WorldWideScience

Sample records for radiatively driven colliding

  1. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  2. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  3. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  4. Radiation protection at the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Potter, K.M.; Hoefert, M.; Stevenson, G.R.

    1996-01-01

    After a brief description of the Large Hadron Collider (LHC), which will produce 7 TeV on 7 TeV proton collisions, some of the radiological questions it raises will be discussed. The machine will be built in the 27 km circumference ring-tunnel of an existing collider at CERN. It aims to achieve collision rates of 10 9 per second in two of its high-energy particle detectors. This requires two high-intensity beams of more than 10 14 protons each. Shielding, access control and activation in addition to the high power in the proton-proton collisions must be taken into account. The detectors and local electronics of the particle physics experiments, which will surround these collisions, will have to be radiation resistant. Some of the environmental issues raised by the project will be discussed. (author)

  5. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  6. Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Ghalam, Ali; Harkay, Katherine; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; Zimmermann, Frank

    2005-01-01

    Collective instabilities caused by the formation of an electron cloud (EC) are a potential limitation to the performances of the damping rings for a future linear collider. In this paper, we present recent simulation results for the electron cloud build-up in damping rings of different circumferences and discuss the single-bunch instabilities driven by the electron cloud

  7. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  8. RD50 Status Report 2008 - Radiation hard semiconductor devices for very high luminosity colliders

    CERN Document Server

    Balbuena, Juan Pablo; Campabadal, Francesca; Díez, Sergio; Fleta, Celeste; Lozano, Manuel; Pellegrini, Giulio; Rafí, Joan Marc; Ullán, Miguel; Creanza, Donato; De Palma, Mauro; Fedele, Francesca; Manna, Norman; Kierstead, Jim; Li, Zheng; Buda, Manuela; Lazanu, Sorina; Pintilie, Lucian; Pintilie, Ioana; Popa, Andreia-Ioana; Lazanu, Ionel; Collins, Paula; Fahrer, Manuel; Glaser, Maurice; Joram, Christian; Kaska, Katharina; La Rosa, Alessandro; Mekki, Julien; Moll, Michael; Pacifico, Nicola; Pernegger, Heinz; Goessling, Claus; Klingenberg, Reiner; Weber, Jens; Wunstorf, Renate; Roeder, Ralf; Stolze, Dieter; Uebersee, Hartmut; Cihangir, Selcuk; Kwan, Simon; Spiegel, Leonard; Tan, Ping; Bruzzi, Mara; Focardi, Ettore; Menichelli, David; Scaringella, Monica; Breindl, Michael; Eckert, Simon; Köhler, Michael; Kuehn, Susanne; Parzefall, Ulrich; Wiik, Liv; Bates, Richard; Blue, Andrew; Buttar, Craig; Doherty, Freddie; Eklund, Lars; Bates, Alison G; Haddad, Lina; Houston, Sarah; James, Grant; Mathieson, Keith; Melone, J; OShea, Val; Parkes, Chris; Pennicard, David; Buhmann, Peter; Eckstein, Doris; Fretwurst, Eckhart; Hönniger, Frank; Khomenkov, Vladimir; Klanner, Robert; Lindström, Gunnar; Pein, Uwe; Srivastava, Ajay; Härkönen, Jaakko; Lassila-Perini, Katri; Luukka, Panja; Mäenpää, Teppo; Tuominen, Eija; Tuovinen, Esa; Eremin, Vladimir; Ilyashenko, Igor; Ivanov, Alexandr; Kalinina, Evgenia; Lebedev, Alexander; Strokan, Nikita; Verbitskaya, Elena; Barcz, Adam; Brzozowski, Andrzej; Kaminski, Pawel; Kozlowski, Roman; Kozubal, Michal; Luczynski, Zygmunt; Pawlowski, Marius; Surma, Barbara; Zelazko, Jaroslaw; de Boer, Wim; Dierlamm, Alexander; Frey, Martin; Hartmann, Frank; Zhukov, Valery; Barabash, L; Dolgolenko, A; Groza, A; Karpenko, A; Khivrich, V; Lastovetsky, V; Litovchenko, P; Polivtsev, L; Campbell, Duncan; Chilingarov, Alexandre; Fox, Harald; Hughes, Gareth; Jones, Brian Keith; Sloan, Terence; Samadashvili, Nino; Tuuva, Tuure; Affolder, Anthony; Allport, Phillip; Bowcock, Themis; Casse, Gianluigi; Vossebeld, Joost; Cindro, Vladimir; Dolenc, Irena; Kramberger, Gregor; Mandic, Igor; Mikuž, Marko; Zavrtanik, Marko; Zontar, Dejan; Gil, Eduardo Cortina; Grégoire, Ghislain; Lemaitre, Vincent; Militaru, Otilia; Piotrzkowski, Krzysztof; Kazuchits, Nikolai; Makarenko, Leonid; Charron, Sébastien; Genest, Marie-Helene; Houdayer, Alain; Lebel, Celine; Leroy, Claude; Aleev, Andrey; Golubev, Alexander; Grigoriev, Eugene; Karpov, Aleksey; Martemianov, Alxander; Rogozhkin, Sergey; Zaluzhny, Alexandre; Andricek, Ladislav; Beimforde, Michael; Macchiolo, Anna; Moser, Hans-Günther; Nisius, Richard; Richter, Rainer; Gorelov, Igor; Hoeferkamp, Martin; Metcalfe, Jessica; Seidel, Sally; Toms, Konstantin; Hartjes, Fred; Koffeman, Els; van der Graaf, Harry; Visschers, Jan; Kuznetsov, Andrej; Sundnes Løvlie, Lars; Monakhov, Edouard; Svensson, Bengt G; Bisello, Dario; Candelori, Andrea; Litovchenko, Alexei; Pantano, Devis; Rando, Riccardo; Bilei, Gian Mario; Passeri, Daniele; Petasecca, Marco; Pignatel, Giorgio Umberto; Bernardini, Jacopo; Borrello, Laura; Dutta, Suchandra; Fiori, Francesco; Messineo, Alberto; Bohm, Jan; Mikestikova, Marcela; Popule, Jiri; Sicho, Petr; Tomasek, Michal; Vrba, Vaclav; Broz, Jan; Dolezal, Zdenek; Kodys, Peter; Tsvetkov, Alexej; Wilhelm, Ivan; Chren, Dominik; Horazdovsky, Tomas; Kohout, Zdenek; Pospisil, Stanislav; Solar, Michael; Sopko, Vít; Sopko, Bruno; Uher, Josef; Horisberger, Roland; Radicci, Valeria; Rohe, Tilman; Bolla, Gino; Bortoletto, Daniela; Giolo, Kim; Miyamoto, Jun; Rott, Carsten; Roy, Amitava; Shipsey, Ian; Son, SeungHee; Demina, Regina; Korjenevski, Sergey; Grillo, Alexander; Sadrozinski, Hartmut; Schumm, Bruce; Seiden, Abraham; Spence, Ned; Hansen, Thor-Erik; Artuso, Marina; Borgia, Alessandra; Lefeuvre, Gwenaelle; Guskov, J; Marunko, Sergey; Ruzin, Arie; Tylchin, Tamir; Boscardin, Maurizio; Dalla Betta, Gian - Franco; Gregori, Paolo; Piemonte, Claudio; Ronchin, Sabina; Zen, Mario; Zorzi, Nicola; Garcia, Carmen; Lacasta, Carlos; Marco, Ricardo; Marti i Garcia, Salvador; Minano, Mercedes; Soldevila-Serrano, Urmila; Gaubas, Eugenijus; Kadys, Arunas; Kazukauskas, Vaidotas; Sakalauskas, Stanislavas; Storasta, Jurgis; Vidmantis Vaitkus, Juozas; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    The objective of the CERN RD50 Collaboration is the development of radiation hard semiconductor detectors for very high luminosity colliders, particularly to face the requirements of a possible upgrade scenario of the LHC.This document reports the status of research and main results obtained after the sixth year of activity of the collaboration.

  9. RD50 Status Report 2009/2010 - Radiation hard semiconductor devices for very high luminosity colliders

    CERN Document Server

    Moll, Michael

    2012-01-01

    The objective of the CERN RD50 Collaboration is the development of radiation hard semiconductor detectors for very high luminosity colliders, particularly to face the requirements for the upgrade of the LHC detectors. This document reports on the status of research and main results obtained in the years 2009 and 2010.

  10. Shielded coherent synchrotron radiation and its possible effect in the next linear collider

    International Nuclear Information System (INIS)

    Warnock, R.L.

    1991-05-01

    Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab

  11. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  12. Beyond the International Linear Collider Driven by FEL with Energy Recovery at 5-10TeV

    CERN Document Server

    Hajima, R

    2005-01-01

    The international linear collider (ILC) at the extreme high energy frontier provides the best hope for the scientist to probe the finenst structure of matter and its origin and perhaps even the origin of the Universe. The technology that employs is based on superconducting RF technology. This technology may usher in a new era for the development of superconducting accelerator technology. On the other hand, the gradient that is allowed in such an accelerator is limited. If one wishes something beyond this after one learns the physics at such high energies(~0.5TeV) and utilizing such technology, one may need a new way to employ the supeconducting technology in providing high gradient compact accelerators. Inspired by a former work of 5-TeV colliders based on solid-state tera-watt lasers [1], we explore 5-10 TeV linear colliders driven by free-electron lasers equipped with energy-recovery system. A preliminary design study suggests that a 5-10 TeV collider with the luminosity of 10(34) can be realized by multi-s...

  13. Radiative corrections to top and bottom production at collider energies

    International Nuclear Information System (INIS)

    Dawson, S.

    1988-10-01

    We discuss the results of a full calculation of the QCD O(α 8 /sup s/) radiative corrections to the differential cross section for the production of a heavy quark pair. Numerical results are presented for bottom and top production in p/bar p/ collisions at /square root/s = 1.8 TeV. 2 refs., 2 figs

  14. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Lazanu, I.; Lazanu, S.

    2004-01-01

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  15. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  16. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  17. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    Science.gov (United States)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  18. Higgs radiation off top particles in high-energy e+e- colliders

    International Nuclear Information System (INIS)

    Djouadi, A.; Technische Hochschule Aachen; Kalinowski, J.; Zerwas, P.M.

    1991-10-01

    Higgs particles can be radiated off heavy top quarks which will be produced copiously in high energy e + e - colliders. This process can be used to measure the Higgs-top quark coupling. We present the cross section for the production of Higgs bosons in the Standard Model. In addition we have studied the production of neutral and charged Higgs particles in association with heavy fermions in the Minimal Supersymmetric Standard Model. (orig.)

  19. Beam-beam instability driven by wakefield effects in linear colliders

    CERN Document Server

    Brinkmann, R; Schulte, Daniel

    2002-01-01

    The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.

  20. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  1. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    International Nuclear Information System (INIS)

    Wei, Qingyu

    2008-01-01

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  2. Ultra High Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN

    CERN Document Server

    Gorine, Georgi; Mandic, Igor; Jazbec, Anže; Snoj, Luka; Capeans, Mar; Moll, Michael; Bouvet, Didier; Ravotti, Federico; Sallese, Jean-Michel

    2018-01-01

    The Future Circular Collider (FCC) is foreseen as the next generation ~100 km long synchrotron to be built in the Geneva area starting 2050. This machine is expected to reach an energy level of 100 TeV generating unprecedented radiation levels >100 times higher than in today`s Large Hadron Collider (LHC). Current Radiation Monitoring system, like the RADMONs employed in the LHC, will not be capable to function and withstand this harsh environment. The development of a new Ultra High Fluence and Dose Radiation Sensor is a key element to allow irradiation tests of FCC equipment and, at a later stage, to monitor radiation levels in the FCC itself. In this paper, we present an innovative dosimetry solution based on thin layers of metals, which resistivity is shown to increase significantly due to the accumulated displacement damage. After describing the fabrication techniques used to manufacture these Radiation Dependent Resistors (RDR), we show and discuss the results of the irradiation experiments carried out ...

  3. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  4. Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

    CERN Multimedia

    Joram, C; Gregor, I; Dierlamm, A H; Wilson, F F; Sloan, T; Tuboltsev, Y V; Marone, M; Artuso, M; Cindro, V; Bruzzi, M; Bhardwaj, A; Bohm, J; Mikestikova, M; Walz, M; Breindl, M A; Ruzin, A; Marunko, S; Guskov, J; Haerkoenen, J J; Pospisil, S; Fadeyev, V; Makarenko, L; Kaminski, P; Zelazko, J; Pintilie, L; Radu, R; Nistor, S V; Ullan comes, M; Storasta, J V; Gaubas, E; Lacasta llacer, C; Kilminster, B J; Garutti, E; Buhmann, P; Khomenkov, V; Poehlsen, J A; Fernandez garcia, M; Buttar, C; Eklund, L M; Munoz sanchez, F J; Eremin, V; Aleev, A; Modi, B; Sicho, P; Gisen, A J; Nikolopoulos, K; Van beuzekom, M G; Kozlowski, R; Lozano fantoba, M; Leroy, C; Pernegger, H; Del burgo, R; Vila alvarez, I; Palomo pinto, F R; Lounis, A; Eremin, I; Fadeeva, N; Rogozhkin, S; Shivpuri, R K; Arsenovich, T; Ott, J; Abt, M; Loenker, J; Savic, N; Monaco, V; Visser, J; Lynn, D; Horazdovsky, T; Solar, M; Dervan, P J; Meng, L; Spencer, E N; Kazuchits, N; Brzozowski, A; Kozubal, M; Nistor, L C; Marti i garcia, S; Gomez camacho, J J; Fretwurst, E; Hoenniger, F; Schwandt, J; Hartmann, F; Marchiori, G; Maneuski, D; De capua, S; Williams, M R J; Mandic, I; Gadda, A; Preiss, J; Macchiolo, A; Nisius, R; Grinstein, S; Gonella, L; Wennloef, H L O; Slavicek, T; Masek, P; Casse, G; Flores, D; Tuuva, T; Jimenez ramos, M D C; Charron, S; Rubinskiy, I; Jansen, H; Eichhorn, T V; Matysek, M; Andersson-lindstroem, G; Donegani, E; Bomben, M; Oshea, V; Muenstermann, D; Holmkvist, C W; Oh, A; Lopez paz, I; Verbitskaya, E; Mitina, D; Grigoriev, E; Zaluzhnyy, A; Mikuz, M; Kramberger, G; Scaringella, M; Ranjeet, R; Jain, A; Luukka, P R; Tuominen, E M; Allport, P P; Cartiglia, N; Brigljevic, V; Kohout, Z; Quirion, D; Lauer, K; Collins, P; Gallrapp, C; Rohe, T V; Chauveau, J; Villani, E G; Fox, H; Parkes, C J; Nikitin, A; Spiegel, L G; Creanza, D M; Menichelli, D; Mcduff, H; Carna, M; Weers, M; Weigell, P; Bortoletto, D; Staiano, A; Bellan, R; Szumlak, T; Sopko, V; Pawlowski, M; Pintilie, I; Pellegrini, G; Rafi tatjer, J M; Moll, M; Eckstein, D; Klanner, R; Gomez, G; Gersabeck, M; Cobbledick, J L; Shepelev, A; Golubev, A; Apresyan, A; Lipton, R J; Borgia, A; Zavrtanik, M; Manna, N; Ranjan, K; Chhabra, S; Beyer, J; Korolkov, I; Heintz, U; Sadrozinski, H; Seiden, A; Surma, B; Esteban, S; Kazukauskas, V; Kalendra, V; Mekys, A; Nachman, B P; Tackmann, K; Steinbrueck, G; Pohlsen, T; Calderini, G; Svihra, P; Murray, D; Bolla, G; Zontar, D; Focardi, E; Seidel, S C; Winkler, A D; Altenheiner, S; Parzefall, U; Moser, H; Sopko, B; Buckland, M D; Vaitkus, J V; Ortlepp, T

    2002-01-01

    The requirements at the Large Hadron Collider (LHC) at CERN have pushed the present day silicon tracking detectors to the very edge of the current technology. Future very high luminosity colliders or a possible upgrade scenario of the LHC to a luminosity of 10$^{35}$ cm$^{-2}$s$^{-1}$ will require semiconductor detectors with substantially improved properties. Considering the expected total fluences of fast hadrons above 10$^{16}$ cm$^{-2}$ and a possible reduced bunch-crossing interval of $\\approx$10 ns, the detector must be ultra radiation hard, provide a fast and efficient charge collection and be as thin as possible.\\\\ We propose a research and development program to provide a detector technology, which is able to operate safely and efficiently in such an environment. Within this project we will optimize existing methods and evaluate new ways to engineer the silicon bulk material, the detector structure and the detector operational conditions. Furthermore, possibilities to use semiconductor materials othe...

  5. Radiation calculations and shielding considerations for the design of the Next Linear Collider

    International Nuclear Information System (INIS)

    Nelson, W.R.; Rokni, S.H.; Vylet, V.

    1996-11-01

    The authors describe some of the work that they have done as a contribution to the Next Linear Collider (NLC) Zeroth-Order Design Report (ZDR), with specific emphasis placed on radiation-protection issues. However, because of the very nature of this machine--namely, extremely-small beam spots of high intensity--a new approach in accelerator radiation-protection philosophy appears to be warranted. Accordingly, the presentation will first take a look at recent design studies directed at protecting the machine itself, since this has resulted in a much better understanding of the very short exposure times involved whenever beam is lost and radiation sources are created. At the end of the paper, the authors suggest a Beam Containment System (BCS) that would provide an independent, redundant guarantee that exposure times are, indeed, kept very short. This, in turn, has guided them in the determination of the transverse shield thickness for the machine

  6. RADIATION PROTECTION FOR THE RELATIVISTIC HEAVY ION-COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Musolino, S.V.; Stevens, A.J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy particle accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon. The rings consist of a circular lattice of superconducting magnets 3.8 km in circumference. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective when the facility goes into operation is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. There are only a few other high energy particle accelerators like RHIC in the world. The rules promulgated in the Code of Federal Regulations under the Atomic Energy Act do not cover prompt radiation from accelerators, nor are there any State regulations that govern the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance for the design of radiation shielding

  7. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211473; Cerutti, Francesco; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis; CERN. Geneva. ATS Department

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the Future Circular Collider (FCC) study, is presented. A peak luminosity of 30 1034 cm−2s−1 and a total integrated luminosity of 30 ab−1 are assumed for these radiation studies. A first concept of the detector foresees the presence of central and forward sub-detectors that provide acceptance up to |η|=6 inside a magnetic field generated by the combination of a central solenoid and two forward dipoles. This layout has been modelled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and pho- tons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different sub-detectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technol...

  8. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  9. Electromigration driven failures on miniature silver fuses at the Large Hadron Collider

    CERN Document Server

    Trikoupis, Nikolaos; Perez Fontenla, Ana Teresa

    2017-01-01

    Spurious faults were observed on the miniature silver fuses of electronic cards used for the cryogenics instrumentation in the LHC (Large Hadron Collider) accelerator at CERN. By applying analytical tools and techniques such as Scanning Electron Microscopy, spectrometry and Weibull reliability calculations and by the knowledge of operating temperatures and operational time of each unit, the origin of the problem has now been understood and can be attributed to electromigration. The selected fuse was operated at moderate temperature and load conditions and was considered as a “lifetime” component. However, it turned out to have a smaller than expected MTTF with failures following a Weibull distribution of $\\beta = 3.91$ and $\\eta = 2323$. The literature describes extensively the effects of electromigration, but there are only limited references referring to the impact of this phenomenon on miniature silver fuses for electronic circuits.

  10. Radiation problems in the design of the large electron-positron collider (LEP)

    International Nuclear Information System (INIS)

    Fasso, A.; Goebel, K.; Hoefert, M.; Rau, G.; Schoenbacher, H.; Stevenson, G.R.; Sullivan, A.H.; Swanson, W.P.; Tuyn, J.W.N.

    1984-01-01

    This is a comprehensive review of the radiation problems taken into account in the design studies for the Large Electron-Positron collider (LEP) now under construction at CERN. It provides estimates and calculations of the magnitude of the most important hazards, including those from non-ionizing radiations and magnetic fields as well as from ionizing radiation, and describes the measures to be taken in the design, construction, and operation to limit them. Damage to components is considered as well as the risk to people. More general explanations are given of the physical processes and technical parameters that influence the production and effects of radiation, and a comprehensive bibliography provides access to the basic theories and other discussions of the subject. The report effectively summarizes the findings of the Working Group on LEP radiation problems and parallels the results of analogous studies made for the previous large accelerator. The concluding chapters describe the LEP radiation protection system, which is foreseen to reduce doses far below the legal limits for all those working with the machine or living nearby, and summarize the environmental impact. Costs are also briefly considered. (orig.)

  11. Radiation damage considerations in a high luminosity collider: The interaction region

    International Nuclear Information System (INIS)

    Lee, D.M.

    1992-01-01

    The interaction region in a high luminosity collider will be a source of radiation for all components in the vicinity and will place stringent requirements on their design. The major components in the vicinity and will place stingent requirements on their design. The major components in the vicinity of the interaction region are the physics detectors that surround the beam pipe and the focusing quadrupole magnets nearby. We will present the radiation levels in such a physics detector and the power in the forward direction that will be deposited in the forward calorimeters and quad magnets. The implications of the levels on a variety of detector components and electronics will be presented. The calculational techniques and limitation will be reviewed

  12. Radioactivation of silicon tracker modules in high-luminosity hadron collider radiation environments

    CERN Document Server

    Dawson, I; Buttar, C; Cindro, V; Mandic, I

    2003-01-01

    One of the consequences of operating detector systems in harsh radiation environments will be radioactivation of the components. This will certainly be true in experiments such as ATLAS and CMS, which are currently being built to exploit the physics potential at CERN's Large Hadron Collider. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. This paper presents predictions for the radioactivation of ATLAS's Semi- Conductor Tracker (SCT) barrel system, based on both calculations and measurements. It is shown that both neutron capture and high-energy hadron reactions must be taken into account. The predictions also show that the SCT barrel-module should not pose any serious radiological problems after operation in high radiation environments.

  13. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  14. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  15. Radiative corrections for associated ZH production at future e+e- colliders

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1991-11-01

    The ZHfanti f four-point function is calculated in the one-loop approximation of the Standard Model and full analytic results are presented. The loop contributions due to both light and new heavy fermions are inspected in detail. The dominant mechanisms of Higgs-boson production from fermions are compared. The effect of radiative corrections on the cross section of fanti f→ZH including bremsstrahlung is studied. The spectrum of hard bremsstrahlung is integrated analytically. The implications for Higgs-boson searches at future e + e - colliders in the energy range 200 GeV≤√s≤1.5 TeV, which includes both LEP 2 and the Next Linear Collider, are analyzed. At √s=500 GeV, for instance, weak corrections in the modified on-mass-shell scheme vary between -2% and +7%, depending on the actual values of the Higgs-boson and top-quark masses. Electromagnetic corrections strongly reduce the cross section close to the ZH-production threshold, while they may considerably enhance it far above threshold. (orig.)

  16. Treatment of photon radiation in kinematics fits at future e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.; List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); List, B. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2010-05-15

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e{sup +}e{sup -} colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p{sub z,{gamma}} ({eta}) is introduced, which is parametrized such that {eta} follows a normal distribution. In the fit, {eta} is treated as having a measured value of zero, which corresponds to p{sub z,{gamma}}, = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e{sup +}e{sup -}{yields}q anti qq anti q event sample at {radical}(s)=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider. (orig.)

  17. Treatment of photon radiation in kinematics fits at future e+e- colliders

    International Nuclear Information System (INIS)

    Beckmann, M.; List, J.; List, B.

    2010-05-01

    Kinematic fitting, where constraints such as energy and momentum conservation are imposed on measured four-vectors of jets and leptons, is an important tool to improve the resolution in high-energy physics experiments. At future e + e - colliders, photon radiation parallel to the beam carrying away large amounts of energy and momentum will become a challenge for kinematic fitting. A photon with longitudinal momentum p z,γ (η) is introduced, which is parametrized such that η follows a normal distribution. In the fit, η is treated as having a measured value of zero, which corresponds to p z,γ , = 0. As a result, fits with constraints on energy and momentum conservation converge well even in the presence of a highly energetic photon, while the resolution of fits without such a photon is retained. A fully simulated and reconstructed e + e - →q anti qq anti q event sample at √(s)=500 GeV is used to investigate the performance of this method under realistic conditions, as expected at the International Linear Collider. (orig.)

  18. CERN 's large hadron collider : Radiation protection aspects of design and commissioning

    International Nuclear Information System (INIS)

    Forkel-Wirth, Doris; Brugger, Markus; Menzel, Hans; Roesler, Stefan; Vincke, Heinz; Vincke, Helmut

    2008-01-01

    Full text: CERN, the world's largest particle physics laboratory provides high energy hadron beams for experiments exploring matter. For this purpose various accelerators are operated and in 2008 the last link will be added to the accelerator chain: beam will be injected into CERN 's new 'flagship', the Large Hadron Collider (LHC). From then on high energy physics experiments will exploit the LHC 's colliding beams of protons and lead ions with a center of mass energy of 14 TeV and 1150 TeV, respectively. Radiation Protection aspects were taken into account during the whole duration of the design phase. Conservative design constraints were defined in 1996; some years later some of them, in particular with respect to the dose to occupational exposed workers, had to be readjusted to account for the latest development in CERN 's radiation protection rules and regulations. Numerous radiation protection studies had been performed to ensure a lay-out of the machine and its experiments in compliance with these constraints. These studies assessed all radiation risks related to the various beam-operation modes of the accelerator. In all cases external exposure was identified as the major risk: due to high energetic, mixed radiation fields during beam-on and due to beta and gamma radiation fields caused by induced radioactivity during beam-off. Counter measures were implemented like an optimized beam operation to limit beam losses, installation of thick shielding, prohibition of access to the major part of the LHC underground areas during beam-operation and optimization of the equipment and its handling during maintenance and repair. Detailed Monte Carlo simulations were performed to derive from the various beam loss scenarios the dose rates the workers will be exposed to. Individual and collective doses were projected based on the calculations and the maintenance scenarios provided by the teams concerned. In an iterative way the lay-out of the various regions were optimized

  19. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Science.gov (United States)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  20. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Directory of Open Access Journals (Sweden)

    Infantino Angelo

    2017-01-01

    Full Text Available As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh, running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee as well as a lepton-hadron option (FCC-he. In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  1. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    Science.gov (United States)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  2. The physics of radiation driven ICF hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1995-01-01

    On the Nova Laser at LLNL, we have recently demonstrated many of the key elements required for assuring that the next proposed laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The target uses the recently declassified indirect drive (sometimes referred to as open-quotes radiation driveclose quotes) approach which converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray open-quotes ovenclose quotes (called a hohlraum) to drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In this lecture we briefly review the fundamentals of ICF, and describe the capsule implosion symmetry advantages of the hohlraum approach. We then concentrate on a quantitative understanding of the scaling of radiation drive with hohlraum size and wall material, and with laser pulse length and power. We demonstrate that coupling efficiency of x-ray drive to the capsule increases as we proceed from Nova to the NIF and eventually to a reactor, thus increasing the gain of the system

  3. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  4. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  5. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  6. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  7. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  8. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bitterling, Oliver

    2017-04-03

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10{sup -10} cm{sup 2} which is one order of magnitude lower than the target set during the development of this system.

  9. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Bitterling, Oliver

    2017-01-01

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10 -10 cm 2 which is one order of magnitude lower than the target set during the development of this system.

  10. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  11. Tracking with CVD diamond radiation sensors at high luminosity colliders (1999-3.1507)

    CERN Document Server

    Schnetzer, S R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R J; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Recent progress on developing diamond-based sensors for vertex detection at high luminosity hadron colliders is described. Measurements of the performance of diamond sensors after irradiation to fluences of up to 5*10/sup 15/ hadrons/cm/sup 2/ are shown. These indicate that diamond sensors will operate at distances as close as 5 cm from the interaction point at the Large Hadron Collider (LHC) for many years at full luminosity without significant degradation in performance. Measurements of the quality of the signals from diamond sensors as well as spatial uniformity are presented. Test beam results on measurements of diamond-based microstrip and pixels devices are described.

  12. The energetics of AGN radiation pressure-driven outflows

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Maiolino, R.

    2018-05-01

    The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.

  13. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  14. RADIATION-DRIVEN IMPLOSION AND TRIGGERED STAR FORMATION

    International Nuclear Information System (INIS)

    Bisbas, Thomas G.; Wuensch, Richard; Whitworth, Anthony P.; Walch, Stefanie; Hubber, David A.

    2011-01-01

    We present simulations of initially stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the smoothed particle hydrodynamics code SEREN and a HEALPix-based photoionization algorithm to simulate the propagation of the ionizing radiation and the resulting dynamical evolution of the cloud. We find that the incident ionizing flux, Φ LyC , is the critical parameter determining the cloud evolution. At moderate fluxes, a large fraction of the cloud mass is converted into stars. As the flux is increased, the fraction of the cloud mass that is converted into stars and the mean masses of the individual stars both decrease. Very high fluxes simply disperse the cloud. Newly formed stars tend to be concentrated along the central axis of the cloud (i.e., the axis pointing in the direction of the incident flux). For given cloud parameters, the time, t * , at which star formation starts is proportional to Φ -1/3 LyC . The pattern of star formation found in the simulations is similar to that observed in bright-rimmed clouds.

  15. Radiation protection considerations in the design of the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Hoefert, M.; Huhtinen, M.; Moritz, L.E.; Nakashima, H.; Potter, K.M.; Rollet, S.; Stevenson, G.R.; Zazula, J.M.

    1996-01-01

    This paper describes the radiological concerns which are being taken into account in the design of the LHC (CERN's future Large Hadron Collider). The machine will be built in the 27 km circumference ring tunnel of the existing LEP collider at CERN. The high intensity of the circulating beams (each containing more than 10 14 protons at 7 TeV) determines the thickness specification of the shielding of the main-ring tunnel, the precautions to be taken in the design of the beam dumps and their associated caverns and the radioactivity induced by the loss of protons in the main ring by inelastic beam-gas interactions. The high luminosity of the collider is designed to provide inelastic collision rates of 10 9 per second in each of the two principal detector installations, ATLAS and CMS. These collisions determine the shielding of the experimental areas, the radioactivity induced in both the detectors and in the machine components on either side of the experimental installations and, to some extent, the radioactivity induced in the beam-cleaning (scraper) systems. Some of the environmental issues raised by the project will be discussed. (author)

  16. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  17. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  18. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  19. The application of the Monte Carlo code FLUKA in radiation protection studies for the large hadron collider

    International Nuclear Information System (INIS)

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus

    2010-01-01

    The multi-purpose particle interaction and transport code FLUKA is integral part of all radiation protection studies for the design and operation of the Large Hadron Collider (LHC) at CERN. It is one of the very few codes available for this type of calculations which is capable to calculate in one and the same simulation proton-proton and heavy ion collisions at LHC energies as well as the entire hadronic and electromagnetic particle cascade initiated by secondary particles in detectors and beam-line components from TeV energies down to energies of thermal neutrons. The present paper reviews these capabilities of FLUKA in giving details of relevant physics models along with examples of radiation protection studies for the LHC such as shielding studies for underground areas occupied by personnel during LHC operation and the simulation of induced radioactivity around beam loss points. Integral part of the FLUKA development is a careful benchmarking of specific models as well as the code performance in complex, real life applications which is demonstrated with examples of studies relevant to radiation protection at the LHC. (author)

  20. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  1. Theory of radiatively driven stellar winds. I. A physical interpretation

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1980-01-01

    This series of papers extends the line-driven wind theory of Castor, Abbott, and Klein (CAK). The present paper develops a physical interpretation of line-driven flows using analytic methods. Numerical results will follow in two subsequent papers

  2. Radiation dominated acoustophoresis driven by surface acoustic waves.

    Science.gov (United States)

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)

    International Nuclear Information System (INIS)

    Cavaglia, Marco

    2003-01-01

    If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature

  4. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  5. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  6. When theory and observation collide: Can non-ionizing radiation cause cancer?

    Science.gov (United States)

    Havas, Magda

    2017-02-01

    This paper attempts to resolve the debate about whether non-ionizing radiation (NIR) can cause cancer-a debate that has been ongoing for decades. The rationale, put forward mostly by physicists and accepted by many health agencies, is that, "since NIR does not have enough energy to dislodge electrons, it is unable to cause cancer." This argument is based on a flawed assumption and uses the model of ionizing radiation (IR) to explain NIR, which is inappropriate. Evidence of free-radical damage has been repeatedly documented among humans, animals, plants and microorganisms for both extremely low frequency (ELF) electromagnetic fields (EMF) and for radio frequency (RF) radiation, neither of which is ionizing. While IR directly damages DNA, NIR interferes with the oxidative repair mechanisms resulting in oxidative stress, damage to cellular components including DNA, and damage to cellular processes leading to cancer. Furthermore, free-radical damage explains the increased cancer risks associated with mobile phone use, occupational exposure to NIR (ELF EMF and RFR), and residential exposure to power lines and RF transmitters including mobile phones, cell phone base stations, broadcast antennas, and radar installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  8. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  9. Radiative corrections to W+jet production at hadron colliders with a leptonic decay of the W boson

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzik, Tobias

    2009-08-31

    The production of W bosons and additional jets at hadron colliders is a topic of great phenomenological interest, because such processes have large cross sections and, owing to the clear decay signature of the W boson, can for instance be used to monitor and calibrate the collider's luminosity, as well as for a precise determination of the W-boson mass and width. Thus, a profound theoretical understanding of this process class is mandatory. In order to improve the accuracy of the theoretical predictions, this thesis is devoted to the calculation of the electroweak radiative corrections to the production of one W boson with one associated jet at the LHC and the Tevatron within the Standard Model. Since these corrections are at first evaluated on the parton level in a perturbative approach, we work in the parton model, where the hadronic cross section is obtained by folding the partonic contributions with the parton distribution functions that contain the non-perturbative information of the proton structure and have to be determined by experiment. We provide results for a stable W boson that is produced on its mass shell as well as for an intermediate (off-shell) W boson decaying into a charged lepton and a neutrino. For a consistent calculation of the next-to-leading order corrections, we have to take into account the virtual one-loop contributions, as well as the real bremsstrahlung corrections caused by radiation of one additional photon. Within both contributions, mass singularities appear that have to be treated with care within the numerical evaluation. In the calculation with a stable W boson in the final state, we use the method of phase-space slicing in order to exclude such singularities from the numerical phase-space integration and calculate them analytically in the problematic phase-space regions. For the off-shell calculation, however, we use the more sophisticated dipole subtraction technique to subtract the infrared-singular structures on the

  10. Radiative corrections to W+jet production at hadron colliders with a leptonic decay of the W boson

    International Nuclear Information System (INIS)

    Kasprzik, Tobias

    2009-01-01

    The production of W bosons and additional jets at hadron colliders is a topic of great phenomenological interest, because such processes have large cross sections and, owing to the clear decay signature of the W boson, can for instance be used to monitor and calibrate the collider's luminosity, as well as for a precise determination of the W-boson mass and width. Thus, a profound theoretical understanding of this process class is mandatory. In order to improve the accuracy of the theoretical predictions, this thesis is devoted to the calculation of the electroweak radiative corrections to the production of one W boson with one associated jet at the LHC and the Tevatron within the Standard Model. Since these corrections are at first evaluated on the parton level in a perturbative approach, we work in the parton model, where the hadronic cross section is obtained by folding the partonic contributions with the parton distribution functions that contain the non-perturbative information of the proton structure and have to be determined by experiment. We provide results for a stable W boson that is produced on its mass shell as well as for an intermediate (off-shell) W boson decaying into a charged lepton and a neutrino. For a consistent calculation of the next-to-leading order corrections, we have to take into account the virtual one-loop contributions, as well as the real bremsstrahlung corrections caused by radiation of one additional photon. Within both contributions, mass singularities appear that have to be treated with care within the numerical evaluation. In the calculation with a stable W boson in the final state, we use the method of phase-space slicing in order to exclude such singularities from the numerical phase-space integration and calculate them analytically in the problematic phase-space regions. For the off-shell calculation, however, we use the more sophisticated dipole subtraction technique to subtract the infrared-singular structures on the

  11. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  12. The CERN linear collider test facility (CTF)

    International Nuclear Information System (INIS)

    Baconnier, Y.; Battisti, S.; Bossart, R.; Delahaye, J.P.; Geissler, K.K.; Godot, J.C.; Huebner, K.; Madsen, J.H.B.; Potier, J.P.; Riche, A.J.; Sladen, J.; Suberlucq, G.; Wilson, I.; Wuensch, W.

    1992-01-01

    The CTF (Collider Test Facility) was brought into service last year. The 3 GHz gun produced a beam of 3 MeV/c which was accelerated to 40 MeV/c. This beam, passing a prototype CLIC (linear collider) structure, generated a sizeable amount of 30 GHz power. This paper describes the results and experience with the gun driven by a 8 ns long laser pulse and its CsI photo cathode, the beam behaviour, the beam diagnostics in particular with the bunch measurements by Cerenkov or transition radiation light and streak camera, the photo cathode research, and the beam dynamics studies on space charge effects. (Author)4 figs., tab., 6 refs

  13. Radiation zoning for vacuum equipment of the CERN Large Hadron Collider

    CERN Document Server

    Mahner, E; Cruikshank, P; Forkel-Wirth, D; Jiménez, J M

    2010-01-01

    Beam losses in high-energy particle accelerators are responsible for beam lifetime degradation. In the LHC beam losses will create a shower of particles while interacting with materials from the beam pipes and surroundings, resulting in a partial activation of material in the tunnel. Efforts have been made during the accelerator design to monitor and to reduce the activation induced by beam losses. Traceability for all vacuum components has been established providing a tool to follow-up individually each component or subcomponents installed in the tunnel, regardless of their future destination e.g. recycling or disposal. In the latter case, the history of vacuum components will allow calculating the beam-induced activation and permit comparisons with in-situ and ex-situ measurements. This zoning will also help to reduce collective and individual radiation doses to personnel during interventions. The paper presents the vacuum system layout and describes the LHC vacuum zoning and its implementation using an ORA...

  14. Laser-driven wakefield electron acceleration and associated radiation sources

    International Nuclear Information System (INIS)

    Davoine, X.

    2009-10-01

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme

  15. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  16. Colliding druthers

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Johnson, R.P.

    1977-01-01

    Recommendations are made to maximize the usefulness of the colliding beam facility of the Main Ring and Energy Doubler at the Fermilab accelerator. The advantages of the transposed crossing geometry over the kissing geometry are pointed out

  17. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  18. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  19. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  20. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    International Nuclear Information System (INIS)

    Poole, B.R.; Harris, J.R.

    2011-01-01

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

  1. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  2. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  3. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even

  4. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2017-09-20

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  5. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  6. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  7. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  8. Radiation effects in materials for accelerator-driven neutron technologies

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.; Daemen, L.L.; Ferguson, P.D.

    1997-01-01

    The materials exposed to the most damaging radiation environments in an SNS (spallation neutron source) are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. The major solid targets in operating SNS's and under consideration for the 1--5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the project target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  9. Winds from accretion disks driven by the radiation and magnetocentrifugal force

    OpenAIRE

    Proga, D.

    2000-01-01

    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls th...

  10. Future colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e + e - , μ + μ - ) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed

  11. Collider Physics

    Indian Academy of Sciences (India)

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is ...

  12. The theory of radiation driven stellar winds and the Wolf-Rayet phenomenon

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1982-01-01

    The author considers the question of whether the mass loss observed from Wolf-Rayet stars can be explained by a version of wind theory which is scaled to the conditions found in the envelopes of Wolf-Rayet stars. He discusses the following topics: - The calculated radiation pressure in OB stars, and its dependence on temperature, density, and chemical composition. - A comparison between predicted and observed mass loss rates and terminal velocities for OB stars. - The applicability of the standard radiation driven wind models to Wolf-Rayet stars. - Speculations on how Wolf-Rayet stars achieve their enormous mass loss rates within the context of the radiation pressure mechanism. (Auth.)

  13. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  14. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  15. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  16. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  17. Radiation-induced segregation in materials: Implications for accelerator-driven neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, R.B.; Song, S. [Loughborough Univ. of Technology (United Kingdom)

    1995-10-01

    This paper reviews exisiting models for radiation-induced segregation to microstrucural interfaces and surfaces. It indicates how the models have been successfully used in the past in neutron irradiation situations and how they may be modified to account for accelerator-driven RIS. The predictions of the models suggest that any impurity with large misfit will suffer RIS and that the effect is heightened as radiation damage increases. The paper suggests methods to utilise the RIS in transmutation technology by dynamically segregating long life nuclides to preferred sites in the microstructure so that subsequent transmutations occur with maximum efficiency.

  18. Physics of radiation-driven islands near the tokamak density limit

    International Nuclear Information System (INIS)

    Gates, D.A.; Delgado-Aparicio, L.; White, R.B.

    2013-01-01

    In previous work (Gates and Delgado-Aparicio 2012 Phys. Rev. Lett. 108 165004), the onset criterion for radiation-driven islands (Rebut et al 1985 Proc. 10th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research 1984 (London, UK, 1984) vol 2 (Vienna: IAEA) p 197) in combination with a simple cylindrical model of tokamak current channel behaviour was shown to be consistent with the empirical scaling of the tokamak density limit (Greenwald et al 1988 Nucl. Fusion 28 2199). A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation (MRE) is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that, given the apparent success of this simple model in explaining the observed global scalings, it will lead to a more comprehensive analysis of the possibility that radiation-driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above. (paper)

  19. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  20. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-01-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  1. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-03-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  2. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  3. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  4. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  5. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  6. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  7. Electron Cloud Effect in the Linear Colliders

    International Nuclear Information System (INIS)

    Pivi, M

    2004-01-01

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R and D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design

  8. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  9. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    Science.gov (United States)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  10. ATLAS Transition Radiation Tracker (TRT): Straw Tubes for Tracking and Particle Identification at the Large Hadron Collider

    CERN Document Server

    Mindur, Bartosz; The ATLAS collaboration

    2016-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of 300000 thin-walled drift tubes (“straw tubes”) that are 4 mm in diameter. The TRT system provides 30 space points with 130 micron resolution for charged tracks with |η| 0.5 GeV/c. The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in a Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher center of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. We will present TRT modifications made for Run 2 for in areas: to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Radiation-induced gain changes in ...

  11. ATLAS Transition Radiation Tracker (TRT): Straw tubes for tracking and particle identification at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220535; The ATLAS collaboration

    2017-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of ∼300,000 thin-walled drift tubes (“straw tubes”) that are 4 mm in diameter. The TRT system provides ∼30 space points with ∼130 micron resolution for charged tracks with |η| 0.5 GeV/c . The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in an Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher centre of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. Significant modifications of the TRT detector have been made for LHC Run 2 mainly to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Man...

  12. Non-gray gas radiation effect on mixed convection in lid driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Cherifi, Mohammed, E-mail: production1998@yahoo.fr; Benbrik, Abderrahmane, E-mail: abenbrik@umbb.dz; Laouar-Meftah, Siham, E-mail: laouarmeftah@gmail.com [M’Hamed Bougara University, Faculty of Hydrocarbons and Chemistry, 35000 Boumerdes (Algeria); Lemonnier, Denis, E-mail: denis.lemonnier@ensma.fr [Institut Pprime, CNRS, ENSMA, University of Poitiers, Poitiers Futuroscope (France)

    2016-06-02

    A numerical study is performed to investigate the effect of non-gray radiation on mixed convection in a vertical two sided lid driven square cavity filled with air-H{sub 2}O-CO{sub 2} gas mixture. The vertical moving walls of the enclosure are maintained at two different but uniform temperatures. The horizontal walls are thermally insulated and considered as adiabatic walls. The governing differential equations are solved by a finite-volume method and the SIMPLE algorithm was adopted to solve the pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Simulations are performed in configurations where thermal and shear forces induce cooperating buoyancy forces. Streamlines, isotherms, and Nusselt number are analyzed for three different values of Richardson’s number (from 0.1 to 10) and by considering three different medium (transparent medium, gray medium using the Planck mean absorption coefficient, and non-gray medium assumption).

  13. Central dose data management and analysis in IT-driven radiation protection strategies

    International Nuclear Information System (INIS)

    Ward, M.; Hughes, D.; Connolly, P.; Moores, B. M.

    2005-01-01

    The applications of information technology in health care are now widespread and continue to grow. Medical imaging is at the forefront of this revolution and the introduction of digital detection methods to replace film is now addressing the diagnostic X-ray market, the most routinely employed imaging modality. The introduction of picture archiving and communication systems, hospital and radiology information systems is well underway, and the integration of radiation protection initiatives into these developments is desirable. In north-west UK, a project aimed at developing and implementing IT-driven radiation protection strategies has been underway for the past 10 y. Such strategies are geared towards the support of European Commission patient dose directive 97/43 EURATOM, in particular the need to implement clinical audit, patient dose audit and to establish dose reference levels. This paper demonstrates the national and local requirements for establishing a central dose data management system for use in radiation protection strategies. In particular, such a system can help develop and support the role of a medical physics expert in optimisation. The scientific requirements for such an approach are presented in this paper, and a prototype system is described. Preliminary results obtained with the central data management facility are also presented and the implication for analysing multiple site dose data in optimisation strategies for digital radiographic technology is highlighted. (authors)

  14. Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches

    Directory of Open Access Journals (Sweden)

    Kyu Jung Bae

    2015-05-01

    Full Text Available By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD sectors of the minimal supersymmetric standard model (MSSM, the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP miracle picture. In supersymmetry (SUSY models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ-like solution to the strong charge-conjugation-parity (CP and SUSY \\(\\mu\\ problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ scale \\(f_a\\ and compare to the values expected to be probed by the axion dark matter search experiment (ADMX axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.

  15. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  16. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. Majorana Higgses at colliders

    Science.gov (United States)

    Nemevšek, Miha; Nesti, Fabrizio; Vasquez, Juan Carlos

    2017-04-01

    Collider signals of heavy Majorana neutrino mass origin are studied in the minimal Left-Right symmetric model, where their mass is generated spontaneously together with the breaking of lepton number. The right-handed triplet Higgs boson Δ, responsible for such breaking, can be copiously produced at the LHC through the Higgs portal in the gluon fusion and less so in gauge mediated channels. At Δ masses below the opening of the V V decay channel, the two observable modes are pair-production of heavy neutrinos via the triplet gluon fusion gg → Δ → NN and pair production of triplets from the Higgs h → ΔΔ → 4 N decay. The latter features tri- and quad same-sign lepton final states that break lepton number by four units and have no significant background. In both cases up to four displaced vertices may be present and their displacement may serve as a discriminating variable. The backgrounds at the LHC, including the jet fake rate, are estimated and the resulting sensitivity to the Left-Right breaking scale extends well beyond 10 TeV. In addition, sub-dominant radiative modes are surveyed: the γγ, Zγ and lepton flavour violating ones. Finally, prospects for Δ signals at future e + e - colliders are presented.

  18. Radiatively-driven winds: model improvements, ionization balance and the infared spectrum

    International Nuclear Information System (INIS)

    Castor, J.I.

    1979-01-01

    Recent improvements to theoretical stellar wind models and the results of empirical modelling of the ionization balance and the infrared continuum are discussed. The model of a wind driven by radiation pressure in spectral lines is improved by accounting for overlap of the driving lines, dependence of ionization balance on density, and stellar rotation. These effects produce a softer velocity law than that given by Castor, Abbott and Klein (1975). The ionization balance in zeta Puppis is shown to agree with that estimated for an optically thick wind at a gas temperature of 60,000 K. The ionization model is not unique. The infrared continuum of zeta Pup measured by Barlow and Cohen is fitted to a cool model with a linear rise of velocity with radius; this fit is also not unique. It is concluded that one should try to find a model that fits several kinds of evidence simultaneously. (Auth.)

  19. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    Science.gov (United States)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  20. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    Science.gov (United States)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  1. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  2. Six sigma tools for a patient safety-oriented, quality-checklist driven radiation medicine department.

    Science.gov (United States)

    Kapur, Ajay; Potters, Louis

    2012-01-01

    The purpose of this work was to develop and implement six sigma practices toward the enhancement of patient safety in an electronic, quality checklist-driven, multicenter, paperless radiation medicine department. A quality checklist process map (QPM), stratified into consultation through treatment-completion stages was incorporated into an oncology information systems platform. A cross-functional quality management team conducted quality-function-deployment and define-measure-analyze-improve-control (DMAIC) six sigma exercises with a focus on patient safety. QPM procedures were Pareto-sorted in order of decreasing patient safety risk with failure mode and effects analysis (FMEA). Quantitative metrics for a grouped set of highest risk procedures were established. These included procedural delays, associated standard deviations and six sigma Z scores. Baseline performance of the QPM was established over the previous year of usage. Data-driven analysis led to simplification, standardization, and refinement of the QPM with standard deviation, slip-day reduction, and Z-score enhancement goals. A no-fly policy (NFP) for patient safety was introduced at the improve-control DMAIC phase, with a process map interlock imposed on treatment initiation in the event of FMEA-identified high-risk tasks being delayed or not completed. The NFP was introduced in a pilot phase with specific stopping rules and the same metrics used for performance assessments. A custom root-cause analysis database was deployed to monitor patient safety events. Relative to the baseline period, average slip days and standard deviations for the risk-enhanced QPM procedures improved by over threefold factors in the NFP period. The Z scores improved by approximately 20%. A trend for proactive delays instead of reactive hard stops was observed with no adverse effects of the NFP. The number of computed potential no-fly delays per month dropped from 60 to 20 over a total of 520 cases. The fraction of computed

  3. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  4. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  5. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  6. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  7. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  8. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...

  9. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  10. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  11. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  12. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  13. QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders; Resommation des corrections radiatives QCD et violation de la saveur non-minimale pour la production de particules supersymetriques aupres des collisionneurs hadroniques

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, B

    2007-06-15

    Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)

  14. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  15. Magnet R and D for future colliders

    International Nuclear Information System (INIS)

    Sabbi, Gian Luca

    2001-01-01

    High-energy colliders complementing and expanding the physics reach of LHC are presently under study in the United States, Europe and Japan. The magnet system is a major cost driver for hadron colliders at the energy frontier, and critical to the successful operation of muon colliders. Under most scenarios, magnet design as well as vacuum and cryogenic systems are complicated by high radiation loads. Magnet R and D programs are underway worldwide to take advantage of new developments in superconducting materials, achieve higher efficiency and simplify fabrication while preserving accelerator-class field quality. A review of recent progress in magnet technology for future colliders is presented, with emphasis on the most innovative design concepts and fabrication techniques

  16. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  17. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  18. Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)

    2017-07-15

    Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)

  19. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  20. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  1. The SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.

    1985-01-01

    A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built

  2. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  3. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    International Nuclear Information System (INIS)

    Tabak, M.; Callahan-Miller, D.

    1997-01-01

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies

  4. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  5. THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexei V.; Agustsson, R.; Boucher, S.; Campese, Tara; Chen, Y.C.; Hartzell, Josiah J.; Jocobson, B.T.; Murokh, A.; O' Shea, F.H.; Spranza, E.; Berg, W.; Borland, M.; Dooling, J. C.; Erwin, L.; Lindberg, R. R.; Pasky, S.J.; Sereno, N.; Sun, Y.; Zholents, A.

    2017-06-01

    Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes including conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.

  6. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  7. Critique of atomic physics instability mechanisms: Ionization-driven and radiative microinstabilities in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Ross, D.W.

    1994-01-01

    The theory of atomic-process driven microinstabilities in the tokamak edge plasma is reexamined. It is found that these instabilities, as they are usually presented, do not exist. This assertion applies both to ionization-driven modes and to radiative condensation, or thermal-driven modes. The problem is that there exists no separation of time scales between the approach to equilibrium and the growth rate of the purported instabilities. Therefore, to describe the perturbation of an inhomogeneous plasma, it is essential either to establish an equilibrium that includes both perpendicular transport and the proposed source, or, alternatively, to follow the background evolution simultaneously with the growth of the modes. Neither has been done in theoretical or numerical studies of microinstabilities driven by atomic effects in tokamaks. Very near the density limit, macroscopic modes may be unstable, leading to marfes or disruptions, but perturbations of the equilibrium transport fluxes, when taken into account, are sufficient to stabilize the microscopic modes. If the equilibrium fluxes are not included a priori, the ordering breakdown persists into the nonlinear regime. Since the atomic driving terms are the same as in the linear limit, radial decorrelation lengths would have to approach background scale lengths to yield transport of significant magnitude. Under ordinary tokamak conditions, therefore, atomic processes are unlikely to provide an important driving mechanism for the microturbulence that is presumed to cause anomalous transport

  8. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  9. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  10. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  11. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  12. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  13. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  14. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  15. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  16. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  17. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  18. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  19. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  20. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  1. Collider physics for the late 1980's

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-01-01

    Topics in the Standard Model of strong and electroweak interactions and how these topics are relevant for the high energy colliders are discussed. Radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed, followed by a discussion of the Higgs boson and the searches which can be carried out for it. Some features of quantum chromodynamics are discussed which are relevant to hadron colliders. Some of the problems which the Standard Model does not solve are discussed. 115 refs., 53 figs

  2. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  3. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  4. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  5. Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Sho [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sekiguchi, Yuichiro [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Kiuchi, Kenta; Shibata, Masaru, E-mail: sho.fujibayashi@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-09-10

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.

  6. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices

  7. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  8. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Ten Haken, Randall K; Tsien, Christina I; Cao, Yue; Chenevert, Thomas

    2014-01-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  9. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  10. Status of the SLAC Linear Collider Project

    International Nuclear Information System (INIS)

    Stiening, R.

    1983-01-01

    The SLAC Linear Collider Project has two principal goals. The first is to serve as a prototype for a future very high energy linear electron-positron collider. The second is to quickly, at low cost, achieve sufficient luminosity at 100 GeV center-of-mass energy to explore the physics of the Z 0 . The first goal is important to the future of electron-positron physics because the rapid increase of synchrotron radiation with energy causes the cost of circular storage ring colliders to whereas the cost of linear colliders increases only in proportion to the center-of-mass energy. The second is important because the existance at SLAC of a linear accelerator which can be converted at low cost to collider operation makes possible a unique opportunity to quickly achieve 100 GeV center-of-mass collisions. At the design luminosity of 6.0 x 10 30 many thousands of Z 0 decays should be observed in each day of operation

  11. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  12. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  13. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  14. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  15. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  16. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  17. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  18. Superphysics at UNK collider

    International Nuclear Information System (INIS)

    Kereselidze, A.R.; Liparteliani, A.G.; Sokolov, A.A.; Volkov, G.G.

    1988-01-01

    The theoretical incompleteness of standard model and the way of going beyond frames on the basis of supersymmetry are considered. The most important directions of experimental researches at the colliders of a new generation are given. Theoretical estimates of masses of supersymmetrical particles in the framework of N=1 supergravity obtained from compactification of the popular E 8 xE 8 superstring theories are presented. The experimental search for supersymmetrical particles at the UNK pp-collider (√s=6 TeV) is performed

  19. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  20. Geometrically Thick Obscuration by Radiation-driven Outflow from Magnetized Tori of Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ho [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-07-01

    Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply toward the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.

  1. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  2. Radiation-pressure-driven sub-Keplerian rotation of the disc around the AGB star L2 Pup

    Science.gov (United States)

    Haworth, Thomas J.; Booth, Richard A.; Homan, Ward; Decin, Leen; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-01-01

    We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L2 Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of ∼10-3 and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However, grains larger than ∼ 0.5 μm are driven outwards radially by radiation pressure at velocities ∼5 km s-1, which implies a dust replenishment rate of ∼3 × 10-9 M⊙ yr-1. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall, we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L2 Pup, and offers other additional constraints on the dust properties.

  3. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  4. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  5. QCD and collider physics

    CERN Document Server

    Stirling, William James

    1991-12-01

    1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.

  6. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  7. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  8. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  9. LINEAR COLLIDERS: 1992 workshop

    International Nuclear Information System (INIS)

    Settles, Ron; Coignet, Guy

    1992-01-01

    As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus

  10. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  11. Review of linear colliders

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1992-01-01

    The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab

  12. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  13. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  14. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  15. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  16. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  17. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  18. Progress report on the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Kozanecki, W.

    1987-11-01

    In this paper we report on the status of the SLAC Linear Collider (SLC), the prototype of a new generation of colliding beam accelerators. This novel type of machine holds the potential of extending electron-positron colliding beam studies to center-of-mass (c.m.) energies far in excess of what is economically achievable with colliding beam storage rings. If the technical challenges posed by linear colliders are solvable at a reasonable cost, this new approach would provide an attractive alternative to electron-positron rings, where, because of rapidly rising synchrotron radiation losses, the cost and size of the ring increases with the square of the c.m. energy. In addition to its role as a test vehicle for the linear collider principle, the SLC aims at providing an abundant source of Z 0 decays to high energy physics experiments. Accordingly, two major detectors, the upgraded Mark II, now installed on the SLC beam line, and the state-of-the-art SLD, currently under construction, are preparing to probe the Standard Model at the Z 0 pole. The SLC project was originally funded in 1983. Since the completion of construction, we have been commissioning the machine to bring it up to a performance level adequate for starting the high energy physics program. In the remainder of this paper, we will discuss the status, problems and performance of the major subsystems of the SLC. We will conclude with a brief outline of the physics program, and of the planned enhancements to the capabilities of the machine. 26 refs., 7 figs

  19. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  20. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  1. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  2. Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    OpenAIRE

    Bulanov, S. V.; Echkina, E. Yu.; Esirkepov, T. Zh.; Inovenkov, I. N.; Kando, M.; Pegoraro, F.; Korn, G.

    2009-01-01

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the ...

  3. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; van der Holst, Bart; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  4. Optical Spectroscopy Measurements of Shock Waves Driven by Intense Z-Pinch Radiation

    International Nuclear Information System (INIS)

    Asay, J.; Bernard, M.; Bailey, J.E.; Carlson, A.L.; Chandler, G.A.; Hall, C.A.; Hanson, D.; Johnston, R.; Lake, P.; Lawrence, J.

    1999-01-01

    Z-pinches created using the Z accelerator generate approximately220 TW, 1.7 MJ radiation pulses that heat large (approximately10 cm 3 ) hohlraums to 100-150 eV temperatures for times of order 10 nsec. We are performing experiments exploiting this intense radiation to drive shock waves for equation of state studies. The shock pressures are typically 1-10 Mbar with 10 nsec duration in 6-mm-diameter samples. In this paper we demonstrate the ability to perform optical spectroscopy measurements on shocked samples located in close proximity to the z-pinch. These experiments are particularly well suited to optical spectroscopy measurements because of the relatively large sample size and long duration. The optical emission is collected using fiber optics and recorded with a streaked spectrograph. Other diagnostics include VISAR and active shock breakout measurements of the shocked sample and a suite of diagnostics that characterize the radiation drive. Our near term goal is to use the spectral emission to obtain the temperature of the shocked material. Longer term objectives include the examination of deviations of the spectrum from blackbody, line emission from lower density regions, determination of kinetic processes in molecular systems, evaluation of phase transitions such as the onset of metalization in transparent materials, and characterization of the plasma formed when the shock exits the rear surface. An initial set of data illustrating both the potential and the challenge of these measurements is described

  5. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.

    2011-09-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  6. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  7. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Brenner, Ceri M.; Stitt, Camilla A.; Armstrong, Chris; Rusby, Dean R.; Mirfayzi, Seyed R.; Wilson, Lucy A.; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M.H.; Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John

    2016-01-01

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10"7–10"9 neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm"2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  8. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  9. The International Linear Collider

    Directory of Open Access Journals (Sweden)

    List Benno

    2014-04-01

    Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  10. The International Linear Collider

    Science.gov (United States)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  11. The SLAC linear collider

    International Nuclear Information System (INIS)

    Phinney, N.

    1992-01-01

    The SLAC Linear Collider has begun a new era of operation with the SLD detector. During 1991 there was a first engineering run for the SLD in parallel with machine improvements to increase luminosity and reliability. For the 1992 run, a polarized electron source was added and more than 10,000 Zs with an average of 23% polarization have been logged by the SLD. This paper discusses the performance of the SLC in 1991 and 1992 and the technical advances that have produced higher luminosity. Emphasis will be placed on issues relevant to future linear colliders such as producing and maintaining high current, low emittance beams and focusing the beams to the micron scale for collisions. (Author) tab., 2 figs., 18 refs

  12. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  13. Linear Colliders TESLA

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz

  14. A physics informed emulator for laser-driven radiating shock simulations

    International Nuclear Information System (INIS)

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; Holst, Bart van der; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. - Highlights: → Uncertainty quantification for two linked computer codes is investigated. → We perform physics-based dimension reduction on the code output. → This reduces the uncertain degrees of freedom from hundreds to tens.

  15. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  16. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  17. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    International Nuclear Information System (INIS)

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  18. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  19. Flat beams in a 50 TeV hadron collider

    International Nuclear Information System (INIS)

    Peggs, S.; Harrison, M.; Pilat, F.; Syphers, M.

    1997-01-01

    The basic beam dynamics of a next generation 50 x 50 TeV hadron collider based on a high field magnet approach have been outlined over the past several years. Radiation damping not only produces small emittances, but also flat beams, just as in electron machines. Based on open-quotes Snowmass 96close quotes parameters, we investigate the issues associated with flat beams in very high energy hadron colliders

  20. The Stanford Linear Collider

    International Nuclear Information System (INIS)

    Emma, P.

    1995-01-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed

  1. Challenges for highest energy circular colliders

    CERN Document Server

    Benedikt, M; Wenninger, J; Zimmermann, F

    2014-01-01

    A new tunnel of 80–100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCCee/TLEP) as potential intermediate step, and a leptonhadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, topup injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.

  2. Radiation-Driven Migration: The Case of Minamisoma City, Fukushima, Japan, after the Fukushima Nuclear Accident

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-09-01

    Full Text Available The emigration of residents following the Fukushima nuclear accident has resulted in aging and depopulation problems in radiation-contaminated areas. The recovery of affected areas, and even those areas with low radioactive pollution levels, is still heavily affected by this problem. This slow recovery consequently affects immigration patterns. This review aims to present possible factors that have contributed to this dilemma. We first present an overview of the evacuation protocol that was administered in the study area following the Fukushima accident. We then analyze characteristics of the subsequent exodus by comparing population data for both before and after the accident. Based on the findings of existing literature, we identify three causes of emigration: (1 The health risks of living in a low radiation zone are still unknown; (2 The post-disaster psychological disturbance and distrust of government information promotes the emigration of evacuees; (3 an absence of economic vitality and of a leading industry renders the area less attractive to individuals residing outside of the city. Further research is needed on this issue, especially with respect to countermeasures for addressing this problem.

  3. Radiative bow shock wave (?) driven by nuclear ejecta in a Seyfert galaxy

    International Nuclear Information System (INIS)

    Wilson, A.S.; Ulvestad, J.S.; California Institute of Technology, Pasadena)

    1987-01-01

    New VLA maps at 2 cm of the 13-arcsec-scale linear radio source in the center of NGC 1068 are described. The northeast lobe shows a limb-brightened conical morphology, very sharp leading edges, and a magnetic field running parallel to these edges. The spectral index between 2 and 6 cm in these line-brightened regions is near 1.0. The northeast subpeak has a very steep radio spectrum between 18 and 2 cm which is attributed to inverse Compton losses of the relativistic electrons on the infrared photons. The spectral indices in the southwest lobe lie in the range 0.9-1.5 except in its northern parts, where a much larger index is found. The northeast lobe radio emission could arise in either the cocoon of old jet material which has passed through the internal shock in the ejecta and blown out to either side, or in interstellar material compressed by a bow shock wave driven into the galactic ISM. 45 references

  4. Pulse picker for synchrotron radiation driven by a surface acoustic wave.

    Science.gov (United States)

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Petsiuk, Andrei; Dolbnya, Igor; Sawhney, Kawal; Erko, Alexei

    2017-05-15

    A functional test for a pulse picker for synchrotron radiation was performed at Diamond Light Source. The purpose of a pulse picker is to select which pulse from the synchrotron hybrid-mode bunch pattern reaches the experiment. In the present work, the Bragg reflection on a Si/B4C multilayer was modified using surface acoustic wave (SAW) trains. Diffraction on the SAW alters the direction of the x rays and it can be used to modulate the intensity of the x rays that reach the experimental chamber. Using electronic modulation of the SAW amplitude, it is possible to obtain different scattering conditions for different x-ray pulses. To isolate the single bunch, the state of the SAW must be changed in the short time gap between the pulses. To achieve the necessary time resolution, the measurements have been performed in conical diffraction geometry. The achieved time resolution was 120 ns.

  5. Development of X-ray tracer diagnostics for radiatively-driven ablator experiments

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Cohen, D.H.; Wang, P.; Moses, G.A.; Peterson, R.R.; Jaanimagi, P.A.; Langen, O.L.; Olson, R.E.; Murphy, T.J.; Magelssen, G.R.; Delamater, N.D.

    1999-01-01

    This report covers fiscal year 1998 of our ongoing project to develop tracer X-ray spectroscopic diagnostics for hohlraum environments. This effort focused on an experimental campaign carried out at OMEGA on 25--27 August 1998. This phase of the project heavily emphasized experimental design, diagnostic development, and target fabrication, as well as building up numerical models for the experiments. The spectral diagnostic under development involves using two thin (few 1000 Angstroem) mid-Z tracers in two witness plates mounted on the side of a hohlraum with the tracers' K a absorption features seen against an X-ray backlighter. The absorption data are used to sample the time-dependent, localized properties of each witness plate as a radiation wave ablates it. The experiments represented the first application of this diagnostic, in this case to side-by-side doped and undoped plastic to investigate the effects of capsule ablator dopants

  6. Dynamics and stability of radiation-driven double ablation front structures

    International Nuclear Information System (INIS)

    Drean, V.; Olazabal-Loume, M.; Tikhonchuk, V. T.; Sanz, J.

    2010-01-01

    The dynamics of double ablation front (DAF) structures is studied for planar targets with moderate atomic number ablators. These structures are obtained in hydrodynamic simulations for various materials and laser intensities and are qualitatively characterized during the acceleration stage of the target. The importance of the radiative transport for the DAF dynamics is then demonstrated. Simulated hydrodynamic profiles are compared with a theoretical model, showing the consistency of the model and the relevant parameters for the dynamics description. The stability of DAF structures with respect to two-dimensional perturbations is studied using two different approaches: one considers the assumptions of the theoretical model and the other one a more complete physics. The numerical simulations performed with both approaches demonstrate good agreement of dispersion curves.

  7. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    Science.gov (United States)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  8. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    International Nuclear Information System (INIS)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier

  9. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    Science.gov (United States)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  10. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  11. Progress on the physics of ignition for radiation driven inertial confinement fusion (ICF) targets

    International Nuclear Information System (INIS)

    Lindl, J.D.; Marinak, M.M.

    1996-09-01

    Extensive modeling of proposed National Ignition Facility (NIF) ignition targets has resulted in a variety of targets using different materials in the fuel shell, using driving temperatures which range from 250-300 eV, and requiring energies from 15 W/cm 2 for this type of hohlraum. The symmetry in Nova gas- filled hohlraums is affected by the gas fill. A large body of evidence now exists which indicates that this effect is due to laser beam filamentation which can be largely controlled by beam smoothing. We present here the firs 3-D simulations of hydrodynamic instability for the NIF point design capsule. These simulations, with the HYDRA radiation hydrodynamics code, indicate that spikes can penetrate up to 10 μm into the 30μm radius hot spot before ignition is quenched. Using capsules whose surface is modified by laser ablation, Nova experiments have been used to quantify the degradation of implosions subject to near NIF levels of hydrodynamic instability

  12. Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser

    Czech Academy of Sciences Publication Activity Database

    Singh, R.L.; Stehlé, C.; Suzuki-Vidal, F.; Kozlová, Michaela; Larour, J.; Chaulagain, Uddhab P.; Clayson, T.; Rodriguez, R.; Gil, J.M.; Nejdl, Jaroslav; Krůs, Miroslav; Dostál, Jan; Dudžák, Roman; Barroso, P.; Acef, O.; Cotelo, M.; Velarde, P.

    2017-01-01

    Roč. 23, June (2017), s. 20-30 ISSN 1574-1818 R&D Projects: GA MŠk EE2.3.30.0057; GA MŠk EE2.3.20.0279; GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LM2015083 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : radiative shocks * hydrodynamics laser-plasmas * spectroscopy * laboratory astrophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  13. Prey-predator dynamics driven by the solar radiation - Part 1

    International Nuclear Information System (INIS)

    Sertorio, L.

    2000-01-01

    In this paper is studied a model ecosystem represented by two components: prey and predator. The predator feeds only on the prey, the prey, in turn, feeds on the solar radiation. In this scheme the two-species dynamics is no longer independent of the external physical conditions. Such independence was instead postulated in the Lotka-Volterra scheme. In this paper is considered the growth of the prey not unbounded (exponential), but logistic, where the saturation factor is governed by the available solar flux, more precisely by the percent of the solar flux that contains the photon frequencies which can drive the photosynthesis. In this way the solar flux represents the driving term of the dynamics, as it is expected in general for a realistic ecosystem. The system is asymptotically stable. The equilibrium values of the prey and predator numbers depend on several parameters. The system contains two nonlinear coupling terms and two coupling parameters. The dependence of the equilibrium point on the coupling parameters is studied in detail. According to this model, it can be defined a predator efficiency and a global solar efficiency. It is discussed the relationship between these two functions of the coupling parameters and the maximum value that the predator population can reach

  14. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    The absorption of solar radiation by atmospheric aerosol particles is important for the climate effects of aerosols. Absorption by aerosol particles heats atmospheric layers, even though the net effect for the entire atmospheric column may still be a cooling. Most experimental studies on absorbing aerosols so far focussed mainly on the aerosol properties and did not consider the influence of the aerosols on the thermodynamic structure of the atmosphere. In this study, data from two international aircraft field experiments, the Intercontinental Transport of Ozone and Precursors study (ITOP) 2004 and the Saharan Mineral Dust Experiment (SAMUM) 2006 are investigated. The ITOP data were collected before the work on this thesis started, while the logistics and the instrument preparation of the SAMUM campaign, the weather forecast during SAMUM and the in-situ aerosol measurements during SAMUM were done within this thesis. The experimental data are used to explore the impact of layers containing absorbing forest fire and desert dust aerosol particles on the atmospheric stability and the implications of a changed stability on the development of the aerosol microphysical and optical properties during long-range transport. For the first time, vertical profiles of the Richardson number Ri are used to assess the stability and mixing in forest fire and desert dust plumes. Also for the first time, the conclusions drawn from the observations of forest fire and desert dust aerosol, at first glance apparently quite different aerosol types, are discussed from a common perspective. Two mechanisms, the selfstabilising and the sealed ageing effect, acting in both forest fire and desert dust aerosol layers, are proposed to explain the characteristic temperature structure as well as the aerosol properties observed in lofted forest fire and desert dust plumes. The proposed effects impact on the ageing of particles within the plumes and reduce the plume dilution, therefore extending the

  15. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Science.gov (United States)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  16. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  17. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  18. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  19. Observations and numerical studies of gamma-ray emission in colliding-wind binaries

    International Nuclear Information System (INIS)

    Reitberger, K.

    2014-01-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy gamma rays. The emission is thought to arise in the region where the stellar winds collide, thereby producing accelerated particles which subsequently emit gamma rays.This scenario is supported by observations with the Fermi Large Area Telescope presented in this thesis. To address the underlying emission mechanisms in a quantitative way, numerical simulations that incorporate hydrodynamics, the acceleration of charged particles as well as the subsequent gamma-ray emission were found to be needed.This thesis presents the analysis of a high-energy gamma-ray source and its identification with the particle-accelerating colliding-wind binary system Eta Carinae. In order to go beyond the present understanding of such objects, this work provides detailed description of a new 3D-hydrodynamical model, which incorporates the line-driven acceleration of the winds, gravity, orbital motion and the radiative cooling of the shocked plasma, as well as the diffusive shock acceleration of charged particles in the wind collision region. In a subsequent step we simulate and study the resulting gamma-ray emission via relativistic bremsstrahlung, anisotropic inverse Compton radiation and neutral pion decay. (author) [de

  20. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Bruno, S.; Siemon, Richard, E.

    2008-10-22

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: • 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; • An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; • Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables. • Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  1. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    International Nuclear Information System (INIS)

    Bauer, Bruno S.; Siemon, Richard E.

    2008-01-01

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: (1) 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; (2) An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; (3) Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables; and (4) Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  2. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  3. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  4. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  5. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  6. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  7. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Science.gov (United States)

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  8. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  9. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  10. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  11. Scaling linear colliders to 5 TeV and above

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1997-04-01

    Detailed designs exist at present for linear colliders in the 0.5-1.0 TeV center-of-mass energy range. For linear colliders driven by discrete rf sources (klystrons), the rf operating frequencies range from 1.3 GHz to 14 GHz, and the unloaded accelerating gradients from 21 MV/m to 100 MV/m. Except for the collider design at 1.3 GHz (TESLA) which uses superconducting accelerating structures, the accelerating gradients vary roughly linearly with the rf frequency. This correlation between gradient and frequency follows from the necessity to keep the ac open-quotes wall plugclose quotes power within reasonable bounds. For linear colliders at energies of 5 TeV and above, even higher accelerating gradients and rf operating frequencies will be required if both the total machine length and ac power are to be kept within reasonable limits. An rf system for a 5 TeV collider operating at 34 GHz is outlined, and it is shown that there are reasonable candidates for microwave tube sources which, together with rf pulse compression, are capable of supplying the required rf power. Some possibilities for a 15 TeV collider at 91 GHz are briefly discussed

  12. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz, E-mail: moritz.guthoff@cern.ch [CERN, 1211 Genève 23 (Switzerland); Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Afanaciev, Konstantin [DESY, Platanenallee 6, 15738 Zeuthen (Germany); NC PHEP BSU, Minsk (Belarus); Dabrowski, Anne [CERN, 1211 Genève 23 (Switzerland); Boer, Wim de [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Lange, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Lohmann, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universität, Postfach 101344, 03013 Cottbus (Germany); Stickland, David [Princeton University, Princeton, NJ 08544-0708 (United States)

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  13. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    International Nuclear Information System (INIS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; Boer, Wim de; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  14. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  15. Future prospects for electron colliders

    CERN Document Server

    Toge, N

    2001-01-01

    An overview on the future prospects for electron colliders is presented. In the first part of this paper we will walk through the status of current development of next-generation electron linear colliders of sub-TeV to TeV energy range. Then we will visit recent results from technological developments which aim at longer term future for higher energy accelerators.

  16. Linear colliders for photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The enthusiasm of the first international workshop on photonphoton colliders and associated physics, held at the Lawrence Berkeley Laboratory from 28 March - 1 April, could have set a ball rolling. According to proponents of this physics, the particle physics one can study with a high energy linear collider is special and complements that of a hadron supercollider

  17. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  18. Overview of colliding beam facilities

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    A review is presented of the colliding beam facilities in existence today. The major high energy physics facilities around the world are described, and a view is presented of the beam collisions in which the instruments used to make the beams collide and those used to detect the products of particle interactions in the beam overlap region are described

  19. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  20. Towards the International Linear Collider

    International Nuclear Information System (INIS)

    Lopez-Fernandez, Ricardo

    2006-01-01

    The broad physics potential of e+e- linear colliders was recognized by the high energy physics community right after the end of LEP in 2000. In 2007, the Large Hadron Collider (LHC) now under construction at CERN will obtain its first collisions. The LHC, colliding protons with protons at 14 TeV, will discover a standard model Higgs boson over the full potential mass range, and should be sensitive to new physics into the several TeV range. The program for the Linear Collider (LC) will be set in the context of the discoveries made at the LHC. All the proposals for a Linear Collider will extend the discoveries and provide a wealth of measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. For the mexican groups is the right time to join such an effort

  1. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  2. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  3. Evaluation of Delivery Costs for External Beam Radiation Therapy and Brachytherapy for Locally Advanced Cervical Cancer Using Time-Driven Activity-Based Costing.

    Science.gov (United States)

    Bauer-Nilsen, Kristine; Hill, Colin; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    2018-01-01

    To evaluate the delivery costs, using time-driven activity-based costing, and reimbursement for definitive radiation therapy for locally advanced cervical cancer. Process maps were created to represent each step of the radiation treatment process and included personnel, equipment, and consumable supplies used to deliver care. Personnel were interviewed to estimate time involved to deliver care. Salary data, equipment purchasing information, and facilities costs were also obtained. We defined the capacity cost rate (CCR) for each resource and then calculated the total cost of patient care according to CCR and time for each resource. Costs were compared with 2016 Medicare reimbursement and relative value units (RVUs). The total cost of radiation therapy for cervical cancer was $12,861.68, with personnel costs constituting 49.8%. Brachytherapy cost $8610.68 (66.9% of total) and consumed 423 minutes of attending radiation oncologist time (80.0% of total). External beam radiation therapy cost $4055.01 (31.5% of total). Personnel costs were higher for brachytherapy than for the sum of simulation and external beam radiation therapy delivery ($4798.73 vs $1404.72). A full radiation therapy course provides radiation oncologists 149.77 RVUs with intensity modulated radiation therapy or 135.90 RVUs with 3-dimensional conformal radiation therapy, with total reimbursement of $23,321.71 and $16,071.90, respectively. Attending time per RVU is approximately 4-fold higher for brachytherapy (5.68 minutes) than 3-dimensional conformal radiation therapy (1.63 minutes) or intensity modulated radiation therapy (1.32 minutes). Time-driven activity-based costing was used to calculate the total cost of definitive radiation therapy for cervical cancer, revealing that brachytherapy delivery and personnel resources constituted the majority of costs. However, current reimbursement policy does not reflect the increased attending physician effort and delivery costs of brachytherapy. We

  4. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  5. Linear collider IR and final focus introduction

    International Nuclear Information System (INIS)

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10 33 to 10 34 cm -2 s -1 . To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point

  6. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    Science.gov (United States)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  7. DATA-DRIVEN RADIATIVE HYDRODYNAMIC MODELING OF THE 2014 MARCH 29 X1.0 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia [University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952-5159 (United States); Allred, Joel C., E-mail: frubio@stanford.edu [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2016-08-10

    Spectroscopic observations of solar flares provide critical diagnostics of the physical conditions in the flaring atmosphere. Some key features in observed spectra have not yet been accounted for in existing flare models. Here we report a data-driven simulation of the well-observed X1.0 flare on 2014 March 29 that can reconcile some well-known spectral discrepancies. We analyzed spectra of the flaring region from the Interface Region Imaging Spectrograph ( IRIS ) in Mg ii h and k, the Interferometric BIdimensional Spectropolarimeter at the Dunn Solar Telescope (DST/IBIS) in H α 6563 Å and Ca ii 8542 Å, and the Reuven Ramaty High Energy Solar Spectroscope Imager ( RHESSI ) in hard X-rays. We constructed a multithreaded flare loop model and used the electron flux inferred from RHESSI data as the input to the radiative hydrodynamic code RADYN to simulate the atmospheric response. We then synthesized various chromospheric emission lines and compared them with the IRIS and IBIS observations. In general, the synthetic intensities agree with the observed ones, especially near the northern footpoint of the flare. The simulated Mg ii line profile has narrower wings than the observed one. This discrepancy can be reduced by using a higher microturbulent velocity (27 km s{sup −1}) in a narrow chromospheric layer. In addition, we found that an increase of electron density in the upper chromosphere within a narrow height range of ≈800 km below the transition region can turn the simulated Mg ii line core into emission and thus reproduce the single peaked profile, which is a common feature in all IRIS flares.

  8. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  9. Advanced silicon sensors for future collider experiments

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00437143; Moll, Michael; Mannelli, Marcello

    In this thesis, we address two key technological challenges: the radiation tolerance assessment and timing performance studies of thin planar diodes to be used as sensing technology in the recently approved CMS forward sampling calorimeter for the HL-LHC operation, the High Granularity Calorimeter (HGCAL); and, complementary, we carried out a detailed study of a novel kind of position sensitive microstrip sensors for ionising particles which implements the well established charge-division method to determine the particle impinging position along the microstrip electrode direction; this technology could become an interesting low-material budget solution for the new generation of tracking detectors to be operated in the future lepton collider experiments.

  10. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  11. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  12. Topics in Collider Physics

    Energy Technology Data Exchange (ETDEWEB)

    Petriello, Frank J

    2003-08-27

    It is an exciting time for high energy physics. Several experiments are currently exploring uncharted terrain; the next generation of colliders will begin operation in the coming decade. These experiments will together help us understand some of the most puzzling issues in particle physics: the mechanism of electroweak symmetry breaking and the generation of flavor physics. It is clear that the primary goal of theoretical particle physics in the near future is to support and guide this experimental program. These tasks can be accomplished in two ways: by developing experimental signatures for new models which address outstanding problems, and by improving Standard Model predictions for precision observables. We present here several results which advance both of these goals. We begin with a study of non-commutative field theories. It has been suggested that TeV-scale non-commutativity could explain the origin of CP violation in the SM. We identify several distinct signatures of non-commutativity in high energy processes. We also demonstrate the one-loop quantum consistency of a simple spontaneously broken non-commutative U(1) theory; this result is an important preface to any attempt to embed the SM within a non-commutative framework. We then investigate the phenomenology of extra-dimensional theories, which have been suggested recently as solutions to the hierarchy problem of particle physics. We first examine the implications of allowing SM fields to propagate in the full five-dimensional spacetime of the Randall-Sundrum model, which solves the hierarchy problem via an exponential ''warping'' of the Planck scale induced by a five-dimensional anti de-Sitter geometry. In an alternative extra-dimensional theory, in which all SM fields are permitted to propagate in flat extra dimensions, we show that properties of the Higgs boson are significantly modified. Finally, we discuss the next-to-next-to leading order QCD corrections to the dilepton

  13. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  14. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  15. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  16. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  17. A new micro-strip tracker for the new generation of experiments at hadron colliders

    International Nuclear Information System (INIS)

    Dinardo, Mauro E.; Milan U.

    2005-01-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV RandD program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders

  18. Advances in beam physics and technology: Colliders of the future

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook.

  19. Beam-strahlung effects in e-p collider

    International Nuclear Information System (INIS)

    Cho, Y.

    1982-09-01

    The electromagnetic fields produced by one beam in an interaction point of a colliding-beam facility cause to the emission of synchrotron radiation by the other beam. This effect, the beam strahlung, for the e+e - colliders has been considered by several authors, and they have pointed out that the effect is very important consideration at very-high-energy e+e - colliders. At the first glance, the beam-strahlung effect can play an important role in the e-p collision due to the fact that the circulating currents in the collider are much higher than those of the e+e - machine. However the detailed study shows that is not the case because of the collision geometry involved. What follows in this note is the beam-strahlung derivations using the method previously used by Hofmann and Keil. The difference between this note and that of Hofman and Keil is that in the case of e+e - collider, equal mass particles are involved in the consideration and, in the e-p case, the electrons radiate and the protons provide the electromagnetic fields

  20. Advances in beam physics and technology: Colliders of the future

    Science.gov (United States)

    Chattopadhyay, Swapan

    1996-02-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (i.e. photons). Often, they are brought into interaction with each other (e.g. in high energy colliders) or with other forms of matter (e.g. in fixed target physics, synchrotron radiation sciences, neutron scattering experiments, laser chemistry and physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams—always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades—nonlinear dynamics, superconducting magnets and radio frequency cavities, beam instrumentation and control, novel concepts and collider paradigms, to name a few. We will illustrate this progress via a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use—the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We will close with an outline of future opportunities and outlook.

  1. Advances in beam physics and technology: Colliders of the future

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook

  2. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  3. Collider Physics an Experimental Introduction

    International Nuclear Information System (INIS)

    Elvezio Pagliarone, Carmine

    2011-01-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacan, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  4. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-10-20

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  5. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  6. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  7. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  8. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  9. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  10. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  11. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  12. When Moons Collide

    Science.gov (United States)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  13. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Muon Collider Collaboration

    1998-01-01

    Parameters are given of machines with center-of-mass (CoM) energies of 3 TeV and 400 GeV but, besides a comment on neutrino radiation, the paper concentrates on progress on the design of a machine to operate at a light Higgs mass, assumed, for this study, to be 100 GeV (CoM).

  14. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  15. ISR effects for resonant Higgs production at future lepton colliders

    Directory of Open Access Journals (Sweden)

    Mario Greco

    2016-12-01

    Full Text Available We study the effects of the initial state radiation on the s-channel Higgs boson resonant production at μ+μ− and e+e− colliders by convoluting with the beam energy spread profile of the collider and the Breit–Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels h→bb¯, WW⁎. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.

  16. Optical data transmission at the superconducting super collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-02-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs

  17. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  18. Influence of radiation on predictive accuracy in numerical simulations of the thermal environment in industrial buildings with buoyancy-driven natural ventilation

    International Nuclear Information System (INIS)

    Meng, Xiaojing; Wang, Yi; Liu, Tiening; Xing, Xiao; Cao, Yingxue; Zhao, Jiangping

    2016-01-01

    Highlights: • The effects of radiation on predictive accuracy in numerical simulations were studied. • A scaled experimental model with a high-temperature heat source was set up. • Simulation results were discussed considering with and without radiation model. • The buoyancy force and the ventilation rate were investigated. - Abstract: This paper investigates the effects of radiation on predictive accuracy in the numerical simulations of industrial buildings. A scaled experimental model with a high-temperature heat source is set up and the buoyancy-driven natural ventilation performance is presented. Besides predicting ventilation performance in an industrial building, the scaled model in this paper is also used to generate data to validate the numerical simulations. The simulation results show good agreement with the experiment data. The effects of radiation on predictive accuracy in the numerical simulations are studied for both pure convection model and combined convection and radiation model. Detailed results are discussed regarding the temperature and velocity distribution, the buoyancy force and the ventilation rate. The temperature and velocity distributions through the middle plane are presented for the pure convection model and the combined convection and radiation model. It is observed that the overall temperature and velocity magnitude predicted by the simulations for pure convection were significantly greater than those for the combined convection and radiation model. In addition, the Grashof number and the ventilation rate are investigated. The results show that the Grashof number and the ventilation rate are greater for the pure convection model than for the combined convection and radiation model.

  19. Linear collider research and development at SLAC, LBL and LLNL

    International Nuclear Information System (INIS)

    Mattison, T.S.

    1988-10-01

    The study of electron-positron (e + e/sup /minus//) annihilation in storage ring colliders has been very fruitful. It is by now well understood that the optimized cost and size of e + e/sup /minus// storage rings scales as E(sub cm//sup 2/ due to the need to replace energy lost to synchrotron radiation in the ring bending magnets. Linear colliders, using the beams from linear accelerators, evade this scaling law. The study of e/sup +/e/sup /minus// collisions at TeV energy will require linear colliders. The luminosity requirements for a TeV linear collider are set by the physics. Advanced accelerator research and development at SLAC is focused toward a TeV Linear Collider (TLC) of 0.5--1 TeV in the center of mass, with a luminosity of 10/sup 33/--10/sup 34/. The goal is a design for two linacs of less than 3 km each, and requiring less than 100 MW of power each. With a 1 km final focus, the TLC could be fit on Stanford University land (although not entirely within the present SLAC site). The emphasis is on technologies feasible for a proposal to be framed in 1992. Linear collider development work is progressing on three fronts: delivering electrical energy to a beam, delivering a focused high quality beam, and system optimization. Sources of high peak microwave radio frequency (RF) power to drive the high gradient linacs are being developed in collaboration with Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). Beam generation, beam dynamics and final focus work has been done at SLAC and in collaboration with KEK. Both the accelerator physics and the utilization of TeV linear colliders were topics at the 1988 Snowmass Summer Study. 14 refs., 4 figs., 1 tab

  20. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  1. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  2. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel.

  3. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel

  4. Recent results from hadron colliders

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1990-01-01

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs

  5. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  6. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  7. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  8. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  9. Large hadron collider workshop. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol.1 of these proceedings contains the papers presented at the plenary sessions, Vol.2 the individual contributions to the physics sessions, and Vol.3 those to the instrumentation sessions. (orig.)

  10. Large hadron collider workshop. Proceedings. Vol. 3

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentaiton and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  11. Large hadron collider workshop. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LCH workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  12. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    Science.gov (United States)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  13. Studies for Muon Colliders at Center-of-Mass Energies of 10 TeV and 100 TeV

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    Parameter lists are presented for speculative muon colliders at center-of-mass energies of 10 TeV and 100 TeV. The technological advances required to achieve the given parameters are itemized and discussed, and a discussion is given of the design goals and constraints. An important constraint for multi-TeV muon colliders is the need to minimize neutrino radiation from the collider ring

  14. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping

    International Nuclear Information System (INIS)

    Schaly, B; Bauman, G S; Battista, J J; Dyk, J Van

    2005-01-01

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of ∼10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (∼2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy

  15. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    Science.gov (United States)

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  16. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams

    Science.gov (United States)

    Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.

    2018-01-01

    Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.

  17. Collider Scaling and Cost Estimation

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1986-01-01

    This paper deals with collider cost and scaling. The main points of the discussion are the following ones: 1) scaling laws and cost estimation: accelerating gradient requirements, total stored RF energy considerations, peak power consideration, average power consumption; 2) cost optimization; 3) Bremsstrahlung considerations; 4) Focusing optics: conventional, laser focusing or super disruption. 13 refs

  18. Working group report: Collider Physics

    Indian Academy of Sciences (India)

    11KEK, Tsukuba, Japan. 12Cornell University ... This is summary of the activities of the working group on collider physics in the IXth ... In view of the requirements of the hour and the available skills and interests, it was decided to .... The actual computation, which is long and somewhat tedious, is currently under way and is ...

  19. Collider physics: A theorist's view

    International Nuclear Information System (INIS)

    Ellis, S.D.

    1986-06-01

    Recent experimental results from the CERN anti p p Collider are reviewed from a theorist's perspective. The conclusion is that the standard model is impressively verified and nothing else seems to be present. Some other relevant phenomenological and theoretical issues are also reviewed

  20. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  1. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  2. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  3. The SPS panti p collider

    International Nuclear Information System (INIS)

    Gareyte, J.

    1984-01-01

    The purpose of this lecture is to give a general idea of how the collider works. The fact that one of the beams is composed of scarce precious antiprotons imposes strong constraints on the operation of such a machine. Solutions to these specific problems will be described. (orig./HSI)

  4. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  5. Top production at hadron colliders

    Indian Academy of Sciences (India)

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...

  6. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  7. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged magnet and retrofit others to correct the underlynig design flaw, which could delay the start-up of the mammouth subterranean machine." (1,5 page)

  8. The collider of the future?

    CERN Multimedia

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC, ILC and the CERN management.

  9. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  10. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  11. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  12. Sfermion Precision Measurements at a Linear Collider

    CERN Document Server

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.A.; Blochinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; von Manteuffel, A.; Martyn, H.U.; Miller, D.J.; Moortgat-Pick, Gudrid A.; Muhlleitner, M.; Nauenberg, U.; Kluge, Hannelies; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2002-01-01

    At future e+- e- linear colliders, the event rates and clean signals of scalar fermion production - in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan(beta) from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.

  13. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  14. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  15. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.; Bloechinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; Manteuffel, A. von; Martyn, H.-U.; Miller, D.J.; Moortgat-Pick, G.; Muehlleitner, M.; Nauenberg, U.; Nowak, H.; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2003-01-01

    At prospective e ± e - linear colliders, the large cross-sections and clean signals of scalar fermion production--in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected in the third generation opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  16. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.

    2003-01-01

    At future e + e - linear colliders, the event rates and clean signals of scalar fermion production--in particular for the scalar leptons--allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  17. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  18. Summary of the Linear Collider Working Group

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-01-01

    The focus of the Linear Collider Working Group was on a next generation linear collider. Topics discussed are: parameters; damping rings; bunch compression and pre-acceleration; linac; final focus; and multibunch effects. 8 refs., 3 figs., 7 tabs

  19. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  20. Physics at hadron colliders: Experimental view

    International Nuclear Information System (INIS)

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs

  1. Strings and superstrings. Electron linear colliders

    International Nuclear Information System (INIS)

    Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.

    1989-01-01

    Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr

  2. Tau physics at p bar p colliders

    International Nuclear Information System (INIS)

    Konigsberg, J.

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments

  3. NOVOSIBIRSK/STANFORD: colliding linac beams

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Plans to use colliding beams from linear accelerators are being considered at Novosibirsk and Stanford. The VLEPP scheme proposed for Novosibirsk and the Stanford single pass collider scheme are described. (W.D.L.).

  4. World lays groundwork for future linear collider

    CERN Multimedia

    Feder, Toni

    2010-01-01

    "New physics from the Large Hadron Collider can best be explored with a large lepton collider; realizing one will require mobilizing accelerator and particle physicists, funding agencies, and politicians" (3 pages)

  5. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  6. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  7. R&D for Collider Beauty Physics at the LHC

    CERN Multimedia

    2002-01-01

    We propose an R&D program for the development of a Beauty trigger and innovative elements of the associated spectrometer. The program builds on the success of the recent S$\\bar{p}$pS collider run of the P238 Collaboration, in which clean signals from beam-beam interactions were observed in a large silicon strip microvertex detector running 1.5~mm from the circulating beams. A continuing successful R&D program of the type proposed could ultimately lead to a collider experiment at the LHC to study CP-violation and rare B decays. \\\\ \\\\ We request a fixed target run during late 1992 in order to demonstrate the effectiveness of a heavy flavour trigger which uses real time digital calculations on silicon strip data, implemented with a data driven processor.

  8. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D

    2014-01-01

    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  9. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  10. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    Directory of Open Access Journals (Sweden)

    John Paxton Kirkpatrick

    2013-04-01

    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  11. Conventional power sources for colliders

    International Nuclear Information System (INIS)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 μsec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 μsec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 μsec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths

  12. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  13. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  14. Perspectives on large linear colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-11-01

    Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs

  15. Role of Atmospheric Cloud Radiative Effects in the Intermodal Spread in the Shift of Southern Hemispheric Eddy-driven Jet in Responses to Global Warming

    Science.gov (United States)

    Li, Y.; Thompson, D. W. J.; Bony, S.

    2017-12-01

    Observations and most climate models suggest storm track and extratropical eddy driven jet shifts poleward in a warmer climate, particularly in the Southern Hemisphere. However, the magnitude of such shifts remains uncertain. Even for a prescribed uniform SST changes, models produce large inter-model spread in the magnitude of jet shift, suggesting that a substantial part of these uncertainties are caused by the impact of cloud radiative effects on the atmospheric heating rate per se. In this study we will investigate 1) how much do clouds contribute to the spread of the circulation response in the absence of SST coupling? 2) how much do clouds contribute to the spread of the direct CO2 and SST-only response?

  16. Generation of quasi-monoenergetic protons from a double-species target driven by the radiation pressure of an ultraintense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Ki Hong [Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005 (Korea, Republic of); Kim, Chul Min, E-mail: chulmin@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Nam, Chang Hee, E-mail: chnam@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-03-15

    In laser-driven proton acceleration, generation of quasi-monoenergetic proton beams has been considered a crucial feature of the radiation pressure acceleration (RPA) scheme, but the required difficult physical conditions have hampered its experimental realization. As a method to generate quasi-monoenergetic protons under experimentally viable conditions, we investigated using double-species targets of controlled composition ratio in order to make protons bunched in the phase space in the RPA scheme. From a modified optimum condition and three-dimensional particle-in-cell simulations, we showed by varying the ion composition ratio of proton and carbon that quasi-monoenergetic protons could be generated from ultrathin plane targets irradiated with a circularly polarized Gaussian laser pulse. The proposed scheme should facilitate the experimental realization of ultrashort quasi-monoenergetic proton beams for unique applications in high field science.

  17. Z-pinch driven hohlraums design for the 100 nanoseconds current time scale; Conception de cavites radiatives chauffees par plasma de striction magnetique en regime 100ns

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, F

    2003-12-15

    This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)

  18. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  19. Collective accelerator for electron colliders

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1985-01-01

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch

  20. New collider scheme at LBL

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann

  1. Perspectives on large Linear Colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-01-01

    The accelerator community now generally agrees that the Linear Collider is the most cost-effective technology for reaching much higher energies in the center-of-mass than can be attained in the largest of the e + e - storage rings, LEP. Indeed, even as the first linear collider, the SLC at SLAC, is getting ready to begin operations groups, at SLAC, Novosibirsk, CERN and KEK are doing R and D and conceptual design studies on a next generation machine in the 1 TeV energy region. In this perspectives talk I do not want to restrict my comments to any particular design, and so I will talk about a high-energy machine as the NLC, which is shorthand for the Next Linear Collider, and taken to mean a machine with a center-of-mass energy someplace in the 0.5 to 2 TeV energy range with sufficient luminosity to carry out a meaningful experimental program. I want to discuss three main items with you. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder. Next, I will give an introduction to linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder.Then, I want to give my impressions of the state of the technology available for building these kinds of machines within the next decade

  2. Stanford Linear Collider magnet positioning

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-08-01

    For the installation of the Stanford Linear Collider (SLC) the positioning and alignment of the beam line components was performed in several individual steps. In the following the general procedures for each step are outlined. The calculation of ideal coordinates for the magnets in the entire SLC will be discussed in detail. Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal positions. 35 refs., 21 figs

  3. Physics goals of future colliders

    International Nuclear Information System (INIS)

    Kane, G.L.

    1987-01-01

    These lectures describe some of the physics goals that future colliders are designed to achieve. Emphasis is on the SSC, but its capabilities are compared to those of other machines, and set in a context of what will be measured before the SSC is ready. Physics associated with the Higgs sector is examined most thoroughly, with a survey of the opportunities to find evidence of extended gauge theories

  4. FUTURE CIRCULAR COLLIDER LOGISTICS STUDY

    CERN Document Server

    Beißert, Ulrike; Kuhlmann, Gerd; Nettsträter, Andreas; Prasse, Christian; Wohlfahrt, Andreas

    2018-01-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research CERN in Geneva is the largest and most powerful collider in the world. CERN and its research and experimental infrastructure is not only a focus for the science community but is also very much in the public eye. With the Future Circular Collider (FCC) Study, CERN has begun to examine the feasibility of a new underground accelerator ring with a length of approximately 100 kilometres. Logistics is of great importance for the construction, assembly and operation of the FCC. During the planning, construction and assembly of the LHC, logistics proved to be one of the key factors. As the FCC is even larger than the LHC, logistics will also become more and more significant. This report therefore shows new concepts, methods and analytics for logistics, supply chain and transport concepts as part of the FCC study. This report deals with three different logistics aspects for the planning and construction phase of FCC: 1. A discussion of d...

  5. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  6. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  7. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  8. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    Science.gov (United States)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record

  9. Colliding Epidemics and the Rise of Cryptococcosis

    Directory of Open Access Journals (Sweden)

    Christina C. Chang

    2015-12-01

    Full Text Available Discovered more than 100 years ago as a human pathogen, the Cryptococcus neoformans–Cryptococcus gattii (C. neoformans–C. gattii complex has seen a large global resurgence in its association with clinical disease in the last 30 years. First isolated in fermenting peach juice, and identified as a human pathogen in 1894 in a patient with bone lesions, this environmental pathogen has now found niches in soil, trees, birds, and domestic pets. Cryptococcosis is well recognized as an opportunistic infection and was first noted to be associated with reticuloendothelial cancers in the 1950s. Since then, advances in transplant immunology, medical science and surgical techniques have led to increasing numbers of solid organ transplantations (SOT and hematological stem cell transplantations being performed, and the use of biological immunotherapeutics in increasingly high-risk and older individuals, have contributed to the further rise in cryptococcosis. Globally, however, the major driver for revivification of cryptococcosis is undoubtedly the HIV epidemic, particularly in Sub-Saharan Africa where access to care and antiretroviral therapy remains limited and advanced immunodeficiency, poverty and malnutrition remains the norm. As a zoonotic disease, environmental outbreaks of both human and animal cryptococcosis have been reported, possibly driven by climate change. This is best exemplified by the resurgence of C. gattii infection in Vancouver Island, Canada, and the Pacific Northwest of the United States since 1999. Here we describe how the colliding epidemics of HIV, transplantation and immunologics, climate change and migration have contributed to the rise of cryptococcosis.

  10. Cost evaluation to optimise radiation therapy implementation in different income settings: A time-driven activity-based analysis.

    Science.gov (United States)

    Van Dyk, Jacob; Zubizarreta, Eduardo; Lievens, Yolande

    2017-11-01

    With increasing recognition of growing cancer incidence globally, efficient means of expanding radiotherapy capacity is imperative, and understanding the factors impacting human and financial needs is valuable. A time-driven activity-based costing analysis was performed, using a base case of 2-machine departments, with defined cost inputs and operating parameters. Four income groups were analysed, ranging from low to high income. Scenario analyses included department size, operating hours, fractionation, treatment complexity, efficiency, and centralised versus decentralised care. The base case cost/course is US$5,368 in HICs, US$2,028 in LICs; the annual operating cost is US$4,595,000 and US$1,736,000, respectively. Economies of scale show cost/course decreasing with increasing department size, mainly related to the equipment cost and most prominent up to 3 linacs. The cost in HICs is two or three times as high as in U-MICs or LICs, respectively. Decreasing operating hours below 8h/day has a dramatic impact on the cost/course. IMRT increases the cost/course by 22%. Centralising preparatory activities has a moderate impact on the costs. The results indicate trends that are useful for optimising local and regional circumstances. This methodology can provide input into a uniform and accepted approach to evaluating the cost of radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively-driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse; Kastner, Joel H.; Santander-García, Miguel; Montez, Rodolfo; Alcolea, Javier; Balick, Bruce; Bujarrabal, Valentín

    2018-01-01

    We report the results of a survey of mm-wave molecular line emission from nine nearby (Radioastronomie Millimétrique (IRAM) 30 m telescope. Our sample comprises molecule-rich PNe spanning a wide range of central star UV luminosities as well as central star and nebular X-ray emission properties. Nine molecular line frequencies were chosen to investigate the molecular chemistry of these nebulae. New detections of one or more of five molecules -- the molecular mass tracer 13CO and the chemically important trace species HCO+, CN, HCN, and HNC -- were made in at least one PN. We present analysis of emission line flux ratios that are potential diagnostics of the influence that ultraviolet and X-ray radiation have on the chemistry of residual molecular gas in PNe.

  12. Fast feedback for linear colliders

    International Nuclear Information System (INIS)

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-01-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies

  13. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  14. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  15. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  16. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  17. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  18. Data-driven management using quantitative metric and automatic auditing program (QMAP) improves consistency of radiation oncology processes.

    Science.gov (United States)

    Yu, Naichang; Xia, Ping; Mastroianni, Anthony; Kolar, Matthew D; Chao, Samuel T; Greskovich, John F; Suh, John H

    Process consistency in planning and delivery of radiation therapy is essential to maintain patient safety and treatment quality and efficiency. Ensuring the timely completion of each critical clinical task is one aspect of process consistency. The purpose of this work is to report our experience in implementing a quantitative metric and automatic auditing program (QMAP) with a goal of improving the timely completion of critical clinical tasks. Based on our clinical electronic medical records system, we developed a software program to automatically capture the completion timestamp of each critical clinical task while providing frequent alerts of potential delinquency. These alerts were directed to designated triage teams within a time window that would offer an opportunity to mitigate the potential for late completion. Since July 2011, 18 metrics were introduced in our clinical workflow. We compared the delinquency rates for 4 selected metrics before the implementation of the metric with the delinquency rate of 2016. One-tailed Student t test was used for statistical analysis RESULTS: With an average of 150 daily patients on treatment at our main campus, the late treatment plan completion rate and late weekly physics check were reduced from 18.2% and 8.9% in 2011 to 4.2% and 0.1% in 2016, respectively (P < .01). The late weekly on-treatment physician visit rate was reduced from 7.2% in 2012 to <1.6% in 2016. The yearly late cone beam computed tomography review rate was reduced from 1.6% in 2011 to <0.1% in 2016. QMAP is effective in reducing late completions of critical tasks, which can positively impact treatment quality and patient safety by reducing the potential for errors resulting from distractions, interruptions, and rush in completion of critical tasks. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Status of the SLC: Developments in Linear Collider physics

    International Nuclear Information System (INIS)

    Krejcik, P.

    1994-11-01

    This paper reviews the performance of the SLAC Linear Collider, both from the perspective of a machine delivering high luminosity polarized beams for physics, and as a test for future linear colliders. The development of the SLC taken place over a number of years and the steady improvements have been documented in previous review papers. As a review paper, the list references also serves as a bibliography, pointing to the work of the many people contributing to the upgrades and commissioning of the various SLC systems. The major upgrades for this present run have been an improved final focus optics, new low impedance vacuum chambers for the damping rings and improved polarization from the electron source. The performance of the SLC is driven to some extent by its unique 3-beam operation in which the linac accelerates both the electron and positron bunches for collision, as well as the electron bunch to produce the positrons. The special attention required to maintain stable operation in the face of the interactions caused by beam loading from the bunches will (fortunately exclamation point) not be an issue in future linear colliders. They will deal instead with the problems associated with handling long bunch trains

  20. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  1. International Workshop on Linear Colliders 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  2. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  3. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  4. SLAC linear collider conceptual design report

    International Nuclear Information System (INIS)

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds

  5. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  6. Probing the $WW \\gamma$ vertex at hadron colliders

    CERN Document Server

    Papavassiliou, J

    1999-01-01

    We present a new, model independent method for extracting bounds for the anomalous $\\gamma WW$ couplings from hadron collider experiments. At the partonic level we introduce a set of three observables which are constructed from the unpolarized differential cross-section for the process $d\\bar{u}\\to W^{-}\\gamma$ by appropriate convolution with a set of simple polynomials depending only on the center-of-mass angle. One of these observables allows for the direct determination of the anomalous coupling usually denoted by presence of a radiation zero. The other two observables impose two sum rules on the remaining three anomalous couplings. The inclusion of the structure functions is discussed in detail for both $p\\bar{p}$ and $pp$ colliders. We show that, whilst for $p\\bar{p}$ experiments this can be accomplished straightforwardly, in the $pp$ case one has to resort to somewhat more elaborate techniques, such as the binning of events according to their longitudinal momenta.

  7. FUTURE LEPTON COLLIDERS AND LASER ACCELERATION

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    Future high energy colliders along with their physics potential, and relationship to new laser technology are discussed. Experimental approaches and requirements for New Physics exploration are also described

  8. SLAC-Linac-Collider (SLC) Project

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system

  9. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  10. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  11. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  12. Twistor Spinoffs for Collider Physics

    International Nuclear Information System (INIS)

    Dixon, Lance

    2006-01-01

    In the coming decade, the search for the Higgs boson, and for new particles representing physics beyond the Standard Model, will be carried out by colliding protons at the Tevatron and the Large Hadron Collider. A collision of two protons, each of which is made out of quarks and gluons, is inherently messy. Feynman likened it to smashing two Swiss watches together to figure out how they work. In recent decades, we have learned better how the Swiss watches work, using the theory of quark-gluon interactions, quantum chromodynamics. Armed with this knowledge, we can better predict the results of collisions at the Tevatron and the LHC, to see whether the Standard Model holds up or fails, or whether new particles are in the data. But a major bottleneck is simply in adding up Feynman diagrams, for which the rules are well known, yet there can be thousands of extremely complicated diagrams. In fact, the sum of all diagrams is often much simpler than the typical one, suggesting hidden symmetries and better ways to compute. In the past two years, spinoffs from a new theory, 'twistor string theory', have led to very efficient alternatives to Feynman diagrams for making such predictions, as I will explain.

  13. The muon collider (Sandro's snake)

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1992-01-01

    This paper describes a feasibility study for the design of a muon collider. Recognized the fact that the particle lifetime increases linearly with the energy, we have adopted a scheme where steps of cooling and acceleration are entwined. We have indeed found convenient to accelerate the beam as fast as possible to increase its chances of survival, and necessary to dilute the action of cooling throughout the entire accelerating process to make it more effective and affordable. All acceleration and cooling steps are executed in a single pass essentially along a curvilinear and open path. We do not believe it is possible to handle the beam otherwise in circular and closed rings, as it has been proposed in the past. The example shown in this paper describes a muon collider at the energy of 250 GeV per beam and a luminosity of 4 x 10 28 cm -2 s -1 . We have adopted an extrapolation of the stochastic cooling method for the reduction of the beam emittance

  14. Flavorful leptoquarks at hadron colliders

    Science.gov (United States)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  15. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  16. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  17. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  18. Proceedings of the first meeting on eγ/γγ colliders

    International Nuclear Information System (INIS)

    Watanabe, Isamu; Takahashi, Touru

    1994-01-01

    The first meeting on eγ/γγ colliders was held on September 28 and 29, 1993, at the National Laboratory for High Energy Physics. After general remarks were delivered, lectures were given on QED in intense laser field, photon linear collider, laser focusing, luminosity distribution in the eγ/γγ colliders, QCD correction for γγ→H, radiation correction for eγ/νW process, SUSY particle production at the eγ and γγ colliders, formation of e * in eγ collision, and general remarks on the theory. Discussion was carried out on 'Where are we going from here?' In this book, the gists of the lectures are collected. (K.I.)

  19. Quark radiation from LEP

    International Nuclear Information System (INIS)

    Cartwright, Susan

    1992-01-01

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred

  20. Quark radiation from LEP

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan

    1992-04-15

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred.

  1. Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene .

    Science.gov (United States)

    Pereira, Sergio L; Johnson, Kevin P; Clayton, Dale H; Baker, Allan J

    2007-08-01

    Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.

  2. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    Science.gov (United States)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  3. WE-F-BRB-03: Inclusion of Data-Driven Risk Predictions in Radiation Treatment Planning in the Context of a Local Level Learning Health System

    International Nuclear Information System (INIS)

    McNutt, T.

    2015-01-01

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented

  4. Electron density measurement of a colliding plasma using soft x-ray laser interferometry

    International Nuclear Information System (INIS)

    Wan, A.S.; Back, C.A.; Barbee, T.W.Jr.; Cauble, R.; Celliers, P.; DaSilva, L.B.; Glenzer, S.; Moreno, J.C.; Rambo, P.W.; Stone, G.F.; Trebes, J.E.; Weber, F.

    1996-05-01

    The understanding of the collision and subsequent interaction of counter-streaming high-density plasmas is important for the design of indirectly-driven inertial confinement fusion (ICF) hohlraums. We have employed a soft x-ray Mach-Zehnder interferometer, using a Ne- like Y x-ray laser at 155 angstrom as the probe source, to study interpenetration and stagnation of two colliding plasmas. We observed a peaked density profile at the symmetry axis with a wide stagnation region with width of order 100 μm. We compare the measured density profile with density profiles calculated by the radiation hydrodynamic code LASNEX and a multi-specie fluid code which allows for interpenetration. The measured density profile falls in between the calculated profiles using collisionless and fluid approximations. By using different target materials and irradiation configurations, we can vary the collisionality of the plasma. We hope to use the soft x-ray laser interferometry as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy- density physics experiments

  5. Milestone report: The simulation of radiation driven gas diffusion in UO2 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  6. X-ray lasing in colliding plasmas

    International Nuclear Information System (INIS)

    Clark, R.W.; Davis, J.; Velikovich, A.L.; Whitney, K.G.

    1997-01-01

    Conditions favorable for the achievement of population inversion and large gains in short-pulse laser-heated selenium have been reported on previously [K. G. Whitney et al., Phys. Rev. E 50, 468 (1994)]. However, the required density profiles to minimize refraction and amplification losses can be difficult to achieve in conventional laser heated blowoff plasmas. The feasibility of accelerating plasma with a laser, and letting it collide with a solid density wall plasma has been explored. The density of the resulting shocked plasma can be controlled and refraction can be reduced in this design. A radiation hydrodynamics model is used to simulate the collision of the laser produced selenium plasma with the wall plasma. The heating of the stagnated plasma with a short-pulse laser is then simulated, providing the hydrodynamic response of the selenium plasma and detailed configuration nonequilibrium atomic populations. From the results of these calculations, it appears feasible to create an x-ray lasing selenium plasma with gains in the J=0 endash 1 line at 182 Angstrom in excess of 100cm -1 . copyright 1997 American Institute of Physics

  7. Polarization Effects at a Muon Collider

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-01-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC)

  8. Higgs and SUSY searches at future colliders

    Indian Academy of Sciences (India)

    ... searches at future colliders, particularly comparing and contrasting the capabilities of LHC and next linear collider (NLC), including the aspects of Higgs searches in supersymmetric theories. I will also discuss how the search and study of sparticles other than the Higgs can be used to give information about the parameters ...

  9. Physicist pins hopes on particle collider

    CERN Multimedia

    2007-01-01

    Physicist pins hopes on particle collider By Deseret Morning News Published: Monday, Dec. 31, 27 12:4 a.m. MST FONT Scott Thomas, a 187 State University graduate, is working at the frontiers of science. The theoretical physicist is crafting ways to extract fundamental secrets that seem certain to be uncovered by the Large Hadron Collider.

  10. Technical challenge of future linear colliders

    International Nuclear Information System (INIS)

    Himel, T.

    1986-05-01

    The next generation of high energy e + e - colliders is likely to be built with colliding linear accelerators. A lot of research and development is needed before such a machine can be practically built. Some of the problems and recent progress made toward their solution are described here. Quantum corrections to beamstrahlung, the production of low emittance beams and strong focusing techniques are covered

  11. Anomalous VVH interactions at a linear collider

    Indian Academy of Sciences (India)

    Abstract. We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of. CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider ...

  12. Last magnet in place for colossal collider

    CERN Document Server

    Cho, Adrian

    2007-01-01

    "Workers have installed the last magnet for the world's mew highest-energy particle smasher, the Large Hadron Collider (LHC). The installation marks an important milestone; however, researchers still may not get the collider completed in time to start it up in November as planned." (1 page)

  13. Anomalous VVH interactions at a linear collider

    Indian Academy of Sciences (India)

    We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating ...

  14. Summary of exotic collider concepts group

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1995-01-01

    We present a summary of the discussions in the Exotic Collider Concepts Group. Most of the discussions were centered around the status and open problems for muon-muon and gamma-gamma colliders. In addition the group discussed some general problems and new results of accelerator physics. copyright 1995 American Institute of Physics

  15. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-01

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  16. Reggeon calculus at collider energies

    International Nuclear Information System (INIS)

    Pajares, C.; Varias, A.; Yepes, P.

    1983-01-01

    The phenomenology of the perturbative reggeon calculus at collider energies is studied. It is found that the graphs which were neglected at ISR energies are still negligeable at √s=540 GeV. The perturbative series for the total cross section still converges reasonably fast. The values of the different parameters which describe rightly the data up to ISR energies give rise to a total cross section of around 60 mb at √s=540 GeV. For these values, the corresponding low mass and high mass eikonal series converges much more slowly. The non perturbative reggeon calculus gives rise to a total cross section less than 60 mb. (orig.)

  17. Experimental Approaches at Linear Colliders

    International Nuclear Information System (INIS)

    Jaros, John A

    2002-01-01

    Precision measurements have played a vital role in our understanding of elementary particle physics. Experiments performed using e + e - collisions have contributed an essential part. Recently, the precision measurements at LEP and SLC have probed the standard model at the quantum level and severely constrained the mass of the Higgs boson [1]. Coupled with the limits on the Higgs mass from direct searches [2], this enables the mass to be constrained to be in the range 115-205 GeV. Developments in accelerator R and D have matured to the point where one could contemplate construction of a linear collider with initial energy in the 500 GeV range and a credible upgrade path to ∼ 1 TeV. Now is therefore the correct time to critically evaluate the case for such a facility

  18. Collide@CERN - public lecture

    CERN Multimedia

    2012-01-01

    CERN, the Republic and Canton of Geneva and the City of Geneva are delighted to invite you to a public lecture by Gilles Jobin, first winner of the Collide@CERN Geneva Dance and Performance Artist-in-residence Prize, and his CERN inspiration partner, Joao Pequenao. They will present their work in dance and science at the Globe of Science and Innovation on Wednesday, 23 May 2012 at 7 p.m. (doors open at 6.30 p.m.).   
                                                  Programme 19:00 Opening address by - Professor Rolf-Dieter Heuer, CERN Director-General, - Ariane Koek...

  19. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  20. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  1. Multibunch operation in the Tevatron Collider

    International Nuclear Information System (INIS)

    Holt, J.A.; Finley, D.A.; Bharadwaj, V.

    1993-05-01

    The Tevatron Collider at Fermilab is the world's highest energy hadron collider, colliding protons with antiprotons at a center of mass energy of 1800 GeV. At present six proton bunches collide with six antiproton bunches to generate luminosities of up to 9 x 10 30 cm -2 s -1 . It is estimated that to reach luminosities significantly greater than 10 31 cm -2 s -1 while minimizing the number of interactions per crossing, the number of bunches will have to be increased. Thirty-six bunch operation looks like the most promising plan. This paper looks at the strategies for increasing the number of particle bunches, the new hardware that needs to be designed and changes to the operating mode in filling the Tevatron. An interactive program which simulates the filling of the Tevatron collider is also presented. The time scale for multibunch operation and progress towards running greater than six bunches is given in this paper

  2. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  3. The International Linear Collider Progress Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yamamoto, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-07-15

    The International Committee for Future Accelerators (ICFA) set up the Global Design Effort (GDE) for the design of the International Linear Collider (ILC) in 2005. Drawing on the resources of over 300 national laboratories, universities and institutes worldwide, the GDE produced a Reference Design Report in 2007, followed by a more detailed Technical Design Report (TDR) in 2013. Following this report, the GDE was disbanded. A compact core team, the Linear Collider Collaboration (LCC), replaced it. This is still under the auspices of ICFA and is directly overseen by the Linear Collider Board, which reports to ICFA. The LCC is charged with continuing the design effort on a much-reduced scale until the Project is approved for construction. An additional mandate of the LCC was to bring together all linear collider work, including the CERN-based Compact Linear Collider (CLIC) under one structure in order to exploit synergies between the two studies.

  4. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  5. Foam radiators for transition radiation detectors

    International Nuclear Information System (INIS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-01-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a 'traditional' radiator, which is a periodic structure of plastic foils. (orig.)

  6. Secondary particle in background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-06-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC (LHC) √s = 40 TeV (√s = 16 TeV) and L = 10 33 cm -2 s -1 (L = 3 x 10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the ''task force on radiation levels in the SSC interaction regions.'' The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes. Following Groom's work, extensive Monte Carlo simulations were performed to address the issues of backgrounds and radiation environments for the GEM and SD C3 experiments proposed at the SSC, and for the ATLAS and CMS experiments planned for the LHC. The purpose of the present article is to give a brief summary of some aspects of the methods, assumptions, and calculations performed to date (principally for the SSC detectors), and to stress the relevance of such calculations to the detectors proposed for the study of B-physics in particular

  7. Hadron collider tests of neutrino mass-generating mechanisms

    Science.gov (United States)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  8. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  9. The dijet invariant mass at the Tevatron Collider

    International Nuclear Information System (INIS)

    Giannetti, P.

    1990-01-01

    The differential cross section of the process p + pbar → jet + jet + X as a function of the dijet invariant mass has been measured with the CDF detector at a center of mass energy of 1.8 TeV at the Tevatron Collider in Fermilab. The present analysis is based on the sample of events collected in the 1988/89 run, amounting to a total integrated luminosity of 4.2 pb -1 . A comparison to leading order QCD and quark compositeness predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. 10 refs., 6 figs

  10. Model independent Z' constraints at future e+e- colliders

    International Nuclear Information System (INIS)

    Leike, A.

    1993-11-01

    Model independent constraints on the mass of extra neutral gauge bosons and their couplings to charged leptons are given for LEP II and a 500 GeV e + e - collider. Analytical exclusion limits are derived in the Born approximation. The Z' limits obtained with radiative corrections are always worse than those calculated at the Born level. Polarized beams are only useful for degrees of polarization essentially larger than 50%. Known discovery limits on extra Z bosons predicted by popular Z' models are reproduced as special cases. The Z' constraints are compared to those predicted by four fermion contact interactions. (orig.)

  11. Lepton flavour violation at a future linear collider

    International Nuclear Information System (INIS)

    GOMEZ, M. E.

    2014-01-01

    We study the relation of the possible observation on the radiative decays μ→eγ and τ→μγ and LFV processes that could be detectable at a linear collider (LC) with a centre-of-mass energy in the TeV range. We use supersymmetric parameters consistent with cosmological considerations and with LHC searches for supersymmetry and the Higgs mass while we link the charged lepton flavor problem to the neutrino predictions in a SU(5) GUT model, enhanced by an abelian flavor symmetry.

  12. 'TRISTAN'; a database for electron colliding beam experiments

    International Nuclear Information System (INIS)

    Shimizu, Y.; Igarashi, M.; Nakazawa, N.; Oyanagi, Y.

    1982-01-01

    In this data base, the reference papers on the experiments of positron-electron colliding beam were collected for the purpose to utilize them for the TRISTAN project. The on-line retrieval of the references is possible. The number of the references is 289 during the period from January, 1974, to September, 1981. The collection of data will be continued hereafter. The terms retrievable are accelerator, incident beam, code, and radiation correction formula. The SC (name of the first author, year), incident energy, detector, luminocity, integrated luminosity, reaction, purpose and comments are also included as the data. The system is written in FORTRAN 77, and is portable. (Kato, T.)

  13. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  14. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  15. Polarized electron sources for linear colliders

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Schultz, D.C.; Sheppard, J.C.

    1992-07-01

    Linear colliders require high peak current beams with low duty factors. Several methods to produce polarized e - beams for accelerators have been developed. The SLC, the first linear collider, utilizes a photocathode gun with a GaAs cathode. Although photocathode sources are probably the only practical alternative for the next generation of linear colliders, several problems remain to be solved, including high voltage breakdown which poisons the cathode, charge limitations that are associated with the condition of the semiconductor cathode, and a relatively low polarization of ≤5O%. Methods to solve or at least greatly reduce the impact of each of these problems are at hand

  16. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  17. The principles and construction of linear colliders

    International Nuclear Information System (INIS)

    Rees, J.

    1986-09-01

    The problems posed to the designers and builders of high-energy linear colliders are discussed. Scaling laws of linear colliders are considered. The problem of attainment of small interaction areas is addressed. The physics of damping rings, which are designed to condense beam bunches in phase space, is discussed. The effect of wake fields on a particle bunch in a linac, particularly the conventional disk-loaded microwave linac structures, are discussed, as well as ways of dealing with those effects. Finally, the SLAC Linear Collider is described. 18 refs., 17 figs

  18. SLAC linear collider conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  19. Beamstrahlung spectra in next generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Chen, P. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kozanecki, W. (DAPNIA-SPP, CEN-Saclay (France))

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  20. The Relativistic Heavy Ion Collider at Brookhaven

    International Nuclear Information System (INIS)

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 x 10 26 cm -2 sec -1 at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab

  1. Standard model Higgs physics at colliders

    International Nuclear Information System (INIS)

    Rosca, A.

    2007-01-01

    In this report we briefly review the experimental status and prospects to verify the Higgs mechanism of spontaneous symmetry breaking. The focus is on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at current (Tevatron) and future (Large Hadron Collider, LHC and International Linear Collider, ILC) particle colliders. We review the Standard Model searches: searches at the Tevatron, the program planned at the LHC and prospects at the ILC. Emphasis is put on what follows after a candidate discovery at the LHC: the various measurements which are necessary to precisely determine what the properties of this Higgs candidate are. (author)

  2. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  3. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  4. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  5. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-05-01

    In this paper, we discuss the generation and control of the emittance in a next-generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. The proposed vertical beam sizes at the interaction point are the order of a few nanometers while the horizontal sizes are about a factor of 100 larger. This cross-sectional area is about a factor of 10 4 smaller than the SLC. However, the main question is: what are the tolerances to achieve such a small size, and how do they compare to present techniques for alignment and stability? These tolerances are very design dependent. Alignment tolerances in the linac can vary from 1 μm to 100 μm depending upon the basic approach. In this paper we discuss techniques of emittance generation and control which move alignment tolerances to the 100 μm range

  6. Report of the group on beam-beam effects in circular colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject ''Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs

  7. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  8. Secondary particle background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-01-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC(LHC) √s=40TeV (√s=16TeV) and L=10 33 cm -2 s -1 (L=3x10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the open-quotes task force on radiation levels in the SSC interaction regions.close quotes The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes

  9. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  10. WHIZARD 2.2 for linear colliders

    International Nuclear Information System (INIS)

    Kilian, W.; Ohl, T.

    2014-03-01

    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.

  11. Parameters of the SLAC Next Linear Collider

    International Nuclear Information System (INIS)

    Raubenheimer, T.; Adolphsen, C.; Burke, D.

    1995-05-01

    In this paper, the authors present the parameters and layout of the Next Linear Collider (NLC). The NLC is the SLAC design of a future linear collider using X-band RF technology in the main linacs. The collider would have an initial center-of-mass energy of 0.5 TeV which would be upgraded to 1 TeV and then 1.5 TeV in two stages. The design luminosity is > 5 x 10 33 cm -2 sec -1 at 0.5 TeV and > 10 34 cm -2 sec -1 at 1.0 and 1.5 TeV. They briefly describe the components of the collider and the proposed energy upgrade scenario

  12. New Stanford collider starts at Z

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    On 11 April the new SLC Stanford Linear Collider created its first Z particle, inaugurating high energy physics research at this novel machine based on the two-mile linac at the Stanford Linear Accelerator Centre, SLAC. (orig./HSI).

  13. Topcolor and the First Muon Collider

    International Nuclear Information System (INIS)

    Hill, C.T.

    1998-04-01

    We describe a class of models of electroweak symmetry breaking that involve strong dynamics and top quark condensation. A new scheme based upon a seesaw mechanism appears particularly promising. Various implications for the first-stage muon collider are discussed

  14. The future e+e- colliders

    International Nuclear Information System (INIS)

    Voss, G.A.

    1990-01-01

    At present, the highest energy e + e - colliders are the SLC and LEP. In this paper their future improvement programs for increasing luminosity and/or energy, and the use of longitudinally polarized beams at the interaction point (IP) are discussed. An e + e - collider in the SSC tunnel does not seem to be an attractive option, on both technical and economical grounds, and with LEP, circular colliders have reached the sensible limit of size and cost. Linear colliders which have, in principle, no high energy limit, must overcome a new set of technical problems having to do with beam power limitations, emittance control, superstrong focusing at the IP, strong bunch-bunch interactions at the IP and related backgrounds

  15. Timeline for Particle Collider in doubt

    CERN Multimedia

    Klapper, Bradley S

    2007-01-01

    "Officials at CERN said the possible delays in getting the particle collider back online are the result of the magnet failure and cooling processes that have been slower than expected for the 17-mile tunnel." (1,5 page)

  16. The collider calamity, publ. by Scientific American

    CERN Multimedia

    2006-01-01

    "For decades, the big guns of American science have been the U.S. Department of Energy's particle collider, which investigate the nature of matter by accelerating subatomic particles and smashing them together." (1 page)

  17. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  18. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  19. Photon Collider Physics with Real Photon Beams

    International Nuclear Information System (INIS)

    Gronberg, J; Asztalos, S

    2005-01-01

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e + e - collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two

  20. Linear accelerators for TeV colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1985-05-01

    This paper summarizes four tutorial lectures on linear electron accelerators: Electron Linacs for TeV Colliders, Emittance and Damping Rings, Wake Fields: Basic Concepts, and Wake Field Effects in Linacs

  1. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  2. Beam-beam issues in asymmetric colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e + - e - colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II)

  3. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  4. Topcolor and the First Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C.T. [Fermi National Accelerator Lab., Batavia, IL (United States)][Chicago Univ., IL (United States)

    1998-04-01

    We describe a class of models of electroweak symmetry breaking that involve strong dynamics and top quark condensation. A new scheme based upon a seesaw mechanism appears particularly promising. Various implications for the first-stage muon collider are discussed.

  5. Working group report: Collider and B physics

    Indian Academy of Sciences (India)

    The activities of the working group including some of the seminars are summarized. The written ... The search for supersymmetry at future colliders also received a lot of attention. It is believed that ..... Then the kinematic regions can be divided.

  6. Physics at Hadronic Colliders (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  7. Physics at Hadronic Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  8. Physics at Hadronic Colliders (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  9. Physics at Hadronic Colliders (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  10. Facts about real antimatter collide with fiction

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    When science collides with fiction, sometimes a best seller emerges from the debris. Take Dan Brown's Angels & Demons, for instance, a murder mystery based on science at CERN, the European nuclear research laboratory outside Geneva

  11. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  12. The promise of the large collider

    CERN Multimedia

    2007-01-01

    "In 2007, the most powerful particle accelerator ever built, CERN's new Large hadron Collider, will probe the secrets of matter in the energy states prevailing in the moments after the Big Bang. By colliding particles together when they are moving at close to the speed of ight, physicists hope to find out about matter in its earliest forms, using the energy produced by the collisions." (2 pages)

  13. Photon Linear Collider Gamma-Gamma Summary

    International Nuclear Information System (INIS)

    Gronberg, J.

    2012-01-01

    High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

  14. Physics goals of the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, S. [Argonne National Lab., IL (United States); Marciano, W.J. [Brookhaven National Lab., Upton, NY (United States); Gunion, J. F. [California Univ., Davis, CA (United States)] [and others; NLC ZDR Design Group; NLC Physics Working Group

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs.

  15. Physics goals of the next linear collider

    International Nuclear Information System (INIS)

    Kuhlman, S.; Marciano, W.J.; Gunion, J. F.

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs

  16. Excited quark production at hadron colliders

    International Nuclear Information System (INIS)

    Baur, U.; Hinchliffe, I.; Zeppenfeld, D.

    1987-06-01

    Composite models generally predict the existence of excited quark and lepton states. We consider the production and experimental signatures of excited quarks Q* of spin and isospin 1/2 at hadron colliders and estimate the background for those channels which are most promising for Q* identification. Multi-TeV pp-colliders will give access to such particles with masses up to several TeV

  17. Dedicating Fermilab's Collider

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions

  18. Physics possibilities of lepton and hadron colliders

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1985-05-01

    After a brief introduction to lepton and hadron colliders presently being planned, I give some examples of the nice standard physics which is expected to be seen in them. The bulk of the discussion, however, is centered on signals for new physics. Higgs searches at the new colliders are discussed, as well as signatures and prospects for detecting effects of supersymmetry, compositeness and dynamical symmetry breakdown. (orig.)

  19. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  20. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  1. Physics at high luminosity muon colliders and a facility overview

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Physics potentials at future colliders including high luminosity μ + μ - colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included

  2. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  3. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  4. TMDs and GPDs at a future Electron-Ion Collider

    International Nuclear Information System (INIS)

    Ent, Rolf

    2016-01-01

    In the U.S., an Electron-Ion Collider (EIC) of energy √(s) = 20-100 GeV is under design, with two options studied at Brookhaven National Lab and Jefferson Laboratory. The recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC, coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similarly allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies. (orig.)

  5. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  6. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  7. Muon collider: Introduction and status

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Muon Collider Collaboration

    1998-01-01

    Parameters are given of machines with center of mass (CoM) energies of 3 TeV and 400 GeV but, besides a comment on neutrino radiation, the paper concentrates on progress on the design of a machine to operate at a light Higgs mass, assumed, for this study, to be 100 GeV (CoM).

  8. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  9. Above-cutoff impedance measurements of pumping holes for the Collider Liner

    International Nuclear Information System (INIS)

    Walling, L.; Barts, T.; Ruiz, E.; Turner, W.; Spayd, N.

    1994-04-01

    A holed liner was considered for the Superconducting Super Collider (SSC) Collider Ring because of vacuum problems caused by photon-induced desorption. The liner would serve to shield the cold surface of the beam tube from the synchrotron radiation and the holes (or slots) would allow distributed pumping by gas-absorption material that could be placed between the liner and the beam tube. The impedance of holes and slots in a liner were studied by means of simulations using both MAFIA and HFSS, analytical modelling, wire measurements and electron beam measurements

  10. Thermal performance measurements of a graphite tube compact cryogenic support for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.

    1988-12-01

    The magnet cryostat development program for the Superconducting Super Collider (SSC) High Energy Physics Proton-Proton Collider has produced an innovative design for the structural support of the cold mass and thermal radiation shields. This work updates the continuing development of the support known as the Compact Cryogenic Support (CCS). As the structural and thermal requirements of the SSC became better defined, a CCS was developed that employs an innermost tube comprised of a graphite composite material. Presented is the thermal performance to 4.5K of the graphite CCS model. 8 refs., 6 figs., 2 tabs

  11. Second order chromaticity of the interaction regions in the collider

    International Nuclear Information System (INIS)

    Sen, T.; Syphers, M.J.

    1993-01-01

    The collider in the SSC has large second order chromaticity (ξ 2 ) with the interaction regions (IRs) contributing substantially to it. The authors calculate the general expression for ξ 2 in a storage ring and find that it is driven by the first order chromatic beta wave. Specializing to the interaction regions, they show that ξ 2 is a minimum when the phase advance (Δμ IP -IP) between adjacent interaction points is an odd multiple of π/2 and both IRs are identical. In this case the first order chromatic beta wave is confined within the IRs. Conversely, ξ 2 is large either if δμ IP -IP = (2n + 1)π/2 and the two IRs are very far from equality or if the two IRs are equal but Δμ IP -IP = nπ

  12. Compensating effect of the coherent synchrotron radiation in bunch compressors

    Science.gov (United States)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  13. Proton-driven Plasma Wakefield Acceleration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The construction of ever larger and costlier accelerator facilities has a limited future, and new technologies will be needed to push the energy frontier. Plasma wakefield acceleration is a rapidly developing field and is a promising candidate technology for future high energy colliders. We focus on the recently proposed idea of proton-driven plasma wakefield acceleration and describe the current status and plans for this approach.

  14. Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanford, T W L; Nash, T J; Olson, R E; Bliss, D E; Lemke, R W; Olson, C L; Ruiz, C L; Mock, R C; Bailey, J E; Chandler, G A; Cuneo, M E; Leeper, R J; Matzen, M K; Mehlhorn, T A; Slutz, S A; Stygar, W A; Peterson, D L; Chrien, R E; Watt, R G; Roderick, N F; Cooper, G W; Apruzese, J P; Sarkisov, G S; Chittenden, J P; Haines, M G

    2004-01-01

    Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions

  15. Status of the Future Circular Collider Study

    Science.gov (United States)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  16. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    Science.gov (United States)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1

  17. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Victoria, James; Dempsey, James [ViewRay Incorporated, Inc., Oakwood Village, Ohio 44146 (United States); Ruan, Su [Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, Rouen 76183 (France); Anastasio, Mark [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States)

    2016-08-15

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  18. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    International Nuclear Information System (INIS)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark

    2016-01-01

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  19. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  20. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    International Nuclear Information System (INIS)

    KING, B.J.

    2000-01-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e + e - and hadron colliders and three μ + μ - colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory