultimately results in DNA adduct formation. Use was made of a 32P postlabeling method to quantify the number of DNA adducts occurring in the earthworm Eisenia fetida after exposure to weathered creosote contaminated- and biotreated-soils with and without additions of extra BaP. DNA adducts can be measured in earthworms exposed to creosote contaminated- and biotreated-soils. E. fetida exposed to weathered creosote contaminated soils had significantly more DNA adducts than those exposed to a pristine control soil. Exposures to creosote contaminated soils with additional BaP (1000 mg/kg) or biotreatment did not yield statistically significant increases in DNA adducts compared to the pristine control. (Abstract only)

  18. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    Science.gov (United States)

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  19. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  20. DNA adduct formation among workers in a Thai industrial estate and nearby residents

    International Nuclear Information System (INIS)

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Meunier, Aurelie; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Boffetta, Paolo

    2008-01-01

    The genotoxic effects of air pollutant exposures have been studied in people living and working in Map Ta Phut, Rayong province, Thailand, a site where is located the Map Ta Phut Industrial Estate (MIE) one of the largest steel, refinery and petrochemical complex in the South-Eastern Asia. This was done by the conduction of a transversal study aimed to compare the prevalence of bulky DNA adducts in groups of subjects experiencing various degree of air pollution. DNA adduct analysis was performed in the leukocytes of 201 volunteers by the 32 P-postlabelling assay: 79 were workers in the MIE complex, including 24 refinery workers, 40 steel workers and 15 tinplate workers, 72 were people residing downwind in the MIE area and 50 were residents in a control district of the same Rayong province but without industrial exposures. The groups of workers were analyzed separately to evaluate if DNA adduct formation differs by the type of industry. The levels of bulky DNA adducts were 1.17 ± 0.17 (SE) adducts/10 8 nucleotides in refinery workers, 1.19 ± 0.19 (SE) in steel workers, 0.87 ± 0.17 (SE) in tinplate workers, 0.85 ± 0.07 (SE) in MIE residents and 0.53 ± 0.05 (SE) in district controls. No effects of smoking habits on DNA adducts was found. The multivariate regression analysis shows that the levels of DNA adducts were significantly increased among the individuals living near the MIE industrial complex in respect to those resident in a control district (p < 0.05). In the groups of occupationally exposed workers, the highest levels of DNA adducts were found among the workers experiencing an occupational exposure to polycyclic aromatic hydrocarbons, e.g. the steel factory and refinery workers. When we have evaluated if the levels of DNA adducts of the PAH exposed workers were different from those of the MIE residents, a statistical significantly difference was found (p < 0.05). Our present study indicates that people living near point sources of industrial air

  1. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  2. Revisiting the stability of endo/exo Diels-Alder adducts between cyclopentadiene and 1,4-benzoquinone

    Energy Technology Data Exchange (ETDEWEB)

    Tormena, Claudio F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Lacerda Junior, Valdemar [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Oliveira, Kleber T. de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2010-07-01

    In this work it is presented a detailed theoretical analysis of the relative stability of endo/exo Diels-Alder adducts formed by the reaction between cyclopentadiene (1) and 1,4-benzoquinone (2). The intrinsic reaction coordinate (IRC) showed the existence of only one transition state for the reaction studied, for both endo 3 and exo 4 adducts. The energies of both adducts were obtained at high level of theory (CBS-Q) confirming that the endo adduct is more stable than exo, which is in the opposite way to the observed in reactions that usually follow Alder's rule. An electronic structure analysis was performed through NBO methodology, indicating that the attractive delocalization interaction predominates over the steric repulsive interaction in the endo adducts. In summary, for the studied cycloaddition reaction the endo adduct is the thermodynamic and kinetic product, which can be also confirmed by experimental data mentioned in this work. (author)

  3. New electrochemical oscillator based on the cation-catalyzed reduction of nitroaromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana; Fanelli, N.

    2009-01-01

    Roč. 54, č. 22 (2009), s. 4991-4996 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400802; GA AV ČR IAA400400505; GA ČR GA203/08/1157; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : nitroaromatic radical * cationic catalysis * electrochemical impendance * oscillation Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  4. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  5. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  6. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  7. DNA Adducts aand Human Atherosclerotis Lesions

    Czech Academy of Sciences Publication Activity Database

    Strejc, Přemysl; Boubelík, O.; Stávková, Zdena; Chvátalová, Irena; Šrám, Radim

    2001-01-01

    Roč. 42, - (2001), s. 662 ISSN 0008-5472. [Annual Meeting of Proceedings /92./. 24.03.2001-28.03.2001, New Orleans] R&D Projects: GA MZd NM10 Keywords : DNA adducts * LDL cholesterol Subject RIV: DN - Health Impact of the Environment Quality

  8. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping; Risko, Chad; Seo, Jung Hwa; Campbell, Casey; Wu, Guang; Brédas, Jean-Luc; Bazan, Guillermo C.

    2011-01-01

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths

  9. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  10. Potential use of DNA adducts to detect mutagenic compounds in soil

    International Nuclear Information System (INIS)

    Hua Guoxiong; Lyons, Brett; Killham, Ken; Singleton, Ian

    2009-01-01

    In this study, three different soils with contrasting features, spiked with 300 mg benzo[a]pyrene (BaP)/kg dry soil, were incubated at 20 deg. C and 60% water holding capacity for 540 days. At different time points, BaP and DNA were extracted and quantified, and DNA adducts were quantified by 32 P-postlabelling. After 540 days incubation, 69.3, 81.6 and 83.2% of initial BaP added remained in Cruden Bay, Boyndie and Insch soils, respectively. Meanwhile, a significantly different amount of DNA-BaP adducts were found in the three soils exposed to BaP over time. The work demonstrates the concept that DNA adducts can be detected on DNA extracted from soil. Results suggest the technique is not able to directly reflect bioavailability of BaP transformation products. However, this new method provides a potential way to detect mutagenic compounds in contaminated soil and to assess the outcomes of soil remediation. - A novel DNA adduct assay may provide a potential technique to detect mutagenic compounds in contaminated soil

  11. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  12. Development of methods to measure hemoglobin adducts by gel electrophoresis - Preliminary results

    International Nuclear Information System (INIS)

    Sun, J.D.; McBride, S.M.

    1988-01-01

    Chemical adducts formed on blood hemoglobin may be a useful biomarker for assessing human exposures to these compounds. This paper reports preliminary results in the development of methods to measure such adducts that may be generally applicable for a wide variety of chemicals. Male F344/N rats were intraperitoneally injected with 14 C-BaP dissolved in corn oil. Twenty-four hours later, the rats were sacrificed. Blood samples were collected and globin was isolated. Globin protein was then cleaved into peptide fragments using cyanogen bromide and the fragments separated using 2-dimensional gel electrophoresis. The results showed that the adducted 14 C-globin fragments migrated to different areas of the gel than did unadducted fragments. Further research is being conducted to develop methods that will allow quantitation of separated adducted globin fragments from human blood samples without the use of a radiolabel. (author)

  13. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    introduction to the physical properties of simple micelles, the media for the all the magnetic field effect work. Low field effect measurements are then presented as function of micelle size for both anionic and non-ionic micelles, radical pair type and temperature for the benzophenone-surfactant derived radical pair. These are accounted for quantitatively by a simple model for the radical pair motion inside of the micelle. Completing the thesis is a brief comparison of the results with current theories of the low field effect and a discussion on their relevance to biological systems. (author)

  14. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  15. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  16. γIrradiation induced formation of PCB-solvent adducts in aliphatic solvents

    International Nuclear Information System (INIS)

    Lepine, F.; Milot, S.; Gagne, N.

    1990-01-01

    γIrradiation induced formation of PCB-solvent adducts was investigated as a model for PCB residues in irradiated food. Formation of cyclohexyl adducts of PCBs was found to be significant when pure PCB congeners and Aroclor mixture were irradiated in cyclohexane and cyclohexene. Reaction pathways were investigated, and the effects of oxygen and electron scavenger were studied

  17. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    Science.gov (United States)

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  18. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  19. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    Science.gov (United States)

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  20. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Woodling, Kellie; Lin, Ge; Fu, Peter P

    2017-10-01

    There are 660 pyrrolizidine alkaloids (PAs) and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine) and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation. Copyright © 2017. Published by Elsevier B.V.

  1. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides

    Directory of Open Access Journals (Sweden)

    Xiaobo He

    2017-10-01

    Full Text Available There are 660 pyrrolizidine alkaloids (PAs and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation.

  2. Electron spin resonance studies of γ-irradiated phosphite and phosphate esters. Identification of phosphinyl, phosphonyl, phosphoranyl, and phosphine dimer cation radicals

    International Nuclear Information System (INIS)

    Kerr, C.M.L.; Webster, K.; Williams, F.

    1975-01-01

    The powder ESR spectra of several γ-irradiated phosphorus esters at 77 0 K were analyzed into their distinguishable radical components, each spectrum being generally a composite of anisotropic features from a number of alkyl and phosphorus-centered radicals. Resolution of overlapping spectra was achieved in some instances by radiation-chemical experiments designed to suppress or enhance the products of electron capture relative to the radicals formed by other mechanisms. The radiation chemistry of dialkyl phosphites, (RO) 2 P(O)H, is influenced by the ease with which the P--H bond in these compounds is broken, the principal radicals being the phosphonyl species (RO) 2 PO and ROP(O)O - . Both of these species are thought to be the secondary products of hydrogen atom abstraction by the alkyl radical R which is produced by dissociative electron capture. A similar primary step was found to apply for the trialkyl phosphates, (RO) 3 PO, but in this case only carbon-centered radicals are formed by secondary H-atom abstraction processes. Results for the pyrophosphite differ from those for the trialkyl phosphites in showing the absence of alkyl radicals or their phosphoranyl adducts and the formation of the phosphonyl species (EtO) 2 PO, the latter being produced presumably by cleavage of the P--O--P bridge. The ESR parameters for each of the four main groups of phosphorus-centered radicals are summarized and the electronic structures of these radicals are discussed briefly

  3. Pulse radiolysis study on free radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one). 2: A comparative study on edaravone derivatives

    International Nuclear Information System (INIS)

    Hata, Kuniki; Katsumura, Yosuke; Lin, M.; Yamashita, Shinichi; Muroya, Yusa; Fu Haiying; Nakagawa, Hidehiko

    2011-01-01

    A comparative study using the pulse radiolysis technique was carried out to investigate transient absorption spectra and rate constants for the reactions of OH radical and N 3 radical with edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) and its four analogue compounds, 1,3-dimethyl-2-pyrazolin-5-one, 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one, 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one. The results showed that, unlike reaction mechanisms previously proposed, the phenyl group of edaravone played an important role in the reaction with OH radical and OH adducts to the phenyl group were formed. Quantum chemical calculations also strongly supported this attribution and suggested that the most favorable site for attacks by OH radical is the ortho position of the phenyl group. Moreover, the rate constants for the reactions of edaravone and its analogues towards OH radical and N 3 radical were about 8.0 x 10 9 , and 4.0 x 10 9 dm 3 mol -1 s -1 , respectively. Edaravone displayed higher reactivity compared to the others, in contrast to a previous report in which 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one showed the highest reactivity towards Hydroxyl radical OH. (author)

  4. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  5. Acetaldehyde Adducts in Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Mashiko Setshedi

    2010-01-01

    Full Text Available Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD, with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC. Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2–15% versus cirrhosis (15–20% is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.

  6. DNA adduct formation in B6C3F1 mice and Fischer-344 rats exposed to 1,2,3-trichloropropane.

    Science.gov (United States)

    La, D K; Lilly, P D; Anderegg, R J; Swenberg, J A

    1995-06-01

    1,2,3-Trichloropropane (TCP) is a multispecies, multisite carcinogen which has been found to be an environmental contaminant. In this study, we have characterized and measured DNA adducts formed in vivo following exposure to TCP. [14C]TCP was administered to male B6C3F1 mice and Fischer-344 rats by gavage at doses used in the NTP carcinogenesis bioassay. Both target and nontarget organs were examined for the formation of DNA adducts. Adducts were hydrolyzed from DNA by neutral thermal or mild acid hydrolysis, isolated by HPLC, and detected and quantitated by measurement of radioactivity. The HPLC elution profile of radioactivity suggested that one major DNA adduct was formed. To characterize this adduct, larger yields were induced in rats by intraperitoneal administration of TCP (300 mg/kg). The DNA adduct was isolated by HPLC based on coelution with the radiolabeled adduct, and compared to previously identified adducts. The isolated adduct coeluted with S-[1-(hydroxymethyl)-2-(N7-guanyl)-ethyl]glutathione, an adduct derived from the structurally related carcinogen 1,2-dibromo-3-chloropropane (DBCP). Analysis by electrospray mass spectrometry suggested that the TCP-induced adduct and the DBCP-derived adduct were identical. The 14C-labeled DNA adduct was distributed widely among the organs examined. Adduct levels varied depending on species, organ, and dose. In rat organs, adduct concentrations for the low dose ranged from 0.8 to 6.6 mumol per mol guanine and from 7.1 to 47.6 mumol per mol guanine for the high dose. In the mouse, adduct yields ranged from 0.32 to 28.1 mumol per mol guanine for the low dose and from 12.2 to 208.1 mumol per mol guanine for the high dose. The relationship between DNA adduct formation and organ-specific tumorigenesis was unclear. Although relatively high concentrations of DNA adducts were detected in target organs, several nontarget sites also contained high adduct levels. Our data suggest that factors in addition to adduct formation

  7. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  8. Determination of albumin adducts of 4,4'-methylenediphenyl diisocyanate after specific inhalative challenge tests in workers.

    Science.gov (United States)

    Sabbioni, Gabriele; Dongari, Nagaraju; Kumar, Anoop; Baur, Xaver

    2016-10-17

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important isocyanate used in the industry. Lung sensitization with bronchial asthma is the main disorder in exposed workers. Albumin adducts of MDI might be involved in specific immunological reactions. MDI adducts with lysine (MDI-Lys) of albumin have been found in MDI-workers and construction workers. MDI-Lys is an isocyanate-specific adduct of MDI with albumin. In the present study, we report MDI-adducts in workers undergoing diagnostic MDI challenge tests. The workers were exposed for 2h to 5ppb of MDI. The adduct levels increase significantly after the exposure to MDI in the challenge chamber. About 0.6% of the dose was bound to albumin. So far, only urinary metabolites of MDI were measured to monitor isocyanate workers. However, such urinary metabolites are not isocyanate specific. Therefore, we propose to measure albumin adducts for monitoring MDI exposed subjects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of turmeric and curcumin on BP-DNA adducts.

    Science.gov (United States)

    Mukundan, M A; Chacko, M C; Annapurna, V V; Krishnaswamy, K

    1993-03-01

    Many human cancers that are widely prevalent today can be prevented through modifications in life-styles, of which diet appears to be an important agent. Several dietary constituents modulate the process of carcinogenesis and prevent genotoxicity. Many plant constituents including turmeric appear to be potent antimutagens and antioxidants. Therefore the modulatory effects of turmeric and curcumin on the levels of benzo[a]pyrene induced DNA adducts in the livers of rats were studied by the newly developed 32P-postlabelling assay method. Turmeric when fed at 0.1, 0.5 and 3% and the active principle of turmeric (curcumin) when fed at a level of 0.03% in the diet for 4 weeks significantly reduced the level of BP-DNA adducts including the major adduct dG-N2-BP, formed within 24 h in response to a single i.p. injection of benzo[a]pyrene. The significance of these effects in terms of the potential anticarcinogenic effects of turmeric is discussed. Further, these results strengthen the various other biological effects of turmeric which have direct relevance to anticarcinogenesis and chemoprevention.

  10. Benzo(a)pyrene-DNA adduct formation in cells: time-dependent differences in the benzo(a)pyrene-DNA adducts present

    International Nuclear Information System (INIS)

    Baird, W.M.; Dumaswala, R.U.

    1980-01-01

    Procedures involving isolation of the DNA from tritium labelled hydrocarbon-treated cells are discussed. Enzymatic degradation of the DNA to deoxyribonucleosides, and chromatography of the adducts on columns of water gradients were covered as well

  11. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  12. Research concerning ionic and free radical reactions in radiation chemistry. Progress report, September 15, 1977--September 15, 1978

    International Nuclear Information System (INIS)

    Williams, T.F.

    1978-01-01

    One achievement during the past year was the development of cryogenic techniques to allow samples to be γ irradiated at 4 0 K and then transferred to the EPR spectrometer for subsequent observations at 10 to 15 0 K and above. The adduct methyl radical in γ-irradiated dimethyl sulfoxide-h 6 was detected by this means. A study of d-atom abstraction by trapped H and D atoms in 3-methylpenetane-d 14 at temperatures below 50 0 K was completed. Abstracts of reports published during the year are included

  13. Distribution of free radical products among the bases of x-irradiated DNA model systems: an ESR study

    International Nuclear Information System (INIS)

    Spalletta, R.A.

    1984-01-01

    Exposure of solid state DNA to ionizing radiation results in an ESR spectrum that has been attributed to a nonstoichiometric distribution of free radicals among the bases. At low temperatures radical cations appear to be stabilized on the purines while radical anions are stabilized on the pyrimidines. This distribution could arise from at least two different mechanisms. The first, charge transfer, involves the transfer of electrons and/or holes between stacked bases. In the second, saturation asymmetry, the free radical distribution arises from differences in the dose saturation characteristics of individual bases. The present study addresses the relative importance of charge transfer versus saturation asymmetry in the production of these population differences. Radicals formed by dissolving irradiated polycrystalline pyrimidines in aqueous solutions containing NtB or PBN spin traps were analyzed using ESR. The relative importance of the two free radical production and distribution mechanisms was assessed using DNA model systems. Saturation asymmetry plays a significant role in determining the free radical population while charge transfer was unambiguously observed in only one, the complex of dAMP and TMP. The results demonstrate that any quantitative analysis of charge transfer must take saturation asymmetry into account

  14. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  15. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  16. Bulky DNA adducts in white blood cells: a pooled analysis of 3,600 subjects

    DEFF Research Database (Denmark)

    Ricceri, Fulvio; Godschalk, Roger W; Peluso, Marco

    2010-01-01

    Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect the ability of an individual to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAHs) represent a major class of carcinogens that are capable of forming such add...... such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants....

  17. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  18. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  19. Determination of isocyanate specific albumin-adducts in workers exposed to toluene diisocyanates.

    Science.gov (United States)

    Sabbioni, Gabriele; Gu, Qi; Vanimireddy, Lakshiminiranjan Reddy

    2012-03-01

    Toluene diisocyanates (2,4-TDI and 2,6-TDI) are important intermediates in the chemical industry. Among the main damages after low levels of TDI exposure are lung sensitization and asthma. It is therefore necessary to have sensitive and specific methods to monitor isocyanate exposure of workers. Urinary metabolites or protein adducts have been used as biomarkers in workers exposed to TDI. However, with these methods it was not possible to determine if the biomarkers result from exposure to TDI or to the corresponding toluene diamines (TDA). This work presents a new procedure for the determination of isocyanate-specific albumin adducts. Isotope dilution mass spectrometry was used to measure the adducts in albumin present in workers exposed to TDI. 2,4-TDI and 2,6-TDI formed adducts with lysine: N(ϵ)-[({3-amino-4-methylphenyl}amino)carbonyl]-lysine, N(ϵ)-[({5-amino-2-methylphenyl}amino)carbonyl]-lysine, and N(ϵ)- [({3-amino-2-methylphenyl}amino)carbonyl]-lysine. In future studies, this new method can be applied to measure TDI-exposures in workers.

  20. Theoretical Investigation of the NO3 Radical Addition to Double Bonds of Limonene

    Science.gov (United States)

    Jiang, Lei; Wang, Wei; Xu, Yi-Sheng

    2009-01-01

    The addition reactions of NO3 to limonene have been investigated using ab initio methods. Six different possibilities for NO3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic) have been considered. The negative activation energies for the addition of NO3 to limonene are calculated and the energies of NO3-limonene radical adducts are found to be 14.55 to 20.17 kcal mol-1 more stable than the separated NO3 and limonene at the CCSD(T)/6–31G(d) + CF level. The results also indicate that the endocyclic addition reaction is more energetically favorable than the exocyclic one. PMID:19865516

  1. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  2. Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.

    Science.gov (United States)

    Kurchan, Alexei N; Kutateladze, Andrei G

    2002-11-14

    Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text

  3. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    International Nuclear Information System (INIS)

    Vodicka, Pavel Erik; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-01

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7αG) and 7-(2-hydroxy-2-phenylethyl)guanine (N7βG), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. β-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10 8 normal nucleotides, i.e., 0.74 fmol/μg DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m 3 , while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing α-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10 -5 % of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly

  4. Gender differences in the knee adduction moment after anterior cruciate ligament reconstruction surgery.

    Science.gov (United States)

    Webster, Kate E; McClelland, Jodie A; Palazzolo, Simon E; Santamaria, Luke J; Feller, Julian A

    2012-04-01

    The external knee adduction moment during gait has previously been associated with knee pain and osteoarthritis (OA). Recently, the knee adduction moment has been shown to be increased following anterior cruciate ligament (ACL) reconstruction surgery and has been suggested as a potential mechanism for the progression of early onset knee OA in this population. No study has investigated the gender differences in gait biomechanics following ACL reconstruction. To examine gender differences in gait biomechanics following ACL reconstruction surgery. 36 subjects (18 females, 18 males) who had previously undergone ACL reconstruction surgery (mean time since surgery 20 months) underwent gait analysis at a self-selected walking speed. Males and females were well matched for age, time since surgery and walking speed. Maximum flexion and adduction angles and moments were recorded during the stance phase of level walking and compared between the male and female groups. The knee adduction moment was 23% greater in the female compared with the male ACL group. No gender differences were seen in the sagittal plane. No differences were seen between the reconstructed and contralateral limb. The higher knee adduction moment seen in females compared with males may suggest an increased risk for the development of OA in ACL-reconstructed females.

  5. Metal-isonitrile adducts for preparing radionuclide complexes

    International Nuclear Information System (INIS)

    Carpenter, A.P.; Linder, K.E.; Maheu, L.J.; Patz, M.A.; Thompson, J.S.; Tulip, T.H.; Subramanyam, V.

    1988-01-01

    An method for preparing a coordination complex of isonitrile ligand and a radioisotope of Te, Ru, Co, Pt, Re, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Nb and Ta from a non-radioactive metal adduct of the isonitrile

  6. Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B2a and Biological Amines.

    Science.gov (United States)

    Rushing, Blake R; Selim, Mustafa I

    2017-06-19

    Aflatoxin B 2a has been shown to bind to proteins through a dialdehyde intermediate under physiological conditions. The proposed structure of this adduct has been published showing a Schiff base interaction, but adequate verification using structural elucidation instrumental techniques has not been performed. In this work, we synthesized the aflatoxin B 2a amino acid adduct under alkaline conditions, and the formation of a new product was determined using high performance liquid chromatography-time-of-flight mass spectrometry. The resulting accurate mass was used to generate a novel proposed chemical structure of the adduct in which the dialdehyde forms a pyrrole ring with primary amines rather than the previously proposed Schiff base interaction. The pyrrole structure was confirmed using 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation NMR and tandem mass spectrometry. Reaction kinetics show that the reaction is overall second order and that the rate increases as pH increases. Additionally, this study shows for the first time that aflatoxin B 2a dialdehyde forms adducts with phosphatidylethanolamines and does so through pyrrole ring formation, which makes it the first aflatoxin-lipid adduct to be structurally identified. Furthermore, oxidation of the pyrrole adduct produced a product that was 16 m/z heavier. When the aflatoxin B 2a -lysine (ε) adduct was oxidized, it gave a product with an accurate mass, mass fragmentation pattern, and 1 H NMR spectrum that match aflatoxin B 1 -lysine, which suggest the transformation of the pyrrole ring to a pyrrolin-2-one ring. These data give new insight into the fate and chemical properties of biological adducts formed from aflatoxin B 2a as well as possible interferences with known aflatoxin B 1 exposure biomarkers.

  7. Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy

    International Nuclear Information System (INIS)

    Bakhiya, Nadiya; Arlt, Volker M.; Bahn, Andrew; Burckhardt, Gerhard; Phillips, David H.; Glatt, Hansruedi

    2009-01-01

    Aristolochic acid (AA), present in Aristolochia species, is the major causative agent in the development of severe renal failure and urothelial cancers in patients with AA nephropathy. It may also be a cause of Balkan endemic nephropathy. Epithelial cells of the proximal tubule are the primary cellular target of AA. To study whether organic anion transporters (OATs) expressed in proximal tubule cells are involved in uptake of AA, we used human epithelial kidney (HEK293) cells stably expressing human (h) OAT1, OAT3 or OAT4. AA potently inhibited the uptake of characteristic substrates, p-aminohippurate for hOAT1 and estrone sulfate for hOAT3 and hOAT4. Aristolochic acid I (AAI), the more cytotoxic and genotoxic AA congener, exhibited high affinity for hOAT1 (K i = 0.6 μM) as well as hOAT3 (K i = 0.5 μM), and lower affinity for hOAT4 (K i = 20.6 μM). Subsequently, AAI-DNA adduct formation (investigated by 32 P-postlabelling) was used as a measure of AAI uptake. Significantly higher levels of adducts occurred in hOAT-expressing cells than in control cells: this effect was abolished in the presence of the OAT inhibitor probenecid. In Xenopus laevis oocytes hOAT-mediated efflux of p-aminohippurate was trans-stimulated by extracellular AA, providing further molecular evidence for AA translocation by hOATs. Our study indicates that OATs can mediate the uptake of AA into proximal tubule cells and thereby participate in kidney cell damage by this toxin.

  8. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    DEFF Research Database (Denmark)

    Zona, Robert; Solar, Sonja; Getoff, Nikola

    2010-01-01

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5−6.2)×109 dm3 mol−1 s−1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320−340 nm. Their decay wa...... to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out....

  9. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  11. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  12. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  13. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ohshima, Hideki; Matsuda, Akira; Kuwabara, Mikinori; Iida, Yoshiharu.

    1996-01-01

    Aqueous DNA solutions with or without the spin trap α-phenyl-N-tert-butylnitrone (PBN) were exposed to γ-rays at 77 K. After thawing the solutions, three experiments were carried out to confirm the generation of OH radicals in the hydration layer of DNA and to examine whether they act as an inducer of DNA strand breaks and base alterations. Observation with the EZR-spin tapping method showed ESR signals from PBN-OH adducts in the solution containing PBN and DNA, but there were few signals in the solution containing PBN alone, suggesting that reactive OH radicals were produced in the hydration layer of γ-irradiated DNA and were effectively scavenged by PBN, and that unreactive OH radicals were produced in the free water layer of γ-irradiated DNA. Agarose gel electrophoresis of DNA proved that PBN had no effect on the formation of strand breaks, whereas examination with the high-performance liquid chromatography-eloctrochemical detection (HPLC-ECD) method showed that PBN suppressed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). From these results it was concluded that OH radicals generated in the hydration layer of γ-irradiated DNA did not induce DNA strand breaks but induced base alterations. (author)

  14. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  15. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    International Nuclear Information System (INIS)

    Mei, Nan; Arlt, Volker M.; Phillips, David H.; Heflich, Robert H.; Chen, Tao

    2006-01-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by 32 P-postlabeling and mutant frequency (MF) was determined using the λ Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N 6 -yl]-aristolactam I, 7-[deoxyadenosin-N 6 -yl]-aristolactam II and 7-[deoxyguanosin-N 2 -yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10 8 nucleotides in liver and 95-4598 adducts/10 8 nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10 -6 in liver compared with the MFs of 78-1319 x 10 -6 that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T → T:A transversion was the predominant mutation in AA-treated rats; whereas G:C → A:T transition was the main type of mutation in control rats. These results indicate that the AA treatment that eventually

  16. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Nan [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)]. E-mail: nan.mei@fda.hhs.gov; Arlt, Volker M. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Phillips, David H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Heflich, Robert H. [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States); Chen, Tao [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)

    2006-12-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by {sup 32}P-postlabeling and mutant frequency (MF) was determined using the {lambda} Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N {sup 6}-yl]-aristolactam I, 7-[deoxyadenosin-N {sup 6}-yl]-aristolactam II and 7-[deoxyguanosin-N {sup 2}-yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10{sup 8} nucleotides in liver and 95-4598 adducts/10{sup 8} nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10{sup -6} in liver compared with the MFs of 78-1319 x 10{sup -6} that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T {sup {yields}} T:A transversion was the predominant mutation in AA-treated rats; whereas G:C {sup {yields}} A:T transition was the main type of mutation in control

  17. Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles.

    Science.gov (United States)

    Fliege, R; Metzler, M

    2000-05-01

    The mycotoxin patulin (PAT) is believed to exert its cytotoxic and chromosome-damaging effects by forming covalent adducts with essential cellular thiols. Since the chemical structures of such adducts are unknown to date, we have studied the reaction of PAT and its O-acetylated derivative with the monofunctional thiol model compound 4-bromothiophenol (BTP), which was chosen due to analytical advantages. By means of analytical and preparative high-performance liquid chromatography, 16 adducts of PAT and 3 adducts of acetyl-PAT were isolated and their chemical structures elucidated by (1)H and (13)C NMR, IR, and UV spectroscopy. Time course studies and analysis of daughter product formation from isolated intermediate adducts led to a detailed scheme for the reaction of PAT with BTP. The structures of adducts of PAT formed with other model nucleophiles, e. g., the aliphatic thiol 2-mercaptoethanol and the aromatic amine 4-bromoaniline, were also elucidated and found to corroborate the reaction scheme. In addition, one further reaction pathway was observed with 2-mercaptoethanol, which appears to be independent from those found for BTP. Our study with model nucleophiles provides insights into the electrophilic reactivity of PAT and proved to be useful for the structure elucidation of PAT adducts with biological nucleophiles of toxicological relevance, as will be reported by Fliege and Metzler [(2000) Chem. Res. Toxicol. 13, 373-381].

  18. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH+allene reaction

    International Nuclear Information System (INIS)

    Raman, Arjun S.; Justine Bell, M.; Lau, K.-C.; Butler, Laurie J.

    2007-01-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH 2 CCH 2 OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH 2 CCH 2 OH photofragments, a spin-orbit branching ratio for Cl( 2 P 1/2 ):Cl( 2 P 3/2 ) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH 2 CCH 2 OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH 2 CCH 2 OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C 2 H 3 , H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH 3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates

  19. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH +allene reaction

    Science.gov (United States)

    Raman, Arjun S.; Justine Bell, M.; Lau, Kai-Chung; Butler, Laurie J.

    2007-10-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl +CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(P1/22):Cl(P3/22) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH +allene reaction expected from this radical intermediate: formaldehyde+C2H3, H +acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O +allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.

  20. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  1. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    Science.gov (United States)

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  2. Pulse radiolysis study on free radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one). 2: A comparative study on edaravone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Kuniki; Katsumura, Yosuke [Tokyo Univ., School of Engineering, Tokyo (Japan); Lin, M; Yamashita, Shinichi [Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Muroya, Yusa [Tokyo Univ., Nuclear Professional School, Tokai, Ibaraki (Japan); Haiying, Fu [Chinese Academy of Sciences, Shanghai (China); Nakagawa, Hidehiko [Nagoya City Univ., Graduate School of Pharmaceutical Sciences, Nagoya, Aichi (Japan)

    2011-01-15

    A comparative study using the pulse radiolysis technique was carried out to investigate transient absorption spectra and rate constants for the reactions of OH radical and N{sub 3} radical with edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) and its four analogue compounds, 1,3-dimethyl-2-pyrazolin-5-one, 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one, 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one. The results showed that, unlike reaction mechanisms previously proposed, the phenyl group of edaravone played an important role in the reaction with OH radical and OH adducts to the phenyl group were formed. Quantum chemical calculations also strongly supported this attribution and suggested that the most favorable site for attacks by OH radical is the ortho position of the phenyl group. Moreover, the rate constants for the reactions of edaravone and its analogues towards OH radical and N{sub 3} radical were about 8.0 x 10{sup 9}, and 4.0 x 10{sup 9} dm{sup 3} mol{sup -1} s{sup -1}, respectively. Edaravone displayed higher reactivity compared to the others, in contrast to a previous report in which 3-methyl-1-(pyridin-2-yl)-2-pyrazolin-5-one showed the highest reactivity towards Hydroxyl radical OH. (author)

  3. Exposure to meat-derived carcinogens and bulky DNA adduct levels in normal-appearing colon mucosa.

    Science.gov (United States)

    Ho, Vikki; Brunetti, Vanessa; Peacock, Sarah; Massey, Thomas E; Godschalk, Roger W L; van Schooten, Frederik J; Ashbury, Janet E; Vanner, Stephen J; King, Will D

    2017-09-01

    Meat consumption is a risk factor for colorectal cancer. This research investigated the relationship between meat-derived carcinogen exposure and bulky DNA adduct levels, a biomarker of DNA damage, in colon mucosa. Least squares regression was used to examine the relationship between meat-derived carcinogen exposure (PhIP and meat mutagenicity) and bulky DNA adduct levels in normal-appearing colon tissue measured using 32 P-postlabelling among 202 patients undergoing a screening colonoscopy. Gene-diet interactions between carcinogen exposure and genetic factors relevant to biotransformation and DNA repair were also examined. Genotyping was conducting using the MassARRAY ® iPLEX ® Gold SNP Genotyping assay. PhIP and higher meat mutagenicity exposures were not associated with levels of bulky DNA adducts in colon mucosa. The XPC polymorphism (rs2228001) was found to associate with bulky DNA adduct levels, whereby genotypes conferring lower DNA repair activity were associated with higher DNA adduct levels than the normal activity genotype. Among individuals with genotypes associated with lower DNA repair (XPD, rs13181 and rs1799179) or detoxification activity (GSTP1, rs1695), higher PhIP or meat mutagenicity exposures were associated with higher DNA adduct levels. Significant interactions between the XPC polymorphism (rs2228000) and both dietary PhIP and meat mutagenicity on DNA adduct levels was observed, but associations were inconsistent with the a priori hypothesized direction of effect. Exposure to meat-derived carcinogens may be associated with increased DNA damage occurring directly in the colon among genetically susceptible individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  5. The reactions of p-nitroacetophenone with H and OH radicals

    International Nuclear Information System (INIS)

    Whillans, D.W.

    1977-01-01

    Reactions of the radiation sensitizer p-nitroacetophenone (PNAP) with H and OH radicals have been studied in detail. PNAP reacts with OH (k = (3.3 + 0.3) X 10 9 dm 3 mol -1 s -1 ), presumably in the main by ring addition, to produce a relatively weak absorption with a minor peak at 410 nm (epsilon approximately 2,000 dm 3 mol -1 cm -1 ). In contrast the electron adduct has a very strong absorption with peaks at 350 nm (epsilon approximately 18,200 dm 3 mol -1 cm -1 ) and 550 nm (epsilon approximately 2650 dm 3 mol -1 cm -1 ), in good agreement with literature values. At pH 1 the protonated adduct shows a single peak at 330 nm (epsilon approximately 20,500 dm 3 mol -1 cm -1 ). The spectra produced by reaction of PNAP with H atoms (k = (6 + - 0. 5) x 10 8 dm 3 mol -1 s -1 ) is intermediate between those with OH and with e - sub(aq), with peaks at 350 (epsilon approximately 7100 dm 3 mol -1 cm -1 ) and 550 nm (750 dm 3 mol -1 cm -1 ) at neutral pH and near 325 nm (epsilon approximately 7100 dm 3 mol -1 cm -1 ) at pH 1, but with significant shoulders near 410 nm. These data are consistent with a mechanism whereby H atoms react partially by addition to the nitro group (approximately 30%) and partially by ring addition (approximately 70%). (author)

  6. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Lnenickova, Zdena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Tulupova, Elena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic)]. E-mail: sram@biomed.cas.cz

    2007-07-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by {sup 32}P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 {mu}g/m{sup 3}, PM2.5 27-38 {mu}g/m{sup 3}, c-PAHs 18-22 ng/m{sup 3}; personal exposure to c-PAHs: 9.7 ng/m{sup 3} versus 5.8 ng/m{sup 3} (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 {+-} 0.28 adducts/10{sup 8} nucleotides versus 0.82 {+-} 0.23 adducts/10{sup 8} nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 {+-} 0.036 adducts/10{sup 8} nucleotides versus 0.099 {+-} 0.035 adducts/10{sup 8} nucleotides, P = 0

  7. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    Directory of Open Access Journals (Sweden)

    Suvankar Das

    2018-01-01

    Full Text Available Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH and the anion radical superoxide (·O2−. The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb and GI50 for several human cancer cell was observed.

  8. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sequence distribution of acetaldehyde-derived N2-ethyl-dG adducts along duplex DNA.

    Science.gov (United States)

    Matter, Brock; Guza, Rebecca; Zhao, Jianwei; Li, Zhong-ze; Jones, Roger; Tretyakova, Natalia

    2007-10-01

    Acetaldehyde (AA) is the major metabolite of ethanol and may be responsible for an increased gastrointestinal cancer risk associated with alcohol beverage consumption. Furthermore, AA is one of the most abundant carcinogens in tobacco smoke and induces tumors of the respiratory tract in laboratory animals. AA binding to DNA induces Schiff base adducts at the exocyclic amino group of dG, N2-ethylidene-dG, which are reversible on the nucleoside level but can be stabilized by reduction to N2-ethyl-dG. Mutagenesis studies in the HPRT reporter gene and in the p53 tumor suppressor gene have revealed the ability of AA to induce G-->A transitions and A-->T transversions, as well as frameshift and splice mutations. AA-induced point mutations are most prominent at 5'-AGG-3' trinucleotides, possibly a result of sequence specific adduct formation, mispairing, and/or repair. However, DNA sequence preferences for the formation of acetaldehyde adducts have not been previously examined. In the present work, we employed a stable isotope labeling-HPLC-ESI+-MS/MS approach developed in our laboratory to analyze the distribution of acetaldehyde-derived N2-ethyl-dG adducts along double-stranded oligodeoxynucleotides representing two prominent lung cancer mutational "hotspots" and their surrounding DNA sequences. 1,7,NH 2-(15)N-2-(13)C-dG was placed at defined positions within DNA duplexes derived from the K-ras protooncogene and the p53 tumor suppressor gene, followed by AA treatment and NaBH 3CN reduction to convert N2-ethylidene-dG to N2-ethyl-dG. Capillary HPLC-ESI+-MS/MS was used to quantify N2-ethyl-dG adducts originating from the isotopically labeled and unlabeled guanine nucleobases and to map adduct formation along DNA duplexes. We found that the formation of N2-ethyl-dG adducts was only weakly affected by the local sequence context and was slightly increased in the presence of 5-methylcytosine within CG dinucleotides. These results are in contrast with sequence

  10. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  11. Some redox chemistry of HPO2-. and .PO32- radicals. A pulse radiolysis study

    International Nuclear Information System (INIS)

    Packer, J.E.; Anderson, R.F.

    1990-01-01

    The HO . radical oxidises hypophosphite and phosphite anions to HPO 2 -. and . PO 3 2- respectively, but Br 2 -. and N 3 . do not. The rates of oxidation of HPO 2 -. by a series of oxidising agents of known one electron redox potentials decrease with decreasing potential while the corresponding rates for oxidation of . PO 3 2- remain close to the diffusion controlled limit. . PO 3 2- will oxidise cysteine but HPO 2 -. does not. . PO 3 2- did not oxidise ABTS, ascorbate, or the anion of the vitamin E analogue, trolox. It reduced traces of TMPD +. in TMPD rather than oxidising the substrate. The one electron redox potentials for oxidation and reduction of . PO 3 2- are calculated in light of recently published redox data on penicillamine. (author)

  12. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas. Potential use for genotoxicant biomonitoring of fresh water ecosystems.

    Science.gov (United States)

    Le Goff, J; Gallois, J; Pelhuet, L; Devier, M H; Budzinski, H; Pottier, D; André, V; Cachot, J

    2006-08-12

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 microg g(-1) dry weight) in comparison to individuals from the reference site (0.053 microg g(-1) dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10(8) nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 microg g(-1) dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 microg g(-1) dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10(8) nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable

  13. Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study

    International Nuclear Information System (INIS)

    Pratt, M. Margaret; Sirajuddin, Paul; Poirier, Miriam C.; Schiffman, Mark; Glass, Andrew G.; Scott, David R.; Rush, Brenda B.; Olivero, Ofelia A.; Castle, Philip E.

    2007-01-01

    Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331 μM BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N 2 deoxyguanosyl)-7,8,9, 10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10 8 nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10 8 nucleotides, with a median of 75/10 8 nucleotides. PAH-DNA adduct values above 150/10 8 nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear related to the increased risk

  14. Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, M. Margaret [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States)], E-mail: prattm@mail.nih.gov; Sirajuddin, Paul; Poirier, Miriam C. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Schiffman, Mark [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States); Glass, Andrew G.; Scott, David R.; Rush, Brenda B. [Northwest Kaiser Permanente, Portland, OR (United States); Olivero, Ofelia A. [Carcinogen-DNA Interactions Section, LCBG, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (United States); Castle, Philip E. [Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD (United States)

    2007-11-01

    Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331 {mu}M BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N{sup 2}deoxyguanosyl)-7,8,9, 10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10{sup 8} nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10{sup 8} nucleotides, with a median of 75/10{sup 8} nucleotides. PAH-DNA adduct values above 150/10{sup 8} nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear

  15. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-04-01

    Full Text Available The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC fingerprinting of Indigofera tinctoria (I. tinctoria. Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH, nitric oxide (NO and superoxide anion (O2− radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g, flavonoids (75.43±3.36 mg/g and antioxidants (349.11±8.04 mg/g. The extract was found to have DPPH (52.08%, NO (23.12% and O2− (26.79% scavenging activities at the concentration of 250 μg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05. HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

  16. Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark

    DEFF Research Database (Denmark)

    von Stedingk, Hans; Vikström, Anna C; Rydberg, Per

    2011-01-01

    The knowledge about fetal exposure to acrylamide/glycidamide from the maternal exposure through food is limited. Acrylamide, glycidamide, and ethylene oxide are electrophiles and form adducts with hemoglobin (Hb), which could be used for in vivo dose measurement. In this study, a method.......20-0.73) for glycidamide, and 0.43 (range 0.17-1.34) for ethylene oxide. In vitro studies with acrylamide and glycidamide showed a lower (0.38-0.48) rate of adduct formation with Hb in cord blood than with Hb in maternal blood, which is compatible with the structural differences in fetal and adult Hb. Together...... for analysis of Hb adducts by liquid chromatography-mass spectrometry, the adduct FIRE procedure, was applied to measurements of adducts from these compounds in maternal blood samples (n = 87) and umbilical cord blood samples (n = 219). The adduct levels from the three compounds, acrylamide, glycidamide...

  17. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    International Nuclear Information System (INIS)

    Binkova, Blanka; Chvatalova, Irena; Lnenickova, Zdena; Milcova, Alena; Tulupova, Elena; Farmer, Peter B.; Sram, Radim J.

    2007-01-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by 32 P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 μg/m 3 , PM2.5 27-38 μg/m 3 , c-PAHs 18-22 ng/m 3 ; personal exposure to c-PAHs: 9.7 ng/m 3 versus 5.8 ng/m 3 (P 8 nucleotides versus 0.82 ± 0.23 adducts/10 8 nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 ± 0.036 adducts/10 8 nucleotides versus 0.099 ± 0.035 adducts/10 8 nucleotides, P = 0.003). A significant difference in both the total (P < 0.05) and the B[a]P-'like' DNA adducts (P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine

  18. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  19. DNA adduct formation by the ubiquitous environmental pollutant 3-nitrobenzanthrone and its metabolites in rats

    International Nuclear Information System (INIS)

    Arlt, Volker M.; Sorg, Bernd L.; Osborne, Martin; Hewer, Alan; Seidel, Albrecht; Schmeiser, Heinz H.; Phillips, David H.

    2003-01-01

    Diesel exhaust is known to induce tumours in animals and is suspected of being carcinogenic in humans. Of the compounds found in diesel exhaust, 3-nitrobenzanthrone (3-NBA) is an extremely potent mutagen and suspected human carcinogen forming multiple DNA adducts in vitro. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA), and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) were identified as 3-NBA metabolites. In order to gain insight into the pathways of metabolic activation leading to 3-NBA-derived DNA adducts we treated Wistar rats intraperitoneally with 2 mg/kg body weight of 3-NBA, 3-ABA, 3-Ac-ABA, or N-Ac-N-OH-ABA and compared DNA adducts present in different organs. With each compound either four or five DNA adduct spots were detected by TLC in all tissues examined (lung, liver, kidney, heart, pancreas, and colon) using the nuclease P1 or butanol enrichment version of the 32 P-postlabelling method, respectively. Using HPLC co-chromatographic analysis we showed that all major 3-NBA-DNA adducts produced in vivo in rats are derived from reductive metabolites bound to purine bases and lack an N-acetyl group. Our results indicate that 3-NBA metabolites (3-ABA, 3-Ac-ABA and N-Ac-N-OH-ABA) undergo several biotransformations and that N-hydroxy-3-aminobenzanthrone (N-OH-ABA) appears to be the common intermediate in 3-NBA-derived DNA adduct formation. Therefore, 3-NBA-DNA adducts are useful biomarkers for exposure to 3-NBA and its metabolites and may help to identify enzymes involved in their metabolic activation

  20. Photochemical Reaction of 7,12-Dimethylbenz[a]anthracene (DMBA and Formation of DNA Covalent Adducts

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2005-04-01

    Full Text Available DMBA, 7,12-dimethylbenz[a]anthracene, is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a probable human carcinogen. It has been found that DMBA is phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella typhimurium strain TA102. This article tempts to explain the photochemistry and photomutagenicity mechanism. Light irradiation converts DMBA into several photoproducts including benz[a]anthracene-7,12-dione, 7-hydroxy-12-keto-7-methylbenz[a]anthracene, 7,12-epidioxy-7,12-dihydro-DMBA, 7-hydroxymethyl-12-methylbenz[a]anthracene and 12-hydroxymethyl-7-methylbenz[a]anthracene. Structures of these photoproducts have been identified by either comparison with authentic samples or by NMR/MS. At least four other photoproducts need to be assigned. Photo-irradiation of DMBA in the presence of calf thymus DNA was similarly conducted and light-induced DMBA-DNA adducts were analyzed by 32P-postlabeling/TLC, which indicates that multiple DNA adducts were formed. This indicates that formation of DNA adducts might be the source of photomutagenicity of DMBA. Metabolites obtained from the metabolism of DMBA by rat liver microsomes were reacted with calf thymus DNA and the resulting DNA adducts were analyzed by 32P-postlabeling/TLC under identical conditions. Comparison of the DNA adduct profiles indicates that the DNA adducts formed from photo-irradiation are different from the DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results suggest that photo-irradiation of DMBA can lead to genotoxicity through activation pathways different from those by microsomal metabolism of DMBA.

  1. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos de; Magon, Claudio José [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Wiegand, Thomas [Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8049 Zürich (Switzerland); Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard [Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, D 48149 Münster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, D 48149 Münster (Germany)

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  2. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    Energy Technology Data Exchange (ETDEWEB)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina, E-mail: stambaki@chem.uoa.gr

    2015-11-05

    Highlights: • Study on models of neutral cations and anions of carnosine at the B3LYP/TZVP level. • The {sup 1}O{sub 2}-adducts of these models resulted in oxygenated carnosine. • Theoretical parameters correlated to experimental results for carn and carn-H{sub 2}O{sub 2}. • Theoretical models of Nickel-carn complexes have been investigated. • Isolation and characterization of the solid [Ni(carn){sub 2}(H{sub 2}O){sub 5}] have been performed. - Abstract: DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating “nests” into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with {sup 1}O{sub 2}, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H{sub 2}O{sub 2} and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn){sub 2}(H{sub 2}O){sub 5}], the COO−, N{sub π} and/or NH{sub 2} were bonded. When H{sub 2}O{sub 2} was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  3. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  4. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Buc-Calderon, P.; Roberfroid, M. (Universite Catholique de Louvain, Brussels (Belgium))

    1989-09-01

    Captodative substituted olefins are radical scavengers which react with free radicals to form stabilized radical adducts. One of those compounds, N-(paramethoxyphenylacetyl)dehydroalanine (AD-5), may react and scavenge both superoxide anion (O-2) and alk-oxyl radicals (RO.), and in this way prevent the appearance of their mediated biological effects. Nitrofurantoin and tert-butyl hydroperoxide were used as model compounds to stimulate free radical production and their mediated lipid peroxidation in rat liver microsomes. In addition, lipid peroxidation was also initiated by exposure of rat liver microsomal suspensions to ionizing radiation (gamma rays). The microsomal lipid peroxidation induced by these chemicals and physical agents was inhibited by the addition of AD-5. These effects were dose-dependent in a millimolar range of concentration. In addition, AD-5 has no effect on microsomal electron transport, showing that NADPH-cytochrome P450 reductase activity was not modified. These data, together with the comparisons of the effects of AD-5 and some antioxidant molecules such as superoxide dismutase, uric acid, and mannitol, support the conclusion that inhibition of lipid peroxidation by AD-5 is the result of its free radical scavenger activity. In addition, the inhibitory effect of AD-5 on microsomal lipid peroxidation was dependent of the nature of the free radical species involved in the initiation of the process, suggesting that O-2 is scavenged more efficiently than RO.

  6. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  7. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity.

    Science.gov (United States)

    Hemeryck, Lieselot Y; Rombouts, Caroline; De Paepe, Ellen; Vanhaecke, Lynn

    2018-05-01

    The consumption of red meat has been linked to an increased colorectal cancer (CRC) risk. One of the major hypotheses states that heme iron (present in red meat) stimulates the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs). By means of DNA adductomics, chemically induced DNA adduct formation can be mapped in relation to e.g. dietary exposures. In this study, this state-of-the-art methodology was used to investigate alkylation and (lipid per)oxidation induced DNA adduct formation in in vitro red vs. white meat digests. In doing so, 90 alkylation and (lipid per)oxidation induced DNA adduct types could be (tentatively) identified. Overall, 12 NOC- and/or LPO-related DNA adduct types, i.e. dimethyl-T (or ethyl-T), hydroxymethyl-T, tetramethyl-T, methylguanine (MeG), guanidinohydantoin, hydroxybutyl-C, hydroxymethylhydantoin, malondialdehyde-x3-C, O 6 -carboxymethylguanine, hydroxyethyl-T, carboxyethyl-T and 3,N 4 -etheno-C were singled out as potential heme-rich meat digestion markers. The retrieval of these DNA adduct markers is in support of the heme, NOC and LPO hypotheses, suggesting that DNA adduct formation may indeed contribute to red meat related CRC risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry.

    Science.gov (United States)

    Yuan, Y; Wang, H F; Sun, H F; Du, H F; Xu, L H; Liu, Y F; Ding, X F; Fu, D P; Liu, K X

    2007-12-01

    Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.

  9. Characterization of model peptide adducts with reactive metabolites of naphthalene by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Nathalie T Pham

    Full Text Available Naphthalene is a volatile polycyclic aromatic hydrocarbon generated during combustion and is a ubiquitous chemical in the environment. Short term exposures of rodents to air concentrations less than the current OSHA standard yielded necrotic lesions in the airways and nasal epithelium of the mouse, and in the nasal epithelium of the rat. The cytotoxic effects of naphthalene have been correlated with the formation of covalent protein adducts after the generation of reactive metabolites, but there is little information about the specific sites of adduction or on the amino acid targets of these metabolites. To better understand the chemical species produced when naphthalene metabolites react with proteins and peptides, we studied the formation and structure of the resulting adducts from the incubation of model peptides with naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-naphthoquinone using high resolution mass spectrometry. Identification of the binding sites, relative rates of depletion of the unadducted peptide, and selectivity of binding to amino acid residues were determined. Adduction occurred on the cysteine, lysine, and histidine residues, and on the N-terminus. Monoadduct formation occurred in 39 of the 48 reactions. In reactions with the naphthoquinones, diadducts were observed, and in one case, a triadduct was detected. The results from this model peptide study will assist in data interpretation from ongoing work to detect peptide adducts in vivo as markers of biologic effect.

  10. Formation of 7-hydroxymethyl-12-methylbenz(a)anthracene-DNA adducts from 7,12-dimethylbenz(a)anthracene in mouse epidermis

    International Nuclear Information System (INIS)

    DiGiovanni, J.; Nebzydoski, A.P.; Decina, P.C.

    1983-01-01

    The formation of DNA adducts from [ 3 H]-7-hydroxymethyl-12-methylbenz(a)anthracene (7-OHM-12-MBA) and [ 3 H]-7,12-dimethylbenz(a)anthracene (DMBA) in the epidermis of Sencar mice was analyzed. Comparison of Sephadex LH-20 chromatographic profiles of DNA samples isolated from mice treated with DMBA or 7-OHM-12-MBA suggested that the DMBA-treated animals contained DNA adduct(s) derived from the further metabolism of 7-OHM-12-MBA. Further analysis of DNA samples from DMBA-treated mice by high-pressure liquid chromatography demonstrated the presence of 5 DNA adducts which were chromatographically indistinguishable from the DNA adducts formed in 7-OHM-12-MBA-treated mice. Epidermal homogenates were utilized to catalyze the covalent binding of [ 3 H]DMBA and [ 3 H]-7-OHM-12-MBA to calf thymus DNA in vitro. Under conditions of limiting concentrations of [ 3 H]DMBA, the majority of the DNA adducts formed chromatographed in regions where 7-OHM-12-MBA-DNA adducts eluted. A major DMBA-DNA adduct formed in this in vitro system eluted with the same retention time as did the major 7-OHM-12-MBA-DNA adduct formed in mouse skin in vivo. These results when coupled with the in vivo data suggest that 7-OHM-12-MBA is an intermediate for at least some of the binding of DMBA to epidermal DNA in Sencar mice

  11. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  12. Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Gamboa da Costa, Gonçalo; Singh, Rajinder; Arlt, Volker M; Mirza, Amin; Richards, Meirion; Takamura-Enya, Takeji; Schmeiser, Heinz H; Farmer, Peter B; Phillips, David H

    2009-11-01

    The aromatic nitroketone 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one; 3-NBA) is an extremely potent mutagen and a suspected human carcinogen detected in the exhaust of diesel engines and in airborne particulate matter. 3-NBA is metabolically activated via reduction of the nitro group to the hydroxylamine (N-OH-3-ABA) to form covalent DNA adducts. Thus far, the detection and quantification of covalent 3-NBA-DNA adducts has relied solely on (32)P-postlabeling methodologies. In order to expand the range of available techniques for the detection and improved quantification of 3-NBA-DNA adducts, we have developed a method based upon online column-switching HPLC coupled to electrospray tandem mass spectrometry, with isotopic dilution of (15)N-labeled internal standards. This methodology was applied to the determination of three 3-NBA-derived adducts: 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone (dG-N(2)-3-ABA), N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-3-ABA) and 2-(2'-deoxyguanosine-8-yl)-3-aminobenzanthrone (dG-C8-C2-3-ABA). Dose-dependent increases were observed for all three adducts when salmon testis DNA was reacted with N-acetoxy-3-aminobenzanthrone (N-AcO-3-ABA). dG-C8-C2-3-ABA was detected at much lower levels (overall 1%) than the other two adducts. DNA samples isolated from tissues of rats treated either intratracheally with 3-NBA or intraperitoneally with N-OH-3-ABA were analyzed by mass spectrometry, and the results compared to those obtained by (32)P-postlabeling. The method required 50 microg of hydrolyzed animal DNA on column and the limit of detection was 2.0 fmol for each adduct. dG-C8-C2-3-ABA was not observed in any of the samples providing confirmation that it is not formed in vivo. Linear regression analysis of the levels of dG-N(2)-3-ABA and dG-C8-N-3-ABA in the rat DNA showed a reasonable correlation between the two methods (R(2) = 0.88 and 0.93, respectively). In summary, the mass spectrometric method is a faster, more

  13. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Science.gov (United States)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  14. Bulky carcinogen-DNA adducts and exposure to environmental and occupational sources of polycyclic aromatic hydrocarbons. Influence of susceptibility genotypes on adduct level

    International Nuclear Information System (INIS)

    Sabro Nielsen, P.

    1996-01-01

    PAH exposure, whether it is of occupational or environmental origin, is thought to result in an elevated risk of cancer especially in the lungs. DNA damage is considered an important step in the carcinogenic effect of PAH. Hence, methods that elucidate the steps in the carcinogenic process are important to understand the action of PAH. It may prove useful in the exposure assessment and in combination with classical epidemiological methods give better basis for risk estimation. The objective in this thesis was to evaluate the feasibility of the 32 P-postlabeling method to detect carcinogen-DNA adducts for assessing exposure to DNA damaging compounds in different occupationally and environmentally exposed groups. The studies included groups, that have an elevated cancer risk due to occupational exposure to PAH. Exposure levels were supposed to be relatively low according to reports on occupational and environmental air quality programs. Another aim was to evaluate the influence of polymorphisms in metabolizing enzyme genes on DNA adduct levels. A third objective was to establish some kind of baseline DNA adduct level for individuals with supposed low exposure, and compare it to the more exposed groups. A fourth aim in these studies was to examine if biomarkers of genotoxic exposure could be useful in epidemiological studies to identify groups at risk and thereby contribute with better exposure estimates in the study of PAH related cancer risk. (EG)

  15. Bulky carcinogen-DNA adducts and exposure to environmental and occupational sources of polycyclic aromatic hydrocarbons. Influence of susceptibility genotypes on adduct level

    Energy Technology Data Exchange (ETDEWEB)

    Sabro Nielsen, P

    1997-12-31

    PAH exposure, whether it is of occupational or environmental origin, is thought to result in an elevated risk of cancer especially in the lungs. DNA damage is considered an important step in the carcinogenic effect of PAH. Hence, methods that elucidate the steps in the carcinogenic process are important to understand the action of PAH. It may prove useful in the exposure assessment and in combination with classical epidemiological methods give better basis for risk estimation. The objective in this thesis was to evaluate the feasibility of the {sup 32}P-postlabeling method to detect carcinogen-DNA adducts for assessing exposure to DNA damaging compounds in different occupationally and environmentally exposed groups. The studies included groups, that have an elevated cancer risk due to occupational exposure to PAH. Exposure levels were supposed to be relatively low according to reports on occupational and environmental air quality programs. Another aim was to evaluate the influence of polymorphisms in metabolizing enzyme genes on DNA adduct levels. A third objective was to establish some kind of baseline DNA adduct level for individuals with supposed low exposure, and compare it to the more exposed groups. A fourth aim in these studies was to examine if biomarkers of genotoxic exposure could be useful in epidemiological studies to identify groups at risk and thereby contribute with better exposure estimates in the study of PAH related cancer risk. (EG).

  16. Bulky carcinogen-DNA adducts and exposure to environmental and occupational sources of polycyclic aromatic hydrocarbons. Influence of susceptibility genotypes on adduct level

    Energy Technology Data Exchange (ETDEWEB)

    Sabro Nielsen, P.

    1996-12-31

    PAH exposure, whether it is of occupational or environmental origin, is thought to result in an elevated risk of cancer especially in the lungs. DNA damage is considered an important step in the carcinogenic effect of PAH. Hence, methods that elucidate the steps in the carcinogenic process are important to understand the action of PAH. It may prove useful in the exposure assessment and in combination with classical epidemiological methods give better basis for risk estimation. The objective in this thesis was to evaluate the feasibility of the {sup 32}P-postlabeling method to detect carcinogen-DNA adducts for assessing exposure to DNA damaging compounds in different occupationally and environmentally exposed groups. The studies included groups, that have an elevated cancer risk due to occupational exposure to PAH. Exposure levels were supposed to be relatively low according to reports on occupational and environmental air quality programs. Another aim was to evaluate the influence of polymorphisms in metabolizing enzyme genes on DNA adduct levels. A third objective was to establish some kind of baseline DNA adduct level for individuals with supposed low exposure, and compare it to the more exposed groups. A fourth aim in these studies was to examine if biomarkers of genotoxic exposure could be useful in epidemiological studies to identify groups at risk and thereby contribute with better exposure estimates in the study of PAH related cancer risk. (EG).

  17. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  18. Cation-Dependent Gold Recovery with α-Cyclodextrin Facilitated by Second-Sphere Coordination.

    Science.gov (United States)

    Liu, Zhichang; Samanta, Avik; Lei, Juying; Sun, Junling; Wang, Yuping; Stoddart, J Fraser

    2016-09-14

    Herein, we report an alkali metal cation-dependent approach to gold recovery, facilitated by second-sphere coordination with eco-friendly α-cyclodextrin (α-CD). Upon mixing eight salts composed of Na(+), K(+), Rb(+), or Cs(+) cations and [AuX4](-) (X = Cl/Br) anions with α-, β-, or γ-CD in water, co-precipitates form selectively from the three (out of 24) aqueous solutions containing α-CD with KAuBr4, RbAuBr4, and CsAuBr4, from which the combination of α-CD and KAuBr4 affords the highest yield. Single-crystal X-ray analyses reveal that in 20 of the 24 adducts CD and [AuX4](-) anions form 2:1 sandwich-type second-sphere adducts driven partially by [C-H···X-Au] interactions between [AuX4](-) anions and the primary faces of two neighboring CDs. In the adduct formed between α-CD and KAuBr4, a [K(OH2)6](+) cation is encapsulated inside the cavity between the secondary faces of two α-CDs, leading to highly efficient precipitation owing to the formation of a cation/anion alternating ion wire residing inside a continuous α-CD nanotube. By contrast, in the other 19 adducts, the cations are coordinated by OH groups and glucopyranosyl ring O atoms in CDs. The strong coordination of Rb(+) and Cs(+) cations by these ligands, in conjunction with the stereoelectronically favorable binding of [AuBr4](-) anions with two α-CDs, facilitates the co-precipitation of the two adducts formed between α-CD with RbAuBr4 and CsAuBr4. In order to develop an efficient process for green gold recovery, the co-precipitation yield of α-CD and KAuBr4 has been optimized regarding both the temperature and the molar ratio of α-CD to KAuBr4.

  19. Generation of counter ion radical (Br2(•-)) and its reactions in water-in-oil (CTAB or CPB)/n-butanol/cyclohexane/water) microemulsion.

    Science.gov (United States)

    Guleria, Apurav; Singh, Ajay K; Sarkar, Sisir K; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2011-09-15

    Herein we report the generation of counterion radicals and their reactions in quaternary water-in-oil microemulsion. Hydrated electrons in the microemulsion CTAB/H(2)O/n-butanol/cyclohexane have a remarkably short half-life (∼1 μs) and lower yield as compared to that in the pure water system. Electrons are solvated in two regions: one is the water core and other the interface; however, the electrons in the water core have a shorter half-life than those in the interface. The decay of the solvated electrons in the interface is found to be water content dependent and it has been interpreted in terms of increased interfacial fluidity with the increase in water content of the microemulsion. Interestingly another species, dibromide radical anion (Br(2)(•-)) in CTAB and CPB microemulsions have been observed after the electron beam irradiation. Assuming that the extinction coefficient of the radicals is the same as that in the aqueous solution, the yields of the radicals per 100 eV are 0.29 and 0.48 for the Br(2)(•-) radical in CTAB and CPB containing microemulsions (W(0) = 40), respectively, under N(2)O saturated conditions. Further, we intended to study electron transfer reactions, which occur at and through the interface. The reaction of the Br(2)(•-) radical anion with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] has been studied to generate the ABTS radical in the water core, and further, its reaction has been investigated with the water-insoluble molecule vitamin E (tocopherol) and water-soluble vitamin C (ascorbic acid). In the present study, we were able to show that, even for molecules which are completely insoluble in water, ABTS scavenging assay is possible by pulse radiolysis technique. Furthermore, these results show that it is possible to follow the reaction of the hydrated inorganic radical with solutes dissolved in the organic phase in a microemulsion without use of a phase transfer catalyst. © 2011 American Chemical Society

  20. Nuclear magnetic resonance at the picomole level of a DNA adduct.

    Science.gov (United States)

    Kautz, Roger; Wang, Poguang; Giese, Roger W

    2013-10-21

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the picomole level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene 5'-monophosphate (AAF-dGMP), in 1.5 μL of D₂O with 10% methanol-d₄, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a severalfold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample to the observed volume produce the full theoretical mass sensitivity of a microcoil, comparable to that of a microcryo probe. With 80 ng, an NMR spectrum acquired over 40 h showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a signal-to-noise ratio of at least 10, despite broadening due to previously noted effects of conformational exchange. Even with this broadening to 5 Hz, a two-dimensional total correlation spectroscopy spectrum was acquired on 1.6 μg in 18 h. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct.

  1. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity.

    Science.gov (United States)

    Kathuria, Preetleen; Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2017-08-21

    Exposure to ochratoxin A (OTA), a possible human carcinogen, leads to many different DNA mutations. As a first step toward understanding the structural basis of OTA-induced mutagenicity, the present work uses a robust computational approach and a slipped mutagenic intermediate model previously studied for C 8 -dG aromatic amine adducts to analyze the conformational features of postreplication two-base deletion DNA duplexes containing OT-dG, the major OTA lesion at the C 8 position of guanine. Specifically, a total of 960 ns of molecular dynamics simulations (excluding trial simulations) were carried out on four OT-dG ionization states in three sequence contexts within oligomers containing the NarI recognition sequence, a known hotspot for deletion mutations induced by related adducts formed from known carcinogens. Our results indicate that the structural properties and relative stability of the competing "major groove" and "stacked" conformations of OTA adducted two-base deletion duplexes depend on both the OTA ionization state and the sequence context, mainly due to conformation-dependent deviations in discrete local (hydrogen-bonding and stacking) interactions at the lesion site, as well as DNA bending. When the structural characteristics of the OT-dG adducted two-base deletion duplexes are compared to those associated with previously studied C 8 -dG adducts, a greater understanding of the effects of the nucleobase-carcinogen linkage, and size of the carcinogenic moiety on the conformational preferences of damaged DNA is obtained. Most importantly, our work predicts key structural features for OT-dG-adducted deletion DNA duplexes, which in turn allow us to develop hypotheses regarding OT-dG replication outcomes. Thus, our computational results are valuable for the design and interpretation of future biochemical studies on the potentially carcinogenic OT-dG lesion.

  2. Vaporization of GaI3Py adduct

    International Nuclear Information System (INIS)

    Timoshkina, A.Yu.; Grigor'ev, A.A.; Suvorov, A.V.

    1995-01-01

    Processes of GaI 3 Py complex vaporization have been studied by mass-spectrometric, tensimetric and calorimetric methods. It is shown that adduct transformation into vapour is accompanied by its thermal dissociation. Thermodynamic characteristics of evaporation and dissociation of GaI 3 Py complex have been obtained. 14 refs., 2 figs., 6 tabs

  3. Chemical structure of the adducts formed by the oxidation of benzidine in the presence of phenols

    International Nuclear Information System (INIS)

    Josephy, P.D.; Mason, R.P.; Eling, T.

    1982-01-01

    Bioactivation of carcinogens by peroxidases has received increasing attention since the discovery of the oxidation of carcinogens by prostaglandin hydroperoxidase. Benzidine and 3,5,3',5'-tetramethylbenzidine are oxidized by horseradish peroxidase and prostaglandin synthase to two-electron oxidation products (di-imines). Di-imines readily react with the phenolic anti-oxidant butylated hydroxyanisole to form adducts. In this paper, we have studied the oxidation of benzidine by horseradish peroxidase in the presence of phenolic compounds and characterized the resultant benzidine/phenol adducts. A benzidine/2,6-dimethylphenol adduct was isolated and characterized by mass spectrometry and high field n.m.r. The reaction of [ 14 C]benzidine in the presence of horseradish peroxidase and phenol yielded only the benzidine/phenol adduct. Our results indicate that the benzidine/phenol adducts are analogous to the indoaniline dyes, differing only in substitution of a biphenyl group for a benzene ring. The reaction of benzidine di-imine with endogenous phenols may represent a new pathway for detoxication, removing potentially harmful metabolites of benzidine

  4. Electronic structure and optical properties of Eu(III) tris-β-diketonate adducts with 1,10-phenanthroline

    Science.gov (United States)

    Shurygin, A. V.; Korochentsev, V. V.; Cherednichenko, A. I.; Mirochnik, A. G.; Kalinovskaya, I. V.; Vovna, V. I.

    2018-03-01

    Adducts of tris-β-diketonates of the rare earth metal Eu(III) with 1,10-phenanthroline are studied by photoelectron spectroscopy and quantum chemistry methods. The electronic structure, peculiarities of the nature of chemical bonds, and the geometric structure of the adducts are determined. The interpretation of UV photoelectron spectra of vapors and X-ray photoelectron spectra of solid is carried out with the chosen technique. DFT/TDDFT methods make it possible to study the 1,10-phenanthroline molecule influence on the adduct electronic structure and to analyze the electronic effects of substitution of methyl groups by trifluoromethyl groups in the ligands. At transition from the tris-β-diketonate complexes to the adducts, it is observed an increase of the absorption region and a decrease in the energy gap that contributes to the efficiency growth in electronic excitation energy transfer in the ligand-metal. Moreover, phenanthroline displaces water groups, that are luminescence quenchers, from the first coordination sphere, closes coordination in the adduct, and blocks their further attachment. Both factors contribute to an increase in the luminescence intensity.

  5. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  6. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  7. Biomarkers for exposure to ambient air pollution - Comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress

    DEFF Research Database (Denmark)

    Autrup, Herman; Daneshvar, Bahram; Dragsted, Lars Ove

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts...... correlations were observed between bulky carcinogen-DNA adduct and PAM-albumin levels (p = 0.005), and between DNA adduct and gamma-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAM-albumin adducts and AAS in plasma (r = 0.001) and GGS in hemoglobin (p...... in the combined group. A significant negative correlation was only observed between bulky carcinogen-DNA adducts and PAM-albumin adducts (p = 0.02) and between DNA adduct and urinary mutagenic activity (p = 0.02) in the GSTM1 null group, bur not in the workers who were homozygotes or heterozygotes for GSTM1. Our...

  8. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  9. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  10. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  11. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  12. Separation and identification of DNA-carcinogen adduct conformers by polyacrylamide gel electrophoresis with laser-induced fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, G.A.; Jankowiak, R.; Farhat, J.H.; Small, G.J. (Ames Lab., IA (United States) Iowa State Univ., Ames (United States))

    1992-12-01

    The authors have developed a separation protocol utilizing high-resolution polyacrylamide gel electrophoresis (PAGE) to isolate stable anti-benzo[a]pyrene diol epoxide adducts of oligodeoxynucleotides. Both enantiomers produced multiple adduct species. The distribution of adduct types could be quantitated by densitometry of autoradiograms or Cerenkov counting of eluted oligomers modified by anti-BPDE isomers. Laser-induced fluorescence (LIF) spectra of eluted adducts at 4.2 K (fluorescence line-narrowing spectroscopy) and 77 K revealed that bands corresponded to pure conformers of pyrene chromophore. Carcinogen-modified oligodeoxynucleotides were single-stranded, but there were often considerable stacking interactions between the pyrenyl residues and the oligonucleotide bases, indicating that electrophoresed oligomers were single-stranded but in a native, versus random-coil conformation. The ability to identify and quantitate adducts by PAGE-LIF, coupled with the high resolution and sensitivity of both techniques, makes PAGE and LIF in tandem a potentially powerful tool in the study of chemical carcinogenesis or other ligand-DNA interactions. 43 refs., 7 figs., 1 tab.

  13. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  14. Reactivity of H atoms and hydrated electrons with chlorobenzoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zona, Robert [Department of Nutritional Sciences, Section Radiation Biology, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Solar, Sonja [Department of Nutritional Sciences, Section Radiation Biology, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria)], E-mail: sonja.solar@univie.ac.at; Getoff, Nikola [Department of Nutritional Sciences, Section Radiation Biology, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Sehested, Knud; Holcman, Jerzy [Environmental Science and Technology Department, RISO National Laboratory, DK-4000, Roskilde (Denmark)

    2008-02-15

    H radicals react with chlorobenzoic acids and chlorobenzene (k(H{sup {center_dot}}+substrates)=(0.7-1.5)x10{sup 9} dm{sup 3} mol{sup -1} s{sup -1}) by addition to the benzene ring forming H adducts with characteristic absorption bands in the range of 310-360 nm. The rate constants for their second-order decay are 2k=(3.5-6)x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}. By reduction with e{sub aq}{sup -} fragmentation and chloride release was established for 2- and 4-chlorobenzoic acid, for 3-chlorobenzoic acid the addition of electrons to the carboxylate group was observed by pulse radiolysis. By gamma radiolysis could be proved that these radical anions undergo intramolecular electron transfer and quantitave dechlorination. The efficiency in degradation was 4-chlorobenzoic acid>3-chlorobenzoic acid>2-chlorobenzoic acid. Benzoic acid was found as final product for all substrates.

  15. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  16. Synthesis and Characterization of the Adducts of Morpholinedithioccarbamate Complexes of Oxovanadium (IV, Nickel(II, and Copper(II with Piperidine and Morpholine

    Directory of Open Access Journals (Sweden)

    Mousami Sharma

    2012-01-01

    Full Text Available A series of 1:1 adducts of bis(morpholinedithiocarbamato complex of VO(IV, 1:1 and 1:2 adducts of bis(morpholinedithiocarbamato complexes of Ni(II and Cu(II with piperidine and morpholine have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, and TGA/DTA techniques. Analytical data reveals that VO(IV complex forms only 1:1 adducts with the formula [VO(morphdtc2L].H2O while Ni(II and Cu(II complexes form both 1:1 and 1:2 adducts with 1:1 adducts having general formula Ni(morphdtc2.L and Cu(morphdtc2.L and 1:2 adducts having general formula Ni(morphdtc2.L2 and Cu(morphdtc2.L2 (morphdtc = morpholinedithiocarbamate, L = morpholine and piperidine. Antifungal activity of some complexes has been carried out against the fungal strain Fusarium oxysporium. Thermal studies indicate a continuous weight loss. A square pyramidal geometry has been proposed for the 1:1 adducts of Ni(II and Cu(II complexes while an octahedral geometry has been proposed for the 1:1 adducts of VO(IV and for the 1:2 adducts of Ni(II and Cu(II complexes.

  17. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.

  18. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    International Nuclear Information System (INIS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-01-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag + and the reaction partners (X) including [Ag n X m − (n + 1)H] − (n = 1–4, m = 1–3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver–GSH interactions, even doubly charged oligomers occur generating [Ag (a+1) GSH a − (a + 3)H] 2− (a = 5–7) and [Ag b GSH b − (b + 2)H] 2− (b = 4–8) ions. 1 H NMR data of free GSH compared to that after treatment with Ag + confirm sulfur–metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver–GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation

  19. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Science.gov (United States)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  20. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    International Nuclear Information System (INIS)

    Fang Qingming; Nair, Jagadeesan; Sun Xin; Hadjiolov, Dimiter; Bartsch, Helmut

    2007-01-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary ω-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N 6 -ethenodeoxyadenosine (εdA) and 3, N 4 -ethenodeoxycytidine (εdC) by immunoaffinity/ 32 P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in ω-6 PUFA induced colon carcinogenesis

  1. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  2. Formation and transformations of radicals in frozen aqueous solutions of components of nucleic acids and H3PO4

    International Nuclear Information System (INIS)

    Minkhadzhidinova, D.R.; Chefranova, O.A.; Sharpatyj, V.A.

    1977-01-01

    Radiolysis of frozen aqueous solutions of 6-16 M H 3 PO 4 and 5 M NaH 2 PO 4 was studied, as well as radiolysis of these systems in the presence of nitrous bases and glucose. In aqueous solutions of H 3 PO 4 and NaH 2 PO 4 irradiated at 77 K, two groups of radicals formed as a result of interaction of the oxidative component of radiolysis of water with phosphate ions were identified. Their photolytic properties were studied. Primary products of radiolysis of the nitrous bases in phosphoric- acid solutions are anion- and cation-radicals. The molal absorption coefficients of the particles were determined

  3. Free Radicals and Extrinsic Skin Aging

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2012-01-01

    Full Text Available Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR. It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−•, hydrogen peroxide (H2O2, hydroxyl radical (OH•, and singlet oxygen (1O2. The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants and antioxidants we consume from the food (vitamin A, C, E, etc.. The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.

  4. Radical reactions in vivo - an overview

    International Nuclear Information System (INIS)

    Saran, M.; Bors, W.

    1990-01-01

    Generation of radicals in vivo depends on metabolic activities. The reactions are usually influenced by (i) the presence and concentration of oxygen, (ii) the availability of transition metals (effects of binding and compartimentalization), (iii) the level of reductants and antioxidants (e.g. nutritional effects). The effects of radicals are thought to be due to (i) membrane damage (affecting passive or active transport through altered fluidity/function interrelationships, intercellular messenging through modifications in the synthesis of prostaglandins and leukotrienes); (ii) protein damage (e.g. affecting membrane transporters, channel proteins, receptor or regulatory proteins, immunomodulators); (iii) damage to DNA. Defense mechanisms consist of (i) prevention of the 'spreading' of primary damage by low molecular weight antioxidants (e.g. vitamin E, GSH, vitamin C, β-carotene, uric acid); (ii) prevention or limitation of 'secondary' damage by enzymes (e.g. GSH-peroxidase, catalase, superoxide dismutase, DT-diaphorase) and/or chelators; (iii) repair processes, e.g. lipid degradation/membrane repair enzymes (phospholipases, peroxidases, some transferases and reductases), protein disposal or repair enzymes (proteases, GSSG-reductase), DNA degradation or repair enzymes (exonucleases III, endonucleases III and IV, glycosylases, polymerases). Recent hypotheses on a messenging function of the superoxide anion O 2 - are discussed and possible implications of cross-reactions between O 2 - and nitric oxide (endothelium-derived relaxing factor EDRF) are shortly mentioned. (orig.)

  5. Targeted mutations induced by a single acetylaminofluorene DNA adduct in mammalian cells and bacteria

    International Nuclear Information System (INIS)

    Moryia, M.; Takeshita, M.; Johnson, F.; Peden, K.; Will, S.; Grollman, A.P.

    1988-01-01

    Mutagenic specificity of 2-acetylaminofluorene (AAF) has been established in mammalian cells and several strains of bacteria by using a shuttle plasmid vector containing a single N-(deoxyguanosin-8-yl)acetylaminofluorene (C8-dG-AAF) adduct. The nucleotide sequence of the gene conferring tetracycline resistance was modified by conservative codon replacement so as to accommodate the sequence d(CCTTCGCTAC) flanked by two restriction sites, Bsm I and Xho I. The corresponding synthetic oligodeoxynucleotide underwent reaction with 2-(N-acetoxy-N-acetylamino)-fluorene (AAAF), forming a single dG-AAF adduct. This modified oligodeoxynucleotide was hybridized to its complementary strand and ligated between the Bsm I and Xho I sites of the vector. Plasmids containing the C8-dG-AAF adduct were used to transfect simian virus 40-transformed simian kidney (COS-1) cells and to transform several AB strains of Escherichia coli. Colonies containing mutant plasmides were detected by hybridization to 32 P-labeled oligodeoxynucleotides. Presence of the single DNA adduct increased the mutation frequency by 8-fold in both COS cells and E. coli. Over 80% of mutations detected in both systems were targeted and represented G x C → C x G or G x C → T x A transversions or single nucleotide deletions. The authors conclude that modification of a deoxyguanosine residue with AAF preferentially induces mutations targeted at this site when a plasmid containing a single C8-dG-AAF adduct is introduced into mammalian cells or bacteria

  6. Aflatoxin B1-lysine adduct in dried blood spot samples of animals and humans.

    Science.gov (United States)

    Xue, Kathy S; Cai, Wenjie; Tang, Lili; Wang, Jia-Sheng

    2016-12-01

    Dried blood spots (DBS) were proposed as potentially viable method for exposure assessment of environmental toxicants in infant and young children. For this study, we validated an experimental protocol to quantify AFB 1 -lysine adduct in DBS samples of AFB 1 -treated F344 rats, as well as samples from human field study. Significant dose-response relationships in AFB 1 -lysine adduct formation were found in DBS samples of rats treated with single- and repeated-dose AFB 1 . AFB 1 -lysine levels in DBS samples were highly correlated with corresponding serum sample levels. The Person coefficients were 0.997 for the single-dose exposure, and 0.996 for the repeated-dose exposure. Levels of AFB 1 -lysine adduct had also good agreement between DBS and serum samples as shown by Bland-Altman plot analysis. For human field study samples (n = 36), a Pearson correlation coefficient of 0.784 was found between AFB 1 -lysine adduct levels of DBS and corresponding serum samples. Bland-Altman plots showed the distribution of the log differences between DBS and serum AFB 1 -lysine levels are within 95% confidence intervals. These results showed AFB 1 -lysine adduct levels in DBS cards and serum samples from animals and human samples are comparable, and the DBS technique and analytical protocol is a good means to assess AFB 1 exposure in infant and children populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lifestyle, Environmental, and Genetic Predictors of Bulky DNA Adducts in a Study Population Nested within a Prospective Danish Cohort

    DEFF Research Database (Denmark)

    Eriksen, K. T.; Sørensen, M.; Autrup, H.

    2010-01-01

    Danish cohort. At enrollment, blood samples were collected and information on lifestyle, including dietary and smoking habits, obtained. Previously, bulky DNA adducts were measured in 245 individuals who developed lung cancer and 255 control members of the cohort. Of these 500 individuals, data on 375...... of bulky DNA adduct levels were analyzed by univariate and multivariate regression analyses. Women tended to have higher adduct levels than men. Living in central Copenhagen and surface darkness of fried meat and fish were associated with quantitative higher adduct levels. No significant associations were...

  8. Free radical formation in deoxyguanosine-5'-monophosphate γ-irradiated in frozen solution. A computer-assisted analysis of temperature-dependent ESR spectra

    International Nuclear Information System (INIS)

    Gregoli, S.; Olast, M.; Bertinchamps, A.

    1977-01-01

    Deoxyguanosine-5'-monophosphate (dGMP) was γ-irradiated at 77 K in frozen aqueous solution and then annealed in a stepwise fashion up to the melting point. During this process, the primary radicals formed in DGMP at 77 K are progressively converted into secondary radical species. This is observed as changes in the spectrum intensity and conformation. Computer-assisted analysis of these temperature-dependent spectra permitted us to identify the transient radical species involved and to draw up single-radical concentration kinetics vs temperature. The radiation chemical behavior of dGMP was found to be quite similar to that of dAMP, investigated previously. In both these purine derivatives, radical anions are converted into radicals of H-addition to C-8, and radical cations are converted into radicals of OH-addition to the same position. In dGMP, however, the cationic channel is only induced under certain experimental conditions (alkaline pH, presence of electron scavengers). At neutral pH, G + radicals are quite stable and finally become deactivated without being converted into secondary GOH radicals. Specific deuterium substitution at carbon C-8, and irradiation in H 2 O or in D 2 O, confirmed that both H + and OH - attachments do occur at C-8, and that both the H + and OH - groups come from the aqueous medium

  9. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  10. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  11. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  12. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  13. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.

    Science.gov (United States)

    Sinha, Sourab; Rahman, Ramees K; Raj, Abhijeet

    2017-07-26

    Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol -1 . The decomposition of this adduct through H-abstraction and H 2 -loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.

  14. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  15. o-Toluidine blood protein adducts: HPLC analysis with fluorescence detection after a single dose in the adult male rat

    International Nuclear Information System (INIS)

    Cheever, K.L.; DeBord, G.D.; Swearengin, T.F.

    1991-01-01

    Hemoglobin (Hb) and albumin (Alb) adducts of the suspect human carcinogen o-toluidine (OT) were quantified in blood samples collected from rats after a single i.p. injection. Mild alkaline hydrolysis of Hb-adducted [ 14 C]OT followed by extraction with ethylacetate resulted in recovery of 66% of the bound radioactivity. HPLC analysis revealed a single radiolabeled peak which was identified as OT by GC-MS. In subsequent experiments the Hb and Alb adduct levels were determined by HPLC analysis of this split product using fluorescence detection. 4-Ethylaniline was used as internal standard. The detection limit for OT was approximately 450 pg/injection of 5 pmol. mg Hb. Mean adduct levels for Hb increased rapidly over the first 4 hr with the highest (ng/mg Hb ± SD) 3.7 ± 0.5 detected 24 hr after OT (50 mg/kg body wt). In contrast, adduct levels for pooled Alb samples increased from 0.7 ng/mg Alb at 2 hr to 2.5 ng/mg Alb at 4 hr, but were not detectable 24 hr after OT (50 mg/kg body wt). In contrast, adduct levels for pooled Alb samples increased from 0.7 ng/mg Alb at 2 hr to 2.5 ng/mg Alb at 4 hr, but were not detectable 24 hr after dosing. Hb adducts showed a linear relationship for OT doses of 10, 20, 40, 50, and 100 mg/kg body wt. The Hb adduct t 1/2 (11.2 days) was determined after a single 100 mg/kg OT dose. Hb adduct levels were quantifiable (1.3 ± 0.2 ng/mg Hb) by HPLC/fluorescence 28 days after 100 mg/kg OT

  16. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qingming [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Nair, Jagadeesan [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)], E-mail: j.nair@dkfz.de; Sun Xin [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Hadjiolov, Dimiter [National Oncological Centre, Sofia (Bulgaria); Bartsch, Helmut [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)

    2007-11-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary {omega}-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N{sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3, N{sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in {omega}-6 PUFA induced colon carcinogenesis.

  17. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  18. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    International Nuclear Information System (INIS)

    Sarkar, Mohamadi; Stabbert, Regina; Kinser, Robin D.; Oey, Jan; Rustemeier, Klaus; Holt, Klaus von; Schepers, Georg; Walk, Roger A.; Roethig, Hans J.

    2006-01-01

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice within 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 ± 21.06 pg/g Hb) compared to NS (6.3 ± 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 ± 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was ∼ 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability (∼ 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke

  19. Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.

    Science.gov (United States)

    Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge

    2015-01-01

    Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.

  20. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.

    Science.gov (United States)

    Villegas-Guzman, Paola; Hofer, Florian; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2017-12-01

    Taking ciprofloxacin (CIP) as a fluoroquinolone antibiotic model, this work explores the role of common anions (sulfate, nitrate, and chloride) during the application of photoelectro-Fenton (PEF) at natural pH to degrade this type of compound in water. The system was composed of an IrO 2 anode, Ti, or gas diffusion electrode (GDE) as cathode, Fe 2+ , and UV (254 nm). To determine the implications of these anions, the degradation pathway and efficiency of the PEF sub-processes (UV photolysis, anodic oxidation, and electro-Fenton at natural pH) were studied in the individual presence of the anions. The results highlight that degradation routes and kinetics are strongly dependent on electrolytes. When chloride and nitrate ions were present, indirect electro-chemical oxidation was identified by electro-generated HOCl and nitrogenated oxidative species, respectively. Additionally, direct photolysis and direct oxidation at the anode surface were identified as degradation routes. As a consequence of the different pathways, six primary CIP by-products were identified. Therefore, a scheme was proposed representing the pathways involved in the degradation of CIP when submitted to PEF in water with chloride, nitrate, and sulfate ions, showing the complexity of this process. Promoted by individual and synergistic actions of this process, the PEF system leads to a complete elimination of CIP with total removal of antibiotic activity against Staphylococcus aureus and Escherichia coli, and significant mineralization. Finally, the role of the anions was tested in seawater containing CIP, in which the positive contributions of the anions were partially suppressed by its OH radical scavenger action. The findings are of interest for the understanding of the degradation of antibiotics via the PEF process in different matrices containing sulfate, nitrate, and chloride ions.

  1. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  2. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  3. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  4. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  6. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang; Fei, Zhuping; Lin, Yen-Hung; Martin, Jaime; Tuna, Floriana; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  7. Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 1. Direct observations of the formation of the OH-DMS adduct-pressure dependence of the forward rate of addition and development of a predictive expression at low temperature.

    Science.gov (United States)

    Williams, M B; Campuzano-Jost, P; Cossairt, B M; Hynes, A J; Pounds, A J

    2007-01-11

    A pulsed laser photolysis-pulsed laser-induced fluorescence (PLP-PLIF) system was employed to study the kinetics and mechanisms of reactions (1) OH + h6-DMS --> products and (2) OH + d6-DMS --> products. We report direct observations of the rate coefficients for the formation and dissociation of the h6-OHDMS and d6-OHDMS adducts over the pressure range 50-650 Torr and between 240 and 245 K, together with measurements of the oxygen dependence of the effective rate coefficients for reactions 1 and 2 under similar conditions. The effective rate coefficients increased as a function of O2 concentration reaching their limiting values in each case. The values of the adduct formation rate, obtained from the O2 dependencies, were in excellent agreement with values determined from direct observation of adduct equilibration in N2. OH regeneration is insignificant. The rate coefficients for the formation of the adduct isotopomers showed slight differences in their falloff behavior and do not approach the high-pressure limit in either case. The equilibrium constants obtained show no dependence on isotopomer and are in good agreement with previous work. A "second-law" analysis of the temperature dependence of the equilibrium constant gives an adduct bond strength (DeltaH degrees =-10.9 +/- 1.0 kcal mol(-1)), also in good agreement with previously reported values. Using the entropy calculated from the ab initio vibrational frequencies, we obtain a "third-law" value for the reaction enthalpy at 240 K, DeltaH(240K) degrees = -10.5 kcal mol(-1) in good agreement with the other approach. The rate coefficient for the reactions of the adducts with O2 was obtained from an analysis of the O2 dependence and was determined to be 6.3 +/- 1.2 x 10(-13) cm3 molecule(-1) s(-1), with no dependence on pressure or isotopomer. The pressure and temperature dependence for all of the elementary processes in the initial steps of the dimethylsulfide (DMS) oxidation mechanism have been characterized in

  8. Mass spectrometry study of sublimation of rare earth acetylacetonate adducts with hexamethylphosphorustriamide

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Semyannikov, P.P.; Martynenko, L.I.; Ch'eu Tkhi Nguet; AN SSSR, Novosibirsk

    1991-01-01

    Process of vacuum sublimation of MA 3 ·Q adducts (M=Nd,Ho,Er; A - -acetylacetonate-ion; Q-hexamethylphosphorustriamide) was studied by mass-spectrometry method. Composinion of gaseous phase, formed in 20-140 deg C range at 10 -5 mm Hg, was determined. Scheme of MA 3 ·Q sublimation, including Q splitting and transition of MA 3 ·Q adducts and MA 3 and Q products of their thermodestruction to gaseous phase, was suggested. ΔH values of MA 3 ·Q thermodestruction and MA 3 sublimation were calculated

  9. THE POSSIBLE INTERSTELLAR ANION CH2CN–: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    International Nuclear Information System (INIS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Crawford, T. Daniel

    2013-01-01

    The A 1 B 1 ⇽ X-tilde 1 A' excitation into the dipole-bound state of the cyanomethyl anion (CH 2 CN – ) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde 1 A' CH 2 CN – in order to assist in laboratory studies and astronomical observations.

  10. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    The A\\ ^1B_1 \\leftarrow \\tilde{X}\\ ^1A^{\\prime } excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for \\tilde{X}\\ ^1A^{\\prime } CH2CN- in order to assist in laboratory studies and astronomical observations.

  11. Thermochemistry of adducts of some bivalent transition metal bromides with aniline

    International Nuclear Information System (INIS)

    Dunstan, Pedro Oliver

    2006-01-01

    The compounds [MBr 2 (an) 2 ] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); an=aniline) were synthesized and characterized by melting points, elemental analysis, thermal studies, and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and aniline in methanol, aqueous 1.2M HCl or 25% (v/v) aqueous 1.2M HCl in methanol were measured. The following thermochemical parameters for the adducts have been determined by thermochemical cycles: the standard enthalpies for the Lewis acid/base reactions (Δ r H o ), the standard enthalpies of formation (Δ f H o ), the standard enthalpies of decomposition (Δ D H o ), the lattice standard enthalpies (Δ M H o ) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (Δ r H o (g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds (D-bar (M?N) ) and the enthalpies of formation of the adducts from the ions in the gaseous phase: M 2+ (g) +Br - (g) +an (g) ->[MBr 2 (an) 2 ] (g) (Δ fi H o ) have been estimated

  12. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  13. VIDEO-ANALYSIS OF THE EFFECT OF DIFFERENT TYPES OF ADAPTED SHOES ON KNEE ADDUCTION MOMENT

    Directory of Open Access Journals (Sweden)

    Andrey Yu. Aksenov

    2017-03-01

    Full Text Available Background. The effect of different footwear profiles on knee adduction moment have not been fully studied. Methods. Fifteen healthy volunteer subjects, age 25.3 (±2.73, undertook a series of gait laboratory trials with adapted shoes. Kinematic and kinetic data were collect using 16 Oqus 3+ cameras and the walking speed was controlled using timing gates. High street shoes were adapted to include five different heel heights (varying from a 1.5 cm to 5.5 cm heels, two heel profile conditions (curved and semi-curved heels, three varying apex angles (10, 15, and 20 degrees, and barefoot and 3CR footwear conditions. The baseline shoe had no heel curve, a heel height of 3.5cm, an apex position of 62.5% of the shoe length, an apex angle of 15 deg, and a rigid forepart of the shoe. Results. The shoe with 5.5 cm heel height significantly increased the mean knee adduction moment during 50%–100% of the stance phase compared to the 1.5 cm heel (p = 0.008. The high heel shoe also significantly increased knee adduction impulse (area under the curve versus the 1.5, 2.5, and 3.5 cm heels, and the 10° toe angle and barefoot condition. Ten degrees of toe angle reduced mean knee adduction moment during 0%–50% of the stance phase versus 20° and significantly reduced mean knee adduction moment during the late stance phase versus 15° and 20° toe angle footwear conditions. Walking with the curved heel for the healthy subjects increased mean knee adduction moment during 0%–50% of the stance phase compared to the heel without curvature (p < 0.0009. Conclusion. Further study is required to investigate those changes in patients with high risk of knee osteoarthritis.

  14. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  15. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    Science.gov (United States)

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  16. Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation.

    Science.gov (United States)

    Zhao, Yuewei; Xia, Qingsu; Gamboa da Costa, Gonçalo; Yu, Hongtao; Cai, Lining; Fu, Peter P

    2012-09-17

    Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.

  17. Formation of a Hydroxymethylfurfural-Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells.

    Science.gov (United States)

    Zhao, Qianzhu; Zou, Yueyu; Huang, Caihuan; Lan, Ping; Zheng, Jie; Ou, Shiyi

    2017-11-15

    Adducts of 5-hydroxymethylfurfural (HMF)-amino acids are formed during food processing and digestion; the elimination capacity of in vitro intestinal digests of biscuits, instant noodles, and potato crisps for HMF is 652, 727, and 540 μg/g, respectively. However, the safety of these adducts is unknown. In this study, an HMF-cysteine adduct named 1-dicysteinethioacetal-5-hydroxymehtylfurfural (DCH), which was found to be produced in the gastrointestinal tract after HMF intake, was prepared to test its effect toward Caco-2 cells. Compared with HMF, the adduct displayed lower cytotoxicity against Caco-2 cells with an IC 50 value of 31.26 mM versus 14.95 mM (HMF). The DCH did not induce cell apoptosis, whereas HMF significantly increased the apoptosis rate after incubation at concentrations of 16, 32, and 48 mM for 72 h. DCH showed an absorption rate considerably lower than that of HMF by Caco-2 cells. Lower absorption of DCH may result in lower toxicity compared with HMF against Caco-2 cells. Intracellular transformation of DCH has been observed.

  18. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    Science.gov (United States)

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  19. Sterically Bulky NHC Adducts of GaMe3 and InMe3 for H2 Activation and Lactide Polymerization

    Directory of Open Access Journals (Sweden)

    Anaëlle Bolley

    2018-01-01

    Full Text Available The sterically bulky Ga(III and In(III (IPr*MMe3 adducts (1 and 2 and (SItBuMMe3 adducts (3 and 4 (M = Ga, In; IPr* = 1,3-bis{2,6-bis(diphenylmethyl-4-methylphenyl}-1,3-dihydro- imidazol-2-ylidene; SItBu = 1,3-bis(1,1-dimethylethyl-imidazolidin-2-ylidene were prepared and structurally characterized, allowing an estimation of the steric hindrance of such Lewis pairs (yields in 1–4: 92%, 90%, 73%, and 42%, respectively. While the IPr* adducts 1 and 2 are robust species, the more severely congested SItBu adducts 3 and 4 are more reactive and exhibit a limited stability in solution. Adduct (SItBuGaMe3 (3 reacts quickly with H2 at room temperature to afford the corresponding aminal product, 1,3-di-tert-butylimidazolidine (5, along with free GaMe3. Such Frustrated Lewis Pair (FLP reactivity constitutes the first instance of a H2 activation involving a simple trialkyl GaR3 species. Adduct 3 also mediates the ring-opening polymerization (ROP of rac-lactide at room temperature to afford cyclic polylactide (PLA.

  20. Cytotoxic and mutagenic effects of specific carcinogen-DNA adducts in diploid human fibroblasts

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1985-01-01

    A comparison of the cytotoxicity and mutagenicity of a series of carcinogens in normal diploid human fibroblasts and in cells deficient in one or more DNA repair processes has provided insight into the specific DNA adduct(s) responsible for these biological effects. The carcinogens tested include ultraviolet radiation; reactive derivatives of structurally related aromatic amides; metabolites of benzo(a)pyrene; the simple alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-ethyl-N-nitrosourea; and aflatoxin B 1 dichloride, a model for the reactive 2,3-epoxide of aflatoxin B 1 . Exponentially growing cells were exposed to agents and assayed for mutations and cell killing. Cells deficient in repair of particular DNA adducts or lesions proved more sensitive to the agent causing those lesions than did normally repairing cells. Many of the carcinogens were compared for their mutagenic and/or cytotoxic effect, not only as a function of dose administered, but also as a function of the initial number of adducts or photoproducts induced in DNA and the number remaining at critical times posttreatment. The results demonstrated a high correlation between the number of DNA lesions remaining unexcised at the time the DNA was replicated and frequency of mutations induced. Comparative studies of the frequency of UV-induced transformation of normal and repair-deficient cells showed this also to be true for transformation

  1. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  2. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

    Science.gov (United States)

    Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D

    2010-10-14

    Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which

  3. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    Science.gov (United States)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  4. One-electron reduction reactions with enzymes in solution

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Adams, G.E.

    1976-01-01

    At pH 8 and above, hydrated electrons react with ribonuclease lysozyme and α-chymotrypsin to form transient products whose spectra resemble, but are not identical to, those for the RSSR - radical anion already known for simple disulphides. Assuming a value for the extinction coefficient similar to that for RSSR - in simple disulphides, only a fraction of the hydrated electrons are shown to react with the disulphide bridges: the remainder react at other sites in the protein molecule, such as histidine, tyrosine and, in lysozyme, tryptophan residues, giving rise to comparatively weak optical absorptions between 300 and 400 nm. This has been substantiated by studying the reaction of e - sub(aq) with subtilisin Novo (an enzyme which does not contain disulphide bridges), with enzymes in which the sulphur bridges have been oxidised and with some amino acid derivatives. On lowering the pH of the solution the intensity of the RSSR - absorption diminishes as the protonated histidine residues become the favoured reaction sites. In acid solutions (pH 2 to 3) the transient optical absoptions observed are due to reactions of hydrogen atoms with the aromatic amino acids tyrosine, tryptophan and phenylalanine. The CO - 2 radical anion is only observed to transfer an electron to disulphide groups in ribonuclease, although the effect of repeated pulsing shows that some reaction must occur elsewhere in the protein molecule. In acid solutions, protonation of the electron adduct appears to produce the RSSRH. radical, whose spectrum has a maximum at 340 nm. (author)

  5. Effect of adduct formation on valent state of cerium in its ν-diketonates

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav'eva, I.A.; Anufrieva, S.I.

    1982-01-01

    Physicochemical investigation of the system cerium (III, IV)-ν-diketone-additional ligand shows that ν-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ν-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-ν-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < α, α'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ν-diketonates

  6. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  7. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    Science.gov (United States)

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  8. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A

    2017-03-20

    Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.

  9. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    Science.gov (United States)

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  10. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  11. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  12. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  13. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. N,N-dimethylformamide (dMF) adducts of lanthanide trifluoroacetates

    International Nuclear Information System (INIS)

    Vicentini, G.; Silva, M.G. da

    1984-01-01

    Addition compounds of lanthanide iodides, acetates, nitrates, perchlorates, chlorides, perhenates, hexathiocyanates, chromiates, isothiocyanates and hexafluorophosphates with DMF have been extensively described in the literature. This article reports the preparation and characterization of adducts with general formula Ln(CF 3 COO) 3 . 2 DMF. (Author) [pt

  15. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts.

    Science.gov (United States)

    Savreux-Lenglet, Gaëlle; Depauw, Sabine; David-Cordonnier, Marie-Hélène

    2015-11-05

    DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.

  16. Effect of adduct formation on valent state of cerium in its. beta. -diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav' eva, I.A.; Anufrieva, S.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-04-01

    Physicochemical investigation of the system cerium (III, IV)-..beta..-diketone-additional ligand shows that ..beta..-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ..beta..-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-..beta..-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < ..cap alpha.., ..cap alpha..'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ..beta..-diketonates.

  17. Thermodynamic parameters for polyether adducts with neutral molecules

    International Nuclear Information System (INIS)

    Spencer, J.N.; Zafar, A.I.; Ganunis, T.F.

    1992-01-01

    Using calorimetry, thermodynamic parameters for the interaction of neutral molecules with polyether adducts are determined. When compared to its analogous acyclic ether, no macrocyclic effect is observed for 12-crown-4. The ether's collective oxygen atoms' action determines interaction with acetonitrile and malononitrile, with dimethyltin dichloride having a specific oxygen-binding site. 14 refs., 1 tab

  18. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice.

    Science.gov (United States)

    Zhu, Lin; Xue, Junyi; Xia, Qingsu; Fu, Peter P; Lin, Ge

    2017-02-01

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α ) and 301 h (~12.5 days, t 1/2β ). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α ) and 1736 h (~72.3 days, t 1/2β ). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

  19. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.