Pincus, R.; Mlawer, E. J.
2017-12-01
Radiation is key process in numerical models of the atmosphere. The problem is well-understood and the parameterization of radiation has seen relatively few conceptual advances in the past 15 years. It is nonthelss often the single most expensive component of all physical parameterizations despite being computed less frequently than other terms. This combination of cost and maturity suggests value in a single radiation parameterization that could be shared across models; devoting effort to a single parameterization might allow for fine tuning for efficiency. The challenge lies in the coupling of this parameterization to many disparate representations of clouds and aerosols. This talk will describe RRTMGP, a new radiation parameterization that seeks to balance efficiency and flexibility. This balance is struck by isolating computational tasks in "kernels" that expose as much fine-grained parallelism as possible. These have simple interfaces and are interoperable across programming languages so that they might be repalced by alternative implementations in domain-specific langauges. Coupling to the host model makes use of object-oriented features of Fortran 2003, minimizing branching within the kernels and the amount of data that must be transferred. We will show accuracy and efficiency results for a globally-representative set of atmospheric profiles using a relatively high-resolution spectral discretization.
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf
International Nuclear Information System (INIS)
Huang, Dong; Liu, Yangang
2014-01-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models. (letter)
Huang, Dong; Liu, Yangang
2014-12-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
Directory of Open Access Journals (Sweden)
R. Sinreich
2013-06-01
Full Text Available We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS differential slant column densities (dSCDs into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006 measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3° are compared to volume mixing ratios measured by two long-path (LP-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.
Parameterization Of Solar Radiation Using Neural Network
International Nuclear Information System (INIS)
Jiya, J. D.; Alfa, B.
2002-01-01
This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values
Energy Technology Data Exchange (ETDEWEB)
Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)
2016-02-09
Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the
International Nuclear Information System (INIS)
Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.
2016-01-01
This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.
Parameterization of radiocaesium soil-plant transfer using soil characteristics
International Nuclear Information System (INIS)
Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.
1996-01-01
A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)
Infrared radiation parameterizations in numerical climate models
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Parameterization models for solar radiation and solar technology applications
International Nuclear Information System (INIS)
Khalil, Samy A.
2008-01-01
Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined
Parameterization models for solar radiation and solar technology applications
Energy Technology Data Exchange (ETDEWEB)
Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)
2008-08-15
Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)
A Thermal Infrared Radiation Parameterization for Atmospheric Studies
Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)
2001-01-01
This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.
A Solar Radiation Parameterization for Atmospheric Studies. Volume 15
Chou, Ming-Dah; Suarez, Max J. (Editor)
1999-01-01
The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.
Modeling of clouds and radiation for development of parameterizations for general circulation models
International Nuclear Information System (INIS)
Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.
1994-01-01
Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics
Radiative flux and forcing parameterization error in aerosol-free clear skies.
Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M
2015-07-16
Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Fast multilevel radiative transfer
Paletou, Frédéric; Léger, Ludovick
2007-01-01
The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.
A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes
International Nuclear Information System (INIS)
J. O. Pinto; A.H. Lynch
2004-01-01
The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles
Fast multilevel radiative transfer
International Nuclear Information System (INIS)
Paletou, Frederic; Leger, Ludovick
2007-01-01
The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and successive overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno and Fabiani Bendicho [A novel iterative scheme for the very fast and accurate solution of non-LTE radiative transfer problems. Astrophys J 1995;455:646]; it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry
Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements
Directory of Open Access Journals (Sweden)
Shaomin Liu
2007-01-01
Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.
Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data
International Nuclear Information System (INIS)
Somerville, R.C.J.; Iacobellis, S.F.
2005-01-01
Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional
A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere
Wang, W.-C.
1976-01-01
A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.
Parameterization of clouds and radiation in climate models
Energy Technology Data Exchange (ETDEWEB)
Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)
1995-09-01
Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.
Utrecht Radiative Transfer Courses
Rutten, R. J.
2003-01-01
The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary
International Nuclear Information System (INIS)
Somieski, F.
1988-11-01
A radiation parameterization scheme for use in mesoscale models with orography and clouds has been developed. Broadband parameterizations are presented for the solar and the terrestrial spectral ranges. They account for clear, turbid or cloudy atmospheres. The scheme is one-dimensional in the atmosphere, but the effects of mountains (inclination, shading, elevated horizon) are taken into account at the surface. In the terrestrial band, grey and black clouds are considered. Furthermore, the calculation of turbulent fluxes of sensible and latent heat and momentum at an inclined lower model boundary is described. Surface-layer similarity and the surface energy budget are used to evaluate the ground surface temperature. The total scheme is part of the mesoscale model MESOSCOP. (orig.) With 3 figs., 25 refs [de
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Energy Technology Data Exchange (ETDEWEB)
Henderson-Sellers, A. (Macquarie Univ., North Ryde, New South Wales (Australia))
1993-02-01
Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology and (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.
A relativistic radiation transfer benchmark
International Nuclear Information System (INIS)
Munier, A.
1988-01-01
We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame
Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.
Gubler, S.; Gruber, S.; Purves, R. S.
2012-06-01
As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions
Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.
Directory of Open Access Journals (Sweden)
S. Gubler
2012-06-01
Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.
We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations
A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact
International Nuclear Information System (INIS)
Zhang, Hua; Chen, Qi; Xie, Bing
2015-01-01
A new parameterization of the solar and infrared optical properties of ice clouds that considers the multiple habits of ice particles was developed on the basis of a prescribed dataset. First, the fitting formulae of the bulk extinction coefficient, single-scatter albedo, asymmetry factor, and δ-function forward-peak factor at the given 65 wavelengths as a function of effective radius were created for common scenarios, which consider a greater number of wavelengths and are more accurate than those used previously. Then, the band-averaged volume extinction and absorption coefficients, asymmetry factor and forward-peak factor of ice cloud were derived for the BCC-RAD (Beijing Climate Center radiative transfer model) using a parameter reference table. Finally, the newly developed and the original schemes in the BCC-RAD and the commonly used Fu Scheme of ice cloud were all applied to the BCC-RAD. Their influences on radiation calculations were compared using the mid-latitude summer atmospheric profile with ice clouds under no-aerosol conditions, and produced a maximum difference of approximately 30.0 W/m 2 for the radiative flux, and 4.0 K/d for the heating rate. Additionally, a sensitivity test was performed to investigate the impact of the ice crystal density on radiation calculations using the three schemes. The results showed that the maximum difference was 68.1 W/m 2 for the shortwave downward radiative flux (for the case of perpendicular solar insolation), and 4.2 K/d for the longwave heating rate, indicating that the ice crystal density exerts a significant effect on radiation calculations for a cloudy atmosphere. - Highlights: • A new parameterization of the radiative properties of ice cloud was obtained. • More accurate fitting formulae of them were created for common scenarios. • The band-averaged of them were derived for our radiation model of BCC-RAD. • We found that there exist large differences of results among different ice schemes. • We found
A new simple parameterization of daily clear-sky global solar radiation including horizon effects
International Nuclear Information System (INIS)
Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin
2007-01-01
Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Suarex, Max J. (Editor); Chou, Ming-Dah
1994-01-01
A detailed description of a parameterization for thermal infrared radiative transfer designed specifically for use in global climate models is presented. The parameterization includes the effects of the main absorbers of terrestrial radiation: water vapor, carbon dioxide, and ozone. While being computationally efficient, the schemes compute very accurately the clear-sky fluxes and cooling rates from the Earth's surface to 0.01 mb. This combination of accuracy and speed makes the parameterization suitable for both tropospheric and middle atmospheric modeling applications. Since no transmittances are precomputed the atmospheric layers and the vertical distribution of the absorbers may be freely specified. The scheme can also account for any vertical distribution of fractional cloudiness with arbitrary optical thickness. These features make the parameterization very flexible and extremely well suited for use in climate modeling studies. In addition, the numerics and the FORTRAN implementation have been carefully designed to conserve both memory and computer time. This code should be particularly attractive to those contemplating long-term climate simulations, wishing to model the middle atmosphere, or planning to use a large number of levels in the vertical.
Radiation transfer and stellar atmospheres
Swihart, T. L.
This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.
Radiation and combined heat transfer in channels
International Nuclear Information System (INIS)
Tamonis, M.
1986-01-01
This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems
Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.
2016-12-01
A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.
Radiative transfer in molecular lines
Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.
2001-07-01
The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.
Parameterization of cirrus microphysical and radiative properties in larger-scale models
International Nuclear Information System (INIS)
Heymsfield, A.J.; Coen, J.L.
1994-01-01
This study exploits measurements in clouds sampled during several field programs to develop and validate parameterizations that represent the physical and radiative properties of convectively generated cirrus clouds in intermediate and large-scale models. The focus is on cirrus anvils because they occur frequently, cover large areas, and play a large role in the radiation budget. Preliminary work focuses on understanding the microphysical, radiative, and dynamical processes that occur in these clouds. A detailed microphysical package has been constructed that considers the growth of the following hydrometer types: water drops, needles, plates, dendrites, columns, bullet rosettes, aggregates, graupel, and hail. Particle growth processes include diffusional and accretional growth, aggregation, sedimentation, and melting. This package is being implemented in a simple dynamical model that tracks the evolution and dispersion of hydrometers in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure
Benchmark results in radiative transfer
International Nuclear Information System (INIS)
Garcia, R.D.M.; Siewert, C.E.
1986-02-01
Several aspects of the F N method are reported, and the method is used to solve accurately some benchmark problems in radiative transfer in the field of atmospheric physics. The method was modified to solve cases of pure scattering and an improved process was developed for computing the radiation intensity. An algorithms for computing several quantities used in the F N method was done. An improved scheme to evaluate certain integrals relevant to the method is done, and a two-term recursion relation that has proved useful for the numerical evaluation of matrix elements, basic for the method, is given. The methods used to solve the encountered linear algebric equations are discussed, and the numerical results are evaluated. (M.C.K.) [pt
Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis
2017-11-01
The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.
Stochastic radiative transfer model for mixture of discontinuous vegetation canopies
International Nuclear Information System (INIS)
Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.
2007-01-01
Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model
Czech Academy of Sciences Publication Activity Database
Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.
2016-01-01
Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016
Radiative transfer in silylidene molecule
Directory of Open Access Journals (Sweden)
Sharma M.
2014-01-01
Full Text Available In order to search for silylidene (H2CSi in the interstellar medium, Izuha et al. (1996 recorded microwave spectrum of H2CSi in laboratory and made an unsuccessful attempt of its identification in IRC +10216, Ori KL, Sgr B2, through its 717-616 transition at 222.055 GHz. For finding out if there are other transitions of H2CSi which may help in its identification in the interstellar medium, we have considered 25 rotational levels of ortho-H2CSi connected by collisional transitions and 35 radiative transitions, and solved radiative transfer problem using the LVG approximation. We have found that the brightness temperatures of 919-818, 918-817, 101,10-919, 1019-918, 111,11-101,10, 111,10-1019 and 121,12-111,11 transition are larger than that of 717-616 transition. Thus, these transitions may help in detection of H2CSi in the interstellar medium.
Global direct radiative forcing by process-parameterized aerosol optical properties
KirkevâG, Alf; Iversen, Trond
2002-10-01
A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.
Energy Technology Data Exchange (ETDEWEB)
Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)
1996-04-01
The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.
SMRT: A new, modular snow microwave radiative transfer model
Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the
An evaluation of gas transfer velocity parameterizations during natural convection using DNS
Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.
2016-02-01
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Aerosol effects in radiation transfer
International Nuclear Information System (INIS)
Binenko, V.I.; Harshvardhan, H.
1993-01-01
The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo
3D radiative transfer in stellar atmospheres
International Nuclear Information System (INIS)
Carlsson, M
2008-01-01
Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.
Radiative transfer in type I supernovae atmospheres
International Nuclear Information System (INIS)
Isern, J.; Lopez, R.; Simonneau, E.
1987-01-01
Type I Supernovae are thought to be the result of the thermonuclear explosion of a carbon oxygen white dwarf in a close binary system. As the only direct information concerning the physics and the triggering mechanism of supernova explosions comes from the spectrophotometry of the emitted radiation, it is worthwhile to put considerable effort on the understanding of the radiation transfer in the supernovae envelopes in order to set constraints on the theoretical models of such explosions. In this paper we analyze the role played by the layers curvature on the radiative transfer. (Author)
Surface shear stress dependence of gas transfer velocity parameterizations using DNS
Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.
2016-10-01
Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri
Line radiative transfer and statistical equilibrium*
Directory of Open Access Journals (Sweden)
Kamp Inga
2015-01-01
Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.
International Nuclear Information System (INIS)
Ruiz-Arias, J.A.; Pozo-Vasquez, D.; Sanchez-Sanchez, N.; Hayas-Barru, A.; Tovar-Pescador, J.; Montavez, J.P.
2008-01-01
We study the relative performance of two different MM5-PBL parametrizations (Blackadar and MRF) simulating hourly values of solar irradiance and temperature in the south-eastern part of the Iberian Peninsula. The evaluation was carried out throughout the different season of the year 2005 and for three different sky conditions: clear-sky, broken-clouds and overcast conditions. Two integrations, one per PBL parameterization, were carried out for every sky condition and season of the year and results were compared with observational data. Overall, the MM5 model, both using the Blackadar or MRF PBL parameterization, revealed to be a valid tool to estimate hourly values of solar radiation and temperature over the study area. The influence of the PBL parameterization on the model estimates was found to be more important for the solar radiation than for the temperature and highly dependent on the season and sky conditions. Particularly, a detailed analysis revealed that, during broken-clouds conditions, the ability of the model to reproduce hourly changes in the solar radiation strongly depends upon the selected PBL parameterization. Additionally, it was found that solar radiation RMSE values are about one order of magnitude higher during broken-clouds and overcast conditions compared to clear-sky conditions. For the temperature, the two PBL parameterizations provide very similar estimates. Only under overcast conditions and during the autumn, the MRF provides significantly better estimates.
International symposium on radiative heat transfer: Book of abstracts
International Nuclear Information System (INIS)
1995-01-01
The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei
2018-01-01
We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.
Neutronics methods for thermal radiative transfer
International Nuclear Information System (INIS)
Larsen, E.W.
1988-01-01
The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed
Transfer matrix method for four-flux radiative transfer.
Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini
2017-07-20
We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.
Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications
Xie, Y.; Sengupta, M.
2017-12-01
Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.
Practical applications of radiative wireless power transfer
Pflug, H.; Visser, H.J.; Keyrouz, S.
2015-01-01
For practical use of radiative wireless power transfer (WPT), it is necessary to design a system which is able to supply circuits with a dynamic loading characteristic. In this paper we present a practical way to obtain efficiency and dc output power characteristics of a WPT system. An Avago
Line radiative transfer and statistical equilibrium
Kamp, Inga
Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe
Enhancing radiative energy transfer through thermal extraction
Directory of Open Access Journals (Sweden)
Tan Yixuan
2016-06-01
Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.
Discrete diffusion Lyman α radiative transfer
Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš
2018-06-01
Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.
Directory of Open Access Journals (Sweden)
P. Otero
2013-05-01
Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.
RRTM: A rapid radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
Enhancing radiative energy transfer through thermal extraction
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal
Radiative Transfer Through Discs of Cataclysmic Variables
Czech Academy of Sciences Publication Activity Database
Korčáková, Daniela; Nagel, T.; Werner, K.; Suleimanov, V.; Votruba, Viktor
2010-01-01
Roč. 1273, - (2010), s. 350-353 ISSN 1551-7616. [European White Dwarf Workshop /17./. Tübingen, 16.08.2010-20.08.2010] R&D Projects: GA ČR GP205/09/P476 Institutional research plan: CEZ:AV0Z10030501 Keywords : radiative transfer * Doppler effect, * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Polarized Radiative Transfer in Fluctuating Stochastic Media
International Nuclear Information System (INIS)
Sallah, M.; Degheidy, A.R.; Selim, M.M.
2009-01-01
The problem of polarized radiative transfer in a planar cluttered atmospheric medium (like cloudy atmosphere) is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity, radiative energy and radiative flux, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. The problem is considered in half space medium which has specular reflecting boundary exposed to unit external incident flux. Numerical results of the average reflectivity, average radiant energy and average net flux are obtained for both Gaussian and modified Gaussian probability density functions at different degrees of polarization
Jablonski, A.
2018-01-01
Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean
Approximate models for broken clouds in stochastic radiative transfer theory
International Nuclear Information System (INIS)
Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas
2014-01-01
This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models
Menzel, R.; Paynter, D.; Jones, A. L.
2017-12-01
Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.
Validation of the community radiative transfer model
International Nuclear Information System (INIS)
Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan
2011-01-01
To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.
Arcmancer: Geodesics and polarized radiative transfer library
Pihajoki, Pauli; Mannerkoski, Matias; Nättilä, Joonas; Johansson, Peter H.
2018-05-01
Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.
Matrix-exponential description of radiative transfer
International Nuclear Information System (INIS)
Waterman, P.C.
1981-01-01
By appling the matrix-exponential operator technique to the radiative-transfer equation in discrete form, new analytical solutions are obtained for the transmission and reflection matrices in the limiting cases x >1, where x is the optical depth of the layer. Orthongonality of the eigenvectors of the matrix exponential apparently yields new conditions for determining. Chandrasekhar's characteristic roots. The exact law of reflection for the discrete eigenfunctions is also obtained. Finally, when used in conjuction with the doubling method, the matrix exponential should result in reduction in both computation time and loss of precision
Nonlinear response matrix methods for radiative transfer
International Nuclear Information System (INIS)
Miller, W.F. Jr.; Lewis, E.E.
1987-01-01
A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs
A rapid radiative transfer model for reflection of solar radiation
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
Radiatively driven relativistic spherical winds under relativistic radiative transfer
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
Simulation of solar radiative transfer in cumulus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
Influence of radiation heat transfer during a severe accident
Energy Technology Data Exchange (ETDEWEB)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)
2016-09-15
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
Influence of radiation heat transfer during a severe accident
International Nuclear Information System (INIS)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.
2016-09-01
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
Interference-exact radiative transfer equation
DEFF Research Database (Denmark)
Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani
2017-01-01
Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....
Radiatively-suppressed spherical accretion under relativistic radiative transfer
Fukue, Jun
2018-03-01
We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.
Moore, Luke; Galand, Marina; Mueller-Wodarg, Ingo; Mendillo, Michael
2009-12-01
We evaluate the effectiveness of two parameterizations in Saturn's ionosphere over a range of solar fluxes, seasons, and latitudes. First, the parameterization of the thermal electron heating rate, Q* e, introduced in [Moore, L., Galand, M., Mueller-Wodarg, I., Yelle, R.V., Mendillo, M., 2008. Plasma temperatures in Saturn's ionosphere. J. Geophys. Res. 113, A10306. doi:10.1029/2008JA013373.] for one specific set of conditions, is found to produce ion and electron temperatures that agree with self-consistent suprathermal electron calculations to within 2% on average under all conditions considered. Next, we develop a new parameterization of the secondary ion production rate at Saturn based on the calculations of [Galand, M., Moore, L., Mueller-Wodarg, I., Mendillo, M., 2009. Modeling the photoelectron secondary ionization process at Saturn. accepted. J. Geophys. Res.]; it is found to be accurate to within 4% on average. The demonstrated effectiveness of these two parameterizations over a wide range of input conditions makes them good candidates for inclusion in 3D Saturn thermosphere-ionosphere general circulation models (TIGCMs).
Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.
1993-01-01
Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.
Evaluation method for radiative heat transfer in polydisperse water droplets
International Nuclear Information System (INIS)
Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki
2008-01-01
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Submandibular salivary gland transfer prevents radiation-induced xerostomia
International Nuclear Information System (INIS)
Jha, Naresh; Seikaly, Hadi; McGaw, Timothy; Coulter, Linda
2000-01-01
Background: Xerostomia is a significant morbidity of radiation therapy in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to submental space, outside the proposed radiation field, prior to starting radiation treatment, would prevent xerostomia. Methods: We are conducting a prospective clinical trial where the submandibular gland is transferred as part of the surgical intervention. The patients are followed clinically, with salivary flow studies and University of Washington quality of life questionnaire. Results: We report early results of 16 patients who have undergone this procedure. Seven patients have finished and 2 patients are currently undergoing radiation treatment. In 2 patients, no postoperative radiation treatment was indicated. Two patients are waiting to start radiation treatment and 2 patients refused treatment after surgery. The surgical transfer was abandoned in 1 patient. All of the transferred salivary glands were positioned outside the proposed radiation fields and were functional. The patients did not complain of any xerostomia and developed only minimal oral mucositis. There were no surgical complications. Conclusions: Surgical transfer of a submandibular salivary gland to the submental space (outside the radiation field) preserves its function and prevents the development of radiation-induced xerostomia
Radiative transfer in atmosphere-sea ice-ocean system
Energy Technology Data Exchange (ETDEWEB)
Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
1996-04-01
Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.
GLERL Radiation Transfer Through Freshwater Ice
National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...
Wang, Xiaocong
2017-04-01
Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.
Transient radiative transfer in a scattering slab considering polarization.
Yi, Hongliang; Ben, Xun; Tan, Heping
2013-11-04
The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.
Atmospheric radiative transfer modeling: a summary of the AER codes
Energy Technology Data Exchange (ETDEWEB)
Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)
2005-03-01
The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.
Light scattering reviews 9 light scattering and radiative transfer
Kokhanovsky, Alexander A
2014-01-01
This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.
Bivariational calculations for radiation transfer in an inhomogeneous participating media
International Nuclear Information System (INIS)
El Wakil, S.A.; Machali, H.M.; Haggag, M.H.; Attia, M.T.
1986-07-01
Equations for radiation transfer are obtained for dispersive media with space dependent albedo. Bivariational bound principle is used to calculate the reflection and transmission coefficients for such media. Numerical results are given and compared. (author)
Towards linearization of atmospheric radiative transfer in spherical geometry
International Nuclear Information System (INIS)
Walter, Holger H.; Landgraf, Jochen
2005-01-01
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument
Fast and simple model for atmospheric radiative transfer
Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.
2010-01-01
Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2011-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)
Heat transfer augmentation of a car radiator using nanofluids
Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.
2014-05-01
The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.
Maximal near-field radiative heat transfer between two plates
Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl
2013-01-01
International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...
Application of the Radiative Transfer Equation (RTE) to Scattering by ...
African Journals Online (AJOL)
Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.
A study of Monte Carlo radiative transfer through fractal clouds
Energy Technology Data Exchange (ETDEWEB)
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Radiation curable compositions useful as transfer coatings
International Nuclear Information System (INIS)
McCarty, W.H.; Nagy, F.A.; Guarino, J.P.
1983-01-01
The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface
On similarity and scaling of the radiative transfer equation
International Nuclear Information System (INIS)
Mitrescu, C.; Stephens, G.L.
2004-01-01
The present paper shows how the well-known similarity and scaling concepts are properties of the radiative transfer equation and not specifically of the degree of anisotropy of the phase function. It is shown that the key assumption regarding the angular dependence of the radiative field is essential in determining both the value for the parameter used to scale the radiative transfer, as well as the number of streams used in calculating the radiances for various atmospheric problems. Simulations performed on realistic type of cirrus clouds, characterized by strongly anisotropic functions, demonstrates the superior computational advantage for accurately simulating radiances. A new approach for determining the scaling parameter is introduced
Radiation heat transfer model for the SCDAP code
International Nuclear Information System (INIS)
Sohal, M.S.
1984-01-01
A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant
Smoothed Particle Hydrodynamics Coupled with Radiation Transfer
Susa, Hajime
2006-04-01
We have constructed a brand-new radiation hydrodynamics solver based upon Smoothed Particle Hydrodynamics, which works on a parallel computer system. The code is designed to investigate the formation and evolution of first-generation objects at z ≳ 10, where the radiative feedback from various sources plays important roles. The code can compute the fraction of chemical species e, H+, H, H-, H2, and H+2 by by fully implicit time integration. It also can deal with multiple sources of ionizing radiation, as well as radiation at Lyman-Werner band. We compare the results for a few test calculations with the results of one-dimensional simulations, in which we find good agreements with each other. We also evaluate the speedup by parallelization, which is found to be almost ideal, as long as the number of sources is comparable to the number of processors.
Radiative heat transfer in low-dimensional systems -- microscopic mode
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Radiation effects on heat transfer in heat exchangers, (2)
International Nuclear Information System (INIS)
Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.
1980-01-01
In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
Radiation transfer in inhomogeneous exponential media
International Nuclear Information System (INIS)
Tezcan, C.; Akcay, H.
2006-01-01
The angular distribution of the radiation intensity and the related constants C and D* are calculated for a new choice of c(x) having the form of the Morse potential in quantum mechanics c(x)=1-a-be -2αx +de -αx . We use the modified Eddington method. The radiation intensity in this method is given in terms of the unknown even and odd functions of the space variable x and the direction cosine μ. The coefficients of these functions depend only on the space variables and satisfy second order differential equations. We solve the resulting second order differential equation using the Nikiforov-Uvarov method. The method provides exact analytical expressions and is not previously used to solve radiation problems. The numerical results are listed in a table for both the constants C and D* and the albedo and in the limiting cases are compared with the homogeneous values. (orig.)
Radiation-induced Mass Transfer through Membranes
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel
2009-01-01
Roč. 36, č. 2 (2009), s. 125-128 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : mass transfer * adiation * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.189, year: 2009
User's Manual: Routines for Radiative Heat Transfer and Thermometry
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
Super-Planckian far-field radiative heat transfer
Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.
2018-01-01
We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.
An anisotropic diffusion approximation to thermal radiative transfer
International Nuclear Information System (INIS)
Johnson, Seth R.; Larsen, Edward W.
2011-01-01
This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the
K. Schwarzschild's problem in radiation transfer theory
International Nuclear Information System (INIS)
Rutily, B.; Chevallier, L.; Pelkowski, J.
2006-01-01
We solve exactly the problem of a finite slab receiving an isotropic radiation on one side and no radiation on the other side. This problem-to be more precise the calculation of the source function within the slab-was first formulated by K. Schwarzschild in 1914. We first solve it for unspecified albedos and optical thicknesses of the atmosphere, in particular for an albedo very close to 1 and a very large optical thickness in view of some astrophysical applications. Then we focus on the conservative case (albedo=1), which is of great interest for the modeling of grey atmospheres in radiative equilibrium. Ten-figure tables of the conservative source function are given. From the analytical expression of this function, we deduce (1) a simple relation between the effective temperature of a grey atmosphere in radiative equilibrium and the temperature of the black body that irradiates it (2) the temperature at any point of the atmosphere when it is in local thermodynamical equilibrium. This temperature distribution is the counterpart, for a finite slab, of Hopf's distribution in a half-space. Its graphical representation is given for various optical thicknesses of the atmosphere
Some fundamental considerations of the equation of radiative transfer
International Nuclear Information System (INIS)
Kuriyan, J.G.; Sudarshan, E.C.G.
1978-10-01
The radiation transfer of the vector electromagnetic field was first formulated by Chandrasekhar while deriving the polarization characteristics of a sunlit sky. There are two subtle problems underlying this treatment. The first concerns the crucial identification of a Stokes parameter with the specific intensity of radiation. While both depend on position in 3-D space, the latter has, intrinsic to it, an additional angular dependence defining the flow of the radiation field. How can this inadequacy be remedied without damaging the results obtained heretofore from Chandrasekhar's formalism. The second problem arises from the fact that the radiative transfer equation describes the transport of an incoherent radiation field through space. This, however, seems to contradict the results of the Van Cittert-Zernike-Wolf theorem which implies that an incoherent field develops coherence as it passes through free space implying, of course, that the radiative transfer equation must involve not incoherent but partially coherent fields. The vector transfer equation of the direct beam (Beer's law) is derived from first principles. The analysis of this equation provides a satisfactory resolution of these two problems. The result also shows that the Beer's law will have to be modified to a matrix law to accommodate systems that are not spherically symmetric. 13 references
Transfer of radiation technology to developing countries
Markovic, Vitomir; Ridwan, Mohammad
1993-10-01
Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.
A study of the 3D radiative transfer effect in cloudy atmospheres
Okata, M.; Teruyuki, N.; Suzuki, K.
2015-12-01
Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.
Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability
Janett, Gioele; Paganini, Alberto
2018-04-01
Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.
Strain-induced modulation of near-field radiative transfer.
Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi
2018-06-11
In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Radiative Transfer Model for Contaminated Rough Surfaces
2013-02-01
reflectance of potassium chlorate and ammonium nitrate contaminated surfaces in mid-wavelength and long-wavelength infrared for detection. Our framework...obtained excellent or good results for lab measurements of potassium chlorate on most aluminum surfaces; however, ammonium nitrate on painted aluminum...misidentify potassium chlorate as ammonium nitrate and vice versa). We also observed moderate success on field data. 15. SUBJECT TERMS radiative
International Nuclear Information System (INIS)
Grant, K.E.; Ellingson, R.G.; Wuebbles, D.J.
1988-08-01
Radiative processes strongly effect equilibrium trace gas concentrations both directly, through photolysis reactions, and indirectly through temperature and transport processes. As part of our continuing radiative submodel development and validation, we have used the LLNL 2-D chemical-radiative-transport (CRT) model to investigate the net sensitivity of equilibrium ozone concentrations to several changes in radiative forcing. Doubling CO 2 from 300 ppmv to 600 ppmv resulted in a temperature decrease of 5 K to 8 K in the middle stratosphere along with an 8% to 16% increase in ozone in the same region. Replacing our usual shortwave scattering algorithms with a simplified Rayleigh algorithm led to a 1% to 2% increase in ozone in the lower stratosphere. Finally, modifying our normal CO 2 cooling rates by corrections derived from line-by-line calculations resulted in several regions of heating and cooling. We observed temperature changes on the order of 1 K to 1.5 K with corresponding changes of 0.5% to 1.5% in O 3 . Our results for doubled CO 2 compare favorably with those by other authors. Results for our two perturbation scenarios stress the need for accurately modeling radiative processes while confirming the general validity of current 2-D CRT models. 15 refs., 5 figs
Near-field radiative heat transfer between metasurfaces
DEFF Research Database (Denmark)
Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.
2016-01-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...... and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer...
SEURAT: SPH scheme extended with ultraviolet line radiative transfer
Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki
2018-05-01
We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.
Maximal near-field radiative heat transfer between two plates
Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl
2013-09-01
Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
Fractional integration and radiative transfer in a multifractal atmosphere
Energy Technology Data Exchange (ETDEWEB)
Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)
1996-04-01
Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
The present note deals with the effects of radiative heat transfer and free convection in MHD for a ﬂow of an electrically conducting, incompressible, dusty viscous ﬂuid past an impulsively started vertical non-conducting plate, under the inﬂuence of transversely applied magnetic ﬁeld. The heat due to viscous dissipation and ...
New radiative transfer models for obscuring tori in active galaxies
van Bemmel, IM; Dullemond, CP
Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
... radiative heat transfer is useful for predicting the heat feedback to the burning surface ... petroleum technology, to study the movement of natural gas, oil and water ... (e.g. sea water, rain water, and sewage) past an impulsively started infinite ...
Modeling radiative transfer with the doubling and adding approach in a climate GCM setting
Lacis, A. A.
2017-12-01
The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.
Linearized vector radiative transfer model MCC++ for a spherical atmosphere
International Nuclear Information System (INIS)
Postylyakov, O.V.
2004-01-01
Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only
submitter Data-driven RBE parameterization for helium ion beams
Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T
2016-01-01
Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...
Modelling radiative heat transfer inside a basin type solar still
International Nuclear Information System (INIS)
Madhlopa, A.
2014-01-01
Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still
Microwave radiative transfer intercomparison study for 3-D dichroic media
International Nuclear Information System (INIS)
Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C.
2007-01-01
Three different numerical methods capable of solving the radiative transfer of microwave radiation within 3-D dichroic media are compared. A case study, represented by an intense rain shaft populated by perfectly oriented oblate raindrops, is analysed in detail, including a discussion of the behaviour of all four Stokes components. Results demonstrate an acceptable agreement between all Monte Carlo methods. The method based on a discrete ordinates scheme agrees only qualitatively with the Monte Carlo outputs. Because of its lower computational cost the backward Monte Carlo technique based on importance sampling represents the most efficient way to face passive microwave radiative transfer problems related to optically thick 3-D structured clouds including non-spherical preferentially oriented hydrometeors
A fast infrared radiative transfer model for overlapping clouds
International Nuclear Information System (INIS)
Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.
2007-01-01
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model
Fundamental radiation effect on polymers energy transfer from radiation to polymer
International Nuclear Information System (INIS)
Seguchi, T.
2007-01-01
Polymer modification as cross-link, chain scission, and graft-polymerization by radiation is initiated by the quantum energy transferred from radiation to polymers. The active species for chemical reactions are produced through ionization or activation of polymer molecules for any radiation source. The energy transfer occurs mainly by ionic interaction between radiation and polymer molecule, and the contribution from the collision interaction is miner. The radiation of electromagnetic wave as X-ray or γ-ray generates the energetic electron which induces ionic interaction with polymer molecule. The energy loss profile along the penetration to polymer material is much different among the radiation sources of EB, γ-ray, and ion beams in the macroscopic mechanism. In this article, the behavior of single event, that is, the event induced by one electron, γ-ray, ion, and neutron is described by the macroscopic mechanism and by the microscopic mechanism. (authors)
Three-dimensional transfer of solar radiation in clouds
International Nuclear Information System (INIS)
Davies, R.
1976-01-01
The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable
Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.
2012-01-01
Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...
Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN
International Nuclear Information System (INIS)
Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P.
2014-01-01
SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable
Mathematical models of the theory of the radiative transfer
International Nuclear Information System (INIS)
Lin, Ch.
2007-06-01
We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)
Near-field radiative heat transfer in mesoporous alumina
International Nuclear Information System (INIS)
Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge
2015-01-01
The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)
International Nuclear Information System (INIS)
Zhao, J.M.; Tan, J.Y.; Liu, L.H.
2012-01-01
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.
Entropy flow and generation in radiative transfer between surfaces
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering
2007-02-15
Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)
Directory of Open Access Journals (Sweden)
Jean-Philippe Gastellu-Etchegorry
2015-02-01
Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.
Use of radiation to transfer alien chromosome segments to wheat
International Nuclear Information System (INIS)
Sears, E.R.
1993-01-01
Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved
Radiative heat transfer between nanoparticles enhanced by intermediate particle
Directory of Open Access Journals (Sweden)
Yanhong Wang
2016-02-01
Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.
Radiative heat transfer in 2D Dirac materials
International Nuclear Information System (INIS)
Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R
2015-01-01
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)
Advanced Computational Methods for Thermal Radiative Heat Transfer
Energy Technology Data Exchange (ETDEWEB)
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Kokhanovsky, Alexander A
2014-01-01
This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.
Fire Intensity Data for Validation of the Radiative Transfer Equation
Energy Technology Data Exchange (ETDEWEB)
Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.
BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER
Energy Technology Data Exchange (ETDEWEB)
Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)
2016-03-20
In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.
Application of nonlinear Krylov acceleration to radiative transfer problems
International Nuclear Information System (INIS)
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-01-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
Analytical heat transfer modeling of a new radiation calorimeter
Energy Technology Data Exchange (ETDEWEB)
Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)
2016-06-10
Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.
System for selection of radiation source transfer trucks
International Nuclear Information System (INIS)
Tanimoto, Yoshinori; Ito, Kojiro.
1970-01-01
A device for selection of trucks each of which load and transfer a radiation source to an irradiation room above a water pool is installed at the end of a pair of rails fixed to the bottom of the pool. This device is equipped with a number of laterally shiftable rail pairs which may be brought into successive alignment with the fixed rails and is adapted to receive, carry and fix a truck on each rail pair. If one of said trucks is selected for irradiation in a desired irradiation room, the rail pair carrying this truck is shifted to align and couple with the fixed rail pair whereupon the truck is driven and transferred to a position on the fixed rails below the desired room and elevated thereinto. Accordingly, a plurality of trucks can optionally be shunted on a line of fixed rails without unloading the respective radiation sources. (Ohno, Y.)
Radiative transfer model for heterogeneous 3-D scenes
Kimes, D. S.; Kirchner, J. A.
1982-01-01
A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms
Analytical heat transfer modeling of a new radiation calorimeter
International Nuclear Information System (INIS)
Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric
2016-01-01
Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.
A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS
International Nuclear Information System (INIS)
Davis, Shane W.; Stone, James M.; Jiang Yanfei
2012-01-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.
Investigation of transient conduction–radiation heat transfer in a ...
Indian Academy of Sciences (India)
Mohammad Mehdi Keshtkar
2018-04-17
Apr 17, 2018 ... For absorbing, emitting and anisotropically scattering medium, the radiative heat transfer in any discrete direction s_m with direction index m is given as. dIm dsm. ¼ s_m. :rImрr; s_m. ЮјАbIm ю Sm. р16Ю .... thermore, V is the volume of the cell defined as dx В dy and. Im p and Sm p are the intensities and ...
New radiative transfer models for obscuring tori in active galaxies
van Bemmel, I. M.; Dullemond, C. P.
2003-01-01
Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed for different orientations of the toroid. Colour-colour comparisons with observational data are consistent with previous observations that the emission longward of 60 micron is produced by star-fo...
Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.
Kanal, M.
1973-01-01
In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.
RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes
Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.
2018-05-01
Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor
Energy Technology Data Exchange (ETDEWEB)
Scheirer, R.
2001-07-01
A most profound knowledge about the radiative characteristics of clouds is required for the development of realistic atmospheric circulation models and cloud remote sensing algorithms. At present, cloud fields are treated extremely simplified in both application areas. Cloud radiative flux parameterizations in atmospheric circulation models as well as the correlation between radiance and cloud properties as required for remote sensing algorithm are usually based on the assumption of plane-parallel homogeneous (PPHOM) clouds. Compared to realistically 3D cloud fields, this simplification leads to large systematic errors. In order to quantify these errors a Monte Carlo radiative transfer model has been developed and applied to 3D cloud fields. The latter origin from the non-hydrostatic 3D atmospheric model GESIMA. Absorption and scattering properties of the cloud particles have been calculated by means of Mie-theory for spherical water droplets and a ray-tracing code for non-spherical ice, rain, and snow particles. Line by line calculations have been used to obtain the absorption properties of the relevant atmospheric gases. (orig.) [German] Die Erstellung realistischer Zirkulationsmodelle der Atmosphaere erfordert unter Anderem eine moeglichst genaue Kenntnis der Strahlungseigenschaften von Wolken. Auch fuer Ableitung und Korrektur von Fernerkundungsalgorithmen sind die Einfluesse der Wolken auf die zu messenden Strahldichten von grosser Bedeutung. In den beiden genannten Anwendungen werden Wolkenfelder zur Zeit nur in stark vereinfachter Weise beruecksichtigt. Parameterisierungen der Strahlungsfluesse bei bewoelkter Atmosphaere in atmosphaerischen Zirkulationsmodellen, sowie die Ableitung der Zusammenhaenge zwischen Strahldichten und optischen Wolkeneigenschaften basieren auf der Annahme von planparallelen und horizontal homogenen Wolken (PPHOM). Diese Approximation kann gegenueber der dreidimensionalen Strahlungstransportberechnung (3D) zu erheblichen Fehlern
Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.
2017-11-01
Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron
Analysis of radiative heat transfer in the presence of obscurations
International Nuclear Information System (INIS)
Finkelstein, L.; Weissman, Y.
1981-05-01
Numerical simulation of radiative heat transfer problems in general axisymmetric geometry in the presence of an active gas is considered. Such simulation requires subdivision of the radiating surfaces into discrete elements, which are in the present case radiating rings. While the effect of a participating medium is easily taken into account by integration along the lines of vision between the surface elements, the calculation of the different obscurations poses the main difficulty. We have written a closed expression which formulates the problem exactly, and then developed a systematic and compact computational approach to the obscuration problem in complex configurations. The present procedure is particularly suited to computer calculations associated with engineering applications in the aircraft and furnace industries. (author)
Fuel Transfer Cask; Procedure Option and Radiation Protection during Transferring the Spent Fuel
International Nuclear Information System (INIS)
Muhammad Khairul Ariff Mustafa; Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Mohd Fazli Zakaria
2011-01-01
Reactor TRIGA PUSPATI (RTP) has been operating almost 30 years. Many components are ageing. Nuclear Malaysia has taken an initiative to manage this ageing problem to prolong the life of the reactor. Hence, reactor upgrading project already commence started with the reactor console. To upgrade the core, all the fuel must be taken out from the core. A conceptual design of fuel transfer cask already done. This paper will discuss about the option of safe working procedure for transferring the fuel to the spent fuel pool for temporary. Hence, radiation protection for operator should be considered during the process. (author)
Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines
Energy Technology Data Exchange (ETDEWEB)
Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)
2017-04-26
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.
Analytical properties of the radiance in atmospheric radiative transfer theory
International Nuclear Information System (INIS)
Otto, Sebastian
2014-01-01
It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions
Computing Radiative Transfer in a 3D Medium
Von Allmen, Paul; Lee, Seungwon
2012-01-01
A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.
International Nuclear Information System (INIS)
Kratz, David P.
2008-01-01
Over the last quarter century, improvements in the determination of the spectroscopic characteristics of the infrared-active trace species have enhanced our ability to retrieve quantitative distributions of temperatures, clouds, and abundances for various trace species within the Earth's atmosphere. These improvements have also allowed for refinements in the estimates of climatic effects attributed to changes in the Earth's atmospheric composition. Modeling efforts, however, have frequently experienced significant delays in assimilating improved spectroscopic information. Such is the case for highly parameterized models, where considerable effort is typically required to incorporate any revisions. Thus, a line-by-line radiative transfer model has been used to investigate the magnitude of the effects resulting from modifications to the spectroscopic information. Calculations from this line-by-line model have demonstrated that recent modifications to the HITRAN (High Resolution Transmission) line parameters, the continuum formulation, and the CO 2 line-mixing formulation can significantly affect the interpretation of the high spectral resolution radiance and brightness temperature retrievals. For certain moderate-resolution satellite remote sensing channels, modifications to these spectroscopic parameters and formulations have shown the capacity to induce changes in the calculated radiances equivalent to brightness temperature differences of 1-2 K. Model calculations have further shown that modifications of the spectroscopic characteristics tend to have a modest effect on the determination of spectrally integrated radiances, fluxes, and radiative forcing estimates, with the largest differences being of order 1 W m -2 for the total thermal infrared fluxes, and of order 2-3% of the calculated radiative forcing at the tropopause attributed to the combined doubling of CO 2 , N 2 O, and CH 4 . The results from this investigation are intended to function as a guide to
The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer
International Nuclear Information System (INIS)
Caldas, Miguel; Semiao, Viriato
2007-01-01
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence
Theory of radiative transfer in a strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kanno, S [Ibaraki Univ., Mito (Japan). Dept. of Physics
1975-07-01
A theory is presented of the radiative transfer in a magnetized plasma with the opacity determined by the Thomson scattering. The Thomson cross section in the magnetic field is highly anisotropic and polarization-dependent. In order to cope with this situation, it is found useful to deal directly with the scattering amplitude (2x2 matrix in the polarization vector space) rather than the intensity. In this way it is possible to take into account the coherent superposition of the forward multiple-scattering amplitudes as a photon propagates. The equation of transfer is established accordingly and approximate solutions are found in the limits of small and large optical thickness. The latter solution is used to find the intensity and the polarization of thermal X-rays from a magnetic dipole star. The concept of mean free path is discussed and also it is shown that the Faraday rotation naturally comes about as a result of the multiple forward scattering.
Comparison of vibrational conductivity and radiative energy transfer methods
Le Bot, A.
2005-05-01
This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.
Parameterization of solar flare dose
International Nuclear Information System (INIS)
Lamarche, A.H.; Poston, J.W.
1996-01-01
A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP)
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being
Markovian approach: From Ising model to stochastic radiative transfer
International Nuclear Information System (INIS)
Kassianov, E.; Veron, D.
2009-01-01
The origin of the Markovian approach can be traced back to 1906; however, it gained explicit recognition in the last few decades. This overview outlines some important applications of the Markovian approach, which illustrate its immense prestige, respect, and success. These applications include examples in the statistical physics, astronomy, mathematics, computational science and the stochastic transport problem. In particular, the overview highlights important contributions made by Pomraning and Titov to the neutron and radiation transport theory in a stochastic medium with homogeneous statistics. Using simple probabilistic assumptions (Markovian approximation), they have introduced a simplified, but quite realistic, representation of the neutron/radiation transfer through a two-component discrete stochastic mixture. New concepts and methodologies introduced by these two distinguished scientists allow us to generalize the Markovian treatment to the stochastic medium with inhomogeneous statistics and demonstrate its improved predictive performance for the down-welling shortwave fluxes. (authors)
Unravelling radiative energy transfer in solid-state lighting
Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat
2018-01-01
Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.
Infrared radiative transfer in dense disks around young stars
International Nuclear Information System (INIS)
Dent, W.R.F.
1988-01-01
A two-dimensional radiative transfer program has been used to determine the temperature distribution within cylindrically symmetric, centrally heated dust clouds. In particular, the disk-shaped structures observed around young luminous stars have been modeled. Changing the dust distribution in these disks primarily affected the observed morphology in the near-infrared and far-infrared, and at millimeter wavelengths. The overall cloud spectrum, however, was mainly determined by the characteristics of the grains themselves. Comparison with published far-infrared and molecular line data has indicated that the dust density can generally be modeled by a power-law distribution in r with index of -2 and an exponential in z with disk thickness proportional to 1/r. When observed nearly edge-on, scattered direct stellar radiation is observed in the polar regions in the form of comet-shaped lobes of emission. 26 references
Projection methods for line radiative transfer in spherical media.
Anusha, L. S.; Nagendra, K. N.
An efficient numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These methods are based on projections on the subspaces of the n dimensional Euclidean space mathbb {R}n called Krylov subspaces. The methods are shown to be faster in terms of convergence rate compared to the contemporary iterative methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).
Formal Solutions for Polarized Radiative Transfer. I. The DELO Family
Energy Technology Data Exchange (ETDEWEB)
Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)
2017-05-10
The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.
A multilevel method for conductive-radiative heat transfer
Energy Technology Data Exchange (ETDEWEB)
Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Radiative Transfer Modeling in Proto-planetary Disks
Kasper, David; Jang-Condell, Hannah; Kloster, Dylan
2016-01-01
Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.
Homogenization of a Conductive-Radiative Heat Transfer Problem
Directory of Open Access Journals (Sweden)
Habibi Zakaria
2012-04-01
Full Text Available This paper focuses on the contribution of the second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. Especially, for a heat conduction problem in a periodically perforated domain with a non-local boundary condition modelling the radiative heat transfer, if this model contains an oscillating thermal source and a thermal exchange with the perforations, the second order corrector helps us to model the gradients which appear between the source area and the perforations. Ce papier est consacré à montrer l’influence du correcteur de second ordre en homogénéisation périodique. Dans l’homogénéisation d’un problème de conduction rayonnement dans un domaine périodiquement perforé par plusieurs trous, on peut voir une contribution non négligeable de ce correcteur lors de la présence d’une source thermique oscillante et d’un échange thermique dans les perforations. Ce correcteur nous permet de modéliser les gradients qui apparaissent entre la zone de la source thermique et les perforations.
Spectral element method for vector radiative transfer equation
International Nuclear Information System (INIS)
Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.
2010-01-01
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.
International Nuclear Information System (INIS)
Ota, Yoshifumi; Higurashi, Akiko; Nakajima, Teruyuki; Yokota, Tatsuya
2010-01-01
A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.
Effect of high linear energy transfer radiation on biological membranes
International Nuclear Information System (INIS)
Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.
1998-01-01
Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)
International Nuclear Information System (INIS)
Knoepfel, Rahel; Becker, Erich
2011-01-01
A new and numerically efficient method to compute radiative flux densities and heating rates in a general atmospheric circulation model is presented. Our method accommodates the fundamental differences between the troposphere and middle atmosphere in the long-wave regime within a single parameterization that extends continuously from the surface up to the mesopause region and takes the deviations from the gray limit and from the local thermodynamic equilibrium into account. For this purpose, frequency-averaged Eddington-type transfer equations are derived for four broad absorber bands. The frequency variation inside each band is parameterized by application of the Elsasser band model extended by a slowly varying envelope function. This yields additional transfer equations for the perturbation amplitudes that are solved numerically along with the mean transfer equations. Deviations from local thermodynamic equilibrium are included in terms of isotropic scattering, calculating the single scattering albedo from the two-level model for each band. Solar radiative flux densities are computed for four energetically defined bands using the simple Beer-Bougert-Lambert relation for absorption within the atmosphere. The new scheme is implemented in a mechanistic general circulation model from the surface up to the mesopause region. A test simulation with prescribed concentrations of the radiatively active constituents shows quite reasonable results. In particular, since we take the full surface energy budget into account by means of a swamp ocean, and since the internal dynamics and turbulent diffusion of the model are formulated in accordance with the conservation laws, an equilibrated climatological radiation budget is obtained both at the top of the atmosphere and at the surface.
Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz
2012-01-01
Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer
Directional radiometry and radiative transfer: A new paradigm
International Nuclear Information System (INIS)
Mishchenko, Michael I.
2011-01-01
Measurements with directional radiometers and calculations based on the radiative transfer equation (RTE) have been at the very heart of weather and climate modeling and terrestrial remote sensing. The quantification of the energy budget of the Earth's climate system requires exquisite measurements and computations of the incoming and outgoing electromagnetic energy, while global characterization of climate system's components relies heavily on theoretical inversions of observational data obtained with various passive and active instruments. The same basic problems involving electromagnetic energy transport and its use for diagnostic and characterization purposes are encountered in numerous other areas of science, biomedicine, and engineering. Yet both the discipline of directional radiometry and the radiative transfer theory (RTT) have traditionally been based on phenomenological concepts many of which turn out to be profound misconceptions. Contrary to the widespread belief, a collimated radiometer does not, in general, measure the flow of electromagnetic energy along its optical axis, while the specific intensity does not quantify the amount of electromagnetic energy transported in a given direction. The recently developed microphysical approach to radiative transfer and directional radiometry is explicitly based on the Maxwell equations and clarifies the physical nature of measurements with collimated radiometers and the actual content of the RTE. It reveals that the specific intensity has no fundamental physical meaning besides being a mathematical solution of the RTE, while the RTE itself is nothing more than an intermediate auxiliary equation. Only under special circumstances detailed in this review can the solution of the RTE be used to compute the time-averaged local Poynting vector as well as be measured by a collimated radiometer. These firmly established facts make the combination of the RTE and a collimated radiometer useful in a well-defined range of
On the time-dependent radiative transfer in photospheric plasmas
International Nuclear Information System (INIS)
Schultz, A.L.; Schweizer, M.A.
1987-01-01
The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Fluctuation theory for radiative transfer in random media
International Nuclear Information System (INIS)
Bal, Guillaume; Jing Wenjia
2011-01-01
We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.
Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine
2017-10-01
In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident
Directory of Open Access Journals (Sweden)
Hesheng Cheng
2016-01-01
Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.
Inheritance versus parameterization
DEFF Research Database (Denmark)
Ernst, Erik
2013-01-01
This position paper argues that inheritance and parameterization differ in their fundamental structure, even though they may emulate each other in many ways. Based on this, we claim that certain mechanisms, e.g., final classes, are in conflict with the nature of inheritance, and hence causes...
Radiative heat transfer and water content in atmosphere of Venus
International Nuclear Information System (INIS)
Yarov, M.Y.; Gal'stev, A.P.; Shari, V.P.
1985-01-01
The authors present the procedure for calculating optical characteristics of the main components and the effective fluxes in the atmosphere of Venus, and concrete results of the calculations. They are compared to the results of other authors and to the experimantal data. Integration was carried out by the Simpson method with automatic selection of the step or interval for a given relative integrating accuracy delta. The calculations were done with a BESM-6 computer. Using this procedure and data on absorbtion coefficients, calculations of the spectrum of effective flux were carried out for a pure carbon dioxide atmosphere and for an atmosphere containing water vapor at various relative admixtures, for different altitude profiles of temperature and cloudiness albedo. Thus, the comparisons made, enable the authors to judge about the degree of agreement of the F(z) altitude profile, in some regions of the planet where measurements have been made, rather than about the absolute values of the heat fluxes. In conclusion, the authors point out that the task of calculating in detail the radiation balance in Venus' lower atmosphere, as also the problem of a more reliable interpretation of the experimantal data, is coupled with the necessity of elaborating reliable models of the atmospheric components' optical characteristics, which determine the radiative transfer of heat
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
''adding'' algorithm for the Markov chain formalism for radiation transfer
International Nuclear Information System (INIS)
Esposito, L.W.
1979-01-01
The Markov chain radiative transfer method of Esposito and House has been shown to be both efficient and accurate for calculation of the diffuse reflection from a homogeneous scattering planetary atmosphere. The use of a new algorithm similar to the ''adding'' formula of Hansen and Travis extends the application of this formalism to an arbitrarily deep atmosphere. The basic idea for this algorithm is to consider a preceding calculation as a single state of a new Markov chain. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. The time required for the algorithm is comparable to that for a doubling calculation for a homogeneous atmosphere, but for a non-homogeneous atmosphere the new method is considerably faster than the standard ''adding'' routine. As with he standard ''adding'' method, the information on the internal radiation field is lost during the calculation. This method retains the advantage of the earlier Markov chain method that the time required is relatively insensitive to the number of illumination angles or observation angles for which the diffuse reflection is calculated. A technical write-up giving fuller details of the algorithm and a sample code are available from the author
Inconing solar radiation estimates at terrestrial surface using meteorological satellite
International Nuclear Information System (INIS)
Arai, N.; Almeida, F.C. de.
1982-11-01
By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt
Best estimate radiation heat transfer model developed for TRAC-BD1
International Nuclear Information System (INIS)
Spore, J.W.; Giles, M.M.; Shumway, R.W.
1981-01-01
A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model
FORLI radiative transfer and retrieval code for IASI
International Nuclear Information System (INIS)
Hurtmans, D.; Coheur, P.-F.; Wespes, C.; Clarisse, L.; Scharf, O.; Clerbaux, C.; Hadji-Lazaro, J.; George, M.; Turquety, S.
2012-01-01
This paper lays down the theoretical bases and the methods used in the Fast Optimal Retrievals on Layers for IASI (FORLI) software, which is developed and maintained at the “Université Libre de Bruxelles” (ULB) with the support of the “Laboratoire Atmosphères, Milieux, Observations Spatiales” (LATMOS) to process radiance spectra from the Infrared Atmospheric Sounding Interferometer (IASI) in the perspective of local to global chemistry applications. The forward radiative transfer model (RTM) and the retrieval approaches are formulated and numerical approximations are described. The aim of FORLI is near-real-time provision of global scale concentrations of trace gases from IASI, either integrated over the altitude range of the atmosphere (total columns) or vertically resolved. To this end, FORLI uses precalculated table of absorbances. At the time of writing three gas-specific versions of this algorithm have been set up: FORLI-CO, FORLI-O 3 and FORLI-HNO 3 . The performances of each are reviewed and illustrations of results and early validations are provided, making the link to recent scientific publications. In this paper we stress the challenges raised by near-real-time processing of IASI, shortly describe the processing chain set up at ULB and draw perspectives for future developments and applications.
Sparse tensor spherical harmonics approximation in radiative transfer
International Nuclear Information System (INIS)
Grella, K.; Schwab, Ch.
2011-01-01
The stationary monochromatic radiative transfer equation is a partial differential transport equation stated on a five-dimensional phase space. To obtain a well-posed problem, boundary conditions have to be prescribed on the inflow part of the domain boundary. We solve the equation with a multi-level Galerkin FEM in physical space and a spectral discretization with harmonics in solid angle and show that the benefits of the concept of sparse tensor products, known from the context of sparse grids, can also be leveraged in combination with a spectral discretization. Our method allows us to include high spectral orders without incurring the 'curse of dimension' of a five-dimensional computational domain. Neglecting boundary conditions, we find analytically that for smooth solutions, the convergence rate of the full tensor product method is retained in our method up to a logarithmic factor, while the number of degrees of freedom grows essentially only as fast as for the purely spatial problem. For the case with boundary conditions, we propose a splitting of the physical function space and a conforming tensorization. Numerical experiments in two physical and one angular dimension show evidence for the theoretical convergence rates to hold in the latter case as well.
Test plan for validation of the radiative transfer equation.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.
2010-09-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
Advanced Machine Learning Emulators of Radiative Transfer Models
Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.
2017-12-01
Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.
History of one family of atmospheric radiative transfer codes
Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.
1994-12-01
Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.
Harijishnu, R.; Jayakumar, J. S.
2017-09-01
The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Directory of Open Access Journals (Sweden)
J. Tonttila
2013-08-01
Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
Directory of Open Access Journals (Sweden)
Y. Gu
2012-10-01
Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to −50 to + 50 W m^{−2} deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m^{−2} are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m^{−2}. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the
Polymers under ionizing radiation: the study of energy transfers to radiation induced defects
International Nuclear Information System (INIS)
Ventura, A.
2013-01-01
Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H 2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author) [fr
High-order solution methods for grey discrete ordinates thermal radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)
2016-12-15
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
A 1D radiative transfer benchmark with polarization via doubling and adding
Ganapol, B. D.
2017-11-01
Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.
Principles of the radiosity method versus radiative transfer for canopy reflectance modeling
Gerstl, Siegfried A. W.; Borel, Christoph C.
1992-01-01
The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.
Voit, Florian; Schäfer, Jan; Kienle, Alwin
2009-09-01
We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.
Near-field radiative heat transfer under temperature gradients and conductive transfer
Energy Technology Data Exchange (ETDEWEB)
Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb
2017-05-01
We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.
Parameterized examination in econometrics
Malinova, Anna; Kyurkchiev, Vesselin; Spasov, Georgi
2018-01-01
The paper presents a parameterization of basic types of exam questions in Econometrics. This algorithm is used to automate and facilitate the process of examination, assessment and self-preparation of a large number of students. The proposed parameterization of testing questions reduces the time required to author tests and course assignments. It enables tutors to generate a large number of different but equivalent dynamic questions (with dynamic answers) on a certain topic, which are automatically assessed. The presented methods are implemented in DisPeL (Distributed Platform for e-Learning) and provide questions in the areas of filtering and smoothing of time-series data, forecasting, building and analysis of single-equation econometric models. Questions also cover elasticity, average and marginal characteristics, product and cost functions, measurement of monopoly power, supply, demand and equilibrium price, consumer and product surplus, etc. Several approaches are used to enable the required numerical computations in DisPeL - integration of third-party mathematical libraries, developing our own procedures from scratch, and wrapping our legacy math codes in order to modernize and reuse them.
Parameterization analysis and inversion for orthorhombic media
Masmoudi, Nabil
2018-05-01
Accounting for azimuthal anisotropy is necessary for the processing and inversion of wide-azimuth and wide-aperture seismic data because wave speeds naturally depend on the wave propagation direction. Orthorhombic anisotropy is considered the most effective anisotropic model that approximates the azimuthal anisotropy we observe in seismic data. In the framework of full wave form inversion (FWI), the large number of parameters describing orthorhombic media exerts a considerable trade-off and increases the non-linearity of the inversion problem. Choosing a suitable parameterization for the model, and identifying which parameters in that parameterization could be well resolved, are essential to a successful inversion. In this thesis, I derive the radiation patterns for different acoustic orthorhombic parameterization. Analyzing the angular dependence of the scattering of the parameters of different parameterizations starting with the conventionally used notation, I assess the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. In order to build practical inversion strategies, I suggest new parameters (called deviation parameters) for a new parameterization style in orthorhombic media. The novel parameters denoted ∈d, ƞd and δd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. The main feature of the deviation parameters consists of keeping the scattering of the vertical transversely isotropic (VTI) parameters stationary with azimuth. Using these scattering features, we can condition FWI to invert for the parameters which the data are sensitive to, at different stages, scales, and locations in the model. With this parameterization, the data are mainly sensitive to the scattering of 3 parameters (out of six that describe an acoustic orthorhombic medium): the horizontal velocity in the x1 direction, ∈1 which provides scattering mainly near
A three-dimensional model of solar radiation transfer in a non-uniform plant canopy
Levashova, N. T.; Mukhartova, Yu V.
2018-01-01
A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.
Graphene-assisted near-field radiative heat transfer between corrugated polar materials
International Nuclear Information System (INIS)
Liu, X. L.; Zhang, Z. M.
2014-01-01
Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.
Energy Technology Data Exchange (ETDEWEB)
Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard
2004-06-01
This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.
A passive and active microwave-vector radiative transfer (PAM-VRT) model
International Nuclear Information System (INIS)
Yang, Jun; Min, Qilong
2015-01-01
A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models
Radiative heat transfer analysis in pure water heater used for semiconductor processing
International Nuclear Information System (INIS)
Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.
2004-01-01
A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2018-04-01
Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http
Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.
2007-01-01
[1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a
Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P.E.; Martin, E.; Mottus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Xie, D.; Thompson, R.
2007-01-01
The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well‐controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary
Extending generalized Kubelka-Munk to three-dimensional radiative transfer.
Sandoval, Christopher; Kim, Arnold D
2015-08-10
The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.
CSIR Research Space (South Africa)
Roos, TH
2014-06-01
Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...
Radiation heat transfer through the gas of a sodium cooled fast breeder reactor
International Nuclear Information System (INIS)
Pradel, P.; Frachet, S.; Petit, D.
1984-04-01
Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings
Global existence of a generalized solution for the radiative transfer equations
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1984-01-01
We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr
Mishchenko, Michael I.
2014-01-01
This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.
A difference quotient-numerical integration method for solving radiative transfer problems
International Nuclear Information System (INIS)
Ding Peizhu
1992-01-01
A difference quotient-numerical integration method is adopted to solve radiative transfer problems in an anisotropic scattering slab medium. By using the method, the radiative transfer problem is separated into a system of linear algebraic equations and the coefficient matrix of the system is a band matrix, so the method is very simple to evaluate on computer and to deduce formulae and easy to master for experimentalists. An example is evaluated and it is shown that the method is precise
2013-11-01
example for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. 15. SUBJECT TERMS Radiative transfer...detector m-out-of-n detector Potassium chlorate Probability theory System performance Probability of detection and false alarm iii...for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. Subject Terms Radiative transfer, contaminated
International Nuclear Information System (INIS)
Mishchenko, Michael I.
2014-01-01
This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics. - Highlights: • History of phenomenological radiometry and radiative transfer is described. • Fundamental weaknesses of these disciplines are discussed. • The process of their conversion into legitimate branches of physical optics is summarized
Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores
International Nuclear Information System (INIS)
El Ganaoui, K.
2006-09-01
In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
International Nuclear Information System (INIS)
Hollstein, André; Fischer, Jürgen
2012-01-01
Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.
International Nuclear Information System (INIS)
Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.
1976-01-01
A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle
Mukhopadhyay, P.; Phani Murali Krishna, R.; Goswami, Bidyut B.; Abhik, S.; Ganai, Malay; Mahakur, M.; Khairoutdinov, Marat; Dudhia, Jimmy
2016-05-01
Inspite of significant improvement in numerical model physics, resolution and numerics, the general circulation models (GCMs) find it difficult to simulate realistic seasonal and intraseasonal variabilities over global tropics and particularly over Indian summer monsoon (ISM) region. The bias is mainly attributed to the improper representation of physical processes. Among all the processes, the cloud and convective processes appear to play a major role in modulating model bias. In recent times, NCEP CFSv2 model is being adopted under Monsoon Mission for dynamical monsoon forecast over Indian region. The analyses of climate free run of CFSv2 in two resolutions namely at T126 and T382, show largely similar bias in simulating seasonal rainfall, in capturing the intraseasonal variability at different scales over the global tropics and also in capturing tropical waves. Thus, the biases of CFSv2 indicate a deficiency in model's parameterization of cloud and convective processes. Keeping this in background and also for the need to improve the model fidelity, two approaches have been adopted. Firstly, in the superparameterization, 32 cloud resolving models each with a horizontal resolution of 4 km are embedded in each GCM (CFSv2) grid and the conventional sub-grid scale convective parameterization is deactivated. This is done to demonstrate the role of resolving cloud processes which otherwise remain unresolved. The superparameterized CFSv2 (SP-CFS) is developed on a coarser version T62. The model is integrated for six and half years in climate free run mode being initialised from 16 May 2008. The analyses reveal that SP-CFS simulates a significantly improved mean state as compared to default CFS. The systematic bias of lesser rainfall over Indian land mass, colder troposphere has substantially been improved. Most importantly the convectively coupled equatorial waves and the eastward propagating MJO has been found to be simulated with more fidelity in SP-CFS. The reason of
Radiative transfer in a strongly magnetized plasma. I. Effects of Anisotropy
International Nuclear Information System (INIS)
Nagel, W.
1981-01-01
We present results of radiative transfer calculations for radiating slabs and columns of strongly magnetized plasma. The angular dependence of the escaping radiation was found numerically by Feautrier's method, using the differential scattering cross sections derived by Ventura. We also give an approximate analytical expression for the anisotropy of the outgoing radiation, based on a system of two coupled diffusion equations for ordinary and extraordinary photons. Giving the polarization dependence of the beaming pattern of radiating slabs as well as columns, we generalize previous results of Basko and Kanno. Some implications for models of the pulsating X-ray source Her X-1 are discussed
International Nuclear Information System (INIS)
Rozanov, V.V.; Dinter, T.; Rozanov, A.V.; Wolanin, A.; Bracher, A.; Burrows, J.P.
2017-01-01
SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: (http://www.iup.physik.uni-bremen.de). - Highlights: • A new version of the software package SCIATRAN is presented. • Inelastic scattering in water and atmosphere is implemented in SCIATRAN. • Raman scattering and fluorescence can be included in radiative transfer calculations. • Comparisons to other radiative transfer models show excellent agreement. • Comparisons to observations show consistent results.
International Nuclear Information System (INIS)
Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed
2015-01-01
New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature
Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids
Ali Hafiz Muhammad; Azhar Muhammad Danish; Saleem Musab; Saeed Qazi Samie; Saieed Ahmed
2015-01-01
The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12%) were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % vol...
Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames
DEFF Research Database (Denmark)
Bäckström, Daniel; Johansson, Robert; Andersson, Klas
This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.
Radiative Transfer Reconsidered as a Quantum Kinetic Theory
Indian Academy of Sciences (India)
Radiative transfer—quantum kinetic theory—anomalous dispersion. 1. ... able for the elaboration of transport codes (e.g. based on the Monte-Carlo technique ... this function is not a true probability density function but rather a quasiprobability.
Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.
2017-06-01
SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.
Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers
Directory of Open Access Journals (Sweden)
Hanuszkiewicz-Drapała Małgorzata
2016-03-01
Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization
Oh, Juwon; Alkhalifah, Tariq Ali
2016-01-01
The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry
Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization
Oh, Juwon
2016-09-15
The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry
Radiation heat transfer within an open-cycle MHD generator channel
Delil, A. A. M.
1983-05-01
Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.
The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation
International Nuclear Information System (INIS)
Wong, K.-L.; Ke, M.-T.; Ku, S.-S.
2009-01-01
The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
Energy Technology Data Exchange (ETDEWEB)
Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn
2006-11-15
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.
SCIATRAN 3.1: A new radiative transfer model and retrieval package
Rozanov, Alexei; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.
The SCIATRAN 3.1 package is a result of further development of the SCIATRAN 2.X software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. After an implementation of the vector radiative transfer model in SCIATRAN 3.0 the spectral range covered by the model has been extended into the thermal infrared ranging to approximately 40 micrometers. Another major improvement has been done accounting for the underlying surface effects. Among others, a sophisticated representation of the water surface with a bidirectional reflection distribution function (BRDF) has been implemented accounting for the Fresnel reflection of the polarized light and for the effect of foam. A newly developed representation for a snow surface allows radiative transfer calculations to be performed within an unpolluted or soiled snow layer. Furthermore, a new approach has been implemented allowing radiative transfer calculations to be performed for a coupled atmosphere-ocean system. This means that, the underlying ocean is not considered as a purely reflecting surface any more. Instead, full radiative transfer calculations are performed within the water allowing the user to simulate the radiance within both the atmosphere and the ocean. Similar to previous versions, the simulations can be performed for any viewing geometry typi-cal for atmospheric observations in the UV-Vis-NIR-TIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer location within or outside the Earth's atmosphere including underwater observations. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new features of the radiative transfer model is given, including remarks on the availability for the scientific community. Furthermore, some application examples of the radiative transfer model are
Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces
Zheng, Zhiheng; Wang, Ao; Xuan, Yimin
2018-03-01
When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.
Monte Carlo method for polarized radiative transfer in gradient-index media
International Nuclear Information System (INIS)
Zhao, J.M.; Tan, J.Y.; Liu, L.H.
2015-01-01
Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated
General relativistic radiative transfer code in rotating black hole space-time: ARTIST
Takahashi, Rohta; Umemura, Masayuki
2017-02-01
We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.
International Nuclear Information System (INIS)
Maruyama, Shigenao; Mori, Yusuke; Sakai, Seigo
2004-01-01
Radiative heat transfer in the fog layer is analyzed. Direct and diffuse solar irradiation, and infrared sky flux are considered as incident radiation. Anisotropic scattering of radiation by water droplets is taken into account. Absorption and emission of radiation by water droplets and radiative gases are also considered. Furthermore, spectral dependences of radiative properties of irradiation, reflectivity, gas absorption and scattering and absorption of mist are considered. The radiation element method by ray emission model (REM 2 ) is used for the nongray radiation analysis. Net downward radiative heat flux at the sea surface and radiative equilibrium temperature distribution in the fog layer are calculated for several conditions. Transmitted solar flux decreases as liquid water content (LWC) in the fog increases. However, the value does not become zero but has the value about 60 W/m 2 . The effect of humidity and mist on radiative cooling at night is investigated. Due to high temperature and humidity condition, the radiation cooling at night is not so large even in the clear sky. Furthermore, the radiative equilibrium temperature distribution in the fog layer in the daytime is higher as LWC increases, and the inversion layer of temperature occurs
Haisch, B. M.
1976-01-01
A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.
Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry
Kitzmann, D.; Bolte, J.; Patzer, A. B. C.
2016-11-01
The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.
Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems
Energy Technology Data Exchange (ETDEWEB)
Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)
2016-02-20
We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.
Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism
International Nuclear Information System (INIS)
Harris, Jeffrey; Almarzouki, Hani; Barber, Brittany; Scrimger, Rufus; Romney, Jacques; O'Connell, Daniel; Urken, Mark; Seikaly, Hadi
2016-01-01
Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection, hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.
Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism
Energy Technology Data Exchange (ETDEWEB)
Harris, Jeffrey [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Almarzouki, Hani [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Department of Otolaryngology-Head and Neck Surgery, King Abdulaziz University, Jeddah (Saudi Arabia); Barber, Brittany, E-mail: brittanybarber0@gmail.com [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Scrimger, Rufus [Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Romney, Jacques [Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta (Canada); O' Connell, Daniel [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Urken, Mark [Institute for Head and Neck and Thyroid Cancers, Icahn School of Medicine, Mount Sinai Hospital, New York, New York (United States); Seikaly, Hadi [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada)
2016-09-01
Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection, hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.
Homoeologous chromatin exchange in a radiation-induced gene transfer
International Nuclear Information System (INIS)
Dvorak, J.; Knott, D.R.
1977-01-01
Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homoeologous chromatin of the Agropyron chromosome
Homoeologous chromatin exchange in a radiation-induced gene transfer
Energy Technology Data Exchange (ETDEWEB)
Dvorak, J; Knott, D R [Department of Crop Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
1977-03-01
Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homologous chromatin of the Agropyron chromosome.
Heat transfer including radiation and slag particles evolution in MHD channel-I
International Nuclear Information System (INIS)
Im, K.H.; Ahluwalia, R.K.
1980-01-01
Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed
Directory of Open Access Journals (Sweden)
Waqar Azeem Khan
Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer
Radiative Heat Transfer Modeling in Fibrous Porous Media
Sobhani, Sadaf; Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Wray, Alan; Mansour, Nagi N.
2017-01-01
Phenolic-Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center as a lightweight thermal protection system material for successful atmospheric entries. The objective of the current work is to compute the effective radiative conductivity of fibrous porous media, such as preforms used to make PICA, to enable the efficient design of materials that can meet the thermal performance goals of forthcoming space exploration missions.
Improvement of boiling heat transfer by radiation induced boiling enhancement
International Nuclear Information System (INIS)
Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji
2003-01-01
For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)
Improvement of boiling heat transfer by radiation induced boiling enhancement
International Nuclear Information System (INIS)
Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.
2003-01-01
For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results
Heat transfer analysis of radiator using graphene oxide nanofluids
Rao Ponangi, Babu; Sumanth, S.; Krishna, V.; Seetharam, T. R.; Seetharamu, K. N.
2018-04-01
As the technology is developing day by day, there is a requirement for enhancement in performance of automobile radiator to have a better performance of the IC Engine and fuel effectiveness. One of the major and recent approach to upgrade the performance of a radiator is that nanoparticles must be suspended in the general coolant (Ethylene Glycol – Water) which form nanofluids. Present work has been carried out by suspending graphene oxide nanoparticles in 50:50 Ethylene Glycol and RO-Water as base fluid. Experimentation is carried out by using three volume concentrations of the nanofluid (0.02%, 0.03% and 0.04%) and at different volumetric flow rates ranging from 3 to 6 LPM. Effect of volume concentration, inlet temperature and flow rate on Effectiveness, pressure drop and friction factor has been studied experimentally. Effectiveness versus NTU curves are plotted for further design calculations. The results show that the nanofluids will enhance the performance of an automobile radiator when compared with base fluid. Results also shows a maximum of 56.45% and 41.47% improvement in effectiveness for 0.03% volume concentration and 5 LPM flow rate at 40°C and 50°C inlet temperatures respectively.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
Ultra thin metallic coatings to control near field radiative heat transfer
Esquivel-Sirvent, R.
2016-09-01
We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.
Near-field radiative heat transfer between clusters of dielectric nanoparticles
International Nuclear Information System (INIS)
Dong, J.; Zhao, J.M.; Liu, L.H.
2017-01-01
In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.
Theory of many-body radiative heat transfer without the constraint of reciprocity
Zhu, Linxiao; Guo, Yu; Fan, Shanhui
2018-03-01
Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.
CFD analysis of heat transfer performance of graphene based hybrid nanofluid in radiators
Bharadwaj, Bharath R.; Sanketh Mogeraya, K.; Manjunath, D. M.; Rao Ponangi, Babu; Rajendra Prasad, K. S.; Krishna, V.
2018-04-01
For Improved performance of an automobile engine, Cooling systems are one of the critical systems that need attention. With increased capacity to carry away large amounts of wasted heat, performance of an engine is increased. Current research on Nano-fluids suggests that they offer higher heat transfer rate compared to that of conventional coolants. Hence this project seeks to investigate the use of hybrid-nanofluids in radiators so as to increase its heat transfer performance. Carboxyl Graphene and Graphene Oxide based nanoparticles were selected due to the very high thermal conductivity of Graphene. System Analysis of the radiator was performed by considering a small part of the whole automobile radiator modelled using SEIMENS NX. CFD analysis was conducted using ANSYS FLUENT® for the nanofluid defined and the increase in effectiveness was compared to that of conventional coolants. Usage of such nanofluids for a fixed cooling requirement in the future can lead to significant downsizing of the radiator.
The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer
International Nuclear Information System (INIS)
Modest, M.F.
1991-01-01
In this paper the weighted-sum-of-gray-gases approach for radiative transfer in non-gray participating media, first developed by Hottel in the context of the zonal method, has been shown to be applicable to the general radiative equation of transfer. Within the limits of the weighted-sum-of-gray-gases model (non-scattering media within a black-walled enclosure) any non-gray radiation problem can be solved by any desired solution method after replacing the medium by an equivalent small number of gray media with constant absorption coefficients. Some examples are presented for isothermal media and media at radiative equilibrium, using the exact integral equations as well as the popular P-1 approximation of the equivalent gray media solution. The results demonstrate the equivalency of the method with the quadrature of spectral results, as well as the tremendous computer times savings (by a minimum of 95%) which are achieved
Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J
2001-02-01
This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.
PRECONDITIONED BI-CONJUGATE GRADIENT METHOD FOR RADIATIVE TRANSFER IN SPHERICAL MEDIA
International Nuclear Information System (INIS)
Anusha, L. S.; Nagendra, K. N.; Paletou, F.; Leger, L.
2009-01-01
A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is proposed for the solution of the radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of the Pre-BiCG method in some benchmark tests shows that the method is quite versatile, and can handle difficult problems that may arise in astrophysical radiative transfer theory.
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
A research program on radiative transfer model development in support of the ARM program
International Nuclear Information System (INIS)
Clough, S.A.
1993-01-01
The objective of this research effort is to develop radiative transfer models that are consistent with ARM spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by-line model then functions as an intermediate standard to both develop and validate rapid radiative transfer models appropriate to GCM applications. A preprint of an extended abstract for the 1994 AMS volume describing a Quality Measurement Experiment using the ARM spectral data is included as an attachment
Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon
Pacholczyk, A G
1977-01-01
Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro
International Nuclear Information System (INIS)
Dauvois, Yann
2016-01-01
In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr
International Nuclear Information System (INIS)
Jha, Naresh; Seikaly, Hadi; Harris, Jeff; Williams, David; Liu, Richard; McGaw, Timothy; Hofmann, Henry; Robinson, Don; Hanson, John; Barnaby, Pam
2003-01-01
Background and purpose: Xerostomia is a significant morbidity of radiation treatment in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to the submental space, where it can be shielded from radiation treatment (XRT), would prevent xerostomia. Materials and methods: We conducted a prospective Phase II clinical trial and the patients were followed clinically with salivary flow studies and the University of Washington Quality of Life questionnaire. Results: We report the results on 76 evaluable patients. The salivary gland transfer was done in 60 patients. Nine patients (of 60) did not have postoperative XRT and in eight patients (of 60) the transferred gland was not shielded from XRT due to proximity of disease. The median follow up is 14 months. Of the 43 patients with the salivary gland transfer and post-operative XRT with protection of the transferred gland, 81% have none or minimal xerostomia, and 19% developed moderate to severe xerostomia. Three patients (6.9%) developed local recurrence, five patients (11.6%) developed distant metastases and five patients (11.6%) have died. There were no complications attributed to the surgical procedure. Conclusion: Surgical transfer of a submandibular salivary gland to the submental space preserves its function and prevents the development of radiation induced xerostomia
Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media
International Nuclear Information System (INIS)
El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.
2005-01-01
The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled
Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream
International Nuclear Information System (INIS)
Ishak, Anuar
2009-01-01
Effects of thermal radiation on the steady laminar boundary layer flow over a moving plate in a moving fluid is investigated. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. It is found that dual solutions exist when the plate and the fluid move in the opposite directions. Moreover, the existence of thermal radiation is to reduce the heat transfer rate at the surface. (fundamental areas of phenomenology (including applications))
Multigroup Approximation of Radiation Transfer in SF6 Arc Plasmas
Directory of Open Access Journals (Sweden)
Milada Bartlova
2013-01-01
Full Text Available The first order of the method of spherical harmonics (P1-approximation has been used to evaluate the radiation properties of arc plasmas of various mixtures of SF6 and PTFE ((C2F4n, polytetrafluoroethylene in the temperature range (1000 ÷ 35 000 K and pressures from 0.5 to 5 MPa. Calculations have been performed for isothermal cylindrical plasma of various radii (0.01 ÷ 10 cm. The frequency dependence of the absorption coefficients has been handled using the Planck and Rosseland averaging methods for several frequency intervals. Results obtained using various means calculated for different choices of frequency intervals are discussed.
International Nuclear Information System (INIS)
Hunter, Nezahat; Muirhead, Colin R
2009-01-01
Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)
Radiation-hard optoelectronic data transfer for the CMS tracker
International Nuclear Information System (INIS)
Troska, J.K.
1999-01-01
An introduction to the physics prospects of future experiments at the CERN Large Hadron Collider (LHC) will be given, along with the rather stringent requirements placed on their detectors by the LHC environment. Emphasis will be placed upon the particle tracking detectors, and the particular problem of their readout systems. The novel analogue optical readout scheme chosen by the Compact Muon Solenoid (CMS) experiment at the LHC will provide the basis for the thesis. The reasons for preferring analogue optical data transmission in CMS will be given, leading to a description of a generic optical readout scheme and its components. The particular scheme chosen by CMS makes as wide as possible use of commercially available components. These will be given greatest importance, with descriptions of component operation and characteristics pertinent to successful readout of the CMS tracker within the constraints of the LHC environment. Of particular concern is the effect of the LHC's harsh radiation environment on the operational characteristics of the readout system and its components. Work on radiation effects in components of the CMS tracker optical readout system will be described. This work includes the effects of ionising (gamma photon) and particle (neutron, proton, pion) irradiation on the operational characteristics and reliability of laser diodes, photodiodes, and optical fibres. System integration issues are discussed in the context of the long-term operation of the full CMS tracker readout system under laboratory conditions. It will be shown that system stability can be maintained even under widely varying ambient conditions. (author)
Studying effects of non-equilibrium radiative transfer via HPC
Energy Technology Data Exchange (ETDEWEB)
Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-24
This report presents slides on Ph.D. Research Goals; Local Thermodynamic Equilibrium (LTE) Implications; Calculating an Opacity; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Collisional Radiative Modeling; Radiative and Collisional Excitation; Photo and Electron Impact Ionization; Autoionization; The Rate Matrix; Example: Total Photoionization rate; The Rate Coefficients; inlinlte version 1.1; inlinlte: Verification; New capabilities: Rate Matrix – Flexibility; Memory Option Comparison; Improvements over previous DCA solver; Inter- and intra-node load balancing; Load Balance – Full Picture; Load Balance – Full Picture; Load Balance – Internode; Load Balance – Scaling; Description; Performance; xRAGE Simulation; Post-process @ 2hr; Post-process @ 4hr; Post-process @ 8hr; Takeaways; Performance for 1 realization; Motivation for QOI; Multigroup Er; Transport and NLTE large effects (1mm, 1keV); Transport large effect, NLTE lesser (1mm, 750eV); Blastwave Diagnostici – Description & Performance; Temperature Comparison; NLTE has effect on dynamics at wall; NLTE has lesser effect in the foam; Global Takeaways; The end.
Zakharchenko, K V; Kuznetsov, M B; Chistyakov, A A; Karavanskij, V A
2001-01-01
One studies the effect of resonance radiation-free transfer of electronic excitation between silicon nanocrystals and iodine molecules sorbed in pores. The experiment procedure includes laser-induced luminescence and laser desorption mass spectrometry. One analyzes photoluminescence spectra prior to and upon iodine sorption. Excitation of iodine through the mechanism of resonance transfer is determined to result in desorption of the iodine sorbed molecules with relatively high kinetic energies (3-1 eV). One evaluated the peculiar distance of resonance transfer the approximate value of which was equal to 2 nm
Spectral cumulus parameterization based on cloud-resolving model
Baba, Yuya
2018-02-01
We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China)
2013-01-01
A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.
Transfer of ERR for radiation-related leukemia from Japanese population to Chinese population
International Nuclear Information System (INIS)
Huang Liqiong; Sun Zhijuan; Zhao Yongcheng; Wang Jixian
2011-01-01
Objective: To establish a transfer model for excess relative risk (ERR) for radiation-related leukemia from Japanese population to Chinese population. Methods: Combined ERR of several subtypes of leukemia published in 1994, with the corresponding leukemia baseline incidence rates obtained from Cancer Incidence in Five Continents Vol. Ⅸ (CI5-Ⅸ) for Japanese population and Chinese population, a weighted risk transfer model was employed between an additive model and a multiplicative model, to execute ERR transfer. Results: A range of weighing factors was proposed for risk transfer models: weighing factor was 0.4 for male and 0.3 for female, acute lymphoblastic leukemia, acute myeloid leukemia and chronic myeloid leukemia. The uncertainty for ERR transfer was characterized by lognormal distribution. Conclusions: Based on the difference of baseline incidence rate for subtypes of leukemia between Japanese population and Chinese population, the transfer model and these weighing factors discussed in the present study could be applicable to transfer ERR for radiation-related leukemia from Japanese population to Chinese population. (authors)
Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids
Directory of Open Access Journals (Sweden)
Ali Hafiz Muhammad
2015-01-01
Full Text Available The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12% were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8°C in inlet temperature showed only a 6% increase in heat transfer rate.
Energy Technology Data Exchange (ETDEWEB)
Heng, Kevin; Mendonça, João M.; Lee, Jae-Min, E-mail: kevin.heng@csh.unibe.ch, E-mail: joao.mendonca@csh.unibe.ch, E-mail: lee@physik.uzh.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2014-11-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2015-10-01
Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yong [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)
2013-05-15
This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.
Technology transfer on radiation processing of natural polymer in Japan
International Nuclear Information System (INIS)
Yoshii, Fumio
2007-01-01
Carboxymethyl cellulose (CMC) crosslinked at paste-like condition forms hydrogel. The hydrogel was applied as a coolant to keep flesh of vegetables and fish at low temperature. Shochu (Japanese liquor of 25% alcohol content) residue produced by fermentation of rice and sweet potato was rapidly converted to animal feed by water absorption of CMC dry gel. Poly(lactic acid) crosslinked by irradiation in the presence of triallyl isocyanurate, TAIC was soaked in plasticizer to give softness. A maximum of 60 wt% plasticizer was incorporated in PLA resin and flexible PLA sheet was obtained. Growth of flowers was accelerated when sprayed with radiation degraded alginate shipment schedule of the flowers was advanced to one week. (author)
General Eulerian formulation of the comoving-frame equation of radiative transfer
International Nuclear Information System (INIS)
Riffert, H.
1986-01-01
For a wide range of problems in radiation hydrodynamics the motion of the matter is best described in an Eulerian coordinate system, and here a comoving-frame equation of radiation transfer in such fixed coordinates is derived, using the radiation quantities measured in the comoving frame. The choice of coordinates is arbitrary, and the equation is given explicitly for an arbitrary diagonal metric, correct to all orders in v/c. All comoving frame equations derived earlier are included as special cases. An example is given for the case of a spherically symmetric flow in a Schwarzschild metric. 9 references
Linear energy transfer (LET) effects in the radiation-induced inactivation of papain
International Nuclear Information System (INIS)
Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.
1977-01-01
The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)
Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches
International Nuclear Information System (INIS)
Baillis, D; Coquard, R; Randrianalisoa, J
2012-01-01
Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.
Biçer, M.; Kaşkaş, A.
2018-03-01
The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer
Directory of Open Access Journals (Sweden)
Jivan Khatry
2017-01-01
Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.
Radiation transfer effects on the spectra of laser-generated plasmas
Czech Academy of Sciences Publication Activity Database
Renner, Oldřich; Kerr, F.M.; Wolfrum, E.; Hawreliak, J.; Chambers, D.; Rose, S. J.; Wark, J. S.; Scott, H.A.; Patel, P.
2006-01-01
Roč. 96, č. 18 (2006), 185002/1-185002/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * spectral line shapes * plasma modeling * radiative transfer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.072, year: 2006
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Influence of absorption by environmental water vapor on radiation transfer in wildland fires
D. Frankman; B. W. Webb; B. W. Butler
2008-01-01
The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
Bond, Barbara J.; Peterson, David L.
1999-01-01
This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.
Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing
International Nuclear Information System (INIS)
Gerstl, S.A.W.; Zardecki, A.
1985-01-01
Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered
The fourth phase of the radiative transfer model imtercomparison (RAMI) exercise
Czech Academy of Sciences Publication Activity Database
Widlowski, J. L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; Colombo, R.; Coté, J. F.; Eenmäe, A.; Essery, R.; Gastellu-Etchegory, J.P.; Gobron, N.; Grau, E.; Haverd, V.; Homolová, Lucie; Huang, H.; Hunt, L.; Kobayashi, H.; Koetz, B.; Kuusk, A.; Kuusk, J.; Lang, M.; Lewis, P. E.; Lovell, J. L.; Malenovský, Z.; Michele, M.; Mordsorf, F.; Mottus, M.; Ni-Meister, W.; Pinty, B.; Rautianien, M.; Schlerf, M.; Somers, B.; Stuckens, J.; Vestraete, M. M.; Yang, W.; Zhao, F.; Zenone, T.
2015-01-01
Roč. 169, nov (2015), s. 418-437 ISSN 0034-4257 Institutional support: RVO:67179843 Keywords : conformity testing * radiative transfer * model benchmarking * 3D virtual plant canopy * digital hemispherical photography * optical remote sensing * shared risk * guarded acceptance * GCOS * ISO -13528 Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015
International Nuclear Information System (INIS)
Cardona, Augusto V.; Vilhena, Marco T. de; Segatto, Cynthia F.
2005-01-01
In this work we solve the radiative transfer problem without azimuthal symmetry with high degree of anisotropy using the LTAN method and the Laplace inverse transformation by the diagonalization of the large symbolic LTAN matrix. We report numerical simulations and comparisons with available results of the literature. (author)
On radiative transfer in water spray curtains using the discrete ordinates method
Energy Technology Data Exchange (ETDEWEB)
Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)
2005-04-15
Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.
A new vector radiative transfer model as a part of SCIATRAN 3.0 software package.
Rozanov, Alexei; Rozanov, Vladimir; Burrows, John P.
The SCIATRAN 3.0 package is a result of further development of the SCIATRAN 2.x software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. A major improvement was achieved in comparison to previous software versions by adding the vector mode to the radiative transfer model. Thus, the well-established Discrete Ordinate solver can now be run in the vector mode to calculate the scattered solar radiation including polarization, i.e., to simulate all four components of the Stockes vector. Similar to the scalar version, the simulations can be performed for any viewing geometry typical for atmospheric observations in the UV-Vis-NIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer position within or outside the Earth's atmosphere. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new vector radiative transfer model will be given, including remarks on the availability for the scientific community. Furthermore, comparisons to other vector models will be shown and some example problems will be considered where the polarization of the observed radiation must be accounted for to obtain high quality results.
Hybrid finite volume/ finite element method for radiative heat transfer in graded index media
Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.
2012-09-01
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.
Hybrid finite volume/ finite element method for radiative heat transfer in graded index media
International Nuclear Information System (INIS)
Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.
2012-01-01
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.
Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network
Ballantyne, A. Stewart
The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Directory of Open Access Journals (Sweden)
Masood Khan
2016-05-01
Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)
2016-05-15
In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas
Directory of Open Access Journals (Sweden)
Matthieu Melot
2011-01-01
Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.
Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation
Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar
Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.
International Nuclear Information System (INIS)
Jeanne, T.
1990-03-01
A conduction model and a radiation model are proposed for the calculation of heat transfer. A multiphase multicomponent medium is considered. The conduction model allows the calculation of heat exchanges between two configurations. The heat flow from each component can be obtained. This model is well adapted to the calculation of thermal shocks in an ensemble of materials. The radiation model shows how the radiative transfers can be calculated in a cylinder composed of two opaque surfaces, with the same axis of rotation, and separated by a transparent medium. The form factors are obtained from Herman and Nusselt methods. The parts of the face-to-face surfaces which are seen and not seen are evaluated [fr
International Nuclear Information System (INIS)
Barichello, L.B.; Siewert, C.E.
1998-01-01
In this work concerning steady-state radiative-transfer calculations in plane-parallel media, the equivalence between the discrete ordinates method and the spherical harmonics method is proved. More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quadrature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre functions and when generalized Mark boundary conditions are used to define the spherical harmonics solution. It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two methods can be formulated so as to require the same computational effort. Finally a justification for using the generalized Mark boundary conditions in the spherical harmonics solution is given
Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere
Energy Technology Data Exchange (ETDEWEB)
Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au; Box, Michael A. [School of Physics, University of New South Wales (Australia)
2006-01-15
Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.
Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere
International Nuclear Information System (INIS)
Qin Yi; Box, Michael A.
2006-01-01
Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes
van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.
2017-12-01
Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.
Energy Technology Data Exchange (ETDEWEB)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)
2015-12-01
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP
International Nuclear Information System (INIS)
Sanghavi, Suniti; Stephens, Graeme
2015-01-01
In the presence of aerosol and/or clouds, the use of appropriate truncation methods becomes indispensable for accurate but cost-efficient radiative transfer computations. Truncation methods allow the reduction of the large number (usually several hundreds) of Fourier components associated with particulate scattering functions to a more manageable number, thereby making it possible to carry out radiative transfer computations with a modest number of streams. While several truncation methods have been discussed for scalar radiative transfer, few rigorous studies have been made of truncation methods for the vector case. Here, we formally derive the vector form of Wiscombe's delta-m truncation method. Two main sources of error associated with delta-m truncation are identified as the delta-separation error (DSE) and the phase-truncation error (PTE). The view angles most affected by truncation error occur in the vicinity of the direction of exact backscatter. This view geometry occurs commonly in satellite based remote sensing applications, and is hence of considerable importance. In order to deal with these errors, we adapt the δ-fit approach of Hu et al. (2000) [17] to vector radiative transfer. The resulting δBGE-fit is compared with the vectorized delta-m method. For truncation at l=25 of an original phase matrix consisting of over 300 Fourier components, the use of the δBGE-fit minimizes the error due to truncation at these view angles, while practically eliminating error at other angles. We also show how truncation errors have a distorting effect on hyperspectral absorption line shapes. The choice of the δBGE-fit method over delta-m truncation minimizes errors in absorption line depths, thus affording greater accuracy for sensitive retrievals such as those of XCO 2 from OCO-2 or GOSAT measurements. - Highlights: • Derives vector form for delta-m truncation method. • Adapts δ-fit truncation approach to vector RTE as δBGE-fit. • Compares truncation
International Nuclear Information System (INIS)
Boss, Alan P.
2009-01-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)
International Nuclear Information System (INIS)
Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.
1977-01-01
In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)
A new parameterization for waveform inversion in acoustic orthorhombic media
Masmoudi, Nabil
2016-05-26
Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of
Chang, Jui-Yung
Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat
Radiation heat transfer model in a spent fuel pool by TRACE code
International Nuclear Information System (INIS)
Sanchez-Saez, F.; Carlos, S.; Villanueva, J.F.; Martorell, S.
2014-01-01
Nuclear policies have experienced an important change since Fukushima Daiichi nuclear plant accident and the safety of spent fuels has been in the spot issue among all the safety concerns. The work presented consists of the thermohydraulic simulation of spent fuel pool behavior after a loss of coolant throughout transfer channel with loss of cooling transient is produced. The simulation is done with the TRACE code. One of the most important variables that define the behavior of the pool is cladding temperature, which evolution depends on the heat emission. In this work convection and radiation heat transfer is considered. When both heat transfer models are considered, a clear delay in achieving the maximum peak cladding temperature (1477 K) is observed compared with the simulation in which only convection heat transfer is considered. (authors)
Active control of near-field radiative heat transfer between graphene-covered metamaterials
Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua
2017-04-01
In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.
Active control of near-field radiative heat transfer between graphene-covered metamaterials
International Nuclear Information System (INIS)
Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua
2017-01-01
In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer. (paper)
Efficient weakly-radiative wireless energy transfer: An EIT-like approach
International Nuclear Information System (INIS)
Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, J.D.; Soljacic, Marin
2009-01-01
Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called 'dark') eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.
A new approach to radiative transfer theory using Jones's vectors. I
International Nuclear Information System (INIS)
Fymat, A.L.; Vasudevan, R.
1975-01-01
Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)
Non-grey benchmark results for two temperature non-equilibrium radiative transfer
International Nuclear Information System (INIS)
Su, B.; Olson, G.L.
1999-01-01
Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature field are crucial for validating time-dependent radiation transport codes. Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both the diffusion description and transport description. These expressions are evaluated numerically and the benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms of elementary functions and are compared with the exact results. Comparisons are given between the transport and diffusion solutions and between the grey and non-grey solutions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo
2016-05-01
Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Chaabane, Raoudha; Askri, Faouzi; Ben Nasrallah, Sassi
2011-01-01
In this paper, the lattice Boltzmann method (LBM) is applied to solve the energy equation of a transient conduction-radiation heat transfer problem in a two-dimensional cylindrical enclosure filled with an emitting, absorbing and scattering media. The control volume finite element method (CVFEM) is used to obtain the radiative information. To demonstrate the workability of the LBM in conjunction with the CVFEM to conduction-radiation problems in cylindrical media, the energy equation of the same problem is also solved using the finite difference method (FDM). The effects of different parameters, such as the grid size, the scattering albedo, the extinction coefficient and the conduction-radiation parameter on temperature distribution within the medium are studied. Results of the present work are compared with those available in the literature. LBM-CVFEM results are also compared with those given by the FDM-CVFEM. In all cases, good agreement has been obtained.
Numbers game : using aluminum helps Global Heat Transfer develop new frac radiators
Energy Technology Data Exchange (ETDEWEB)
Marsters, S.
2009-11-15
Aluminum is thought to be a beneficial new option for the construction of frac radiators. This article discussed how aluminum has been used to help Global Heat Transfer Ltd. (GHT) develop new frac radiators. The company developed the Jumbotron, an all-aluminum frac radiator that achieved 3,000 horsepower, but with less weight than a typical 2,250 horsepower package. The article provided information on Jumbotron, including how it was conceptualized, its features, applications, and other details. Background information on GHT was also presented. GHT focuses on the oil and gas and mining sectors and has over 500 employees worldwide in 15 locations. The aluminum parts for the Jumbotron frac radiator are produced at one of GHT's China facilities and brought to Canada for final assembly. 1 fig.
Radiative transfer configuration factor catalog: A listing of relations for common geometries
International Nuclear Information System (INIS)
Howell, John R.; Menguec, M. Pinar
2011-01-01
An on-line compilation of radiation configuration factors for over 300 common geometries is provided as a supplementary material from the JQSRT web site at doi: (10.1016/j.jqsrt.2010.10.002). The factors are gathered from references across the radiative transfer and illumination engineering literature, as well as from applications in such diverse fields from combustion systems to human factors engineering. These factors are useful in standard surface-surface radiation exchange calculations, and are based on the assumptions that the surfaces exchanging radiation are diffuse, and that the radiosity from each surface is uniform across that surface. The catalog is updated annually, and can be downloaded from JQSRT in .PDF format.
The role of molecular mobility in the transfer of charge generated by ionizing radiation in polymers
International Nuclear Information System (INIS)
Khatinov, S.A.; Edrisov, K.M.; Turdybekov, K.M.; Milinchuk, V.K.
1995-01-01
The dependence of radiation-induced electrical conductivity on the irradiation time and temperature was studied for a number of polymers. The character of variation of radiation-induced conductivity with time and temperature correlates with the physical state of a polymer. Defreezing of the segmental mobility in the region of α-relaxation transition leads to a sharp change in radiation-induced conductivity, and the appearance of peaks in the kinetic curves and break points on the Arrhenius plots in conductivity versus temperature coordinates. Molecular mobility plays a determining role in the transfer of charge carriers generated by radiation. This conclusion agrees with the data on the carrier mobility obtained by the time-of-flight methods. 24 refs., 8 figs
Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos
Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-06-01
We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.
Salamon, V.; Senthil kumar, D.; Thirumalini, S.
2017-08-01
The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.
International Nuclear Information System (INIS)
Bhanja, Dipankar; Kundu, Balaram; Aziz, Abdul
2014-01-01
Highlights: • Analytical model for thermal analysis of moving porous fins. • Heat transfer from the fin surface due to convection and radiation. • For practical design aspects, optimization analysis was carried out. • Comparative study was made between the solid and porous moving fins. • Porous moving fin has more heat transfer ability than the stationary fin. - Abstract: In the present article, an exercise has been devoted to establish an analytical model for the determination of temperature distribution, fin efficiency and optimum design parameters of a porous moving fin which is losing heat by simultaneous convection and radiation to its surroundings. For the adaptation of this consideration, the governing equation becomes highly nonlinear. An analytical technique called Adomian decomposition method (ADM) is proposed for the solution methodology. The accuracy of the analytic solution is validated by using a numeric scheme called finite difference method. The results indicate that the numerical data and analytical approach are in agreement with each other. As the present study is an analytic, it is extended to the analysis for determination of optimum dimensions of said fin by satisfying either the maximization of rate of heat transfer for a given fin volume or by the minimization of fin volume for a desired heat transfer rate. The study is further extended to the porous fin in stationary condition and it is found that porous fin in moving condition transfers more heat than stationary condition. Investigation has also been made on solid moving fin to compare the outcomes of these parameters
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
International Nuclear Information System (INIS)
Sun, Wenjun; Jiang, Song; Xu, Kun
2015-01-01
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach
Sood, Amit J; Fox, Nyssa F; O'Connell, Brendan P; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand K; Hornig, Joshua D; Day, Terry A
2014-02-01
Salivary gland transfer (SGT) has the potential to prevent radiation-induced xerostomia. We attempt to analyze the efficacy of SGT in prevention of xerostomia and maintenance of salivary flow rates after radiation treatment (XRT). Systematic review and meta-analysis. Primary endpoint was efficacy of SGT in prevention of radiation-induced xerostomia. Secondary endpoint was change from baseline of unstimulated and stimulated salivary flow rates after XRT. Seven articles, accruing data from 12 institutions, met inclusion criteria. In a total of 177 patients at mean follow-up of 22.7months, SGT prevented radiation-induced xerostomia in 82.7% (95% CI, 76.6-87.7%) of patients. Twelve months after XRT, unstimulated and stimulated salivary flow rates rose to 88% and 76% of baseline values, respectively. In comparison to control subjects twelve months after XRT, SGT subjects' unstimulated (75% vs. 11%) and stimulated (86% vs. 8%) salivary flow rates were drastically higher in SGT patients. Salivary gland transfer appears to be highly effective in preventing the incidence of xerostomia in patients receiving definitive head and neck radiation therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.
1995-01-01
A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)
Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.
Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa
2009-01-01
UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).
Directory of Open Access Journals (Sweden)
C. Goldblatt
2017-11-01
Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.
Olson, William S.; Raymond, William H.
1990-01-01
The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.
International Nuclear Information System (INIS)
Nowak, P.F.
1993-01-01
A grey diffusion acceleration method is presented and is shown by Fourier analysis and test calculations to be effective in accelerating radiative transfer calculations. The spectral radius is bounded by 0.9 for the continuous equations, but is significantly smaller for the discretized equations, especially in the optically thick regimes characteristic to radiation transport problems. The GDA method is more efficient than the multigroup DSA method because its slightly higher iteration count is more than offset by the much lower cost per iteration. A wide range of test calculations confirm the efficiency of GDA compared to multifrequency DSA. (orig.)
Radiative transfer with finite elements. Pt. 1. Basic method and tests
Energy Technology Data Exchange (ETDEWEB)
Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)
2001-10-01
A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)
Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.
2018-03-01
Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing
Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex
2017-07-01
Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and
Directory of Open Access Journals (Sweden)
J. Hsu
2017-07-01
Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength
The role of a convective surface in models of the radiative heat transfer in nanofluids
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.
2014-08-15
Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
Donahue, Aaron S.; Caldwell, Peter M.
2018-02-01
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.
Directory of Open Access Journals (Sweden)
Sidi-Ali Kamel
2013-01-01
Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.
David Frankman; Brent W. Webb; Bret W. Butler
2007-01-01
Thermal radiation emission from a simulated black flame surface to a fuel bed is analyzed by a ray-tracing technique, tracking emission from points along the flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was adopted for treating the...
Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.
2015-03-01
Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of
Energy Technology Data Exchange (ETDEWEB)
Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States)
2016-10-01
We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.
A note on G-functions within the scope of radiative transfer in turbid vegetation media
International Nuclear Information System (INIS)
Otto, Sebastian; Trautmann, Thomas
2008-01-01
This work reports on the use of leaf normal distribution functions (LNDFs) in the radiative transfer theory of turbid vegetation media to calculate the so-called G-function (GF). We revisit the normalisation condition of the LNDFs and present an extended set of fully explicit analytical expressions for GF considering commonly used standard LNDFs from purely vertical to purely horizontal model leaves. Applying them we derive GF for a generalised LNDF, which is written as a series of cosine functions with a number of free parameters. This generalisation opens up the possibility to fit leaf orientation measurements to our generalised LNDF and to determine the respective analytical GF. Thus, an extended range of leaf architectures, beyond the usual and less realistic standard LNDFs, can be considered with respect to applications of the radiative transfer theory in turbid vegetation media
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.
Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin
2012-04-01
For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.
Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium
International Nuclear Information System (INIS)
Lee, K.; Howell, J.R.
1986-01-01
A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating
ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition
Buehler, Stefan A.; Mendrok, Jana; Eriksson, Patrick; Perrin, Agnès; Larsson, Richard; Lemke, Oliver
2018-04-01
This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family.
International Nuclear Information System (INIS)
Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S
2015-01-01
This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)
Radiative heat transfer in a heat generating and turbulently convecting fluid layer
International Nuclear Information System (INIS)
Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.
1980-01-01
The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)
Application of the HN method to radiative heat transfer for a non-conservative slab
International Nuclear Information System (INIS)
Bulut, S.; Guelecyuez, M.C.
2008-01-01
The H N method is used to calculate the partial fluxes relevant to radiative transfer in a plane parallel medium for linearly anisotropic scattering with specularly and diffusely reflecting boundaries. The solutions are obtained for the non-conservative case. The numerical values of the heat flux functions at the boundaries of the medium are calculated for the two source functions. The numerical results and the convergence of the H N method are compared with earlier results. (orig.)
Anisotropic scattering in three dimensional differential approximation of radiation heat transfer
International Nuclear Information System (INIS)
Condiff, D.W.
1987-01-01
The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations
Formal Solutions for Polarized Radiative Transfer. II. High-order Methods
Energy Technology Data Exchange (ETDEWEB)
Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)
2017-08-20
When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.
Czech Academy of Sciences Publication Activity Database
Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, Petr; Kaplan, Věroslav; Hanuš, Jan; Gastellu-Etchegory, J.P.; Schaepman, M.E.
2013-01-01
Roč. 131, APR (2013), s. 85-102 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : Chlorophyll retrieval * Imaging spectroscopy * Continuum removal * Radiative transfer * PROSPECT * DART * Optical indices * Norway spruce * High spatial resolution * AISA Subject RIV: EH - Ecology, Behaviour Impact factor: 4.769, year: 2013
Kylling, A.
1991-01-01
The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.
International Nuclear Information System (INIS)
Ben Jaffel, L.; Vidal-Madjar, A.
1989-01-01
The discrete ordinate method for the resolution of the radiative transfer equation is developed. We show that the construction of a quasi-analytical solution to the corresponding matrix diagonalization problem reduces the time calculation and allows the use of more dense discrete frequency and angle grids. Comparison with previous work is made, showing that the present method reduces by more than a factor of ten the computational time, and is more appropriate in all cases
Energy Technology Data Exchange (ETDEWEB)
Palec, G. Le [Faculte des Sciences et Techniques, Monastir (Tunisia); Champagne, J. Y.; Bernaud, P.; Bournot, P.; Muynck, B. de; Vandevelde, R.
1984-07-01
Some experimental results are presented for the determination of the convective heat transfer coefficient between the cover of the greenhouse and the ground. These results are only valid in the case of small shelters. From these experiments, we get data of radiative losses of the greenhouse and some values of the I.R. transmission factor for several plastics. These two parameters can easily be inserted in modelisation of thermal losses, as electrical analogy type. (author)
The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer
Davis, Anthony B.
2012-01-01
Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.
International Nuclear Information System (INIS)
Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A.; Mildenberger, Peter; Alkadhi, Hatem
2017-01-01
Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.
Energy Technology Data Exchange (ETDEWEB)
Hinzpeter, Ricarda, E-mail: Ricarda.Hinzpeter@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland); Sprengel, Kai, E-mail: Kai.Sprengel@usz.ch [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Wanner, Guido A., E-mail: Guido.Wanner@sbk-vs.de [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Department of General Surgery, Schwarzwald-Baar Klinikum, University of Freiburg, Klinikstr. 11, D-78052 Villingen-Schwenningen (Germany); Mildenberger, Peter, E-mail: peter.mildenberger@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, University Hospital of Mainz, Langenbeckstr. 1, D-55131 Mainz (Germany); Alkadhi, Hatem, E-mail: hatem.alkadhi@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland)
2017-03-15
Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.
Kleinböhl, Armin; Friedson, A. James; Schofield, John T.
2017-01-01
The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.
Liu, L. H.; Tan, J. Y.
2007-02-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.
Cost-effective computational method for radiation heat transfer in semi-crystalline polymers
Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice
2018-05-01
This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.
International Nuclear Information System (INIS)
Sampoorna, M.; Bueno, J. Trujillo
2010-01-01
The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.
Sampoorna, M.; Trujillo Bueno, J.
2010-04-01
The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.
Casimir friction and near-field radiative heat transfer in graphene structures
Energy Technology Data Exchange (ETDEWEB)
Volokitin, A.I. [Forschungszentrum Juelich (Germany). Peter Gruenberg Inst.; Samara State Technical Univ. (Russian Federation). Physical Dept.
2017-05-01
The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO{sub 2} substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO{sub 2} substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO{sub 2} substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO{sub 2} substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.
Casimir friction and near-field radiative heat transfer in graphene structures
International Nuclear Information System (INIS)
Volokitin, A.I.; Samara State Technical Univ.
2017-01-01
The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO 2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO 2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO 2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO 2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.
Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator
International Nuclear Information System (INIS)
Oliveira, Guilherme Azevedo; Cardenas Contreras, Edwin Martin; Bandarra Filho, Enio Pedone
2017-01-01
This study is concerned with an experimental evaluation of the thermal performance of multi-walled carbon nanotubes (MWCNT) dispersed in distilled water flowing inside an automotive radiator. A two-step method called high-pressure homogenization was used to disperse the MWCNT nanoparticles in water, in concentrations varying between 0.05 and 0.16 wt%. Experiments have been carried out in an experimental set up composed by a wind tunnel that simulates the air flow through a car radiator, and a hot fluid circuit, that circulates the nanofluid inside the radiator. The air flow rate was maintained constant at 0.175 kg/s. The mass flow rate of the hot fluid varied from 30 up to 70 g/s and the inlet temperature was maintained constant at 50, 60, 70 and 80 °C, respectively. The temperature drop and heat transfer rate have been investigated. A slight-decrease on the heat transfer rate, up to 5%, was found for all test conditions. On the other hand as the nanoparticle concentration increased, the heat transfer rate decreased.
International Nuclear Information System (INIS)
Liu, L.H.; Tan, J.Y.
2007-01-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media
Radiative transfer in disc galaxies - V. The accuracy of the KB approximation
Lee, Dukhang; Baes, Maarten; Seon, Kwang-Il; Camps, Peter; Verstocken, Sam; Han, Wonyong
2016-12-01
We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined (I ≳ 85°) and/or optically thick (central face-on optical depth ≳1) galaxy models, the approximation can give rise to substantial errors, sometimes, up to ≳40 per cent. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no `simple recipe' to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though it is slower than the KB approximation.
Application of the dual Youla parameterization
DEFF Research Database (Denmark)
Niemann, Hans Henrik
1999-01-01
Different applications of the parameterization of all systems stabilized by a given controller, i.e. the dual Youla parameterization, are considered in this paper. It will be shown how the parameterization can be applied in connection with controller design, adaptive controllers, model validation...
Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro
International Nuclear Information System (INIS)
Perez, C.F.
1984-08-01
The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references
Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro
Energy Technology Data Exchange (ETDEWEB)
Perez, C.F.
1984-08-01
The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.
Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant
2014-03-01
Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.
Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant
2014-01-08
Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.
Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.
Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun
2015-01-01
Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.
Radiative charge-transfer lifetime of the excited state of (NaCa)+
International Nuclear Information System (INIS)
Makarov, Oleg P.; Cote, R.; Michels, H.; Smith, W.W.
2003-01-01
New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom-ion trap under high-vacuum conditions. We study the collisional cooling of laser precooled Ca + ions by ultracold Na atoms. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A 1 Σ + state of the (NaCa) + molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using complete active space self-consistent field and Moeller-Plesset second-order perturbation theory with an extended Gaussian basis, 6-311+G (3df). The semiclassical charge-transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition, we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3x10 -16 cm 3 /sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1x10 -8 cm 3 /sec and 2.3x10 -9 cm 3 /sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer
3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure
Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.
2003-04-01
Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev
Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking
Energy Technology Data Exchange (ETDEWEB)
Yoo, S.Y. [Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 34167 (Korea, Republic of); Kim, Y.J., E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K. [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)
2016-11-01
Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.
Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking
International Nuclear Information System (INIS)
Yoo, S.Y.; Kim, Y.J.; Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K.
2016-01-01
Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.
Low and high linear energy transfer radiation sensitization of HCC cells by metformin
International Nuclear Information System (INIS)
Kim, Eun Ho; Jung, Won-Gyun; Kim, Mi-Sook; Cho, Chul-Koo; Jeong, Youn Kyoung; Jeong, Jae-Hoon
2014-01-01
The purpose of this study was to investigate the efficacy of metformin as a radiosensitizer for use in combination therapy for human hepatocellular carcinoma (HCC). Three human HCC cell lines (Huh7, HepG2, Hep3B) and a normal human hepatocyte cell line were treated with metformin alone or with radiation followed by metformin. In vitro tests were evaluated by clonogenic survival assay, FACS analysis, western blotting, immunofluorescence and comet assay. Metformin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, metformin abrogated G2/M arrest and increased the cell population in the sub-G1 phase and the ROS level, ultimately increasing HCC cellular apoptosis. Metformin inhibits the repair of DNA damage caused by radiation. The radiosensitizing effects of metformin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Metformin only had a moderate effect in normal hepatocytes. Metformin enhances the radiosensitivity of HCC, suggesting it may have clinical utility in combination cancer treatment with high-LET radiation. (author)
Parameterized post-Newtonian cosmology
International Nuclear Information System (INIS)
Sanghai, Viraj A A; Clifton, Timothy
2017-01-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)
Parameterized post-Newtonian cosmology
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He
International Nuclear Information System (INIS)
Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay
2003-01-01
This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems
Directory of Open Access Journals (Sweden)
Hameed K. Hamzah
2017-07-01
Full Text Available In this work, effect of adding MgO nanoparticle to base fluid (water in car radiator has been implemented experimentally. In this investigation, an experimental test rig has been designed to study effect inlet temperature of nanofluid, the flow rate and nanoparticle volume fraction on heat transfer rates. Six different concentrations of nanofluid of 0.125%, 0.25%, 0.5%,1% ,1.5% and 2% have been prepared by mixed of MgO nanoparticles with water. Reynolds number of nanofluid was between 4500 and 19000.Thermal behavior of an automobile radiator worked with nanofluid has been compared with using pure water in it. So, the fluid circulating rate in radiator has been varied in the extent of the range of 1-8 L/min and fluid inlet temperature is also varied for all experimental. Results emphasized that Nusselt number increases with an increase of liquid inlet temperature, nanoparticle volume fraction and Reynolds number. As well as, the enhancement in heat transfer coefficient due to presence of nanoparticles is more than that without noanoparticles. These results can be achieved to optimize the dimension of an automobile radiator. A good agreement was seen with theoretical and experimental results with many authors
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
International Nuclear Information System (INIS)
Ghosh, Somnath; Friedrich, Rainer
2015-01-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case
Higher order perturbation theory applied to radiative transfer in non-plane-parallel media
International Nuclear Information System (INIS)
Box, M.A.; Polonsky, I.N.; Davis, A.B.
2003-01-01
Radiative transfer in non-plane-parallel media is a very challenging problem, which is currently the subject of concerted efforts to develop computational techniques which may be used to tackle different tasks. In this paper we develop the full formalism for another technique, based on radiative perturbation theory. With this approach, one starts with a plane-parallel 'base model', for which many solution techniques exist, and treat the horizontal variability as a perturbation. We show that under the most logical assumption as to the base model, the first-order perturbation term is zero for domain-average radiation quantities, so that it is necessary to go to higher order terms. This requires the computation of the Green's function. While this task is by no means simple, once the various pieces have been assembled they may be re-used for any number of perturbations--that is, any horizontal variations
Energy Technology Data Exchange (ETDEWEB)
Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)
2009-01-15
Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)
Time-dependent simplified PN approximation to the equations of radiative transfer
International Nuclear Information System (INIS)
Frank, Martin; Klar, Axel; Larsen, Edward W.; Yasuda, Shugo
2007-01-01
The steady-state simplified P N approximation to the radiative transport equation has been successfully applied to many problems involving radiation. This paper presents the derivation of time-dependent simplified P N (SP N ) equations (up to N = 3) via two different approaches. First, we use an asymptotic analysis, similar to the asymptotic derivation of the steady-state SP N equations. Second, we use an approach similar to the original derivation of the steady-state SP N equations and we show that both approaches lead to similar results. Special focus is put on the well-posedness of the equations and the question whether it can be guaranteed that the solution satisfies the correct physical bounds. Several numerical test cases are shown, including an analytical benchmark due to Su and Olson [B. Su, G.L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy 24 (1997) 1035-1055.
International Nuclear Information System (INIS)
Draoui, Abdeslam
1989-01-01
The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr
TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer
Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J.
2017-07-01
Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between
Braghiere, Renato; Quaife, Tristan; Black, Emily
2016-04-01
Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical
International Nuclear Information System (INIS)
Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.
1991-01-01
The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein
Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh
2018-04-01
We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.
Safety verification of radiation shielding and heat transfer for a model for dry
International Nuclear Information System (INIS)
Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da
2015-01-01
Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C
International Nuclear Information System (INIS)
Jerg, Matthias; Trautmann, Thomas
2007-01-01
The radiative transfer perturbation theory (RTPT), which has already been introduced in atmospheric radiative transfer several years ago, is applied to cloud related problems. The RTPT requires the solution of the radiative transfer equation in the forward and the adjoint mode. The basic principles of this technique are presented as well as its extensions to isotropic surface reflection and its conjunction with the Hermite interpolation. This set of methods is applied to different atmospheric conditions including realistic cloud scenes. The results are compared with the usual (forward) independent-pixel calculations with respect to errors of individual pixels and domain-averaged values. The RTPT turns out to be sufficiently accurate in the case the clouds' internal vertical variations remain moderate. It is also shown that, depending on the specific radiative transfer problem, the RTPT can offer some advantages on computational speed. However, the limitations of the RTPT with regard to realistic clouds are addressed as well
International Nuclear Information System (INIS)
Mahdi, M.; Ebrahimi, R.; Shams, M.
2011-01-01
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
International Nuclear Information System (INIS)
Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli
2017-01-01
Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of
Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2014-01-01
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.
International Nuclear Information System (INIS)
Hirota, Yuki; Kawabata, Shinji; Kuroiwa, Toshihiko; Miyatake, Shin-ichi; Masunaga, Shin-ichiro; Kondo, Natsuko; Ono, Koji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira
2014-01-01
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60 Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)
A statistical theory of cell killing by radiation of varying linear energy transfer
International Nuclear Information System (INIS)
Hawkins, R.B.
1994-01-01
A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs
Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source
Fukue, Jun
2015-06-01
Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL
International Nuclear Information System (INIS)
Conklin, J.C.
1981-08-01
RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium
Heat transfer enhancement of automobile radiator using H2O–CuO nanofluid
Directory of Open Access Journals (Sweden)
M. Sabeel Khan
2017-04-01
Full Text Available In this article, we study heat transfer enhancement of water based nanofluids with application to automotive radiators. In this respect, we consider here three types of different nanoparticles viz. copper oxide (CuO, Titanium dioxide (TiO2 and Aluminum oxide (Al2O3. The dynamics of the flow in a radiator is governed by set of partial differential equations (PDEs along with boundary conditions which are formulated. Suitable similarity transformations are utilized to convert the PDEs into their respective system of coupled nonlinear ordinary differential equations (ODEs. The boundary value problem is solved using Shooting method embedded with Runge-Kutta-Fehlberg (RK-5 numerical scheme. Effects of different physical parameters are studied on profiles of velocity and temperature fields at boundary. In addition, influence of nanoparticle concentration factor on the local coefficient of skin-friction and Nusselt number is analyzed. We conclude that water based nanofluids with copper oxide nano-particles have a much higher heat transfer rate than the Al2O3-water and TiO2-water nanofluids. Moreover, larger the concentration of the CuO nanoparticles in the base fluid higher is the heat transfer rate of CuO-water nanofluid.
Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams
Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping
2018-06-01
A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).
Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos
Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-05-01
Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.
A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere
International Nuclear Information System (INIS)
Moroz, Alexander
2005-01-01
Fast and numerically stable transfer-matrix solution is presented for the classical electromagnetics problem of a dipole radiating inside and outside a stratified sphere consisting of concentric spherical shells. There is no limitation on the dipole position, the number of the concentric shells, the shell medium, or on the sphere radius. Electromagnetic fields are determined anywhere in the space, the time-averaged angular distribution of the radiated power, the total radiated power, Ohmic losses due to an absorbing shell, and Green's function are calculated. An absorbing, optically active, and ultrathin (-bar 10nm) metallic shell (core), characterized by a nonlocal dielectric function, are all allowed. The classical results are then applied to inelastic light scattering (fluorescence and Raman), the radiative and nonradiative normalized decay rates, and frequency shift. Using correspondence principle, the radiative decay rate is calculated from the Poynting vector, whereas the nonradiative decay rate is calculated from the Ohmic losses inside a sphere absorptive shell. Numerical stability of our method and limitations of classical description of decay rates are addressed. The importance of grouping various radiative and nonradiative decay mechanisms into local and nonlocal decay rates is emphasized. Further possible extensions of the theory presented here to the case of an arbitrary multilayered (axially symmetric) particle and to the classical problem of a radiating quadrupole in the presence of a multilayered particle are briefly outlined. Various applications for chemical speciation, LIDAR, fluorescent microscopy, engineering of decay rates, identification of biological particles, and monitoring specific cell functions are envisaged. Computer program is freely available at http://www.wave-scattering.com
International Nuclear Information System (INIS)
Prinja, A.K.; Olson, G.L.
2005-01-01
Simplified models for the unconditional ensemble-averaged radiation intensity and material energy are developed for radiative transfer in binary statistical media. Asymptotic analysis is used to construct an effective transport model with homogenized opacities in two limits. In the first, the material properties are assumed to have low contrast on average, and is shown to correctly reproduce the well-known atomic mix model in both time-dependent and equilibrium situations. Our analysis successfully resolves an inconsistency previously noted in the literature with the application of the standard definition of the atomic mix limit to radiative transfer in participating random media. In the second limit considered, the materials are assumed to have highly contrasting opacities, yielding a reduced transport model with effective scattering. The existence of these limits requires the mean chunk sizes to be independent of the photon direction and this creates an ambiguity in the interpretation of the models when the underlying stochastic geometry is comprised of alternating one-dimensional slabs. A consistent one-dimensional setting is defined and the asymptotic models are numerically validated over a broad range of physical parameter values
Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes
Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas
2018-05-01
An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.
Directory of Open Access Journals (Sweden)
N. Sandeep
2016-03-01
Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.
Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation
International Nuclear Information System (INIS)
Sinha, A.; Shit, G.C.
2015-01-01
This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field
Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation
Energy Technology Data Exchange (ETDEWEB)
Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)
2015-03-15
This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.
A computer simulation model to compute the radiation transfer of mountainous regions
Li, Yuguang; Zhao, Feng; Song, Rui
2011-11-01
In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.
International Nuclear Information System (INIS)
Huang Bormin; Mielikainen, Jarno; Oh, Hyunjong; Allen Huang, Hung-Lung
2011-01-01
Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x
Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.
2016-12-01
Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.
Robinson, Tyler D.; Crisp, David
2018-05-01
Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.
International Nuclear Information System (INIS)
Mishra, Subhash C.; Roy, Hillol K.
2007-01-01
The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable
Methods for the solution of the two-dimensional radiation-transfer equation
International Nuclear Information System (INIS)
Weaver, R.; Mihalas, D.; Olson, G.
1982-01-01
We use the variable Eddington factor (VEF) approximation to solve the time-dependent two-dimensional radiation transfer equation. The transfer equation and its moments are derived for an inertial frame of reference in cylindrical geometry. Using the VEF tensor to close the moment equations, we manipulate them into a combined moment equation that results in an energy equation, which is automatically flux limited. There are two separable facets in this method of solution. First, given the variable Eddington tensor, we discuss the efficient solution of the combined moment matrix equation. The second facet of the problem is the calculation of the variable Eddington tensor. Several options for this calculation, as well as physical limitations on the use of locally-calculated Eddington factors, are discussed
Heat transfer analysis in a calorimeter for concentrated solar radiation measurements
Energy Technology Data Exchange (ETDEWEB)
Estrada, C.A.; Jaramillo, O.A.; Arancibia-Bulnes, C.A. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Privada Xochicalco S/N, Col. Centro. Temixco, Morelos 62580 (Mexico); Acosta, R. [Universidad de Quintana Roo, Boulevard Bahia s/n Esq. I. Comonfort, Chetumal Quintana Roo 77019 (Mexico)
2007-10-15
A calorimeter was built for measuring the concentrated solar power produced by a point focus solar concentrator that was developed at CIE - UNAM. In order to obtain a thermal characterization of the calorimeter a theoretical and experimental heat transfer study is carried out. This study addresses the heat transfer in the circular flat plate of the calorimeter, which acts as receiver for the concentrating system. Temperatures are measured at different points of this plate and fit with a theoretical model that considers heat conduction with convective and radiative boundary conditions. In particular, it is possible to calculate the temperature distribution on the irradiated surface. This allows to examine the validity of the assumptions of cold water calorimetry, which was the technique applied to this system in previous works. (author)
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta
Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media
Ito, G.; Mishchenko, M. I.; Glotch, T. D.
2017-12-01
Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles
Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles
Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.
2017-12-01
To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements
International Nuclear Information System (INIS)
Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.
2017-01-01
The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction
GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI
International Nuclear Information System (INIS)
Heymann, Frank; Siebenmorgen, Ralf
2012-01-01
A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.
An alternative method for calibration of narrow band radiometer using a radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)
2011-01-01
The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the
Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.
2016-12-01
A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be
Jin, Weiliang; Messina, Riccardo; Rodriguez, Alejandro W
2017-06-26
Radiative heat transfer between uniform plates is bounded by the narrow range and limited contribution of surface waves. Using a combination of analytical calculations and numerical gradient-based optimization, we show that such a limitation can be overcome in complicated multilayer geometries, allowing the scattering and coupling rates of slab resonances to be altered over a broad range of evanescent wavevectors. We conclude that while the radiative flux between two inhomogeneous slabs can only be weakly enhanced, the flux between a dipolar particle and an inhomogeneous slab-proportional to the local density of states-can be orders of magnitude larger, albeit at the expense of increased frequency selectivity. A brief discussion of hyperbolic metamaterials shows that they provide far less enhancement than optimized inhomogeneous slabs.
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer
Godoy, William F.; Liu, Xu
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.
PN solutions of radiative heat transfer in a slab with reflective boundaries
International Nuclear Information System (INIS)
Atalay, M.A.
2006-01-01
The spherical harmonics method is used to obtain solution for the radiative heat transfer equation for a slab with reflective boundaries. An absorbing, emitting, non-isothermal, gray medium is considered with linearly anisotropic scattering. Under the condition of the thermal equilibrium, the slab boundaries are subjected to specular and diffuse reflection. The analytical form of solutions is obtained for both conservative and non-conservative cases. The accuracy of the method was verified by benchmark comparisons against the solutions of an earlier work performed by the normal-mode expansion technique. The present predictions of heat flux were found to be in good agreement with the benchmark data. a
Radiative Transfer Equation for Anisotropic Spherical Medium with Specular Reflective Index
International Nuclear Information System (INIS)
Elghazaly, A.
2009-01-01
Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with diffuse and angular dependent (specular) reflecting boundaries is solved using the Pomraning-Eddington approximation method. The angular dependent specular reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. The calculations are carried out for spherical media of radii 0.1, 1.0, and 10 mfp and for different scattering albedo. Two different weight functions are used to verify the boundary conditions. Our results are compared with the available data and give an excellent agreement for thick and highly scattering media
Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate
Directory of Open Access Journals (Sweden)
S. Das
2015-03-01
Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.
Hameed K. Hamzah; Qusay Rasheed Al-Amir
2017-01-01
In this work, effect of adding MgO nanoparticle to base fluid (water) in car radiator has been implemented experimentally. In this investigation, an experimental test rig has been designed to study effect inlet temperature of nanofluid, the flow rate and nanoparticle volume fraction on heat transfer rates. Six different concentrations of nanofluid of 0.125%, 0.25%, 0.5%,1% ,1.5% and 2% have been prepared by mixed of MgO nanoparticles with water. Reynolds number of nanofluid was between 4500 a...
Li, Changping
2014-11-10
In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.
International Nuclear Information System (INIS)
Condiff, D.W.
1987-03-01
The Differential Approximation of Radiation Heat Transfer which includes anisotropic scattering is formulated to account for multiple source and temperature fields of multiphase flow. The formulation is applied to a simplified model of a plume consisting of high temperature emissive particles in steam at parametrically variable lower temperatures. Parametric model calculations are presented which account for spectral emission and absorption by steam using a band approximation as well as emission, absorption and scattering by the debris. The results are found to be far more sensitive to emission properties of individual particles, than to their scattering properties at high temperatures
Li, Changping; Park, Ki-Hong; Alouini, Mohamed-Slim
2014-01-01
In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.
Radiative transfer in gray circumstellar dust envelopes: VY Canis Majoris revisited
International Nuclear Information System (INIS)
Schwartz, R.D.
1975-01-01
The circumstellar dust model for VY CMa proposed by Herbig is reinvestigated using a generalized form of Huang's theory of radiative transfer. The resultant envelope parameters and the emergent energy distribution are found to be insensitive to the choice of Eddington factor for a given envelope inner boundary temperature. Observed fluxes from 0.43 to 74 μ are incorporated into the model, and problems relating to grain emissivity for lambda>30 μ and grain survival at the indicated inner boundary temperature of 1855degreeK are discussed
Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes
International Nuclear Information System (INIS)
Slattery, W.L.; Spangenberg, W.H.
1982-01-01
A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described
Generalized solutions of the radiative transfer equations in a singular case
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1985-07-01
This paper is devoted to the study of the radiative transfer equations (TR). First, we prove a global existence theorem, which allows a blow-up of the opacity σsub(ν)(E) when E → 0. Thus, it extends Mercier's previous result. This proof relies mainly on a non linear version of Hille-Yosida theorem. Then, we prove the uniqueness of the semigroup solving (TR), and some regularity results (in the class of functions with bounded variation). Finally, we prove the convergence of some splitting algorithms associated to (TR)
Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew
2014-01-01
The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.
Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries
Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.
2013-01-01
Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.
Directory of Open Access Journals (Sweden)
Khan A.
2017-12-01
Full Text Available An exact solution and analysis of an initial unsteady two dimensional free convection flow, heat and mass transfer in the presence of thermal radiation along an infinite fixed vertical plate when the plate temperature is instantaneously raised, is presented. The fluid considered is a gray, absorbing emitting radiation but a nonscattering medium. Three cases have been discussed, in particular, namely, (i when, the plate temperature is instantaneously raised to a higher constant value, (ii when, the plate temperature varies linearly with time and (iii when, the plate temperature varies non-linearly with time. A close form general solution for all the cases has been obtained in terms of repeated integrals of error functions. In two particular cases, the solutions in terms of the repeated integrals of error functions have been further simplified to forms containing only error functions. It is observed that for an increase in the radiation parameter N or a decrease in the Grashof number Gr or Gm, there is a fall in the velocity or temperature, but compared to the no radiation case or no diffusing species, there is a rise in the velocity and temperature of the fluid.
Intramolecular transfer of radiation damage in γ-irradiated nucleotides: 8,5'-cyclonucleotides
International Nuclear Information System (INIS)
Fuciarelli, A.F.; Raleigh, J.A.
1984-01-01
The transfer of radiation damage initiated in the sugar phosphate moiety to a nucleotide base as exemplified by 8,5'-cyclonucleotide formation may be important in double-stranded nucleic acids where the bases are shielded to direct hydroxyl attack. With this in mind the authors have renewed a study of the radiation chemistry of cyclonucleotides including further development of an in situ immunochemical assay for their formation in nucleic acids. 8,5'-cycloadenosine 5'-monophosphate has been prepared by radiation chemical synthesis for this purpose. The authors have discovered that the Erlanger and Bieser technique in which the cyclonucleotide hapten is attached to bovine serum albumin (BSA) through the sugar moiety may not be the best approach for preparing cyclonucleotide-containing immunogens as conformational changes may occur in the cyclonucleotide structure during this procedure. The authors are presently using an alternate approach in which the cyclonucleotide hapten is linked to BSA through the phosphate group of the nucleotide. The authors report on these experiments as well as on the basic radiation chemistry of 8,5'-cyclonucleotides
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
LöWe, H.; Helbig, N.
2012-10-01
We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
Second law analysis of coupled conduction-radiation heat transfer with phase change
International Nuclear Information System (INIS)
Makhanlall, D.; Liu, L.H.
2010-01-01
This work considers an exergy-based analysis of two-dimensional solid-liquid phase change processes in a square cavity enclosure. The phase change material (PCM) concerns a semi-transparent absorbing, emitting and anisotropically scattering medium with constant thermodynamic properties. The enthalpy-based energy equation is solved numerically using computational fluid dynamics. Once the energy equation is solved, local exergy loss due to heat conduction and radiative heat transfer during the phase change process is calculated by post processing procedures. In this work, the radiation exergy loss in the medium and at the enclosure boundary is taken into consideration. It is found that radiation exergy loss is significant in the high-temperature phase change process. Parametric investigation is also carried out to study the effects of Stefan number, Biot number, Planck number, single scattering albedo and wall emissivity on exergy loss. The results show that the total exergy loss increases with Biot number, single scattering albedo and wall emissivity. The second law effects of the conduction-radiation coupling in the energy equation are also shown in this work. (authors)
CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW
International Nuclear Information System (INIS)
LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.
2002-01-01
This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments
International Nuclear Information System (INIS)
Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M.; Vermahmoudi, Y.
2013-01-01
Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated experimentally by calculating the overall heat transfer coefficient (U) according to the conventional ε-NTU technique. Copper oxide (CuO) and Iron oxide (Fe 2 O 3 ) nanoparticles are added to the water at three concentrations 0.15, 0.4, and 0.65 vol.% with considering the best pH for longer stability. In these experiments, the liquid side Reynolds number is varied in the range of 50–1000 and the inlet liquid to the radiator has a constant temperature which is changed at 50, 65 and 80 °C. The ambient air for cooling of the hot liquid is used at constant temperature and the air Reynolds number is varied between 500 and 700. However, the effects of these variables on the overall heat transfer coefficient are deeply investigated. Results demonstrate that both nanofluids show greater overall heat transfer coefficient in comparison with water up to 9%. Furthermore, increasing the nanoparticle concentration, air velocity, and nanofluid velocity enhances the overall heat transfer coefficient. In contrast, increasing the nanofluid inlet temperature, lower overall heat transfer coefficient was recorded. -- Highlights: ► Overall heat transfer coefficient in the car radiator measured experimentally. ► Nanofluids showed greater heat transfer performance comparing with water. ► Increasing liquid and air Re increases the overall heat transfer coefficient. ► Increasing the inlet liquid temperature decreases the overall heat transfer coefficient
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Directory of Open Access Journals (Sweden)
Sílvia N. M. Yanagi
2011-12-01
Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta
The CCPP-ARM Parameterization Testbed (CAPT): Where Climate Simulation Meets Weather Prediction
Energy Technology Data Exchange (ETDEWEB)
Phillips, T J; Potter, G L; Williamson, D L; Cederwall, R T; Boyle, J S; Fiorino, M; Hnilo, J J; Olson, J G; Xie, S; Yio, J J
2003-11-21
To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands, in particular, that the GCM parameterizations of unresolved processes should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provied that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by realistically initialized climate GCM, and the application of six-hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be similarly tested. In order to further this method for evaluating and analyzing parameterizations in climate GCMs, the USDOE is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM. Numerical weather prediction methods show promise for improving parameterizations in climate GCMs.
Kovtanyuk, Andrey E.
2012-01-01
Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.
Neutrosophic Parameterized Soft Relations and Their Applications
Directory of Open Access Journals (Sweden)
Irfan Deli
2014-06-01
Full Text Available The aim of this paper is to introduce the concept of relation on neutrosophic parameterized soft set (NP- soft sets theory. We have studied some related properties and also put forward some propositions on neutrosophic parameterized soft relation with proofs and examples. Finally the notions of symmetric, transitive, reflexive, and equivalence neutrosophic parameterized soft set relations have been established in our work. Finally a decision making method on NP-soft sets is presented.
Tuning controllers using the dual Youla parameterization
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Stoustrup, Jakob
2000-01-01
This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla parameteriza......This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla...
DEFF Research Database (Denmark)
Wahlgren, Bjarne; Aarkrog, Vibe
Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...
International Nuclear Information System (INIS)
Muresan, C.
2005-01-01
numerical solution of the Radiative Transfer Equation in diffused part in the case of a mono-dimensional plane geometry. The directional discretizations of each layer are selected in such a way that the discrete directions of one of the layers correspond to those refracted of the close layer and this makes it possible to avoid the use of approximations related to non coincidence of the discrete directions of a layer with those refracted by the close layer. Directional quadratures are then established in an adaptive way in each layer and for each spectral frequency. The results obtained are validated by an approach of Monte Carlo type. The coupling of this model with a Low Reynolds number RANS model will be carried out. This will be done in order to study the convective heat transfers in natural convection for configurations of double facade integration under consideration within the framework of PRI CNRS. The comparison of this model is carried out for experimental configurations of vertical channel type uniformly heated in natural convection. The prospects for this stage are multiple and consist of analyzing the influence of the mode of flow on the thermal pulling of the hybrid components, the effects of the positioning of modules statement, the air gap between the two frontages and the boundary conditions thermal generated by the modules. Lastly, in order to supplement the energy balance of such components and more particularly that governs the thermal behavior of a photosensitive cell, the electric phenomenon of conversion is approached in adequacy with the level of modeling of the coupled thermal transfers radiation - conduction within a PV component. To carry this out, we can consider the local power of spectral radiation absorbed and converted into electric output. (author)
BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests
Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.
2018-01-01
Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.
International Nuclear Information System (INIS)
Clarmann, T. von; Hoepfner, M.; Funke, B.; Lopez-Puertas, M.; Dudhia, A.; Jay, V.; Schreier, F.; Ridolfi, M.; Ceccherini, S.; Kerridge, B.J.; Reburn, J.; Siddans, R.
2003-01-01
When retrieving atmospheric parameters from radiance spectra, the forward modelling of radiative transfer through the Earth's atmosphere plays a key role, since inappropriate modelling directly maps on to the retrieved state parameters. In the context of pre-launch activities of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment, which is a high resolution limb emission sounder for measurement of atmospheric composition and temperature, five scientific groups intercompared their forward models within the framework of the Advanced MIPAS Level 2 Data Analysis (AMIL2DA) project. These forward models have been developed, or, in certain respects, adapted in order to be used as part of the groups' MIPAS data processing. The following functionalities have been assessed: the calculation of line strengths including non-local thermodynamic equilibrium, the evaluation of the spectral line shape, application of chi-factors and semi-empirical continua, the interpolation of pre-tabulated absorption cross sections in pressure and temperature, line coupling, atmospheric ray tracing, the integration of the radiative transfer equation through an inhomogeneous atmosphere, the convolution of monochromatic spectra with an instrument line shape function, and the integration of the incoming radiances over the instrument field of view
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME
Energy Technology Data Exchange (ETDEWEB)
Pu, Hung-Yi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China); Yun, Kiyun; Yoon, Suk-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Younsi, Ziri [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany)
2016-04-01
General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.
Energy Technology Data Exchange (ETDEWEB)
Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)
2017-04-01
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.
Energy Technology Data Exchange (ETDEWEB)
Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
Radiative transfer analysis of the effect of ink dot area on color phase in inkjet printing
International Nuclear Information System (INIS)
Gonome, Hiroki; Ishikawa, Yuki; Kono, Takahiro; Yamada, Jun
2017-01-01
This study discusses a mechanism of inkjet printing and investigates the effect of ink contrast on the color phase of the printed object. Inkjet printing is a popular printing method for home use, but its color repeatability is occasionally broken. To verify this problem, we calculated the radiative transfer equation on the surface of an object printed by an inkjet printer, and the color was quantitatively estimated. The ink dot area and spectral reflectance of the printed samples were measured. Furthermore, the spectral reflectance of the objects printed with different dot areas were theoretically calculated. By comparing the measured and calculated reflectance, we estimated the scattering coefficient of the paper and absorption coefficient of the ink. We quantitatively calculated the color with the HSV color system. The hue changed with dot area rate. It is considered that this is caused by the broad range of the spectral absorption coefficients of inks. We believe that this study will aid the development of ink without color change and improve the color repeatability of inkjet printers. - Highlights: • Radiative transfer on the surface of an object printed by an inkjet printer is modeled. • Spectral reflectance of the printed samples are measured and calculated. • The hue changes with dot area rate because of the broad range of the spectral absorption coefficients of inks.
Koepferl, Christine M.; Robitaille, Thomas P.
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.
2016-12-01
Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.
Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering
International Nuclear Information System (INIS)
Sallah, M.
2016-01-01
The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.
The response matrix discrete ordinates solution to the 1D radiative transfer equation
International Nuclear Information System (INIS)
Ganapol, Barry D.
2015-01-01
The discrete ordinates method (DOM) of solution to the 1D