WorldWideScience

Sample records for radiative forcing due

  1. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    Science.gov (United States)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  2. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  3. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  4. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Science.gov (United States)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    -21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces) the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment) brings the two codes into excellent agreement. (iii) Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s) currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice). Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack) avoids the regularization step (subtracting the free-space space charge force) which is required (to remove divergence) in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces), and also the centrifugal space charge force (CSCF) are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner , in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.

  5. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  6. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  7. A modeling study of effective radiative forcing and climate response due to increased methane concentration

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2016-12-01

    Full Text Available An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing (ERF due to increased methane concentration since pre-industrial times and its impacts on climate. The ERF of methane from 1750 to 2011 was 0.46 W m−2 by taking it as a well-mixed greenhouse gas, and the inhomogeneity of methane increased its ERF by about 0.02 W m−2. The change of methane concentration since pre-industrial led to an increase of 0.31 °C in global mean surface air temperature and 0.02 mm d−1 in global mean precipitation. The warming was prominent over the middle and high latitudes of the Northern Hemisphere (with a maximum increase exceeding 1.4 °C. The precipitation notably increased (maximum increase of 1.8 mm d−1 over the ocean between 10°N and 20°N and significantly decreased (maximum decrease >–0.6 mm d−1 between 10°S and 10°N. These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone (ITCZ. Cloud cover significantly increased (by approximately 4% in the high latitudes in both hemispheres, and sharply decreased (by approximately 3% in tropical areas.

  8. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    Science.gov (United States)

    Yu, Shao-Cai

    1999-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol

  9. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2009-01-01

    2004 FEL Conference, pp. 18–21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment brings the two codes into excellent agreement. (iii Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice. Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack avoids the regularization step (subtracting the free-space space charge force which is required (to remove divergence in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces, and also the centrifugal space charge force (CSCF are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner et al., in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.

  10. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    Science.gov (United States)

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  11. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  12. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2018-02-01

    Full Text Available The ozone radiative forcings (RFs resulting from projected changes in climate, ozone-depleting substances (ODSs, non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model. Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 % of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2 for RCP4.5 and a negative RF (−0.07 W m−2 for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m−2 for the stratospheric, tropospheric and whole-atmosphere RFs.

  13. Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment.

    Science.gov (United States)

    Kirkinen, Johanna; Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-09-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

  14. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  15. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  16. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  17. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  18. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    Science.gov (United States)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  19. Secondary osteoporosis due to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Katsuyuki; Kihana, Toshimasa; Inoue, Yasuhiro; Takeda, Yasunari; Matsuura, Shumpei; Kataoka, Masaaki; Hamamoto, Ken (Ehime Univ., Shigenobu (Japan). School of Medicine)

    1991-09-01

    Bone mineral density (BMD) of the 3rd lumber vertebra (L3) and the 5th lumber vertebra (L5) were measured by quantitative computed tomography (QCT). BMD of L3 and L5 in 139 normal control cases decreased linearly with age (L3: Y= 317.32 - 3.283X, L5: Y= 314.35 - 2.9056X). Ratio of the BMD of L5 to L3 (L5/L3 ratio, %) was constant in the value of 106.03{+-}12.84% before 50 years old and increased linearly after 50 years old (Y= 21.624 + 1.7187X). In 30 radiated cases, BMD of the radiated L5 ws decreased after 20 Gy of radiation and reached 47.44{+-}18.74% of the preradiated value after 50 Gy of radiation. L5/L3 ratio was also decreased after 20 Gy of radiation and reached 48.34{+-}19.33% of pre-radiated value after 50 Gy radiation. BMD of L5 and L5/L3 ratio after 50 Gy of radiation were decreased linearly with age (L5: Y= 107.44 - 0.9686X, L5/L3 ratio: Y= 106.98 - 0.9472X). Quality of life (performance status: PS, lumbago score) after radiation correlated significantly with age, body weight, BMD of L3 before radiation, BMD of L5 after radiation. PS and lumbago score were increased significantly in cases of more than 75 years old, less than 50 kg, less than 100 mg/cm{sup 3} of BMD of L3 before radiation and less than 40 mg/cm{sup 3} of BMD of L5 after radiation. Quality of life after radiation was improved by treatment of alfacalcidol (PS: 3.0{+-}0.61 to 1.2{+-}0.47, lumbago score: 15.4{+-}4.08 to 4.2{+-}1.17). In conclusion, it should be said that pelvic radiation for gynecologic malignancy may disturb the bone metabolism and quality of life in the early phase after radiation, especially in the aged patients and that quality of life could be improved by treatment of alfacalcidol. (author).

  20. Aplastic anemia due to radiation

    International Nuclear Information System (INIS)

    Sakai, Kunio; Saito, Akira

    1978-01-01

    The relationship between radiation exposure and aplastic anemia, clarified previously, is discussed. When persons such as radiological technicians receive whole-body irradiation in rather large doses, it is possible that aplastic anemia will result later on. However, this is difficult to determine because the irradiated region is limited despite large doses of radiation. (Bell, E.)

  1. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    Science.gov (United States)

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  2. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  3. On the forces acting on radiating charge

    International Nuclear Information System (INIS)

    Khachatrian, B.V.

    2001-01-01

    It is shown that the force acting on a radiating charge is stipulated by two reasons- owing to exchange of a momentum between the radiating charge and electromagnetic field of radiation, and also between the charge and field accompanying the charge. 7 refs

  4. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  5. Damping in accelerators due to classical radiation

    International Nuclear Information System (INIS)

    Mills, F.E.

    1962-01-01

    The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)

  6. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Kargbo, A.A

    2012-04-01

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  7. Debate about anthropogenic radiative forcing

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    A recent paper by James Hansen and colleagues at the NASA Goddard Institute for Space Studies in the Proceedings of the National Academy of Science has been widely interpreted in the media, incorrectly as it turned out, that Hansen has changed his earlier views and concerns about climate change, that he no longer considers fossil fuel combustion as the primary concern in international efforts to reduce the risk of climate change. Some have gone so far as to cite the Hansen paper as further evidence that the ratification and implementation of the Kyoto protocols would be inappropriate. Despite various rebuttals, the confusion about Hansen's conclusion continues to persist. This analysis attempts to summarize the the key points made by Hansen and his colleagues, and to place their comments in the general context of the international science community, and to assess the real policy implications. The gist of the comments by Hansen et al. is that future growth rates in CO 2 concentrations may be weaker than some 'business as usual' scenarios suggest. If so, efforts to control CO 2 growth would be easier than presently assumed. The slower growth appears to be due to larger uptake of emitted CO 2 into the oceans and terrestrial biosphere. However, Hansen et al. also acknowledge that this enhanced sink may be temporary, and have in fact been increasing in recent years, and therefore to maintain a continued slow growth rate for CO 2 concentrations, fossil fuel emissions have to become lower than currently projected in 'business as usual' scenarios. The alternative mitigation scenario proposed by Hansen et al. promotes concentrated efforts to reduce emissions of non-CO 2 greenhouse gases. Hansen and co-workers suggest that reduction of non C O 2 emissions would probably allow forcing due to CO 2 emissions to increase a further 1 W/sq m by 2050 without compromising efforts to avoid dangerous climate change. These reviewers believe that the key feature of the Hansen approach

  8. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  9. Surface radiative forcing of forest disturbances over northeastern China

    International Nuclear Information System (INIS)

    Zhang, Yuzhen; Liang, Shunlin

    2014-01-01

    Forests provide important climate forcing through biogeochemical and biogeophysical processes. In this study, we investigated the climatic effects of forest disturbances due to changes in forest biomass and surface albedo in terms of radiative forcing over northeastern China. Four types of forest disturbances were considered: fires, insect damage, logging, and afforestation and reforestation. The mechanisms of the influence of forest disturbances on climate were different. ‘Instantaneous’ net radiative forcings caused by fires, insect damage, logging, and afforestation and reforestation were estimated at 0.53 ± 0.08 W m −2 , 1.09 ± 0.14 W m −2 , 2.23 ± 0.27 W m −2 , and 0.14 ± 0.04 W m −2 , respectively. Trajectories of CO 2 -driven radiative forcing, albedo-driven radiative forcing, and net forcing were different with time for each type of disturbance. Over a decade, the estimated net forcings were 2.24 ± 0.11 W m −2 , 0.20 ± 0.31 W m −2 , 1.06 ± 0.41 W m −2 , and −0.47 ± 0.07 W m −2 , respectively. These estimated radiative forcings from satellite observations provided evidence for the mechanisms of the influences of forest disturbances on climate. (paper)

  10. Tropospheric radiative forcing of CH4

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-04-01

    We have evaluated the tropospheric radiative forcing of CH 4 in the 0-3000 cm -1 wavenumber range and compared this with prior published calculations. The atmospheric test cases involved perturbed methane scenarios in both a McClatchey mid latitude, summer, clear sky approximation, model atmosphere, as well as a globally and seasonally averaged model atmosphere containing a representative cloud distribution. The scenarios involved pure CH 4 radiative forcing and CH 4 plus a mixture of H 2 O, CO 2 , O 3 , and N 2 O. The IR radiative forcing was calculated using a correlated k-distribution transmission model. The major purposes of this paper are to first, use the correlated k-distribution model to calculate the tropospheric radiative forcing for CH 4 , as the only radiatively active gas, and in a mixture with H 2 O, CO 2 , O 3 , and N 2 O, for a McClatchey mid-latitude summer, clear-sky model atmosphere, and to compare the results to those obtained in the studies mentioned above. Second, we will calculate the tropospheric methane forcing in a globally and annually averaged atmosphere with and without a representative cloud distribution in order to validate the conjecture given in IPCC (1990) that the inclusion of clouds in the forcing calculations results in forcing values which are approximately 20 percent less than those obtained using clear sky approximations

  11. Lageos orbit decay due to infrared radiation from earth

    Science.gov (United States)

    Rubincam, David Parry

    1987-01-01

    Infrared radiation from the earth may be the principal reason for the decay of Lageos' orbit. The radiation heats up the laser retroreflectors embedded in Lageos' aluminum surface. This creates a north-south temperature gradient on the satellite. The gradient in turn causes a force to be exerted on Lageos because of recoil from photons leaving its surface. The delayed heating of the retroreflectors due to their thermal inertia gives the force a net along-track component which always acts like drag. A simple thermal model for the retroreflectors indicates that this thermal drag accounts for about half the observed average along-track acceleration of -3.3 x 10 to the -10th power m/sec squared. The contribution from the aluminum surface to this effect is negligible. The infrared effect cannot explain the large observed fluctuations in drag which occur mainly when the orbit intersects the earth's shadow.

  12. External exposure due to natural radiation (KINKI)

    International Nuclear Information System (INIS)

    1978-01-01

    A field survey of exposure rates due to natural radiation has been conducted throughout the Kinki district of Japan during both September and October 1973. In each location, measurements of exposures at one to fifteen sites, one of where contained 5 stations at least, were made. A total of 143 sites were measured. Observations were made using a spherical ionization chamber and several scintillation surveymeters. The spherical plastic ionization chamber of which inner diameter and wall thickness are 200 mm and 3 mm (acrylate) respectively has adequate sensitivity for field survey. The chamber was used as a standard of apparatus, but it is difficult to use the apparatus in all locations only by the apparatus, so that a surveymeter with a NaI(Tl) 1''phi x 1'' scintillator was used for regular measurements. Two types of surveymeters, the one with a 2''phi x 2'' NaI(Tl) scintillator and the other with a 3''phi x 3'' NaI(Tl) scintillator, were used as auxiliary devices. Both the chamber and the surveymeter were used in 20 sites and their readings were compared for drawing a relationship between them. Practically the direct reading of the surveymeter were reduced into the corresponding value of the plastic chamber through the relationship of linear proportion. Systematic error at calibration ( 60 Co) and reading error (rodoh) of the plastic chamber were within +-6% (maximum over all error) and within +-3.5% (standard error for 6μ R/hr) respectively. Reading error of the surveymeter is about +-3% (standard error for 6μ R/hr). Measurements in open bare field were made at one meter above the ground and outdoor gamma-rays exposure rates (μ R/hr) were due to cosmic rays as well as terrestrial radiation, as it may be considered that the contribution of fallout due to artificial origin was very small. (J.P.N.)

  13. Radiative Forcing Over Ocean by Ship Wakes

    Science.gov (United States)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  14. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  15. Contamination and incorporation due to emission of ionizing radiation from radar equipment of the German Federal Armed Forces. A reply to the report of the staff working group Dr. Sommer, presented 21st June 2001. 2. rev. ed.

    International Nuclear Information System (INIS)

    Bauer, K.

    2001-01-01

    The document refers to an issue of public debate in Germany, induced by the disclosure of inappropriate occupational safety measures at radar equipment of the German Army and Air Force. In this reply to the official report of investigation, the author gives his own expert opinion, discussing health risks in connection with radar equipment in general, and the specific military radar installations in particular. The author explains his approach to assessing the occupational radiation dose to military personnel and the resulting health risks and effects in that particular case. (orig./CB) [de

  16. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  17. Electromagnetic radiation due to spacetime oscillations

    International Nuclear Information System (INIS)

    Chitre, D.M.; Price, R.H.; Sandberg, V.D.

    1975-01-01

    Wave equations are derived in the Newman-Penrose formalism for mixed electromagnetic and gravitational perturbations on both a flat spacetime background and a slightly charged (Q 2 very-much-less-than GM 2 ) Reissner-Nordstroem background. The physical meaning of these equations is discussed and analytical results are derived for nonrelativistic sources and for ultrarelativistic particle motions. The relationship between even-parity (TM) electromagnetic radiation multipoles in the long-wavelength approximation and static multipoles is shown to be the same as for classical radiation, suggesting a simple picture for electromagnetic radiation induced by gravitational perturbations

  18. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.

    2016-03-07

    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny structures are principally made of microbeams that can undergo instabilities under the effect of those created huge capillary forces. In fact, during the fabrication of microbeams, there is an important step to separate the beam from its substrate (wet etching). After this step, the microstructure is dried, which may causes the onset of some droplets of water trapped underneath the beam that could bring about a huge capillary force pulling it toward its substrate. If this force is bigger than the microbeam\\'s restoring force, it will become stuck to the substrate. This paper investigates the instability scenarios of both clamped-clamped (straight and curved) and cantilever (straight and curled) microbeams under the effect of capillary and/or electrostatic forces. The reduced order modeling (ROM) based on the Galerkin procedure is used to solve the nonlinear beam equations. The non-ideal boundaries are modeled by adding springs. The volume of the fluid between the beam and the substrate underneath it is varied and the relation between the volume of the water and the stability of the beam is shown. An analysis for the factors of which should be taken in to consideration in the fabrication processes to overcome the instability due to huge capillary forces is done. Also the size of the electrode for the electrostatic force is varied to show the effect on the micro-switch stability. A variation of the pull-in voltage with some specific beam parameters and with more than one case of electrode size is shown. It is found that capillary forces have a pronounced effect on the stability of microbeams. It is also found that the pull-in length decreases as the electrode size increases. It is also shown that the pull-in voltage decreases

  19. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  20. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH 3 Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m 2 /ppbv was obtained for CH 3 Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0 2 , on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH 3 Br. The results give GWPs for CH 3 Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0 2 = 1, following IPCC [1994]). While CH 3 Br has a GWP which is approximately 25 percent of the GWP of CH 4 , the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  1. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  2. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  3. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  4. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  5. Novel applications of the temporal kernel method: Historical and future radiative forcing

    Science.gov (United States)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  6. Dragging force on galaxies due to streaming dark matter

    Science.gov (United States)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  7. Winds from accretion disks driven by the radiation and magnetocentrifugal force

    OpenAIRE

    Proga, D.

    2000-01-01

    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls th...

  8. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.; Ouakad, Hassen M.; Younis, Mohammad I.

    2016-01-01

    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny

  9. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  10. Radiative forcing for changes in tropospheric O3

    International Nuclear Information System (INIS)

    Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

    1994-06-01

    We have evaluated the radiative forcing for assumed changes in tropospheric O 3 in the 500-1650 cm -1 wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O 3 at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H 2 O, CO 2 , CH 4 , and N 2 O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O 3 forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes ∼50 percent of the forcing, tropic zone contributes ∼37 percent of the forcing and the polar zone contributes ∼13 percent of the total forcing

  11. Spin motive forces due to magnetic vortices and domain walls

    NARCIS (Netherlands)

    Lucassen, M.E.; Kruis, G.C.F.L.; Lavrijsen, R.; Swagten, H.J.M.; Koopmans, B.; Duine, R.A.

    2011-01-01

    We study spin motive forces, that is, spin-dependent forces and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on

  12. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Stress Wave Propagation due to a Moving Force

    DEFF Research Database (Denmark)

    Rasmussen, K. M.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1999-01-01

    In this paper the performance of two numerical methods of solving the problem of a time dependent moving force on the surface of an elastic continuum will be evaluated. One method is the finite element method (FEM) formulated in convected coordinates coupled with an absorbing boundary condition...

  14. Enhanced Global Monsoon in Present Warm Period Due to Natural and Anthropogenic Forcings

    Directory of Open Access Journals (Sweden)

    Jing Chai

    2018-04-01

    Full Text Available In this study, we investigate global monsoon precipitation (GMP changes between the Present Warm Period (PWP, 1900–2000 and the Little Ice Age (LIA, 1250–1850 by performing millennium sensitivity simulations using the Community Earth System Model version 1.0 (CESM1. Three millennium simulations are carried out under time-varying solar, volcanic and greenhouse gas (GHG forcing, respectively, from 501 to 2000 AD. Compared to the global-mean surface temperature of the cold LIA, the global warming in the PWP caused by high GHG concentration is about 0.42 °C, by strong solar radiation is 0.14 °C, and by decreased volcanic activity is 0.07 °C. The GMP increases in these three types of global warming are comparable, being 0.12, 0.058, and 0.055 mm day−1, respectively. For one degree of global warming, the GMP increase induced by strong GHG forcing is 2.2% °C−1, by strong solar radiation is 2.8% °C−1, and by decreased volcanic forcing is 5.5% °C−1, which means that volcanic forcing is most effective in terms of changing the GMP among these three external forcing factors. Under volcanic inactivity-related global warming, both monsoon moisture and circulation are enhanced, and the enhanced circulation mainly occurs in the Northern Hemisphere (NH. The circulation, however, is weakened in the other two cases, and the GMP intensification is mainly caused by increased moisture. Due to large NH volcanic aerosol concentration in the LIA, the inter-hemispheric thermal contrast of PWP global warming tends to enhance NH monsoon circulation. Compared to the GHG forcing, solar radiation tends to warm low-latitude regions and cause a greater monsoon moisture increase, resulting in a stronger GMP increase. The finding in this study is important for predicting the GMP in future anthropogenic global warming when a change in natural solar or volcanic activity occurs.

  15. Reduction in thermal conductivity of ceramics due to radiation damage

    International Nuclear Information System (INIS)

    Klemens, P.G.; Hurley, G.F.; Clinard, F.W. Jr.

    1976-01-01

    Ceramics are required for a number of applications in fusion reactors. In several of these applications, the thermal conductivity is an important design parameter as it affects the level of temperature and thermal stress in service. Ceramic insulators are known to suffer substantial reduction in thermal conductivity due to neutron irradiation damage. The present study estimates the reduction in thermal conductivity at high temperature due to radiation induced defects. Point, extended, and extended partly transparent defects are considered

  16. RAMs: the problem of transient errors due to alpha radiation

    International Nuclear Information System (INIS)

    Goujon, Pierre.

    1980-01-01

    Errors that remained unexplained for a long time have occurred with dynamic random access memories. It has been known since 1978 that they are due to stray alpha radiation. A good understanding of this phenomenon enables its effects to be neutralized and the reliability of the products to be guarantied [fr

  17. Radiation from nitrogen molecule due to electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Khare, S P; Kumar, A

    1977-01-01

    A review is presented of the experimental results of the collisional cross sections of the nitrogen molecules due to electron impact which give rise to radiations in the 3,000 Angstrom to 10,500 Angstron wavelength region. Calculations of the fluorescence efficiencies are described and are compared with experimental data. (GHT)

  18. Drift forces on vacancies and interstitials in alloys with radiation-induced segregation

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1983-01-01

    Radiation-induced segregation in alloys leads to compositional gradients around point defect sinks such as voids and dislocations. These compositional gradients in turn affect the drift forces on both interstitials and vacancies and thereby modify the bias. Linear irreversible thermodynamics is employed to derive the total drift force on interstitials and vacancies in substitutional binary alloys. The obtained results are evaluated for binary Fe-Ni alloys. It is shown that radiation-induced segregation produces new drift forces which can be of the same order of magnitude as the stress-induced drift force produced by edge dislocations in an alloy with uniform composition. Hence, segregation results in a significant modification of the bias for void nucleation and swelling. The additional drift forces on interstitials and vacancies are due to the compositional dependence of the formation and migration energies; due to the dependence of the point defect's strain energy on the local elastic properties; due to a coherency strain field caused by lattice parameter variations; and finally due to the Kirkendall force produced by the difference in tracer mobilities. Estimates of these forces given for Fe-Ni alloys indicate that the Kirkendall force is small compared to the other segregation-induced forces on interstitials. In contrast, the Kirkendall force seems to be the dominant one for vacancies. (orig.)

  19. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  20. Nutritional and metabolic changes due the abdominal radiation: experimental study

    International Nuclear Information System (INIS)

    Mucerino, Donato R.; Waitzberg, Dan L.; Campos, Fabio G. de; Melo Auricchio, Maria T. de; Gama-Rodrigues, Joaquim J.; Lima-Goncalves, Ernesto L.

    1995-01-01

    In this study the effects on nutritional status and energetic metabolism due the abdominal irradiation were analysed. Adult male wistar rats (48), were divided in two groups Control (C) and radiated (R). The rats were maintained all time in metabolic cages. the study was done in two periods: period 1 begun at 0 day, were rats adapted to cages and oral diet, had food and water ad libitum. At the day four indirect calorimetric measurements were performed (calorimetry 1). At period 2, group R rats abdominal radiation at a 300 c Gy/day rate, for 5 consecutive days, and group C started a pair-feeding process linked individually to R rats and suffered application to simulated-irradiation. Two other calorimetric measurements (II,III) were performing during period 2. After radiation the last calorimetry was performed (IV). At sacrifice (day 14) blood was collected for determination of hemoglobin, hematocrit, albumin and transferrin. There were no statistical differences among groups C and R during period 1 (p < 0.05). Great reduction in food intake and weight variation were found in period 2, but weight loss was significantly higher in R rats. Nitrogen balance decrease in period 2, but without difference among the groups (p < 0.05). Serum albumin was significantly lower in R rats. Respiratory quotient decreased in both groups during period 2, but rats kept it lower (p < 0.05). The energy expenditure level decreased after radiation in group R. During period 2 total substrate oxidation decreased in R rats. Radiation decrease glucose and protein oxidation. In conclusion, in this study's conditions, radiation produced malnutrition by reducing food intake by bringing weight loss, hypoalbuminemia and decrease nitrogen balance. Radiation was also responsible for a reduction of metabolism, by promoting the fall of energy expenditure. These changes are not only due the anorexia, undoubtful a main factor. (author)

  1. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5. The models reproduce present-day total aerosol optical depth (AOD relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects. The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58% to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF

  2. Radiative forcing in the ACCMIP historical and future climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  3. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  4. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  5. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  6. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  7. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  8. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  9. Black carbon radiative forcing at TOA decreased during aging.

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  10. The Effect of Forcing on Vacuum Radiation

    OpenAIRE

    Jones-Smith, Katherine; Mathur, Harsh; Lowenstein, Ashton

    2018-01-01

    Vacuum radiation has been the subject of theoretical study in both cosmology and condensed matter physics for many decades. Recently there has been impressive progress in experimental realizations as well. Here we study vacuum radiation when a field mode is driven both parametrically and by a classical source. We find that in the Heisenberg picture the field operators of the mode undergo a Bogolyubov transformation combined with a displacement, in the Schr\\"odinger picture the oscillator evol...

  11. On the role of coulomb forces in atomic radiative emission

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1988-10-01

    It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)

  12. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  13. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  14. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  15. Radiation exposure due to agricultural uses of phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; AL-Sewaidan, H.A.

    2008-01-01

    Radiological impacts of phosphate rocks mining and manufacture could be significant due to the elevated radioactivity contents of the naturally occurring radioactive materials (NORM), such as 238 U series, 232 Th series and 40 K, in some phosphate deposits. Over the last decades, the land reclamation and agriculture activities in Saudi Arabia and other countries have been widely expanded. Therefore, the usage of chemical fertilizers is increased. Selected phosphate fertilizers samples were collected and the specific activities of NORM were measured using a gamma ray spectrometer based on a hyper pure germanium detector and alpha spectrometer based on surface barrier detector. The obtained results show remarkable wide variations in the radioactivity contents of the different phosphate fertilizer samples. The mean (ranges) of specific activities for 226 Ra, 210 Po, 232 Th and 40 K, and radium equivalent activity are 75 (3-283), 25 (0.5-110), 23 (2-74), 2818 (9-6501) Bq/kg and 283 (7-589) Bq/kg, respectively. Based on dose calculations, the increment of the public radiation exposure due to the regular agricultural usage of phosphate fertilizers is negligible. Its average value 1 m above the ground is about 0.12 nGy/h where the world average value due to the NORM in soil is 51 nGy/h. Direct radiation exposures of the farmers due to phosphate fertilizers application was not considered in our study

  16. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  17. Forcing the issue on radiation policy

    International Nuclear Information System (INIS)

    Rockwell, T.

    1999-01-01

    For those frustrated by an inability to get a fair hearing on evidence that challenges current radiation policy, the recent case of a group of tobacco interests suing the US Environmental Protection Agency (EPA) in Federal court on its policy on second-hand smoke has important implications for radiation policy. The issue was only tangentially about tobacco; its main thrust was at EPA's arbitrary and capricious rule-making process. The EPA is at least as vulnerable to the same charges in the radiation area, particularly with respect to radon. Radiation protection is associated in many people's minds with the US Nuclear Regulatory Commission (NRC), but other agencies have also been involved. Radon, like second-hand smoke, has been tolerated for generations, and EPA has the burden of proving that it is a public hazard. The law and the unwritten rules of science are quite explicit in defining what must be done to make such a finding. In the case of radon, there is no prior basis for public concern. In fact, the public uses radium spas with radon concentrations up to one million times as high as the EPA permissible limit. In many countries, such spa usage is formally prescribed by physicians and paid for by national health insurance. The health effects, if any, from radon, as from second-hand smoke, are hard to quantify. But, this does not justify--in either case--the EPA's straying from its published criteria and procedures for testing whether such health effects occur. A Federal court has now demonstrated its willingness to judge and strike down the EPA's actions regarding second-hand smoke on their own merits, without attempting to be an arbiter of science. The result is a welcome breath of fresh air and an object lesson for those concerned about the mounting costs of treating radon as a major public health hazard

  18. Radiation hazard due to radon in indoor air

    International Nuclear Information System (INIS)

    Keller, G.

    1987-01-01

    Inhalation of the noble gas radon and its short-lived daughter products present in normal room air causes a considerable increase of the mean natural radiation exposure of the population. As there is an uncontested relationship between lung dose and cancer risk, measures should be taken to guarantee that the radon concentrations in room air do at least not reach maxima. The most simple measure is frequent, brief, good ventilation. Very high radon concentrations are measured in houses where radon pentrates direct from the soil into buildings. For this case, radon-tight insulation of the building from the soil is recommended. A forced ventilation system with heat recovery, installed by experts, has shown to be very successful in radon reduction in 'problematic' houses. (orig.) [de

  19. A study of the radiative forcing and global warming potentials of hydrofluorocarbons

    International Nuclear Information System (INIS)

    Zhang Hua; Wu Jinxiu; Lu Peng

    2011-01-01

    We developed a new radiation parameterization of hydrofluorocarbons (HFCs), using the correlated k-distribution method and the high-resolution transmission molecular absorption (HITRAN) 2004 database. We examined the instantaneous and stratospheric adjusted radiative efficiencies of HFCs for clear-sky and all-sky conditions. We also calculated the radiative forcing of HFCs from preindustrial times to the present and for future scenarios given by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES, in short). Global warming potential and global temperature potential were then examined and compared on the basis of the calculated radiative efficiencies. Finally, we discuss surface temperature changes due to various HFC emissions.

  20. The assessment of personal dose due to external radiation

    International Nuclear Information System (INIS)

    Boas, J.F.; Young, J.G.

    1990-01-01

    The fundamental basis of thermoluminescent dosimetry (TLD) is discussed and a number of considerations in the measurement of thermoluminescence described, with particular reference to CaSO 4 :Dy. The steps taken to convert a thermoluminescence measurement to an exposure and then an absorbed dose are outlined. The calculation of effective dose equivalents due to external exposure to γ-radiation in a number of situations commonly encountered in a uranium mine is discussed. Factors which may affect the accuracy of external dose assessments are described

  1. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  2. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Collective studies on carcinogenesis due to exposure to radiation

    International Nuclear Information System (INIS)

    Yamashita, Hisao

    1980-01-01

    Carcinogenesis was found in 150 of 25,692 patients who had received radiotherapy for benign diseases. Of primary diseases subjected to radiotherapy, skin diseases were the most. Carcinogenesis was found in 26 of 7,230 patients with skin diseases (0.36%) and 18 in 2286 patients with tuberculous cervical lymphadenitis (0.79%). The sites of carcinogenesis was the skin in 51 patients, the hypopharynx in 43, and the larynx in 18. Carcinogenesis was also found in 140 of 220,361 patients who had received radiotherapy for malignant tumors. As primary cancer, cancer of the cervix uteri was found in 59 of 48,662 patients, and breast cancer was found in 20 of 27,967 patients. As radiation-induced cancer, leukemia was found in 18 patients, soft tissue sarcoma in 18, skin cancer in 10, osteosarcoma in 6, cancer of the hypopharynx in 6, and cancer of the cervical esophagus in 6. It is necessary to differentiate cancer due to exposure to radiation from delayed recurrent cancer and double cancer. Irradiation fields should be restricted as small as possible in order to reduce carcinogenesis. As leukemia and carcinoma were found in a-bomb survivors exposed to very small dose of a-bomb radiation, carcinogenic mechanisms by chromosome aberrations, carcinogenic rates from a viewpoint of epidemiology, and other factors which influenced carcinogenesis are being investigated. (Tsunoda, M.)

  4. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  5. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  6. Sonic excitation by means of ultrasound; an experimental illustration of acoustic radiation forces

    NARCIS (Netherlands)

    Roozen, N.B.; Nuij, P.W.J.M.

    2011-01-01

    Ultrasonic acoustic waves are known to induce a vibration of particles around an equilibrium position. However, for large acoustic amplitudes, due to non-linear acoustic effects, a rectified, net acoustic radiation force can occur. Experimental work is performed in which the non-linear behavior is

  7. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  8. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  9. Ionizing radiation dose due to the use of agricultural fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy Kuniko

    2007-01-01

    Among several agents that exist in the environment which can expose to different risks and effects, there is the ionizing radiation whose knowledge of dose is of importance to the effective control and prevention of possible damages to human beings and to the environment. The transfer of radionuclides from fertilizers to/and soils to the foodstuffs can result as an increment in the internal dose when they are consumed by the human beings. This work evaluates the contribution of fertilizers to the ionizing radiation dose in the environment and in the human being. Samples of fertilizers, soils and vegetables produced in fertilized soils were analysed through gamma spectrometry with the use of a hyper pure germanium detector. Measurements of ambient dose with thermoluminescent dosimeters were also performed. In the fertilized soil samples values of specific activities from 36 to 342 Bq/kg for K-40, from 42 to 142 Bq/kg for U-238 and from 36 to 107 Bq/kg for Th-232 were obtained. In the vegetables the values varied from 21 to 118 Bq/kg for K-40 and for the elements of uranium and thorium series the values were less than 2 Bq/kg. In fertilizers the maximum value of 5800 Bq/kg was obtained for K-40, 430 Bq/kg for U-238 and 230 Bq/kg for Th-232. The average values of soil to plant transfer factor were not significantly different among the types of vegetables. The annual committed effective dose of 0.882 μSv due to the ingestion of K-40 from the analysed vegetables is very small if compared to the reference value of 170 μv given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). The thermoluminescent dosimetry provided the annual ambient dose equivalent from 1.5 to 1.8 mSv without differences between cultivated and non cultivated fields. Through the results obtained, it was not observed a significant transfer of radionuclides from fertilizers to soils and to foodstuffs in the conditions adopted in this work and consequently there

  10. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  11. Three-body ΛNN force due to Λ-Σ coupling

    International Nuclear Information System (INIS)

    Myint, Khin Swe; Akaishi, Yoshinori

    2003-01-01

    The ΛNN three - body force due to coherent Λ - Σ Coupling effect was derived from realistic Nijmegen model D potential. Repulsive and attractive three - body ΛNN forces were reconcilably accounted. For 5 He, within one - channel description, ΛNN force is largely repulsive and its origin comes from Pauli forbidden terms. Within two - channel description, attractive Pauli allowed terms exist and resulting three - body force is always attractive. Large attractive ΛNN force effect due to coherent Λ - Σ coupling effect is predicted in neutron - rich nuclei. The attractive coherent Λ - Σ coupling effect is largely enhanced at high density neutron matter. The attractive three - body ΛNN force effect is essential dynamics of Λ - Σ coupling while the repulsive Nogami three - body effect arises from Pauli forbidden diagrams. (Y. Kazumata)

  12. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  13. Active electromagnetic invisibility cloaking and radiation force cancellation

    Science.gov (United States)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  14. Effects on vegetable seeds due to non ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Acri, G.; Oliva, A.; Falcone, G. [Universita della Calabria, Dipt. di Fisica, Cosenza (Italy); Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G. [Universita della Calabria, Dipt. di Ecologia, Cosenza (Italy); Bitonti, M.B.; Chiappetta, A. [Universita di Messina, Dipt. di Protezionistica Ambientale, Sanitaria, Sociale ed Industriale, Messina (Italy)

    2006-07-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  15. Effects on vegetable seeds due to non ionizing radiation

    International Nuclear Information System (INIS)

    Acri, G.; Oliva, A.; Falcone, G.; Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G.; Bitonti, M.B.; Chiappetta, A.

    2006-01-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  16. Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy K.; Okuno, Emico; Medina, Nilberto H.; Colacioppo, Sergio; Hiodo, Francisco Y.

    2008-01-01

    The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of 40 K, 238 U and 232 Th show that there is no significant transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of 40 K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 μSv

  17. Radiation exposure on residents due to semipalatinsk nuclear tests

    International Nuclear Information System (INIS)

    Takada, J.; Hoshi, M.; Nagatomo, T.

    2000-01-01

    Accumulated external radiation doses for residents near Semipalatinsk nuclear test site of the former USSR are presented as a results of the first study by thermoluminescence technique for bricks sampled at several settlements between 1995 and 1997. The external doses which we evaluated from brick dose were up to ∼100 cGy for resident. The external doses at several points in the center of Semipalatinsk city were ∼60 cGy that was remarkably high comparing with the previously reported value based on the military data. A total of 459 nuclear explosions were conducted by the former Union of Soviet Socialist Republics (USSR) from 1949 to 1989 at the Semipalatinsk nuclear test site (SNTS) Kazakhstan, including 87 atmospheric, 26 on the ground, and 364 underground explosions. Total energy release of about 18 Mt equivalent of trinitrotoluene is eleven hundreds times of Hiroshima atomic bomb. However previous reports concerning the effects of radiation on residents near the SNTS based on data provided by the Defense Department of the former USSR do not have direct experimental data concerning effective equivalent dose. They just measured some doses for particular settlements after some nuclear explosions. These do not indicate integrated dose for the residents due to the whole explosions. The technique of thermoluminescence dosimetry (TLD) which had been successfully applied to the dosimetry on Hiroshima and Nagasaki atomic bombs, enabled us to evaluate accumulated external gamma ray doses at specific places due to whole nuclear explosions in the Semipalatinsk test site. TLD technique is well-established one for not only instantaneous exposure like in A-bombs (Hiroshima and Nagasaki) but also prolonged exposure like in dating. Moreover this technique was applicable for dosimetry study of radioactive fallout as shown in studies of Chernobyl accident. The way of external dose estimation from TLD doses for brick will be discussed in case of radioactive fallout. We will

  18. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  19. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  20. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  1. Observational determination of surface radiative forcing by CO2 from 2000 to 2010.

    Science.gov (United States)

    Feldman, D R; Collins, W D; Gero, P J; Torn, M S; Mlawer, E J; Shippert, T R

    2015-03-19

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  2. Radiation doses due to the natural radioactivity in Pakistan marble

    International Nuclear Information System (INIS)

    Tufail, M.; Iqbal, M.; Mirza, S.M.

    2000-01-01

    In view of its high potential for containing large amounts of radioactive materials and due to its wide-spread use as construction and facing material worldwide, radiation doses received from the marble used in dwellings have been determined. As a first step, specific activity measurements were made using a NaI(TI) gamma ray spectrometer using the spectrum stripping technique. For the samples studied, the average values of specific activities for 226 Ra, 232 Th and 40 K have been found to be 27, 26 and 58 Bg kg -1 respectively. The mesh-adaptive, volume-integral method based code INGRE (Mirza et al. 1991) gave calculated values of the dose equivalent rates inside the standard room (Tufail et al.,1994) due to 226 Ra, 232 Th and 40 K; these were found to lie between 5-77,12-52 and 1-11 nGy h -1 respectively. The values of whole body dose equivalent rates have been found to lie in the 27-108 nGy h -1 range. As these values are below internationally accepted maximum permissible values, therefore marble available in Pakistan can safely be used in dwellings as a construction material. (author)

  3. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g−1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g−1 for black carbon including direct and cryosphere forcing, and −0.064 (−0.02, −0.13 GJ g−1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here.

    Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is −46 (−18, −92. Best estimates of atmospheric radiative impact (without snow forcing by black and organic matter are +0.47 ± 0.26 W m−2 and −0.17 (−0.07, −0.35 W m−2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr−1. Anthropogenic forcing is +0.40 ± 0.18 W m−2 and −0.13 (−0.05, −0.25 W m−2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr−1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC, although the value presented here includes enhanced absorption due to internal mixing.

  4. Numerical study of divertor plasma transport with thermal force due to temperature gradient

    International Nuclear Information System (INIS)

    Ohtsu, Shigeki; Tanaka, Satoru; Yamawaki, Michio

    1992-01-01

    A one-dimensional, steady state divertor plasma model is developed in order to study the carbon impurity transport phenomena considering thermal force. The divertor plasma is composed of four regions in terms of momentum transport between hydrogen and carbon impurity: Momentum transferring region, equilibrium region, hydrogen recycling region and carbon recycling region. In the equilibrium region where the friction force is counterbalanced by the thermal force, the localization of carbon impurity occurs. The sufficient condition to avoid the reverse of carbon velocity due to the thermal force is evaluated. (orig.)

  5. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, T.; Isaksen, I.S.A.; Fuglestvedt, J.S.; Myhre, G.; Larsen, T. Alsvik; Stordal, F.; Freckleton, R.S.; Shine, K.P.

    1997-12-31

    As described in this report, changes in tropospheric ozone since pre-industrial times due to changes in emissions have been calculated by the University of Oslo global three-dimensional photochemical model. The radiative forcing caused by the increase in ozone has been calculated by means of two independent radiative transfer models: the University of Reading model (Reading), and the University of Oslo/Norwegian Institute for Air Research model (OsloRad). Significant increases in upper tropospheric ozone concentrations are found at northern mid-latitudes at about 10 km altitude. In the tropical regions the largest increase is found at about 15 km altitude. The increase is found to be caused mainly by enhanced in situ production due to transport of precursors from the boundary layer, with a smaller contribution from increased transport of ozone produced in the boundary layer. The lifetime of ozone in the troposphere decreased by about 35% as a result of enhanced concentrations of HO{sub 2}. The calculated increase in surface ozone in Europe is in good agreement with observations. The calculations of radiative forcing include the effect of clouds and allow for thermal adjustment in the stratosphere. The global and annual averaged radiative forcing at the tropopause from both models are in the lower part of the Intergovernmental Panel on Climate Change estimated range. The calculated radiative forcing is similar in magnitude to the negative radiative forcing by sulfate aerosols, but displaced southward in source regions at northern mid-latitudes. The increase in tropospheric ozone is calculated to have cooled the lower stratosphere by up to 0.9 K, with possibly half of this cooling occurring in the past 2 to 3 decades. 76 refs., 16 figs., 9 tabs.

  6. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Neubauer, D.

    2009-01-01

    by gases and particles. Built-in types of surface albedo as well as other values can be chosen. The radiative properties of the cloud depend on the single scattering properties of the cloud droplets, which in turn depend on the composition of the cloud droplets. In this study the cloud droplets are assumed to consist of water and black carbon. Different mixing types of black carbon in the cloud droplets are used for the calculations. The absorption of solar radiation of a cloud droplet can be significantly increased by black carbon. Sensitivity analysis showed that the radiative forcing due to the indirect effect depends strongly on the geometrical cloud thickness, shortwave surface albedo and on the rate of ascent. For 100 m cloud thickness, 0.35 m/s rate of ascent and a shortwave surface albedo of 0.35 (ice) the radiative forcing is -0.57 W/m 2 and -0.15 W/m 2 for a shortwave surface albedo of 0.9 (fresh snow), on average for the whole measurement campaign. Black carbon causes a positive forcing of 0.02 W/m 2 . (author) [de

  7. The state of enforcement of the Law Concerning Prevention from Radiation Hazards Due to Radioisotopes, etc

    International Nuclear Information System (INIS)

    1978-01-01

    In recent years, the uses of radioisotopes and radiation generators have advanced remarkably in Japan. The establishments utilizing them are on rapid increase in industries, medicine, research and education. Furthermore, since the types of usage are more diversified, the kinds of radioisotopes and their quantities are also increasing. In this connection, The Law Concerning Prevention from Radiation Hazards Due to Radioisotopes, etc. has been in force for about twenty years. Under the current situation in this field, importance of the administration concerning enforcement of The Law is ever rising. In the Science and Technology Agency, in view of the occurrence of accidents in certain enterprises, starting in fiscal 1974, various measures have been taken. As the state of enforcement of The Law, the following matters are presented; the establishments using, selling and disposing of radioisotopes, etc. up to fiscal 1977 (in tables); and variety of governmental measures taken by the Agency. (Mori, K.)

  8. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  9. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  10. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  11. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  12. One-dimensional central-force problem, including radiation reaction

    International Nuclear Information System (INIS)

    Kasher, J.C.

    1976-01-01

    Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem

  13. Thyroid cancer due to biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Galvão, T.; Castro, N.; Teixeira, D.; Matuo, R.

    2017-01-01

    Thyroid cancer is considered the most common in the region of the head and neck. It can be caused by spontaneous mutations, but also by ionizing radiation. The effect of ionizing radiation on the thyroid has been studied for several decades. The exact cause of the cancer is not known, but people with certain risk factors are more vulnerable, such as exposure to radiation, family history and age over 40 years. The thyroid is susceptible to the effects of radiation and is involved in the field of diagnostic or therapeutic irradiation, and may present functional and structural changes. Radiation can act in different ways, such as inhibiting or activating specific functions of the follicular epithelium, reducing the number of functioning follicles, altering vascularization or vascular permeability and inducing immune reactions. These morphological and histological changes may be related to the development of thyroid cancer

  14. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  15. The law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1984-01-01

    The law regulates uses, sales and disposal of radioisotopes, uses of radiation generating apparatuses, disposal of materials contaminated with radioisotopes, and so on, in accordance with the Atomic Energy Fundamental Act, for public safety. Covered are the following: permission for and notification of the uses and permission for businesses selling and disposing of radioisotopes, and approval of designs concerning radiation hazard prevention mechanisms, obligations of the users and business enterprises selling and disposing of radioisotopes, the licensed engineers of radiation, organs, etc. for confirmation of the mechanisms, punitive provisions, and so on. (Mori, K.)

  16. Electromagnetic radiation reaction force and radiation potential in general five-dimensional relativity

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1989-01-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace

  17. Epidemiology of cancer due to radiations and development of guidelines

    International Nuclear Information System (INIS)

    Okuno, Emico

    2009-01-01

    This review article describes the ionizing and non-ionizing radiation protection commissions and the development processes of the guidelines for limiting exposure to these radiations. We briefly describe the history of these commissions and the types of epidemiological studies from which the risk factors are evaluated. Some recent results obtained from epidemiological studies of atomic bomb survivors in Japan and the inherent difficulties will be presented. At last the current international recommendations will be presented. (author)

  18. The law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1977-01-01

    Based on the gist of the Atomic Energy Basic Law (Law No. 186, 1955), this Law regulates the use, sale, disposal and other handling of radioactive isotopes, use of radiation-generating apparatuses, disposal and other handling of matters contaminated by radioactive isotopes, thereby aims at the prevention of radiation injuries and securing the safety of the public. The radioactive isotopes referred to in this Law are the isotopes emitting radiation such as phosphorus-32 and cobalt-60, their compounds, and those containing such isotopes and compounds. The radiation-generating apparatuses referred to in this Law are the apparatuses generating radiation by accelerating charged particles such as cyclotron and synchrotron. Those who want to use the radioactive isotopes and radiation-generating apparatuses must file applications and obtain approval of the Director of the Science and Technology Agency. Those who want to use sealed radioactive isotopes of the amount less than that stipulated by the Cabinet Order, those who want to sell and those who want to dispose of radioactive isotopes or matters contaiminated thereby as occupation should file notices and obtain approval of the Director of the Science and Technology Agency. Said Director should not approve such notices unless they meet the required specification, and when he approves such notices, he issues licenses. (Rikitake, Y.)

  19. Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    OpenAIRE

    Gusso, André

    2011-01-01

    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the ...

  20. Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement.

    Science.gov (United States)

    AlSubaie, Mai; Talic, Nabeel; Khawatmi, Said; Alobeid, Ahmad; Bourauel, Christoph; El-Bialy, Tarek

    2016-09-01

    To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.

  1. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  2. Radiation exposure of the population due to medical procedures

    International Nuclear Information System (INIS)

    Frischauf, H.

    1976-01-01

    The question of individual benefit-risk ratio in X-ray exposures is considered. The growth rate of the number of radiological examinations in New Zealand, Sweden, UK and USA is stated to be between 2 and 6 per cent per annum. The risks of internal radioisotope tests are emphasised and reductions of exposure are reported when 99Tc isotopes are used, counterbalanced by the increasing number of exposures made; the question of radiation-induced leukemia is raised in this respect. The problems of analysing delayed radiation effects are discussed, and the possibility of animal tests is suggested. (G.M.E.)

  3. Nonlinear aspects of acoustic radiation force in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov [NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305 (United States); Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com [Artann Laboratories, Inc., 1459 Lower Ferry Rd., West Trenton, New Jersey,08618 (United States)

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  4. Nonlinear aspects of acoustic radiation force in biomedical applications

    International Nuclear Information System (INIS)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-01-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams

  5. Nonlinear aspects of acoustic radiation force in biomedical applications

    Science.gov (United States)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  6. Time evolution of tropospheric ozone and its radiative forcing

    International Nuclear Information System (INIS)

    Berntsen, Terje K.; Isaksen, Ivar S.A.; Myhre, Gunnar; Stordal, Frode

    1999-01-01

    The overview presents results from studies of ozone concentrations from pre industrial time and up to the end of the 20th century. Different models and also a global 3-D chemistry transport model have been used. Experiments have been performed for 1850, 1900, 1950, 1960, 1970, 1980 and 1990. The radiative forcing increases with increasing ozone levels and has been steadily increasing. It has escalated towards the end of the century. Comparative evaluations with project results and external results are presented. Connections to other greenhouse gases are mentioned

  7. Osteonecrosis due to radiation given for uterus cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuo; Ugai, Kazuhiro; Hasegawa, Kazuo; Hirota, Saeko [Hyogo Medical Center for Adults, Akashi (Japan)

    1992-04-01

    During a period 1984-1991, 18 patients were diagnosed as developing osteonecrosis after radiation therapy for uterine cervical cancer. The patients had Stage I-III. Acute pain occurred in the lumbar spine, pelvis, and/or limbs. There was no correlation between osteonecrosis and either clinical staging or the associated surgery. The most common site of osteonecrosis was lumbar spine (n=13), followed by sacroiliacal joint and head and neck of femur (5 each) and pubic bone (3). The duration from radiation therapy to occurrence of osteonecrosis varied from one to 8 years: the latency period tended to be longer for younger patients. There was correlation between radiation doses and site of osteonecrosis: 60 Gy caused more extensive osteonecrosis, involving the pelvis and head of femur, although 40 Gy confined it to the lumbo-sacral region. Osteonecrosis was sometimes difficult to diagnose: needle biopsy, in addition to imaging modalities, was necessary in 4 patients. It is recommended that patients with uterus cervical cancer treated with radiation be followed up carefully. (N.K.).

  8. Cause elucidation of sodium leakage incident at `Monju` reactor. Vibration of thermometer due to fluid force

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Koji; Wada, Yusaku; Morishita, Masaki; Yamaguchi, Akira; Ichimiya, Masakazu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-01-01

    This is a report of summarized results of investigation and analysis on fracture of thermometer which is direct reason of sodium leakage incident at the second main cooling system of fast breeder reactor `Monju`. Various surveys such as on various damage factors, on flowing power vibrational features containing flowing power vibrational test of thermometer, on evaluation of high cycle fatigue due to flowing power vibration and details on propagation of and fracture due to fatigue crack, on why only said thermometer damaged, and so forth were executed. As results of these examinations, a decision was arrived that high cycle fatigue due to vibration formed by fluid force (fluid force vibration) was a direct cause of the thermometer damage. (G.K.)

  9. Is ankle contracture after stroke due to abnormal intermuscular force transmission?

    Science.gov (United States)

    Diong, Joanna; Herbert, Robert D

    2015-02-01

    Contracture after stroke could be due to abnormal mechanical interactions between muscles. This study examined if ankle plantarflexor muscle contracture after stroke is due to abnormal force transmission between the gastrocnemius and soleus muscles. Muscle fascicle lengths were measured from ultrasound images of soleus muscles in five subjects with stroke and ankle contracture and six able-bodied subjects. Changes in soleus fascicle length or pennation during passive knee extension at fixed ankle angle were assumed to indicate intermuscular force transmission. Changes in soleus fascicle length or pennation were adjusted for changes in ankle motion. Subjects with stroke had significant ankle contracture. After adjustment for ankle motion, 9 of 11 subjects demonstrated small changes in soleus fascicle length with knee extension, suggestive of intermuscular force transmission. However, the small changes in fascicle length may have been artifacts caused by movement of the ultrasound transducers. There were no systematic differences in change in fascicle length (median between-group difference adjusting for ankle motion = -0.01, 95% CI -0.26-0.08 mm/degree of knee extension) or pennation (-0.05, 95% CI -0.15-0.07 degree/ degree of knee extension). This suggests ankle contractures after stroke were not due to abnormal (systematically increased or decreased) intermuscular force transmission between the gastrocnemius and soleus.

  10. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  11. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  12. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  13. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  14. Impact of nonlinear distortion on acoustic radiation force elastography.

    Science.gov (United States)

    Draudt, Andrew B; Cleveland, Robin O

    2011-11-01

    High-intensity focused ultrasound (HIFU) produces an acoustic radiation force that induces tissue displacement, which can be measured by monitoring time shifts in the backscattered signals from interrogation pulses. If the pulse occurs simultaneously with the HIFU, the arrival time of the backscatter will be biased because nonlinearity associated with the HIFU changes the local sound speed. Measurements of the pressure field using 1.1 MHz HIFU and a 7.5 MHz pulse in water exhibited a nonlinearly induced apparent displacement (NIAD) that varied with the HIFU pressure, propagation distance and the timing of the pulse relative to the HIFU. Nonlinear simulations employing the KZK equation predicted NIADs that agreed with measurements. Experiments with chicken breast demonstrated a NIAD with magnitude similar to that expected from the radiation force. Finally it was shown that if two pulses were fired with different phases relative to the HIFU, then upon averaging, the NIAD could be mitigated. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Radiation exposure of patients due to medical measures

    International Nuclear Information System (INIS)

    Schwarz, E.R.; Tsavachidis, C.; Hinz, G.; Eigelsreiter, H.

    1987-01-01

    The main objective of this research project supported by the Federal Ministry of the Interior was to collect the data required as a basis for an up-to-date assessment of the radiation exposure of the population as a result of medical measures. Apart from the fact that this had to be done in order to fulfill a commitment required by the EURATOM principles, the report in hand also presents a useful survey of the improvements achieved over the last years in terms of radiation hygiene in the field of imaging technology applied for medical diagnostics. The data obtained from four hospital centers (2 university hospitals, 1 city hospital, and one county hospital) and from three medical practices (radiologist, internal specialist, orthopedics), the changes experienced in the selection of imaging methods for diagnostic purposes in the period 1976 to 1983 or 1985 are illustrated, and analyses show the developmental trends. The results show that there is reason to assume the radiation exposure of the population to be receding. (orig./MG) [de

  16. Changes in bacterial radiation sensitivity due to deuterium substitution

    International Nuclear Information System (INIS)

    Strauss, A.; Weiss, H.

    1985-01-01

    The influence of deuterium substitution for hydrogen on radiation sensitivity was measured under various conditions for E. coli B/r irradiated by 450 kev electrons in single intense pulses. Cells were grown in a nutrient medium made from a deuterium oxide based solution. They were suspended in a D/sub 2/O based buffered saline and plated in thin aqueous layers on membrane filters and irradiated in 100% N/sub 2/ or 100% O/sub 2/. Comparisons were made to cells similarly plated and irradiated but grown instead in a water based nutrient medium and suspended in either a water based or a D/sub 2/O based buffered saline. For the conventionally grown cells, D/sub 2/O increased the radiation sensitivity in both gases by about 10%. For cells grown and suspended with D/sub 2/O based media, a 50% reduction of radiation sensitivity was found with both gas and an increased extrapolation number was observed. In this latter method, deuterium is more fully substituted for hydrogen in the molecular substrate of the cell. These cells were also irradiated over a temperature range of 2 0 C to 43 0 C after being suspended in deuterated ethanol. Speculations for the changes induced by the substitution are presented

  17. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  18. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    Science.gov (United States)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; hide

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  19. The radiative forcing potential of different climate geoengineering options

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2009-08-01

    Full Text Available Climate geoengineering proposals seek to rectify the Earth's current and potential future radiative imbalance, either by reducing the absorption of incoming solar (shortwave radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on energy balance considerations and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. It allows us to compare the relative effectiveness of a range of proposals. We consider geoengineering options as additional to large reductions in CO2 emissions. By 2050, some land carbon cycle geoengineering options could be of comparable magnitude to mitigation "wedges", but only stratospheric aerosol injections, albedo enhancement of marine stratocumulus clouds, or sunshades in space have the potential to cool the climate back toward its pre-industrial state. Strong mitigation, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition may have greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean

  20. Detriment due to radiation exposure: concept and assessment

    International Nuclear Information System (INIS)

    Inaba, Jiro

    1999-01-01

    The International Commission on Radiological Protection has used a term risk' to denote the probability of a clinically observable deleterious effect such as fatal cancers and severe hereditary effects. In their 1990 recommendations ICRP developed a new term 'detriment' which contains a complex concept combining the probability, severity and time of expression of deleterious effects. Nominal probability coefficients for fatal cancer, one of the most important components of the detriment, are assessed to be 5% and 4% per Sv for the whole population and workers, respectively, for radiation protection. These values were derived from the data on mortality from the Life-Span Study of the atomic-bomb survivors up to 1985 assuming several components consist of dose-response relationship, life-span risk projection model, dose and dose rate effectiveness factor, national population and transfer model and so on. The risk estimates and each of these components include uncertainties which should be clarified for the better understanding and use of the risk estimates. However, it is not likely that near-future data from Life-Span Study will significantly change these uncertainties, which should in no way be interpreted as a denial of the essential importance of fundamental research into the mechanism of cancer induction. In these situation the National Institute of Radiological Sciences have performed a 5-year research project 'Experimental Studies on Detriments of Radiation Exposure'. The project consists of researches on a) Radiation carcinogenesis, b) Effects on embryo and fetus, c) Biological effect of plutonium. The project was successful to provide useful information on these subjects. (author)

  1. Radiation forces and the Abraham-Minkowski problem

    Science.gov (United States)

    Brevik, Iver

    2018-04-01

    Recent years have witnessed a number of beautiful experiments in radiation optics. Our purpose with this paper is to highlight some developments of radiation pressure physics in general, and thereafter to focus on the importance of the mentioned experiments in regard to the classic Abraham-Minkowski problem. That means, what is the “correct” expression for electromagnetic momentum density in continuous matter. In our opinion, one often sees that authors over-interpret the importance of their experimental findings with respect to the momentum problem. Most of these experiments are actually unable to discriminate between these energy-momentum tensors at all, since they can be easily described in terms of force expressions that are common for Abraham and Minkowski. Moreover, we emphasize the inherent ambiguity in applying the formal conservation principles to the radiation field in a dielectric, the reason being that the electromagnetic field in matter is only a subsystem which has to be supplemented by the mechanical subsystem to be closed. Finally, we make some suggestions regarding the connection between macroscopic electrodynamics and the Casimir effect, suggesting that there is a limit for the magnitudes of the cutoff parameters in QFT related to surface tension in ordinary hydromechanics.

  2. Constraining the cosmic radiation density due to lepton number

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2013-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis is typically parameterized in terms of the effective number of neutrinos N eff , and it is a key parameters in cosmological models slightly more general than the successful minimal ΛCDM scenario. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. We summarize here the results of a recent analysis to determine the BBN bound on N eff from primordial neutrino–antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations, and considering quite a wide range for the total lepton number in the neutrino sector, η ν =η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in . Comparing these results with the forthcoming measurement of N eff by the Planck satellite will give insight on the nature of the radiation content of the universe

  3. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  4. Occupational radiation exposure of the personnel due to interventional radiology

    International Nuclear Information System (INIS)

    Wucherer, M.; Schmidt, T.; Loose, R.

    2000-01-01

    Applications of interventional radiology continue to be on an upward trend, some countries reporting a 100% increase within 2-4 years, so that the resulting radiation exposure of both patients and personnel is an issue of increasing importance. Whereas those applications in general are of advantage for the patients, they mean just a further health hazard for the medical personnel. It is therefore necessary to exploit all available means to reduce the occupational doses. Modern interventional radiology systems offer a range of measures for this purpose, as e.g. last-image-hold, or pulsed modes. Special attention has to be given to the exposure of hand and head. Particularly the hand is closest to the useful beam, and it should be a mandatory requirement to wear film rings. (orig./CB) [de

  5. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  6. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    Science.gov (United States)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their

  7. Years of life lost due to external radiation exposure

    International Nuclear Information System (INIS)

    Raicevic, J.J.; Merkle, J.M.; Ehrhardt, J.; Ninkovic, M.M.

    2002-01-01

    A new approach for calculation of the years of life lost per excess death (YLL) due to stochastic health effects is applied to external exposure pathways. The short-term external exposures are due to the passage of radioactive cloud (CL) and due to the skin and clothes contamination (SK). The long-term external exposure is the one from the radioactive material deposited on ground (GR). Three nuclides, 131 I , 137 Cs and 239 Pu with extremely wide range of the half-life are considered to examine its possible influence on the calculated YLL values. For each of these nuclides, the YLL is found as a decreasing function of the age at exposure and presented graphically in this paper. Another negative correlation is established between the fully averaged YLL and the duration of the nuclide's half-life has been found for protracted exposure (GR). On the other hand, the YLL for the short-term external exposures (CL and SK) practically does not depend on the nuclide's half-life. In addition, a weak YLL dependence of the dose was commented. (author)

  8. Years of life lost due to external radiation exposure

    Directory of Open Access Journals (Sweden)

    Raičević Jagoš J.

    2004-01-01

    Full Text Available In this paper a new approach for calculation of the years of life lost per excess death due to stochastic health effects is applied to external exposure pathways. The short-term external exposures are due to the passage of radioactive cloud and due to the skin and clothes contamination. The long-term external exposure is the one from the radioactive material deposited on the ground (groundshine. Three nuclides, 131I, 137Cs, and 239Pu, and with the extremely wide range of half-life are considered in order to examine their possible influence on the calculated values of years of life lost. For each of these nuclides, the number of years of life lost has been found as a decreasing function of the age at the expo sure and presented graphically in this paper. For protracted exposures, the fully averaged number of years of life lost is negative correlated with the nuclide’s half-life. On the other hand, the short-term external exposures do not depend on the nuclide’s half-life. In addition, a weak years of life lost dependence of the dose has been commented.

  9. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  10. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  11. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Weyant, J.

    2014-01-01

    Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in

  12. 210Po radiation dose due to cigarette smoking

    International Nuclear Information System (INIS)

    Godwin, Wesley S.; Subha, Vincila R.; Feroz, Khan M.

    2010-01-01

    The level of 210 Po in eight brands of cigarettes and four brands of bidis popular in and around Nagercoil town was determined to evaluate the annual effective dose. The 210 Po activity in a full cigarette ranged from 32.8±3.6 to 68.4±5.9 mBq and from 34.3±3.5 to 62.9±5.8 mBq in a bidi. In tobacco, the highest 210 Po content was recorded in the brand C4 (23.0±1.2 mBq) whereas for bidis it was the highest in the brand B2 (21.1±1.1 mBq). The activity in mainstream varied from 15.2±0.75 to 36.8±2.1 mBq in a cigarette and from 20.7±3.1 to 39.8±4.0 mBq in a bidi. With regard to 210 Po activity concentration, not much specificity was noted with respect to the tobacco brand. The data showed a relatively wide range of activity concentration of 210 Po in the different cigarette/bidi brands and even within the same brand. The bidis showed a higher activity when compared to cigarettes. The popular brands concentrated more activity than the fine brands. Smokers who smoke one pack (10 cigarettes/bidis) per day may inhale about 100-300 mBq d -1 (0.1-0.3 Bq d -1 ) of 210 Po. In this study, radiation dose values in the range of 153.5-372.9 μSv Y - '1 from cigarettes and from 209.2 to 402.7 μSvY -1 from bidis was estimated for the whole body. (author)

  13. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  14. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    Science.gov (United States)

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  15. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-01-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series

  16. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  17. Some properties of Cerenkov radiation due to the finite thickness of the radiator

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Frank, I.M.

    1981-01-01

    The properties of Cerenkov radiation are analyzed for a small radiator thickness. It is shown that the directionality of the radiation, its threshold properties, and also the dependence on the electron energy and radiator thickness differ substantially from the well known characteristics of Cerenkov radiation corresponding to the case of an unlimited particle trajectory in an extended medium. We have experimentally studied the directionality and energy characteristics of radiation excited by electrons in a mica target of thickness 12 400 A at wavelength 4000 A. The experimental results are in good agreement with the calculations

  18. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...

  19. Radionuclides in food and the radiation exposure due to ingestion

    International Nuclear Information System (INIS)

    Michel, Rolf

    2015-01-01

    As a consequence of the reactor accidents in Fukushima Daiichi high amounts of radioactive iodine and cesium isotopes were released into the terrestrial and marine Japanese environment. The largest release occurred on March 15, 2011 as a consequence of the containment failure of unit 2. Due to the meteorological conditions large area fallout occurred in the district of Fukushima. Other prefectures in the north of Japan were also contaminated. As a consequence of the high surface contamination the dose limits for drinking water, milk and milky products and food were increased to 200 Bq/kg.It turned out that the contamination of rice was marginal, the contamination of predatory fish higher than that of non-predatory fish. A systematic investigation of food samples could allow a better estimation of ingestion induced exposure.

  20. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  1. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  2. Risks and radiation doses due to residential radon in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.

    2017-01-01

    The population-averaged risk rate and the annual average effective dose due to residential radon in Germany were calculated. The calculations were based on an epidemiological approach taking into account the age- and gender-specific lung cancer incidence rates for the German population and the excess relative risk of 0.16 per 100 Bq.m"-"3 for residential radon. In addition, the risk estimates adjusted for the smoking habits were determined. The population-averaged risk rate for the whole population was estimated with 4.1.10"-"5 y"-"1 (95% confidence interval (CI) 1.4.10"-"5 - 7.6.10"-"5 y"-"1). Residential radon causes a detriment per year of 3.3.10"-"5 y"-"1 (95% CI 1.1.10"-"5 - 6.0.10"-"5 y"-"1), which corresponds to an annual average effective dose of 0.6 mSv (95% CI 0.2-1.1 mSv). Annually, ∼3400 lung cancer incidences are attributed to residential radon. The results from the epidemiological approach exercised in this study are considerably lower than the effective dose, which would be obtained from the dose conversion coefficient calculated using biokinetic and dosimetric models. (author)

  3. Remote sensing of aerosol characteristics and radiative forcing in Pakistan

    International Nuclear Information System (INIS)

    Alam, K.

    2011-01-01

    This thesis investigates the aerosol characteristics over different cities of Pakistan through satellite borne sensors, namely the Total Ozone Mapping Spectrometer (TOMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR), and ground-based instruments such as Aerosol Robotic Network (AERONET) and GRIMM 1.109 dust monitor. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for trajectory analysis in order to visualize the origins of air masses and understand the spatio-temporal variability of aerosol concentrations. An assessment of seasonal variability in aerosol optical depth (AOD) for industrial, urban, semi-urban, rural, and semi-arid areas revealed maximum AOD values during summer over all the areas under investigation. The correlation between AERONET and MODIS/MISR AODs during 2007 was also analyzed for Karachi and Lahore. The correlation coefficient for Karachi was found to be relatively high between AERONET and MISR and lower between AERONET and MODIS. In contrast, the correlation coefficient for Lahore was higher between AERONET and MODIS than between AERONET and MISR. The results suggest that the MISR sensor provides better AOD estimates near the ocean while AOD estimates from the MODIS sensor are better over terrestrial regions (especially over vegetated surfaces). The assessment of aerosol optical properties and aerosol radiative forcing (ARF) through the ground-based Aerosol Robotic Network (AERONET) over Lahore and Karachi has also been investigated in this study. The monthly mean of AOD at 500 nm over Lahore and Karachi ranges from 0.39 to 0.76, and the monthly mean Angstrom Exponent ranges from 0.29 to 1.22. The relationship between the Absorption Angstrom Exponent and the Extinction Angstrom Exponent provided an indication of relative proportions of urban-industrial and mineral dust aerosols over both sites. The single scattering albedo (SSA) ranged from 0

  4. Static deformation of a heavy spring due to gravity and centrifugal force

    Energy Technology Data Exchange (ETDEWEB)

    Essen, Hanno; Nordmark, Arne, E-mail: hanno@mech.kth.s [Department of Mechanics, KTH, SE-100 44 Stockholm (Sweden)

    2010-05-15

    The static equilibrium deformation of a heavy spring due to its own weight is calculated for two cases: first for a spring hanging in a constant gravitational field, and then for a spring which is at rest in a rotating system where it is stretched by the centrifugal force. Two different models are considered: first a discrete model assuming a finite number of point masses connected by springs of negligible weight, and then the continuum limit of this model. In the second case, the differential equation for the deformation is obtained by demanding that the potential energy is minimized. In this way a simple application of the variational calculus is obtained.

  5. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  6. [Radiative and hygienic certification in Armed Forces, problems of its implementation and ways of perfection].

    Science.gov (United States)

    Rusakov, V N; Cherkashin, A V; Shishkanov, A P; Ian'shin, L A; Gracheva, T N

    2010-12-01

    Radiative and hygienic passportization is one of the most actual pattern of socio and hygienic monitoring in Armed Forces. Radiative and hygienic passport is the main document which characterizes the safety control in military unit and uses the sources of ionizing radiation. Sanitary and epidemiologic institutions were imputed to control the formation of radiative and hygienic passports, analysis and generalization of its data, formation of conclusions about the condition of radiation security in the military units. According to radiative and hygienic passportization, which took place in 2009, the radiation security in the Armed Forces and organizations is satisfactory, but there are some problems of providing of radiation security of personnel under the professional and medical radiation. The salvation of its problems requires the effective work of official functionary of radiac object and institutions of state sanitary and epidemiological supervision in Armed Forces of Russian Federation.

  7. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  8. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  9. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  10. Effective Dose Equivalent To The Cypriot Population Due To Natural Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital (Cyprus)

    1994-12-31

    A study was initiated by the Biomedical Research Foundation, two years ago, to estimate the various natural radiation components that contribute to the Effective Dose Equivalent (EDE) to the Cypriot population. The present study has shown that the contribution due to cosmic radiation is estimated to be less than 270 microSiverts per annum, while that due to airborne Rn-222 concentration in Cypriot houses is estimated to be less then 330 microSieverts per annum. The contribution due to terrestrial gamma radiations, which is currently under investigation, is so far estimated to be around 108 microSieverts per annum. Therefore the EDE to the Cypriot population due to natural radiation is likely to be around 700 microSieverts per annum, not taking into account the internal exposure due to other naturally occuring radionuclides. (author). 7 refs, 4 figs, 4 tabs.

  11. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  12. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  13. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  14. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    Science.gov (United States)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  15. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  16. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  17. Response of air stagnation frequency to anthropogenically enhanced radiative forcing

    International Nuclear Information System (INIS)

    Horton, Daniel E; Diffenbaugh, Noah S; Harshvardhan

    2012-01-01

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) air stagnation index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21st century climate change (SRESA1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase by 12–25% relative to late-20th century stagnation frequencies (3–18 + days yr −1 ). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21st century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming. (letter)

  18. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  19. Factors Affecting Aerosol Radiative Forcing from Both Production-based and Consumption-based View

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2017-12-01

    Aerosol radiative forcing (RF) is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. This problem becomes more complicated when taking into account the role of international trade, which means reallocated aerosol RF due to separation of regions producing goods and emissions and regions consuming those goods. Here we analyze major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA) and black carbon (BC), extending the work of Lin et al. (2016, Nature Geoscience). We contrast five factors determining production-based (RFp, due to a region's production of goods) and consumption-based (RFc, due to a region's consumption) forcing by 11 major regions, including population size, per capita output, emission intensity (emission per output), chemical efficiency (mass per unit emission) and radiative efficiency (RF per unit mass). Comparing across the 11 regions, East Asia produces the strongest RFp and RFc of SIOA and BC and the second largest RFp and RFc of POA primarily due to its high emission intensity. Although Middle East and North Africa has low emissions, its RFp is strengthened by its largest chemical efficiency for POA and BC and second largest chemical efficiency for SIOA. However, RFp of South-East Asia and Pacific is greatly weakened by its lowest chemical efficiency. Economic trade means that net importers (Western Europe, North America and Pacific OECD) have higher RFc than RFp by 50-100%. And such forcing difference is mainly due to the high emission intensity of the exporters supplying these regions. For North America, SIOA's RFc is 50% stronger than RFp, for that emission intensity of SIOA is 5.2 times in East Asia and 2.5 times in Latin America and Caribbean compared with that in North America, and the chemical efficiency in the top four exporters are

  20. The regulations for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of and to enforce the ''Law for the prevention of radiation hazards due to radioisotopes'' and the Enforcement Order for the ''Law concerning the prevention of radiation hazards due to radioisotopes''. The Regulation includes the definitions of terms, applications for the permission of the use of radioisotopes, standards on usage, obligation of measurement, persons in charge of radiation, etc. Terms are explained, such as persons engaging in radiation works, persons who enter at any time the control areas, radiation facilities, maximum permissible exposure dose, cumulative dose, maximum permissible cumulative dose, maximum permissible concentration in the air, maximum permissible concentration in water and maximum permissible surface density. The applications for permission in written forms are required for the use, sale and abandonment of radioisotopes. Radioisotopes or the apparatuses for generating radiation shall be used in the using facilities. The measurement of radiation dose rate, particle flux density and contamination due to radioisotopes shall be made with radiation-measuring instruments. At least one person shall be chosen as the chief radiation-handling person in each factory, establishment, selling office or abandoning establishment by a user, a trademan or a person engaged in abandonment of radioisotopes. The forms for the application for permission, etc. are attached. (Okada, K.)

  1. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  2. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A A; Rubinov, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Gaida, L S; Guzatov, D V; Svistun, A Ch [Yanka Kupala State University of Grodno, Grodno (Belarus)

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  3. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    Science.gov (United States)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  4. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.; Brindley,  Helen; Banks,  Jamie

    2015-01-01

    Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  5. Aerosol removal due to precipitation and wind forcings in Milan urban area

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  6. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar

  7. Radiation Dose for Self-Disposal due to the Quantity of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Kim, Gye-Nam; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we evaluated resident radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. The uranium concentration of contaminated zone due to the cover depth are also analyzed. Possibility for self-disposal of uranium contaminated soil and concrete wastes is evaluated from these calculating data. There are several radioactive material disposal methods such as regulation exemption, decontamination and long term storage. To acquire radiation dose under self-disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinectic-electrodialytic. We evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. As cover depth increases, the tolerable uranium concentration increases up to cover depth (1.5 m) and then it showed saturated uranium concentration above cover depth (1.5 m). Therefore, to carry out self-disposal on the quantity (1000 drums≒300,000 kg) of radioactive waste is easier than to carry out on the quantity (2000 drums≒600,000 kg) of radioactive waste owing to the large tolerable uranium concentration for self-disposal of radioactive waste. As cover depth increases, the individual radiation dose rate decreased up to cover depth (1.5 m) and then it showed saturated individual radiation dose rate above cover depth (1.5 m)

  8. Radiation Dose for Self-Disposal due to the Quantity of Radioactive Waste

    International Nuclear Information System (INIS)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Kim, Gye-Nam; Choi, Jong-Won

    2016-01-01

    In this study, we evaluated resident radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. The uranium concentration of contaminated zone due to the cover depth are also analyzed. Possibility for self-disposal of uranium contaminated soil and concrete wastes is evaluated from these calculating data. There are several radioactive material disposal methods such as regulation exemption, decontamination and long term storage. To acquire radiation dose under self-disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinectic-electrodialytic. We evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. As cover depth increases, the tolerable uranium concentration increases up to cover depth (1.5 m) and then it showed saturated uranium concentration above cover depth (1.5 m). Therefore, to carry out self-disposal on the quantity (1000 drums≒300,000 kg) of radioactive waste is easier than to carry out on the quantity (2000 drums≒600,000 kg) of radioactive waste owing to the large tolerable uranium concentration for self-disposal of radioactive waste. As cover depth increases, the individual radiation dose rate decreased up to cover depth (1.5 m) and then it showed saturated individual radiation dose rate above cover depth (1.5 m)

  9. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  10. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  11. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  12. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  13. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  14. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  15. Resolution of the uncertainties in the radiative forcing of HFC-134a

    International Nuclear Information System (INIS)

    Forster, Piers M. de F; Burkholder, J.B.; Clerbaux, C.; Coheur, P.F.; Dutta, M.; Gohar, L.K.; Hurley, M.D.; Myhre, G.; Portmann, R.W.; Shine, K.P.; Wallington, T.J.; Wuebbles, D.

    2005-01-01

    HFC-134a (CF 3 CH 2 F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50-100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ∼25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A 'recommended' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the 'recommended' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is 0.16+/-0.02Wm -2 ppbv -1

  16. A case of ileo-cutaneou fistula due to radiation enteritis

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Tsukasa; Oguchi, Yoshiro; Nakaba, Hiroyuki [Kure National Hospital, Hiroshima (Japan); and others

    1992-07-01

    Radiation enteritis can cause late complications including stenosis, perforation, fistulization, and bleeding, which sometimes necessitate surgical treatment, but a complication of ileocutaneous fistula is rarely reported. In this paper, an excellent result of an operation for ileocutaneous fistula due to radiation enteritis is described. A 68-year-old woman had undergone extended total histerectomy and radiation therapy on uterine cervical cancer. After the operation and the radiation therapy, frequent abdominal pain bothered her and then the intestinal fistula ensued resulted in the fistulization. The fistula was located between two stenotic lesions of the intestine caused by radiation enteritis. Resection of ileum including the two stenotic lesion and the fistula and end-to-end anastomosis relieved the symptoms and the treatment course has been satisfactory. The two stenotic lesions were resected because it was suggested that the two stenotic lesions directly led the fistulization. She is now followed asymptomatically. (author).

  17. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  18. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  19. Perinatal radiation exposure due to nuclear medical use of radioactive compounds

    International Nuclear Information System (INIS)

    Gloebel, B.

    1982-01-01

    When the pregnancy is yet undetected, radiation doses were only relevant when given within therapeutic application. Only Hg 203-chloromerodrine and J 131-iodide are relevant for newborns as they cause radiation doses of 40-70 rad. in the organ concerned. As a result of nuclear medicine and the application of radio nuclides not only patients but also ''occupationally exposed'' persons and parts of the population are exposed to radiation. Pregnant women are not admitted in control areas but can only be forbidden to enter when the pregnancy has been established. This is the case after six weeks. The occupational perinatal exposure is therefore about 11% of the annual dose. Evaluation of the figures for exposure to radiation can be done by either comparing them with natural exposure or by estimating the risks. The somatic radiation risk per rad is of the 5th order, the genetic risk of the 4th to 6th order as compared with a spontaneous genetic risk of the 2nd order. According to surveys of STIEVE (1976) the risk involved in various diagnostic and therapeutic measures of complications not due to radiation exposure is of 2nd to fifth order. On an average, the risks of diagnostic measures in nuclear medicine are small in comparison to the radiation risk. A comparison with the range of natural radiation exposure also indicated that only exposures which exceed natural exposure of 0.4 rad have to be considered. (orig.) [de

  20. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere

    International Nuclear Information System (INIS)

    Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S.

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircraft have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at. (authors)

  1. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    Science.gov (United States)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  2. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  4. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  5. Three cases of lumbo-sacral neuropathy due to radiation for uterine cancer

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoshikazu; Hokezu, Yoichi; Kanehisa, Yoshihide; Nagamatsu, Keiji; Onishi, Akio

    1985-01-01

    Case 1: The 61-year-old woman developed uterine cancer at age 50. Radiation therapy was initiated to the pelvic lumen from both anterior and posterior sides with a total dose of 21,000 rads. Radiation ulcerative enterocolitis and dermatitis revealed at the end of the therapy. At age 52 (2 years after radiation), she noticed muscle weakness and dysesthesia of the lower legs. These symptoms progressed and amyotrophy of the legs appeared. At age 54 (4 years after radiation), she became unable to walk. Case 2: The 51-year-old woman developed uterine cancer at age 40. Postoperative radiation was initiated by the same dose and the same way as in Case 1 and she suffered from radiation dermatitis. At age 49 (9 years after radiation), she noticed dysesthesia of the right toe, which gradually spread to another side. Ten years after radiation, she began to note weakness in dorsiflexion of feet. Case 3: The 69-year-old woman developed uterine cancer at age 67. Radiation (Linac 4,000 rads, Ralstron 2,000 rads) was performed for 3 months into the pelvic lumen. Two years later, she noted dysesthesia and weakness of her legs. These symptoms progressed gradually. In these 3 cases, EMG showed neurogenic changes, suggesting peripheral nerve lesions. Nerve conduction velocities were decreased. Nerve and muscle biopsies revealed neurogenic changes. No abnormal findings were detected by spinal X-rays and myelography. The neurological findings of these patients were compatible with the lumbo-sacrol plexus injuries apparently due to late radiation effect. (J.P.N.).

  6. Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation

    Science.gov (United States)

    Park, C.; Lee, D.; Heo, H. K.; Ahn, S.

    2017-12-01

    Urban Heat Island (UHI) which means urban air temperature is higher than suburban area is one of the most important environmental issues in Urban. High density of buildings and high ratio of impervious surfaces increases the radiation fluxes in urban canopy. Furthermore, climate change is expected to make UHI even more seriously in the future. Increased irradiation and air temperature cause high amount of short wave and long wave radiation, respectively. This increases net radiation negatively affects heat condition of pedestrian. UHI threatens citizen's health by increasing violence and heat related diseases. For this reason, understanding how much urban radiation will increase in the future, and exploring radiation reduction strategies is important for reducing UHI. In this research, we aim to reveal how the radiation flux in the urban canyon will change as the climate change and determine how much of urban vegetation will be needed to cover this degradation. The study area is a commercial district in Seoul where highly populated area. Due to the high density of buildings and lack of urban vegetation, this area has a poor thermal condition in summer. In this research, we simulate the radiation flux on the ground using multi-layer urban canopy model. Unlike conventionally used urban canopy model to simulate radiation transfer using vertically single layer, the multi-layer model we used here, enables to consider the vertical heterogeneous of buildings and urban vegetation. As a result, net radiation of urban ground will be increase 2.1 W/m² in the 2050s and 2.7 W/m² in the 2100s. And to prevent the increase of radiation, it is revealed that the urban vegetation should by increased by 10%. This research will be valuable in establishing greening planning as a strategy to reduce UHI effect.

  7. Three cases of lumbo-sacral neuropathy due to radiation for uterine cancer

    International Nuclear Information System (INIS)

    Maruyama, Yoshikazu; Hokezu, Yoichi; Kanehisa, Yoshihide; Nagamatsu, Keiji; Onishi, Akio.

    1985-01-01

    Case 1: The 61-year-old woman developed uterine cancer at age 50. Radiation therapy was initiated to the pelvic lumen from both anterior and posterior sides with a total dose of 21,000 rads. Radiation ulcerative neterocolitis and dermatitis revealed at the end of the therapy. At age 52 (2 years after radiation), she noticed muscle weakness and dysesthesia of the lower legs. These symptoms progressed and amyotrophy of the legs appeared. At age 54 (4 years after radiation), she became unable to walk. Case 2: The 51-year-old woman developed uterine cancer at age 40. Postoperative radiation was initiated by the same dose and the same way as in Case 1 and she suffered from radiation dermatitis. At age 49 (9 years after radiation), she noticed dysesthesia of the right toe, which gradually spread to another side. Ten years after radiation, she began to note weakness in dorsiflexion of feet. Case 3: The 69-year-old woman developed uterine cancer at age 67. Radiation (Linac 4,000 rads, Ralstron 2,000 rads) was performed for 3 months into the pelvic lumen. Two years later, she noted dysesthesia and weakness of her legs. These symptoms progressed gradually. In these 3 cases, EMG showed neurogenic changes, suggesting peripheral nerve lesions. Nerve conduction velocities were decreased. Nerve and muscle biopsies revealed neurogenic changes. No abnormal findings were detected by spinal X-rays and myelography. The neurological findings of these patients were compatible with the lumbo-sacrol plexus injuries apparently due to late radiation effect. (J.P.N.)

  8. Calculation of heat generation due to nuclear radiation in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The study is performed for caculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN code, that solves the one-dimensional transport equation using the discrete ordinate method, to include nuclear heating calculations. Tests of the implemented modifications were performed in problems of nuclear heating due to radiation energy deposition in a fusion reactor. (Author) [pt

  9. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  10. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  11. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  12. Radiation dose to the lungs due to inhalation of alpha emitters

    International Nuclear Information System (INIS)

    Haque, A.K.M.M.; Al-Affan, I.A.M.

    1987-01-01

    The radiation dose to the lungs due to inhalation of radon daughters has been computed with improved data on lung models, aerosol parameters, deposition and clearance mechanisms. The dose corresponds to mean radon concentration of 23 Bq/m 3 indoors (recent NRPB Survey) for different living conditions. The dose rate to basal cells in gen. 5 is 12 mGy/WLM. (author)

  13. Some observations of the variations in natural gamma radiation due to rainfall

    International Nuclear Information System (INIS)

    Minato, S.

    1980-01-01

    Results of observations of variations in natural gamma-radiation flux densities due to rainfall are presented and discussed in relation to rate of rainfall. Variations of fluences with amounts of rainfall are also described. It is concluded that the frequency distribution of the ratio of the fluence to the amount of rainfall has a trend to be lognormal

  14. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    International Nuclear Information System (INIS)

    Ai Baoquan; Xie Huizhang; Liu Lianggang

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  15. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    Science.gov (United States)

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  16. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  17. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...

  18. Lateral expansion and carbon exchange of a boreal peatland in Finland resulting in 7000 years of positive radiative forcing

    Science.gov (United States)

    Mathijssen, Paul J. H.; Kähkölä, Noora; Tuovinen, Juha-Pekka; Lohila, Annalea; Minkkinen, Kari; Laurila, Tuomas; Väliranta, Minna

    2017-03-01

    Data on past peatland growth patterns, vegetation development, and carbon (C) dynamics during the various Holocene climate phases may help us to understand possible future climate-peatland feedback mechanisms. In this study, we analyzed and radiocarbon dated several peat cores from Kalevansuo, a drained bog in southern Finland. We investigated peatland succession and C dynamics throughout the Holocene. These data were used to reconstruct the long-term atmospheric radiative forcing, i.e., climate impact of the peatland since initiation. Kalevansuo peat records revealed a general development from fen to bog, typical for the southern boreal zone, but the timing of ombrotrophication varied in different parts of the peatland. Peat accumulation patterns and lateral expansion through paludification were influenced by fires and climate conditions. Long-term C accumulation rates were overall lower than the average values found from literature. We suggest the low accumulation rates are due to repeated burning of the peat surface. Drainage for forestry resulted in a nearly complete replacement of typical bog mosses by forest species within 40 years after drainage. The radiative forcing reconstruction suggested positive values (warming) for the first 7000 years following initiation. The change from positive to negative forcing was triggered by an expansion of bog vegetation cover and later by drainage. The strong relationship between peatland area and peat type with radiative forcing suggests a possible feedback for future changing climate, as high-latitude peatlands may experience prominent regime shifts, such as fen to bog transitions.

  19. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    International Nuclear Information System (INIS)

    Rathod, T.D.; Sahu, S.K.; Tiwari, M.; Pandit, G.G.

    2016-01-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g"−"1 and 17.84±6.45 W g"−"1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67–90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV–visible spectrum. - Highlights: • Biomass fuels (wood and dung cake) were studied for brown carbon direct radiative effects. • Model calculations predicted positive contribution of Brown carbon aerosols to organic carbon direct radiative effect. • Average direct radiative values for brown carbon from dung cake were higher compare to wood. • The visible light absorption played major role in brown carbon contribution (67–90 %) to total direct radiative effect.

  20. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  1. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  2. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  3. Interagency task force on the health effects of ionizing radiation. final report

    International Nuclear Information System (INIS)

    1979-06-01

    This is the final report of the task force and incorporates the findings and recommendations of six smaller work groups, each with a more specific focus; i.e., science, privacy, care and benefits, exposure reduction, public information, and institutional arrangements. A research agenda that could provide some answers to questions about the effects of low-level radiation is proposed, along with recommendations to facilitate research. A public information program is outlined. Recommendations are advanced to improve systems that deliver care and benefits to those who may have been injured by exposure to radiation, and proposals for steps that might reduce unnecessary radiation exposure in the future are identified. The task force also recommends measures to institutionalize the interagency cooperation that characterized the task force. Three tables and one figure show the collective estimates of the U.S. general population, Federal research financing, cancer linked to radiation in particular populations, and a general dose-response model

  4. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  5. Revise of the law concerning prevention from radiation hazards due to radioisotopes, etc

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Sendo, Muneaki

    2004-01-01

    The Law Concerning Prevention from Radiation Hazards due to Radioisotopes, etc. was revised in 2004. The regulation about disposal of RI waste was fixed at this revise of the law. Regulation of an application about the disposal of the RI waste was added to former radioactive waste control business. And regulation of confirmation of waste disposal by a regulation body was added. By this law revision, a necessary system for the RI waste disposal is ready. Furthermore, the Basic Safety Standard (BSS) and the following rationalization of related to regulation were introduced into the Law Concerning Prevention from Radiation Hazards due to Radioisotopes, etc. by this law revision. The regulation for a handling of radionuclides will be changed a lot due to the introduction of the BSS. (author)

  6. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  7. Monsoon sensitivity to aerosol direct radiative forcing in the ...

    Indian Academy of Sciences (India)

    to the total, scattering aerosols and black carbon aerosols. ... acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to sig- ... tion and emission of longwave radiation. ... effect of aerosols over India, where the emission of .... that aerosol effects on monsoon water cycle dynam-.

  8. Corrosion by photochemical reaction due to synchrotron radiation in TRISTAN vacuum system

    International Nuclear Information System (INIS)

    Momose, Takashi; Ishimaru, Hajime

    1989-01-01

    In the electron-positron collision ring (TMR) in the National Laboratory for High Energy Physics, the operation at the beam energy of 30 GeV is carried out. The critical energy of synchrotron radiation corresponding to this energy is 243 keV which is the highest in the world. Consequently, the radiation damage of various substances due to this radiation has become the problem. From the viewpoint that the TMR is the vacuum system totally made of aluminum alloy for the first time in the world, the problem peculiar to aluminum alloy and the related problem of material damage and the countermeasures are discussed. Beam energy and attenuation length, the radiation dose in the TMR tunnel, the beam current-time product of TMR, the examples of radiation damage such as the atmosphere in TAR, the atmosphere in TMR, the aluminum bellows, aluminum chamber and lead radiation shield in TMR, the aluminum beam line in the atmosphere of TAR, the heat-insulating kapton film with vacuum deposited aluminum films, Teflon and polystyrene insulators, the stainless steel terminals and cables for position monitors, the O-rings for gate valves, polyvinyl chloride and so on are reported. (K.I.)

  9. Mechanism of Cuticle Hole Development in Human Hair Due to UV-Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kazuhisa Maeda

    2018-03-01

    Full Text Available Hair is easily damaged by ultraviolet (UV radiation, bleaching agents or permanent wave treatments, and as damage progresses, hair loses its gloss, develops split ends and breaks. However, the causes of hair damage due to UV radiation have not yet been clarified. We discovered that in one mechanism facilitating damage to wet hair by UV radiation, the unsaturated fatty acids in wet hair produce hydroxy radicals upon exposure to UV radiation, and these radicals produce cuticle holes between the cuticle layers. In wet hair exposed to UV radiation, cuticle holes were produced only between the cuticle layers, whereas when human hair was immersed in a solution containing hydroxy radicals produced by Fenton’s reaction, a random production of cuticle holes was noted. It is thought that hydroxy radicals are produced only between the cuticle layers by exposure to UV radiation, and cuticle holes are formed only in this region because one of the polyunsaturated fatty acids, linoleic acid, with a bis-allyl hydrogen, is found between the cuticle layers.

  10. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  11. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  12. Guidelines for random excitation forces due to cross flow in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Pettigrew, M.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  13. Guidelines for random excitation forces due to cross flow in steam generators

    International Nuclear Information System (INIS)

    Taylor, C.E.; Pettigrew, M.J.

    1998-01-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  14. Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Sunahara, Atsushi; Nishihara, Katsunobu; Johzaki, Tomoyuki; Shiraga, Hiroyuki; Shigemori, Keisuke; Nakai, Mitsuo; Ikegawa, Tadashi; Murakami, Masakatsu; Nagai, Keiji; Norimatsu, Takayoshi; Azechi, Hiroshi; Yamanaka, Tatsuhiko; Ohnishi, Naofumi

    2004-01-01

    A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately--one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme

  15. Tungsten melt layer erosion due to J x B force under conditions relevant to ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Kulik, N.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Petrov, Yu.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2007-06-15

    The behavior of tungsten under repetitive hydrogen plasma impacts causing surface melting in conditions of an applied J x B force of up to 20 MN/m{sup 3} is studied with the plasma accelerator QSPA Kh-50. Tungsten samples of EU trademark have been exposed to up to 100 pulses simulating ITER ELMs of the energy load 0.7 MJ/m{sup 2} and the duration 0.25 ms. An electric current J flows across the magnetic field B of 1.4 T, and the resulting J x B force produces a displacement of the melt with formation of an erosion crater and an inclination of the surface profile along the force. Surface morphology and the damage by surface cracks are discussed. Comparisons of experimental results with numerical simulations of the code MEMOS-1.5D are presented.

  16. [A five-year-old girl with epilepsy showing forced normalization due to zonisamide].

    Science.gov (United States)

    Hirose, Mieko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Iinuma, Kazuie

    2003-05-01

    A case of forced normalization in childhood is presented. When zonisamide was administered to a five-year-old girl with intractable epilepsy, disappearance of seizures was accompanied by severe psychotic episodes such as communication disturbance, personal relationship failure, and stereotyped behavior, which continued after the withdrawal of zonisamide. These symptoms gradually improved by administration of fluvoxamine, however epileptic attacks reappeared. Although most patients with forced normalization are adult and teenager, attention should be paid to this phenomenon as adverse psychotic effects of zonisamide even in young children. Fluvoxamine may be effective for the symptoms.

  17. Film Thickness Formation in Nanoscale due to Effects of Elastohydrodynamic, Electrostatic and Surface force of Solvation and Van der Waals

    Directory of Open Access Journals (Sweden)

    M.F. Abd Al-Samieh

    2017-03-01

    Full Text Available The mechanism of oil film with a thickness in the nanoscale is discussed in this paper. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to double layer electrostatic force, Van der Waals inter-molecular forces, and solvation pressure due to inter-surface forces is considered in calculating the ultrathin lubricating films. The numerical solution has been carried out, using the Newton-Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by combined effects of viscous action and surface force of an attractive Van der Waals force and a repulsive double layer force. At smaller separations below about five molecular diameters of the intervening liquid, the effect of solvation force is dominant in determining the oil film thickness

  18. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    particles. A monthly climatology of AOD over the Red Sea is then created from 5yrs of SEVIRI retrievals and shows both enhanced aerosol loading and the development of a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used as input to radiative transfer calculations to generate corresponding estimates of the DRF at the top and bottom of the atmosphere and the atmospheric absorption due to aerosol. These estimates indicate that although longwave effects can reach 10s W m-2, shortwave cooling typically dominates the net radiative effect over the basin and is particularly pronounced in the summer, exceeding 130 W m-2 at the surface. The spatial gradient in summer-time AOD is reflected in both the aerosol forcing at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric forcing would be expected to exert a significant influence on the regional atmospheric and oceanic circulation and warrants further study in the context of coupled aerosol-atmosphere-ocean regional models.

  19. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  20. Increase of solar radiation due to climate change and its impact on solar energy use

    International Nuclear Information System (INIS)

    Kuhnke, K.; Rahme, A.; Harling, J.; Arensmann, R.

    2008-01-01

    Full text: There is a significant change in solar radiation in Central Europe coinciding with the IPCC climate change model calculations. The increase of yearly solar radiation on the horizontal surface is about 0.38 percent/year. On the other hand, photovoltaic solar modules show an ageing effect of the same order of magnitude, i.e. a reduction of yearly energy yield between 0.3 and 0.5 percent/year. This reduction is normally taken into account in economic calculations such as payback time and internal rate of interest. As the two trends of increase in radiation and ageing of solar modules are in opposite direction to each other, they will - with their uncertainties - neutralize one another to zero. Thus, the energy production of photovoltaic systems can be calculated without any deductions due to ageing in the future. (authors)

  1. Radiation dose estimates due to air particulate emissions from selected phosphate industry operations

    International Nuclear Information System (INIS)

    Partridge, J.E.; Horton, T.R.; Sensintaffar, E.L.; Boysen, G.A.

    1978-06-01

    The EPA Office of Radiation Programs has conducted a series of studies to determine the radiological impact of the phosphate mining and milling industry. This report describes the efforts to estimate the radiation doses due to airborne emissions of particulates from selected phosphate milling operations in Florida. Two wet process phosphoric acid plants and one ore drying facility were selected for this study. The 1976 Annual Operations/Emissions Report, submitted by each facility to the Florida Department of Environmental Regulation, and a field survey trip by EPA personnel to each facility were used to develop data for dose calculations. The field survey trip included sampling for stack emissions and ambient air samples collected in the general vicinity of each plant. Population and individual radiation dose estimates are made based on these sources of data

  2. Simulating threshold voltage shift of MOS devices due to radiation in the low-dose range

    CERN Document Server

    Wan Xin Heng; Gao Wen Yu; Huang Ru; Wang Yang Yuan

    2002-01-01

    An analytical MOSFET threshold voltage shift model due to radiation in the low-dose range has been developed for circuit simulations. Experimental data in the literature shows that the model predictions are in good agreement. It is simple in functional form and hence computationally efficient. It can be used as a basic circuit simulation tool for analysing MOSFET exposed to a nuclear environment up to about 1 Mrad(Si). In accordance with common believe, radiation induced absolute change of threshold voltage was found to be larger in irradiated PMOS devices. However, if the radiation sensitivity is defined in the way authors did it, the results indicated NMOS rather than PMOS devices are more sensitive, specially at low doses. This is important from the standpoint of their possible application in dosimetry

  3. Comparison of risks due to bisphenol A and radiation with trad-MCN assay

    International Nuclear Information System (INIS)

    Shin, H. S.; Lee, J. H.; Kim, J. K.; Chon, K. J.; Lee, B. H.

    2001-01-01

    Many kinds of synthetic chemicals have been being used for various purposes. Some of them are called 'environmental hormones' because they can disturb the endocrine system of organisms. Presently no technique is established for the quantitative assessment of biological risk of the environmental hormones. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end-point assessing their effect. Micronucleus frequencies in PMC showed a good dose- and concentration-response relationship for radiation and bisphenol A. From the dose-response relationship, it is possible to estimate the equivalent bisphenol A concentration, or vice versa. One μM/ml of bisphenol A is equivalent to 1.8 cGy of radiation in the induction of micronuclei. It is known from the result that Trad-MCN assay can be an excellent tool for detection of biological risk due to environmental toxicants or synthetic chemicals

  4. Forces on bends and T-joints due to multiphase flow

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

  5. Withdrawal from labour force due to work disability in patients with ankylosing spondylitis

    NARCIS (Netherlands)

    Boonen, A.; Chorus, A.; Miedema, H.; van der Heijde, D.; Landewé, R.; Schouten, H.; van der Tempel, H.; van der Linden, S.

    2001-01-01

    To investigate withdrawal from the labour force because of inability to work owing to ankylosing spondylitis (AS) and to determine the characteristics of patients with no job because of work disability attributable to AS. A postal questionnaire was sent to 709 patients with AS aged 16-60 years

  6. Calculation of the Critical Current Reduction in a Brittle Round Multifilamentary Wire due to External Forces

    NARCIS (Netherlands)

    ten Haken, Bernard; Godeke, A.; ten Kate, Herman H.J.

    1994-01-01

    A simple model is presented that can describe the electro-mechanical state of a multifilamentary wire. An elastic cylinder model is used to derive the strain state analytically. Axial and transverse forces came a position dependent critical current density in the wire. The integral critical current

  7. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  8. Suppression of lower hybrid wave coupling due to the ponderomotive force

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1980-04-01

    The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force

  9. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  10. Interim report on the special research project 'exposure to environmental radiation due to nuclear facilities'

    International Nuclear Information System (INIS)

    1981-03-01

    This special research project was started in 1978 as five-year plan. The purposes are to clarify the aspect of radiation exposure in human bodies due to the radioactive substances brought into the environment regarding the utilization of atomic energy, its mechanism and various factors affecting it, and to contribute to the evaluation of exposure dose, the reduction of radiation exposure, the conditions of locating nuclear facilities and the improvement of the method of disposing radioactive wastes. In addition to the fields treated in the previous special research project, the experimental research concerning the metabolism of environmental radioactive nuclides in bodies, namely the problem of the peculiarity of radioactive nuclide kinetics in infants and fetuses different from adults and the possibility of causing the changes in the intake and metabolism of nuclides in foods by the difference in their states of existence, was newly included. Also the research concerning the method of evaluating the absorbed dose in human organs at the time of irradiation outside and inside bodies in a new subject. Accordingly, this special research project is composed of (1) the research concerning the radionuclide kinetics in the environment, (2) the research concerning the radionuclide kinetics in bodies, (3) the research concerning the measurement and evaluation of dose absorbed in internal organs due to environmental radiation, and (4) the research concerning the monitoring of low level environmental radiation. The results obtained so far are reported. (Kako, I.)

  11. The order for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1977-01-01

    The radioactive isotopes stipulated in Item 2, Article 2 of the Law Concerning Prevention from Radiation Hazards due to Radisotopes (hereinafter referred to as the Law) are the isotopes emitting radiation, their compounds, and those containing these isotopes or compounds. The radiation-generating apparatuses in Item 3, Article 2 of the Law are cyclotron, synchrotron, synchrocyclotron, linear accelerator, betatron, Van de Graaff accelerator, Cockcroft Walton accelerator, the apparatuses generating radiation by accelerating charged particles, which are designated by the Director of the Science and Technology Agency as necessary for preventing radiation injuries. Those who want to use, sell or dispose of radioactive isotopes should file applications for approval or notices with required documents. The approval should be obtained for each factory or place of business. The amount of completely sealed radioactive isotopes specified by the cabinet order stipulated in Item 1, Article 3-2 of the Law is 100 m curie per factory or place of business. Those who are going to change the approved items of the use, sale or disposal of radioactive isotopes should file applications. The amount of radioactive isotopes specified by the cabinet order stipulated in Item 5, Article 10 of the Law is 10 curies. Controlled areas, facilities for using, refilling, and storing isotopes, refilling and disposing wastes should meet the stipulated standards. (Rikitake, Y.)

  12. Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs

    Science.gov (United States)

    Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.

    2008-03-01

    The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.

  13. An intractable case of lower gastrointestinal hemorrhage due to radiation colitis. Usefulness of transcatheter arterial embolization

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Koichi; Koyama, Tukasa [Yoka Hospital, Hyogo (Japan); Sugamura, Kenji; Ogawa, Toshihide [Tottori Univ., Yonago (Japan). Faculty of Medicine

    2003-05-01

    We tried transcatheter arterial embolization for lower gastrointestinal hemorrhage due to radiation colitis. In this case, colostomy and endoscopic therapy were not effective. We succeeded in arresting the hemorrhage without any complications. Transcatheter embolization is a low-invasive and safe method of treatment. For prevention of inflammation and iatrogenic abscess formation, we repeated this therapy and we tried arterial injection of antibiotics and steroid. And so, this therapy is one of the effective methods. (author)

  14. Paraplegia due to extramedullary hematopoiesis in thalassemia treated successfully with radiation therapy.

    Science.gov (United States)

    Malik, Monica; Pillai, Lakshmi S; Gogia, Nidhi; Puri, Tarun; Mahapatra, M; Sharma, Daya Nand; Kumar, Rajat

    2007-03-01

    Spinal cord compression due to extramedullary hematopoiesis (EMH) is a rare complication of thalassemia and generally presents as paraparesis with sensory impairment. Complete paraplegia is extremely rare in EMH due to thalassemia although it is known to occur in polycythemia vera and sickle cell anemia. Treatment options mostly include surgery and/or radiotherapy. Whereas cases presenting with paraparesis have been treated with either surgery or radiotherapy with equal frequency and efficacy, almost all reported cases with paraplegia have been treated with surgery with or without radiation therapy. We hereby report a case of thalassemia intermedia with paraplegia treated successfully with radiotherapy.

  15. Methods for decreasing population doses due to medical use of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    The problem of radiation safety of population as regard to irradiation of a great contingents of people due to diagnosis procedures, carried out using X-ray and radiological methods of examination, is considered. It is shown, that prevention from excessive irradiation of population due to X-ray radiodiagnostic procedures is possible by realization the complex of activities, including legislative, organizational, technical and other measures. Human exposure doses in diagnosis most not exceed permissible ones, established on the basis of cost-benefit criterion. The necessity of the maximum limitation of exposure of pregnant women and children is emphasized

  16. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    Full Text Available We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by

  17. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    International Nuclear Information System (INIS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-01-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  18. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  19. Spiral waves in excitable media due to noise and periodic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)

    2011-09-15

    Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.

  20. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  1. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    International Nuclear Information System (INIS)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-01-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α_3_8_0_–_1_0_2_0) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m"−"3) and the lowest in July (1.1 ± 0.2 μg m"−"3). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m"−"2, + 26.9 ± 0.2 W m"−"2, + 18.0 ± 0.6 W m"−"2 and + 18.5 ± 3.1 W m"−"2 during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m"−"2) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD_5_0_0 are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean atmospheric forcing is found to be

  2. Importance of aerosol non-sphericity in estimating aerosol radiative forcing in Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Mishra, S K; Tiwari, Suresh

    2017-12-01

    Aerosols are usually presumed spherical in shape while estimating the direct radiative forcing (DRF) using observations or in the models. In the Indo-Gangetic Basin (IGB), a regional aerosol hotspot where dust is a major aerosol species and has been observed to be non-spherical in shape, it is important to test the validity of this assumption. We address this issue using measured chemical composition at megacity Delhi, a representative site of the western IGB. Based on the observation, we choose three non-spherical shapes - spheroid, cylinder and chebyshev, and compute their optical properties. Non-spherical dust enhances aerosol extinction coefficient (β ext ) and single scattering albedo (SSA) at visible wavelengths by >0.05km -1 and >0.04 respectively, while it decreases asymmetry parameter (g) by ~0.1. Accounting non-sphericity leads top-of-the-atmosphere (TOA) dust DRF to more cooling due to enhanced backscattering and increases surface dimming due to enhanced β ext . Outgoing shortwave flux at TOA increases by up to 3.3% for composite aerosols with non-spherical dust externally mixed with other spherical species. Our results show that while non-sphericity needs to be accounted for, choice of shape may not be important in estimating aerosol DRF in the IGB. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  4. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  5. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  6. Transverse components of the radiation force on nonspherical particles in the T-matrix formalism

    International Nuclear Information System (INIS)

    Saija, Rosalba; Antonia Iati, Maria; Giusto, Arianna; Denti, Paolo; Borghese, Ferdinando

    2005-01-01

    In the framework of the transition matrix approach, we calculate the force exerted by a plane wave (radiation force) on a dispersion of nonspherical particles modeled as aggregates of spheres. Beyond the customary radiation pressure we also consider the components of the radiation force in a plane orthogonal to the direction of incidence of the incoming wave (transverse components). Our calculations show that, although the latter are generally smaller than the radiation pressure, they are in no way negligible and may be important for some applications, e.g. when studying the dynamics of cosmic dust grains. We also calculate the ensemble average of the components of the radiation force over the orientation of the particles in two physically significant cases: the case of random distribution and the case in which the orientations are randomly distributed around an axis fixed in space (axial average). As expected, we find that, unlike the case of random orientation, the transverse components do not vanish for axial average

  7. Scattering and absorption characteristics of aerosols at an urban megacity over IGB: Implications to radiative forcing

    Science.gov (United States)

    Srivastava, A. K.; Bisht, D. S.; Singh, Sachchidanand; Kishore, N.; Soni, V. K.; Singh, Siddhartha; Tiwari, S.

    2018-06-01

    Aerosol scattering and absorption characteristics were investigated at an urban megacity Delhi in the western Indo-Gangetic Basin (IGB) during the period from October 2011 to September 2012 using different in-situ measurements. The scattering coefficient (σsp at 550 nm) varied between 71 and 3014 Mm-1 (mean 710 ± 615 Mm-1) during the entire study period, which was about ten times higher than the absorption coefficient (σabs at 550 nm 67 ± 40 Mm-1). Seasonally, σsp and σabs were substantially higher during the winter/post-monsoon periods, which also gave rise to single scattering albedo (SSA) by 5%. The magnitude of SSA (at 550 nm) varied between 0.81 and 0.94 (mean: 0.89 ± 0.05). Further, the magnitude of scattering Ångström exponent (SAE) and back-scattering Ångström exponent (BAE) showed a wide range from -1.20 to 1.57 and -1.13 to 0.87, respectively which suggests large variability in aerosol sizes and emission sources. Relatively higher aerosol backscatter fraction (b at 550 nm) during the monsoon (0.25 ± 0.10) suggests more inhomogeneous scattering, associated with the coarser dust particles. However, lower value of b during winter (0.13 ± 0.02) is associated with more isotropic scattering due to dominance of smaller size particles. This is further confirmed with the estimated asymmetry parameter (AP at 550 nm), which exhibits opposite trend with b. The aerosol optical parameters were used in a radiative transfer model to estimate aerosol radiative forcing. A mean radiative forcing of -61 ± 22 W m-2 (ranging from -111 to -40 W m-2) was observed at the surface and 42 ± 24 W m-2 (ranging from 18 to 87 W m-2) into the atmosphere, which can give rise to the mean atmospheric heating rate of 1.18 K day-1.

  8. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  9. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  10. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

    DEFF Research Database (Denmark)

    Giorgi, Filippo; Whetton, Peter H.; Jones, Richard G.

    2001-01-01

    We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient, climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis...... involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis...

  11. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  12. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  13. The regulations for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are wholly revised under the law concerning prevention from radiation hazards due to radioisotopes and the provisions of the order for enforcing the law. Basic concepts and terms are defined, such as: employee engaged in radiation work; person regularly entering into the controlled area; the maximum permissible exposure dose; accumulative dose; the maximum permissible accumulative dose; the maximum permissible concentration in the air; the maximum permissible concentration under water; the maximum permissible surface density. The application for permission of the uses shall be made according to the form attached and include as appendix following documents: copy of register of the applicant legal person; plane drawings of the works or the enterprise and their surroundings in reduced scales and with directions, centering on facilities in use, of storage and disposal, etc. The report of the uses shall list name and address of the user, object and method of the uses, and include as annex copy of register of the user legal person and papers explaining the expected date of beginning and the period of the uses, etc. Standards of the uses, refilling, storage, transport and disposal are in detail stipulated. Specified measures shall be taken for measurement, prevention of radiation hazards, finding out of persons injured by radiation and others. (Okada, K.)

  14. Radiation exposure of population due to medical diagnostic procedures in the USSR

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stavitskij, R.V.; Knizhnikov, V.A.; Barkhudarov, R.M.; Korsunskij, V.N.; Popov, V.I.; Tarasenko, Yu.I.; Postnikov, V.A.; Frolov, N.V.; Sidorin, V.P.

    1984-01-01

    The evaluation of radiation doses to population in the ussr on the basis of the data on frequency of 12 main forms of X-ray examinations and the results of measuring absorbed doses on tissue-kquivalent main's phantom are given. The evaluation of radiation exposure due to radiopharmaceutical preparations is based on consumption of 26 types of compounds in 320 national laboratories and i is performed by the methods developed in the framework of the mird committee (usa). In thhe active bone marrow, lungs mammary, glands thyroid and other organs (stomach, liver, spleen, etc.) the equivalent doses are determined and on their base the effective equivalent doses (eed). The average eed from x ray diagnostic examinations is 1.4 mSv per year (140 mrem per year) of which 55.4% falls on X-ray examination, 26.9% on radiography, 17.7% on mass miniature radiography (fluorography). Radionuclide diagnostics contribution is 3.2x10 -2 mSv per year (3.8 mrem per year). Medicinal radiation exposure approximately doubles the natural background, it is comparable with exposure in premises and essentially exceeds the radiation doses to population from other sources

  15. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Esparza H, A.; Garcia R, M. G.; Reyes R, E.; Hernandez A, L.; Rivera, T.

    2017-10-01

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  16. Risk estimates of stochastic effects due to exposure to radiation - a stochastic harm index

    International Nuclear Information System (INIS)

    Gonen, Y.G.

    1980-01-01

    The effects of exposure to low level radiation on the survival probability and life expectancy were investigated. The 1977 vital statistics of Jewish males in Israel were used as a baseline, mainly the data on normalized survival probability and life expectation as functions of age. Assumed effects of exposure were superposed on these data and the net differences calculated. It was found that the realistic rate effects of exposure to radiation are generally less than calculated by multiplying the collective dose by the risk factor. The effects are strongly age-dependent, decreasing sharply with age at exposure. The assumed harm due to exposure can be more than offset by improvements in medical care and safety. (H.K.)

  17. Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes

    International Nuclear Information System (INIS)

    Beck, P.; Bartlett, D. T.; Bilski, P.; Dyer, C.; Flueckiger, E.; Fuller, N.; Lantos, P.; Reitz, G.; Ruehm, W.; Spurny, F.; Taylor, G.; Trompier, F.; Wissmann, F.

    2008-01-01

    Dose assessment procedures for cosmic radiation exposure of aircraft crew have been introduced in most European countries in accordance with the corresponding European directive and national regulations. However, the radiation exposure due to solar particle events is still a matter of scientific research. Here we describe the European research project CONRAD, WP6, Subgroup-B, about the current status of available solar storm measurements and existing models for dose estimation at flight altitudes during solar particle events leading to ground level enhancement (GLE). Three models for the numerical dose estimation during GLEs are discussed. Some of the models agree with limited experimental data reasonably well. Analysis of GLEs during geomagnetically disturbed conditions is still complex and time consuming. Currently available solar particle event models can disagree with each other by an order of magnitude. Further research and verification by on-board measurements is still needed. (authors)

  18. The burden of occupationally-related cutaneous malignant melanoma in Britain due to solar radiation.

    Science.gov (United States)

    Rushton, Lesley; J Hutchings, Sally

    2017-02-14

    Increasing evidence highlights the association of occupational exposure and cutaneous malignant melanoma (CMM). We estimated the burden of CMM and total skin cancer burden in Britain due to occupational solar radiation exposure. Attributable fractions (AF) and numbers were estimated for CMM mortality and incidence using risk estimates from the published literature and national data sources for proportions exposed. We extended existing methods to account for the exposed population age structure. The estimated total AF for CMM is 2.0% (95% CI: 1.4-2.7%), giving 48 (95% CI: 33-64) deaths in (2012) and 241 (95% CI: 168-325) registrations (in 2011) attributable to occupational exposure to solar radiation. Higher exposure and larger numbers exposed led to much higher numbers for men than women. Industries of concern are construction, agriculture, public administration and defence, and land transport. These results emphasise the urgent need to develop appropriate strategies to reduce this burden.

  19. Age-dependent radiation dose due to intake of uranium through drinking water in India

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Mohapatra, S.; Chakrabarty, A.; Sumesh, C.G.; Tripathi, R.M.; Puranik, V.D.

    2009-01-01

    In the present study, an attempt has been made to estimate the content of uranium in drinking water in various states of India by laser fluorimetry. Depending upon the rate of water intake for the different age groups, the associated radiation dose was calculated. The concentration of uranium varied between 0.1 ± 0.01 and 19.6 ± 1.8 ppb which is much lower than the drinking water guideline value of 60 ppb. The total radiation dose due to ingestion of uranium through drinking water for various age groups is found to vary from 0.14 μSv/y to 48 μSv/y. (author)

  20. Changes in developmental stages of the egyptian lizard chalcides ocellatus due to different radiation exposures

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Mazhar, Fatma M.; Ashry, Madiha A.; Refaat, Sanaa M.

    1979-01-01

    Adult male and female Chalcides Ocellatus lizards of approximately the same age and size were irradiated at doses of 1000, 1500, 2000 and 4000 rads from a Cobalt-60 Gamma cell at a dose rate of 100 rads/sec. Examinations were carried out at 2 days, 1, 3 and 4 weeks post-irradiation and indicated the following: The LD 50 /30 was found to be 1250 rads. Radiation exposure had no significant effect on lizard's body length measurements along the whole experimentation period. Radiation exposure caused a progressive decrease in body weights of lizards which was often obscured by interfering fluctuations in body weights due to pregnancy development, embryo retention or abortion cases

  1. Remanent radiation fields around medical linear accelerators due to the induced radionuclides

    International Nuclear Information System (INIS)

    Sabol, J.; Khalifa, O.; Berka, Z.; Stankus, P.; Frencl, L.

    1998-01-01

    Radiation fields around two linear accelerators, Saturn 43 and a Saturn 2 Plus, installed at radiotherapy department is Prague, were measured and interpreted. The measurements included the determination of the dose equivalent rate resulting from photons emitted by induced radionuclides produced in reactions of high-energy photons with certain elements present in air and accelerator components as well as in the shielding and building materials in the treatment rooms, which are irradiated by high-energy X-rays, and due to radionuclides formed by capture of photoneutrons. While scattered photons and photoneutrons are only present during the accelerator operation, residual radioactivity creates a remanent radiation field persisting for some time after the instrument shutdown. The activity induced in the accessories is also an important source of exposure. (P.A.)

  2. Radiofrequency radiation: safe working practices in the Royal Australian Air Force

    International Nuclear Information System (INIS)

    Joyner, K.H.; Stone, K.R.

    1988-01-01

    The Royal Australian Air Force (RAAF) has long recognised the value of its work force and the need to preserve their health and wellbeing to achieve operational objectives. The Directorate of Air Force Safety (DAFS) is required by the Chief of the Air Staff to take all measures possible to prevent accidents and incidents in the RAAF, under the provisions of the Defence Instruction, 'Air Force Safety and Occupational Health Policy'. Consequently, the RAAF has exercised a pragmatic approach to radiofrequency radiation (RFR) and has always adopted and implemented strict exposure standards. DAFS receives technical advice on RFR from the Directorate of Telecommunications Engineering (DTELENG) and on occupational health from the Directorate General of Air Force Health Services (DGAFHS)

  3. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  4. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  5. A case of perforative peritonitis due to radiation enteritis 33 years after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Yoshihiro; Yasaka, Takahiro; Fujiwara, Shinsuke [Kamigotou Hospital, Nagasaki (Japan)

    2001-11-01

    We report a case of perforative peritonitis due to radiation enteritis. An 88-year-old woman who had undergone pelvic irradiation for a gynecological malignancy was referred to our hospital due to hematomesis and epigastralgia with fever. We determined that she had perforative peritonitis, based on intraabdominal extrabowel gases in abdominal computed tomography. We conducted emergency operation to resect the damaged bowel, such as necrotic intestine combound with a damaged bladder in ''frozen pelvis'' and reconstruct jejuno-ascending colostomy. Pathological findings for resected specimens were compatible with radiation enteritis, such as excessive collagen deposition within the bowel wall, vasculitis, and intramural edema. The woman had a jejuno-subcutaneous fistula and suffered recurrent urinary infection or jaundice due to chronic hepatitis C after the surgical procedure. But eight months later, recovery enabled a successful second laparotomy to reconstruct the residual intestine. Even long after irradiation for malignant disease, radioactive damage to the body as a whole should always be considered. (author)

  6. A general method for computing the total solar radiation force on complex spacecraft structures

    Science.gov (United States)

    Chan, F. K.

    1981-01-01

    The method circumvents many of the existing difficulties in computational logic presently encountered in the direct analytical or numerical evaluation of the appropriate surface integral. It may be applied to complex spacecraft structures for computing the total force arising from either specular or diffuse reflection or even from non-Lambertian reflection and re-radiation.

  7. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  8. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    Science.gov (United States)

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  9. Numerical study of acoustic streaming and radiation forces on micro particles

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Muller, Peter Barkholt; Barnkob, Rune

    2012-01-01

    , and 2) Stokes drag from the induced acoustic streaming flow. Both effects are second order and require the solution of the full linearized Navier-Stokes equation in order to be captured correctly. The model shows the transition from streaming drag to radiation force dominated regimes. The transition...

  10. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    entrance skin dose (mGy) received by the patient during the radiological procedure will be presented in the paper. From the population of the region, the frequency of radiological procedures/person/year is estimated and in the present study it worked out to be 10,500-procedures/ year/100,000 population. From the data collected, estimation of additional contribution of radiation dose to population due to X ray diagnostic procedures was done. In present st udy it was found that the contribution of radiation dose due to radiological procedure to population is 0.22 mSv/year/person. The UNSCEAR (2000) reported the 1.2 mSv as mean effective dose per capita due to medical X ray examinations in developed countries where frequency of x ray procedure is much higher as compared to India. The results in detail are discussed in this communication. (author)

  11. Machine-Learning Techniques for the Determination of Attrition of Forces Due to Atmospheric Conditions

    Science.gov (United States)

    2018-02-01

    selected as a proof of concept due to its vast number of data points. While this report does note some trends associated with temperature and dew...separate data sets for helicopters and airplanes, while selectively requesting the event IDs, descriptions of events, light conditions, temperature , dew...weather events) and the error rate for that class . The rows are labeled for the actual occurrence of those events. Thus, for every row–column

  12. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  13. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  14. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  15. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  16. Study of the effects of radiation on prevention of gynaecomastia due to oestrogen therapy

    Energy Technology Data Exchange (ETDEWEB)

    Waterfall, N B; Glaser, M G [Charing Cross Group of Hospitals, London (UK)

    1979-09-01

    A study of the effects of irradiation in prevention of gynaecomastia due to oestrogen therapy for carcinoma is reported. Twenty patients were treated with oestrogens without radiotherapy, of these 17 developed gynaecomastia. Twenty-seven patients were treated with radiotherapy prior to oestrogens, of these only 3 developed gynaecomastia. Previous studies have shown similar results but have used larger doses of irradiation and recommended a delay of 1 month between radiotherapy and treatment. In this study a low dose of radiation was used and oestrogens were started immediately after radiotherapy.

  17. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2012-01-01

    Full Text Available Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m−2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m−2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be −5.9±3.5 W m−2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m−2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is −0.7±0.4 W m−2

  18. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  19. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  20. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield

    Science.gov (United States)

    Ganey, Gerard Q.; Loso, Michael G.; Burgess, Annie Bryant; Dial, Roman J.

    2017-10-01

    A lack of liquid water limits life on glaciers worldwide but specialized microbes still colonize these environments. These microbes reduce surface albedo, which, in turn, could lead to warming and enhanced glacier melt. Here we present results from a replicated, controlled field experiment to quantify the impact of microbes on snowmelt in red-snow communities. Addition of nitrogen-phosphorous-potassium fertilizer increased alga cell counts nearly fourfold, to levels similar to nitrogen-phosphorus-enriched lakes; water alone increased counts by half. The manipulated alga abundance explained a third of the observed variability in snowmelt. Using a normalized-difference spectral index we estimated alga abundance from satellite imagery and calculated microbial contribution to snowmelt on an icefield of 1,900 km2. The red-snow area extended over about 700 km2, and in this area we determined that microbial communities were responsible for 17% of the total snowmelt there. Our results support hypotheses that snow-dwelling microbes increase glacier melt directly in a bio-geophysical feedback by lowering albedo and indirectly by exposing low-albedo glacier ice. Radiative forcing due to perennial populations of microbes may match that of non-living particulates at high latitudes. Their contribution to climate warming is likely to grow with increased melt and nutrient input.

  1. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    International Nuclear Information System (INIS)

    Mitri, F. G.

    2015-01-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries

  2. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  3. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  4. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    International Nuclear Information System (INIS)

    Menon, Surabi; Akbari, Hashem; Sednev, Igor; Levinson, Ronnen; Mahanama, Sarith

    2010-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 W m -2 , and temperature decreased by ∼0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental US the total outgoing radiation increased by 2.3 W m -2 , and land surface temperature decreased by ∼0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO 2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be ∼57 Gt CO 2 . A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO 2 offsets would require simulations which better characterize urban surfaces and represent the full annual cycle.

  6. Expert judgments about transient climate response to alternative future trajectories of radiative forcing.

    Science.gov (United States)

    Zickfeld, Kirsten; Morgan, M Granger; Frame, David J; Keith, David W

    2010-07-13

    There is uncertainty about the response of the climate system to future trajectories of radiative forcing. To quantify this uncertainty we conducted face-to-face interviews with 14 leading climate scientists, using formal methods of expert elicitation. We structured the interviews around three scenarios of radiative forcing stabilizing at different levels. All experts ranked "cloud radiative feedbacks" as contributing most to their uncertainty about future global mean temperature change, irrespective of the specified level of radiative forcing. The experts disagreed about the relative contribution of other physical processes to their uncertainty about future temperature change. For a forcing trajectory that stabilized at 7 Wm(-2) in 2200, 13 of the 14 experts judged the probability that the climate system would undergo, or be irrevocably committed to, a "basic state change" as > or =0.5. The width and median values of the probability distributions elicited from the different experts for future global mean temperature change under the specified forcing trajectories vary considerably. Even for a moderate increase in forcing by the year 2050, the medians of the elicited distributions of temperature change relative to 2000 range from 0.8-1.8 degrees C, and some of the interquartile ranges do not overlap. Ten of the 14 experts estimated that the probability that equilibrium climate sensitivity exceeds 4.5 degrees C is > 0.17, our interpretation of the upper limit of the "likely" range given by the Intergovernmental Panel on Climate Change. Finally, most experts anticipated that over the next 20 years research will be able to achieve only modest reductions in their degree of uncertainty.

  7. Report on the project research 'exposure to environmental radiation due to nuclear facilities'

    International Nuclear Information System (INIS)

    1984-03-01

    This special research was carried out for five years from fiscal 1978 to fiscal 1982, and its constitution was as follows: the investigation research on the behavior of radioactive substances in ocean and land environments, the investigation research on the metabolism of radioactive substances within bodies, the measurement of the dose absorbed in organs due to environmental radiation and the evaluation, and the investigation research on low level environmental radiation monitoring. As the sources of environmental radiation exposure, not only the release into the atmosphere and sea from nuclear power stations, nuclear fuel reprocessing plants and other facilities, but also the disposal of radioactive wastes on land and into ocean were considered. As the method of research, the experiment using living things and others, the analysis of the fallout nuclides existing in environment and living things, the analysis of the results of quantitative determination of stable elements and others were used. The detailed results of the above described researches are reported. By having executed this special research, the accumulation of new knowledge was obtained on the behavior of radioactive nuclides in environment and living things. (Kako, I.)

  8. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanju [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Singh, Balwinder [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Bond, Tami C. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA

    2018-02-02

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BC and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of

  9. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, D.S. [Indian Institute of Tropical Meteorology, New Delhi (India); Dumka, U.C., E-mail: dumka@aries.res.in [Aryabhatta Research Institute of Observational Sciences, Nainital (India); Kaskaoutis, D.G. [School of Natural Sciences, Shiv Nadar University, Tehsil Dadri (India); Pipal, A.S. [Department of Chemistry, Savitribai Phule Pune University, Pune (India); Srivastava, A.K. [Indian Institute of Tropical Meteorology, New Delhi (India); Soni, V.K.; Attri, S.D.; Sateesh, M. [India Meteorology Department, Lodhi Road, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology, New Delhi (India)

    2015-07-15

    Particulate matter (PM{sub 2.5}) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM{sub 2.5} samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}). Furthermore, continuous (online) measurements of PM{sub 2.5} (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM{sub 2.5} (online) range from 18.2 to 500.6 μg m{sup −3} (annual mean of 124.6 ± 87.9 μg m{sup −3}) exhibiting higher night-time (129.4 μg m{sup −3}) than daytime (103.8 μg m{sup −3}) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO{sub 3}{sup −}and SO{sub 4}{sup 2−}, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R{sup 2} = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day{sup −1}) due to agricultural burning effects

  10. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    International Nuclear Information System (INIS)

    Bisht, D.S.; Dumka, U.C.; Kaskaoutis, D.G.; Pipal, A.S.; Srivastava, A.K.; Soni, V.K.; Attri, S.D.; Sateesh, M.; Tiwari, S.

    2015-01-01

    Particulate matter (PM 2.5 ) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO 4 2− and NO 3 − ) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM 2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO 4 2− and NO 3 − ). Furthermore, continuous (online) measurements of PM 2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM 2.5 (online) range from 18.2 to 500.6 μg m −3 (annual mean of 124.6 ± 87.9 μg m −3 ) exhibiting higher night-time (129.4 μg m −3 ) than daytime (103.8 μg m −3 ) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO 3 − and SO 4 2− , which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R 2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day −1 ) due to agricultural burning effects during the 2012 post-monsoon season. - Highlights: • Very high PM 2.5 (> 200 µg m −3 ) levels

  11. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2015-04-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature-change potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3

  12. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    Science.gov (United States)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers

  13. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo; Kobayashi, Sadayoshi

    1988-01-01

    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  14. Public radiation exposure due to radon transport from a uranium mine

    International Nuclear Information System (INIS)

    Akber, R.A.; Johnston, A.; Pfitzner, J.

    1992-01-01

    Radon and radon daughter concentrations at locations several kilometres away from a uranium mine are due both to the background sources and the mine-related sources. The contribution of these two types of sources should be distinguished because the authorised limits on public radiation dose apply only to the mine-related sources. Such a distinction can be achieved by measuring radon and radon daughter concentration in the wind sectors containing only the background sources and those in the wind sectors containing both the background and the mine-related sources. This approach has been used to make estimates of public radiation dose due to radon transport from the Ranger Uranium Mine in Australia. The residential town of Jabiru, the non-residential working town of Jabiru East, and the aboriginal camp sites in the vicinity of the mine were considered. The results indicate that, for the groups of population considered, the annual mine-related dose varies between 0.04 and 0.2 mSv. (author)

  15. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    Science.gov (United States)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  16. Oxidative stress due to radiation in CD34+ hematopoietic progenitor cells. Protection by IGF-1

    International Nuclear Information System (INIS)

    Floratou, K.; Karakantza, M.; Giannopoulou, E.; Antonacopoulou, A.; Adonakis, G.; Kardamakis, D.; Matsouka, P.

    2012-01-01

    Radiation exerts direct as well as indirect effects on DNA through the generation of reactive oxygen species (ROS). Irradiated hematopoietic progenitor cells (HPCs) experience DNA strand breaks, favoring genetic instability, due to ROS generation. Our aim was to study the effect of a range of radiation doses in HPCs and the possible protective mechanisms activated by insulin-like growth factor-1 (IGF-1). ROS generation was evaluated, in the presence or absence of IGF-1 in liquid cultures of human HPCs-CD34 + irradiated with 1-, 2- and 5-Gy X-rays, using a flow cytometry assay. Manganese superoxide dismutase (MnSOD) expression was studied by western blot analysis and visualized by an immunofluorescence assay. Apoptosis was estimated using the following assays: Annexin-V assay, DNA degradation assay, BCL-2/BAX mRNA and protein levels and caspase-9 protein immunofluorescence visualization. Viability and clonogenic potential were studied in irradiated HPCs. The generation of superoxide anion radicals at an early and a late time point was increased, while the hydrogen peroxide generation at a late time point was stable. IGF-1 presence further enhanced the radiation-induced increase of MnSOD at 24 h post irradiation. IGF-1 inhibited the mitochondria-mediated pathway of apoptosis by regulating the m-RNA and protein expression of BAX, BCL-2 and the BCL-2/BAX ratio and by decreasing caspase-9 protein expression. IGF-1 presence in culture media of irradiated cells restored the clonogenic capacity and the viability of HPCs as well. In conclusion, IGF-1 protects HPCs-CD34 + from radiation effects, by eliminating the oxidative microenvironment through the enhancement of MnSOD activation and by regulating the mitochondria-mediated pathway of apoptosis. (author)

  17. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  18. Status of radiation dose and radioactive contamination due to the Fukushima accident

    International Nuclear Information System (INIS)

    Baba, Mamoru

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of μSv and much less than that due to natural 40 K even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area

  19. Status of radiation dose and radioactive contamination due to the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univeristy, Sendai (Japan)

    2016-06-15

    The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of μSv and much less than that due to natural {sup 40}K even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area.

  20. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    CERN Document Server

    Talman, Richard; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  1. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  2. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  3. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  4. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  6. Radiation dose in critical organs due to non-coplanar irradiation of the pituitary gland

    International Nuclear Information System (INIS)

    Schulte, R.W.M.; Rittmann, K.L.; Meinass, H.J.; Rennicke, P.

    1996-01-01

    In order to estimate the somatic and genetic risk associated with a non-coplanar linac-based radiation technique of the pituitary gland, systematic secondary-dose measurements in a phantom and sample measurements of the dose near critical organs of patients were performed. For measurements of the dose outside the primary radiation field an acrylic-PVC phantom was used which was irradiated with a single field (4x4 cm 2 ). Eight patients with pituitary tumors were treated isocentrically with a combination of sagittal and transverse rotational arcs. To measure the dose in critical organs, LiF thermoluminescence dosimeters (TLD) in chip form were placed onto 1 eyelid, the skin over the thyroid, and the patient's clothes covering the region of breasts and ovaries of female patients and the testicles of male patients. Measurements were performed for all patients during 1 sagittal irradiation and for the majority of patients during 1 transverse irradiation. The phantom measurements demonstrated that the secondary dose measured on the patients surface can be considered as a good approximation for the dose in adjacent organs. The median dose in critical organs for sagittal irradiation was in the range of 25.8 mGy (eyes) to 1.9 mGy (testicles), and for transverse irradiation in the range of 23.3 mGy (eyes) to 1.3 mGy (testicles). The ratio of median organ doses for sagittal and transverse irradiation was 2.1 for the thyroid gland, 1.1 for the eyes, and 1.5 for the other organs. The dose in critical organs due to non-coplanar irradiation of the pituitary gland is only a small fraction of the dose delivered to the reference point of the planning target volume. The risk of a radiation-induced tumor and a genetic consequence associated with these small doses is generally less than 1% and 0.1%, respectively. (orig./MG) [de

  7. Radiation Risk due to the Presence of Cs-137 in Fertilizers

    International Nuclear Information System (INIS)

    Shweikani, R.; Hushari, M.

    2003-01-01

    In this work radiation doses arising from using fertilizers containing Cs-137 with activity concentration equal to the exempted level set by IAEA (BSS-115) were studied. It was assumed that the amount of fertilizers are added yearly, for 50 sequence years, to soil is about 16 kg/1000m 2 and this amount is mixed with the top 15cm of the soil. Al-Gab area was considered for this study (area 900km 2 and about 600000 inhabitant). RESRAD a computer code, which was developed by the American Agency for Environmental Protection (EPA) to calculate individual radiation dose from contaminated sites, was used. The concerned population was divided into subgroups for better assessment for individual dose. The results showed that the maximum yearly dose could be received by individual how lives and eat from the products of his land dose not exceed 11 μSv/y after 50 years of consecutive additions, and will reach a maximum value of about 16 μSv/y for 250 years. More than 90% of this dose is due to external gamma exposure

  8. A case of generalized peritonitis due to a rupture of the bladder caused by radiation cystitis

    International Nuclear Information System (INIS)

    Fujitake, Shin-ichi; Nozaki, Hideki; Shimizu, Minoru; Maeda, Yoshiyuki; Kataoka, Susumu

    1999-01-01

    An 83-year-old woman was admitted to the department of gastroenterology in our hospital with a diagnosis of adhesive ileus following operation for a uterine cancer on July 22, 1997. Conservative therapy was started, but three days later, peritoneal signs appeared and white blood cell count and CRP level increased. An emergency operation was performed. Upon laparotomy, there were a large volume of ascites and a rupture of the bladder of which wall had become fragile. It was thought that the cause of rupture might result from radiation cystitis because she received irradiation after operation for the uterine cancer. Ruptured site of the bladder was sutured. Possible causes of the ileus were thought to be intestinal paralysis due to generalized peritonitis and a narrowing of the ileum where inflammatory change was remarkable. For this, an excision of the ileum with ileostomy was performed. Thereafter a closure of the ileostomy and ileocolostomy were carried out. The patient had difficulty in management of evacuation for a while, but she was discharged on March 2, 1998. Spontaneous rupture of the bladder is rare. This paper presents such a rare case caused by radiation cystitis, together with 14 cases reported in Japan. It is thought that surgeons who manage acute abdomen may encounter the disease. (author)

  9. Radiation risk due to the presence of Cs-137 in fertilizers

    CERN Document Server

    Shweikani, R

    2003-01-01

    In this work radiation doses arising from using fertilizers containing Cs-137 with activity concentration equal to the exempted level set by IAEA (BSS-115) were studied. It was assumed that the amount of fertilizers are added yearly, for 50 sequence years and continues adding for unlimited years, to soil is about 16 kg/1000m sup 2 and this amount is mixed with the top 15 cm of the soil. Al-Gab area was considered for this study (area 900km sup 2 and about 600000 inhabitant). RESRAD a computer code, which was developed by the American Agency for Environmental Protection (EPA) to calculate individual radiation dose from contaminated sites, was used. The concerned population was divided into subgroups for better assessment for individual dose. The results showed that the maximum yearly dose could be received by individual who lives and eats from the products of his land does not exceed 11 mu Sv/y after 50 years of consecutive additions and 16 mu Sv/y after 250 years, and more than 90% of this dose is due to exte...

  10. Radiation risk in Finland due to the nuclear power plant at Sosnovyj Bor

    International Nuclear Information System (INIS)

    Ilvonen, M.; Rossi, J.; Salonoja, M.

    1994-06-01

    The present study is an application of the long range transport and dose model TRADOS developed jointly by the Finnish Meteorological Institute and Technical Research Centre of Finland. The aim of the study is to assess the radiation risk in Finland due to the nuclear power plant at Sosnovyj Bor near St. Petersburg in Russia. Probabilities of reaching different parts of the country, transport time and time spent over Finland by the trajectories are presented. Also breadth of the radioactive cloud and incidence of rain are estimated. The calculated radiation doses are based on one single hypothetical release, in which all noble gases are released, together with 10 % of easily vaporizing elements and 1 % of others. All results are based on the assumption that the probability of the release is 100 %. The dose pathways calculated are cloud gamma, fallout gamma, inhalation, and ingestion of milk, meat, green vegetables, grain and roots. External dose rates have been calculated. The necessity of countermeasures and the ratio of the avertable dose to the costs are also assessed. (13 refs., 156 figs., 12 tabs.)

  11. A case of generalized peritonitis due to a rupture of the bladder caused by radiation cystitis

    Energy Technology Data Exchange (ETDEWEB)

    Fujitake, Shin-ichi; Nozaki, Hideki; Shimizu, Minoru; Maeda, Yoshiyuki; Kataoka, Susumu [Meitetsu Hospital, Nagoya (Japan)

    1999-03-01

    An 83-year-old woman was admitted to the department of gastroenterology in our hospital with a diagnosis of adhesive ileus following operation for a uterine cancer on July 22, 1997. Conservative therapy was started, but three days later, peritoneal signs appeared and white blood cell count and CRP level increased. An emergency operation was performed. Upon laparotomy, there were a large volume of ascites and a rupture of the bladder of which wall had become fragile. It was thought that the cause of rupture might result from radiation cystitis because she received irradiation after operation for the uterine cancer. Ruptured site of the bladder was sutured. Possible causes of the ileus were thought to be intestinal paralysis due to generalized peritonitis and a narrowing of the ileum where inflammatory change was remarkable. For this, an excision of the ileum with ileostomy was performed. Thereafter a closure of the ileostomy and ileocolostomy were carried out. The patient had difficulty in management of evacuation for a while, but she was discharged on March 2, 1998. Spontaneous rupture of the bladder is rare. This paper presents such a rare case caused by radiation cystitis, together with 14 cases reported in Japan. It is thought that surgeons who manage acute abdomen may encounter the disease. (author)

  12. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  13. Overexposure of patients due to malfunctions or defects in radiation equipment

    International Nuclear Information System (INIS)

    Gill, J.R.

    1992-01-01

    Some 38 incidents involving patient overexposure due to malfunctions or defects in radiation equipment were notified to HSE between 1986 and 1990. Of these cases, 30 involved diagnostic X ray equipment, while the remainder involved nuclear medicine or radiotherapy equipment. Those cases involving X ray equipment are examined in detail and grouped into six categories. The numbers of patients affected varied. In one case an estimated 350 patients were affected: in another, 240; while 13 cases affected only a single patient. A very rough estimate of the collective effective dose equivalent in the 30 cases comes to 5 man sieverts. It is concluded that improvements are needed in fault finding procedures, and guidance is needed on consistent methods of dose estimation and reporting. Improvements for the longer term include the selection of reliable components during manufacture; application of HSE guidance in software design for programmable electronic systems; and equipment design to incorporate fault detection and inhibition of operation to prevent excessive exposures

  14. Acoustic radiation due to gust-airfoil and blade-vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.K. [Wichita State Univ., KS (United States). National Inst. for Aviation Research

    2001-07-01

    An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex interactions is developed. In these types of problems, sound is generated as a result of interaction between the unsteadiness in the flow and the body. The acoustic governing equations are derived by linearizing the compressible unsteady Euler equations about the steady mean flow. From these equations, the frequency domain acoustic equations are obtained assuming a single frequency disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time-stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles' nonreflecting boundary condition and the perfectly matched layer (PML) absorbing boundary conditions are employed. This report describes the technical approach and shows the results calculated for the interactions. (orig.)

  15. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  16. Enhancement of natural radiation and population exposures due to the activity of large steelworks

    Energy Technology Data Exchange (ETDEWEB)

    Niewiadomski, T; Godek, J; Jasinska, M; Wasiolek, P [Institute of Nuclear Physics, Krakow (Poland)

    1984-09-01

    Radionuclide releases and resulting population exposures from large industrial plants have recently become a subject of some public concern. Methods for assessing these effects were developed and, as an example, a complex of large steelworks located in the vicinity of the city of Krakow was investigated. The following critical pathways were considered: atmospheric release, and use of fly ash for production of building materials. For assessing annual average radionuclide concentrations in air and in soil around the works, a computer program was developed while other mathematical methods were applied to the assessment of maximum individual effective dose equivalent commitments (EDEC) due to inhalation, ingestion, and external gamma radiation. In order to acquire data for calculations many samples of raw materials, coal, ash, and dust were analysed as to their radionuclide concentration. The total individual EDEC at the place of maximum immission was estimated to be about 100 ..mu..Sv a/sup -1/ (i.e., about 6% of the natural exposure in this region), this being mainly due to ingestion (ca. 65 ..mu..Sv a/sup -1/) and to gamma radiation (ca. 30 ..mu..Sv a/sup -1/). The enhancement of dose rates over the ponds and of radioactivity concentration of liquid discharges from the ponds was found to be negligible. Dose rates in houses built entirely of fly ash were estimated to be higher than those in red-brick houses by not more than 0.2 ..mu..Sv a/sup -1/. The collective EDEC from the operational discharge of the steelworks is less than 11 man Sv a/sup -1/ and that of use of fly-ash prefabricated elements will be in the future less than 45 man Sv a/sup -1/.

  17. Relaxation of Si-SiO2 interfacial stress in bipolar screen oxides due to ionizing radiation

    International Nuclear Information System (INIS)

    Witczak, S.C.; Galloway, K.F.; Schrimpf, R.D.; Suehle, J.S.

    1995-01-01

    Current gain degradation due to ionizing radiation in complementary single-crystalline emitter bipolar transistors was found to grow progressively worse upon subjecting the transistors to repeated cycles of radiation exposure and high-temperature anneal. The increase in radiation sensitivity is independent of the emitter polarity or geometry and is most dramatic between the first and second radiation and anneal cycles. In parallel with the current gain measurements, samples from a monitor wafer simulating the screen oxide region above the extrinsic base in the npn transistors were measured for mechanical stress while undergoing similar cycles of irradiation and anneal. The oxide on the monitor wafer consisted of a 45 nm thermal layer and a 640 nm deposited layer. The results indicate that ionizing radiation helped relieve compressive stress at the Si surface. The magnitude of the stress change due to radiation is smaller than the stress induced by the emitter contact metallization followed by a post-metallization anneal. Correlation of radiation sensitivity in the bipolar transistors and mechanical stress in the monitor wafer suggests that mechanical stress may be influential in determining the radiation hardness of bipolar transistors and lends validation to previously reported observations that Si-SiO 2 interfaces are increasingly more susceptible to radiation damage with decreasing Si compressive stress. Possible mechanisms for the observed changes in stress and their effect on the radiation sensitivity of the bipolar transistors are discussed

  18. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  19. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  20. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    , respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  1. [Blunt force injuries due to martial arts in children--a diagnostic problem? Delayed diagnosis of an infected hematoma].

    Science.gov (United States)

    Kruppa, C; Goericke, S L; Matheney, T; Ozokyay, L; Schildhauer, T A; Muhr, G; Dudda, M

    2010-10-01

    Blunt force injuries in martial arts occur frequently but isolated hematoma of muscles in the extremities is rare. Even minor trauma of the lower extremities due to throwing techniques in judo and other forms of Asian martial arts can lead to major pathologies. A 9-year-old girl presented with an unclear swelling and soreness of the calf muscle. The patient could not remember an obvious traumatic event. She was admitted 4 days later because of increased swelling, pain and erythema. The parents reported a minor trauma at judo training 1 week ago. Further investigation was performed with MRI and confirmed a massive hematoma much greater than previously shown by sonography. Histologic and microbiologic evaluation demonstrated florid inflammation and proof of Staphylococcus aureus was found intra-operatively. The diagnosis of blunt force injuries due to martial arts is difficult in childhood because often children do not remember a traumatic event. Therefore, it is important to obtain a thorough history from caregivers. Because sonography depends highly on the experience of the investigator MRI is considered to be a better diagnostic modality to diagnose and guide treatment in this age group.

  2. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  3. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  4. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  5. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Science.gov (United States)

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  6. Origin and radiative forcing of black carbon aerosol: production and consumption perspectives.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu

    2018-04-24

    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM) and a multiregional input-output analysis (MRIO). BC is physically transported (i.e., atmospheric transport) from western to eastern countries in the mid-latitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia is also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America and East Asia (0.01Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.

  7. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  8. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  9. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  10. Global direct radiative forcing by process-parameterized aerosol optical properties

    Science.gov (United States)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  11. Atomic force imaging microscopy investigation of the interaction of ultraviolet radiation with collagen thin films

    Science.gov (United States)

    Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.

    2013-02-01

    Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.

  12. A methodology to establish the appearance of cancer cases due to radiation dose in compressed breast

    International Nuclear Information System (INIS)

    Feital, Joao Carlos Da Silva; Delgado, Jose Ubiratan; Peixoto, Jose Guilherme P.; Fonseca, Hugo Geraldo Da

    2013-01-01

    It is known that more than 20% of the world's population will contract some type of cancer. In Brazil, with the exception of skin cancer (non melanoma) the breast cancer ranks first among the higher frequency of tumours among women and in general, although the methods of detection are advancing in the year 2010 took place about 13 thousand deaths in about 50,000 cases, probably due to late detection of these neoplasm. New cases of breast cancer in a given population can be proven from absorbed dose quantity, calculated for the compressed breast, due to the risk by means of exposure to x rays in this radiodiagnostic practices. Methodology: Exposures were held in an ionization chamber and the other quantities required were obtained to the screen-film equipment of mammography. Results: Also experimental results were of compressed breast an equivalent dose of ( 1.82 mSv ± 0.2%) or (3.64 mSv ± 0.2%) for both projections, i.e. medium lateral oblique and cranio caudal. The experimental value obtained here is consistent with the calculated results and published in the literature for analog and CR equipment. Conclusion: From the result of dose equivalent in the breast, one can say that there will be effectively attesting as to the appearance of new cases of cancer if approximately 80 million women are exposed to radiation emitted by mammographers. (author)

  13. Dust grain dynamics due to nonuniform and nonstationary high-frequency radiations in cold magnetoplasmas

    Directory of Open Access Journals (Sweden)

    A. K. Nekrasov

    2006-03-01

    Full Text Available A general nonlinear theory for low-frequency electromagnetic field generation due to high-frequency nonuniform and nonstationary electromagnetic radiations in cold, uniform, multicomponent, dusty magnetoplasmas is developed. This theory permits us to consider the nonlinear action of all waves that can exist in such plasmas. The equations are derived for the dust grain velocities in the low-frequency nonlinear electric fields arising due to the presence of electromagnetic cyclotron waves travelling along the background magnetic field. The dust grains are considered to be magnetized as well as unmagnetized. Different regimes for the dust particle dynamics, depending on the spatio-temporal change of the wave amplitudes and plasma parameters, are discussed. It is shown that induced nonlinear electric fields can have both an electrostatic and electromagnetic nature. Conditions for maximum dust acceleration are found. The results obtained may be useful for understanding the possible mechanisms of dust grain dynamics in astrophysical, cosmic and laboratory plasmas under the action of nonuniform and nonstationary electromagnetic waves.

  14. Radiation-reaction force on a small charged body to second order

    Science.gov (United States)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  15. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  16. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  17. Long-term follow-up observation of patients with chronic radiation sickness due to external irradiation treated with thymopeptide

    International Nuclear Information System (INIS)

    Gao Shenyong; Sun Wenji; Zhang Aizhen; Ye Anfang

    1998-01-01

    Objective: To provide the clinical data and prognosis judgement, the authors observed the results and progression of 11 cases of chronic radiation sickness due to external irradiation treated with thymopeptide. Methods: The clinical symptoms, hematopoiesis, T lymphocyte percentage and chromosome aberration rate were used as the judgement indexes for recovery from the chronic radiation sickness. Results: Thymopeptide treatment greatly improved the neurasthenic syndrome and increased the T lymphocyte percentage (P 0.05), and improvement of neurasthenic syndrome occurred 3.5 years after they left radiation work or diminished the exposure level. 5 to 8 years after, bone marrow hematopoiesis also restored to the normal level. However, the chromosome aberration rate restored to the normal level 10 years after. Conclusion: According to the judgement criteria, the chronic radiation sickness due to external radiation exposure can recover and thymopeptide is a helpful and simple means to treat it

  18. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  19. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  20. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan; Pastor, Sergio

    2011-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N eff . This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η ν = η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in , solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν e −ν-bar e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2 H/H density ratio and 4 He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2 H/H abundance plays a relevant role in constraining the allowed regions in the η ν −η ν e in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N eff as a function of the mixing parameter θ 13 , and point out the upper bound N eff ∼ eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe

  1. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Science.gov (United States)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos Neff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on Neff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, ην = ηνe+ηνμ+ηντ and the initial electron neutrino asymmetry ηνein, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the νe-bar nue asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the ην-ηνein plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to Neff as a function of the mixing parameter θ13, and point out the upper bound Nefflesssim3.4. Comparing these results with the forthcoming measurement of Neff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  2. Surface erosion of fusion reactor components due to radiation blistering and neutron sputtering

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1975-01-01

    Radiation blistering and neutron sputtering can lead to the surface erosion of fusion reactor components exposed to plasma radiations. Recent studies of methods to reduce the surface erosion caused by these processes are discussed

  3. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    Science.gov (United States)

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  4. Pipeline integrity management: integration of geotechnical and mechanical assessment to control potential risks due to external forces

    Energy Technology Data Exchange (ETDEWEB)

    Malpartida Moya, John E.; Sota, Giancarlo Massucco de la; Seri, Walter [Compania Operadora de Gas del Amazonas, Lima (Peru)

    2009-07-01

    Every pipeline integrity management system evaluates and controls various threats. On pipelines which have particular characteristics as it is the case of the Andean pipelines and pipelines crossing jungles, one of the main threats are the external forces. Even, this threat causes a greater number of failures than other threats like corrosion or the third part damage. Facing this situation, the pipeline integrity management system of TgP has achieved an important development in the use and suitable handling of the information provided by diverse techniques of pipeline mechanical inspection and geotechnical inspection of the right-of-way (ROW). This document presents our methodology, which interrelate information of the in-line inspection, information of geotechnical inspections of the ROW, instrumentation (Strain Gages), topographic monitoring, among others. All this information is supported in a Geographic Information System (GIS) which allows us to integrate the information. By means of the pipeline integrity management system we control potential risks due to external forces, we have been able to act before events become critical, with no occurrence of failures. This system allows us simultaneously to optimize efforts and preserve the mechanical integrity of our pipelines, not producing neither personal nor environmental nor economical affectation. (author)

  5. Improved theory of forced magnetic reconnection due to error field and its application to seed island formation for NTM

    International Nuclear Information System (INIS)

    Ishizawa, A.; Tokuda, S.; Wakatani, M.

    2001-01-01

    A seed island is required for destabilizing the neo-classical tearing mode (NTM), which degrades confinement in long sustained, high-confinement, high beta plasmas. The seed island formation due to an MHD event, such as a sawtooth crash, is investigated by applying the improved boundary layer theory of forced magnetic reconnection. This improved theory introduces the non-constant-ψ matching and reveals the complicated feature of the reconnection described by two reconnected fluxes. In the initial evolution, these reconnected fluxes grow on the time scale including the ideal time scale, typical time scale of the MHD event and the time scale of resistive kink mode. The surface current is negative, Δ' (t) A S 1/3 . (author)

  6. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF from the 1850s to the 2000s is 0.23 W m−2, lower than previous results. The lower value is mainly due to (i a smaller increase in biomass burning emissions; (ii a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii a larger influence of clouds (which act to reduce the net forcing compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08 W m−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4 value of −0.05 W m−2, but which is within the stated range of −0.15 to +0.05 W m−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m−2 by 2100. The ozone dataset described here has been released for

  7. Tropospheric Aerosol Radiative Forcing Observational eXperiment - University of Washington instrumented C-131A aircraft Data Set

    Data.gov (United States)

    National Aeronautics and Space Administration — TARFOX_UWC131A is the Tropospheric Aerosol Radiative Forcing Observational eXperiment (TARFOX) - University of Washington instrumented C-131A aircraft data set. The...

  8. Radiation doses due to long-range transport of airborne radionuclides

    International Nuclear Information System (INIS)

    Nordlund, G.; Valkama, I.; Rossi, J.; Savolainen, I.

    1985-12-01

    Within the framework of this study a model for estimating the long range transport of radioactive material and for calculating the resultant doses is developed. In the model initially the dispersion paths, i.e. trajectories, of the radioactive matter are calculated from the assumed source areas as well as the dispersion conditions along the trajectories. The trajectories are calculated at three-hour intervals in a two-dimensional grid using numerically analysed winds at a constant pressure level of 850 mb. The dispersion condition parameters applied are: the stability of the atmospheric boundary layer, the so-called mixing height, occurrence of precipitation and the character of the terrain. For each trajectory a type-index value is computed, describing the severity of the possible effects of radioactivity transported by the particular trajectory. The dispersion model uses the information on dispersion conditions provided by the trajectory model to compute the remaining radioactivity in the cloud, the deposition, as well as the doses due to different dose pathways. The pathways used are the external radiation from the cloud and from the activity deposited on the ground, inhalation of radioactive material and ingestion of contaminated food products (milk, meat, green vegetables, grain and roots). In addition to the effects of individual transport incidents, the cumulative probability distributions of the effects of accidental releases of radioactive matter can also be calculated using trajectory statistics and the trajectory type index

  9. Radiation annealing in Ag and Au due to energetic displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Merkle, K.L.

    1975-01-01

    Radiation annealing due to energetic displacement cascades has been studied in Ag and Au. Thin film specimens, 2500 A, were doped to various concentrations of Frenkel pair defects by irradiating with 150 keV protons at temperatures below 10 K. Subsequently, the specimens were irradiated below 10 K with energetic, approximately 540 keV, self-ions. Electrical resistivity measurements were used to monitor the concentration of defects as a function of dose. In Au, approximately 5 percent of the doped-in Frenkel pairs, annealed during the 540 keV Au irradiation. The annealing volume associated with individual cascades was found to be 2.1 x 10 -16 cm 3 . In Ag approximately 5 percent of the doped-in defects annealed during a 500 keV Ag irradiation and the annealing volume of the cascade was found to be 5 x 10 -16 cm 3 . In addition, the effects of doping concentration and specimen temperature during doping were investigated

  10. Satellite observed impacts of wildfires on regional atmosphere composition and shortwave radiative forcing: multiple cases study

    Science.gov (United States)

    Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.

    2017-12-01

    Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke

  11. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    Science.gov (United States)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  12. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  13. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  14. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    Directory of Open Access Journals (Sweden)

    K. M. Sterle

    2013-02-01

    Full Text Available When contaminated by absorbing particles, such as refractory black carbon (rBC and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g–1 compared to bulk values in the snowpack (~3 ng g–1. Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m−2 during April and May, with dust likely contributing a greater share of the forcing.

  15. The investigation of the light radiation caused polyethylene based materials deterioration by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Sikora, A; Moroń, L; Wałecki, M; Kryla, P; Grabarek, A

    2016-01-01

    The impact of the environmental conditions on the materials used in various devices and constructions, in particular in electrotechnical applications, has an critical impact in terms of their reliability and utilization range in specific climatic conditions. Due to increasing utilitarian requirements, technological processes complexity and introducing new materials (for instance nanomaterials), advanced diagnostic techniques are desired. One of such techniques is atomic force microscopy (AFM), which allows to study the changes of the roughness and mechanical properties of the surface at the submicrometer scale, enabling the investigation of the degradation processes. In this work the deterioration of selected group of polyethylene based materials have been measured by means of AFM, as the samples were exposed to the simulated solar light and UV-C radiation. Such an analysis of the environmental conditions impact on the deterioration process using AFM methods for various versions of specific material was not presented before. (paper)

  16. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  17. Aspects of radiation effects due to visual display units at work

    International Nuclear Information System (INIS)

    Vana, N.

    1988-01-01

    The introduction and acceptance of video display units at work have led to a huge flood of information, rumours, and half-truths about those units. As the population became increasingly sensitized to 'radioactive radiation', there was, and in part still is, a tendency to consider particularly effects of unclear origin, first of all ionizing radiation and later on also non-ionizing radiation, as the main threat from video display units at work. Such important issuses as ergonomics, stress load, visual stress load, and social hygiene are often effaced by the question for 'the radiation load from visual display units'. The paper is an attempt to deal with aspects of radiation effects of visual display units at work. The discussion also extends to hazards, respectively the 'radiation environment', at the site of the visual display unit. (orig./DG) [de

  18. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  19. Potential health risks due to telecommunications radiofrequency radiation exposures in Lagos State Nigeria.

    Science.gov (United States)

    Aweda, M A; Ajekigbe, A T; Ibitoye, A Z; Evwhierhurhoma, B O; Eletu, O B

    2009-01-01

    The global system mobile telecommunications system (GSM) which was recently introduced in Nigeria is now being used by over 40 million people in Nigeria. The use of GSM is accompanied with exposure of the users to radiofrequency radiation (RFR), which if significant, may produce health hazards. This is the reason why many relevant national and international organizations recommended exposure limits to RFR and why it is made compulsory for GSM handsets to indicate the maximum power output as a guide to potential consumers. This study was conducted to measure the RFR output power densities (S) from the most commonly used GSM handsets used in Lagos State and compare with the limit recommended for safety assessment. Over 1100 most commonly used handsets of different makes and models as well as wireless phones were sampled and studied in all over the local government areas of the State. An RFR meter, Electrosmog from LESSEMF USA was used for the measurements. The handsets were assessed for health risks using the reference value of 9 Wm(-2) as recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The range of the S-values obtained varied from a minimum of 1.294 0.101 Wm(-2) with Siemens model R228 to a maximum of 16.813 +/- 0.094 Wm(-2) with Samsung model C140*. The results from wireless telephones showed very low S-values ranging from a minimum of 0.024 +/- 0.001 Wm(-2) with HUAWEI and ST CDMA 1 to a maximum of 0.093 +/- 0.002 Wm(-2) with HISENSE. The results showed that the population in Lagos State may be at risk due to significant RFR exposures resulting principally from the use of GSM. Quite a number of handsets emit power above the ICNIRP recommended value. Measured RFR power close to Radio and Television masts and transmitters are within tolerable limits in most cases, only that the public should not reside or work close to RFR installations. Phone calls with GSM should be restricted to essential ones while youths and children

  20. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan [Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli (Italy); Pastor, Sergio, E-mail: mangano@na.infn.it, E-mail: miele@na.infn.it, E-mail: pastor@ific.uv.es, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Instituto de Física Corpuscular (CSIC-Universitat de València), Ed. Institutos de Investigación, Apdo. correos 22085, E-46071 Valencia (Spain)

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N{sub eff}. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N{sub eff} from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η{sub ν} = η{sub ν{sub e}}+η{sub ν{sub μ}}+η{sub ν{sub τ}} and the initial electron neutrino asymmetry η{sub ν{sub e}{sup in}}, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν{sub e}−ν-bar {sub e} asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial {sup 2}H/H density ratio and {sup 4}He mass fraction. Note that taking the baryon fraction as measured by WMAP, the {sup 2}H/H abundance plays a relevant role in constraining the allowed regions in the η{sub ν}−η{sub ν{sub e}{sup in}} plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N{sub eff} as a function of the mixing parameter θ{sub 13}, and point out the upper bound N{sub eff}∼<3.4. Comparing these results with the forthcoming measurement of N{sub eff} by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  1. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data

    Directory of Open Access Journals (Sweden)

    Y. Balkanski

    2007-01-01

    Full Text Available Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible. We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These constant amounts of hematite allow bracketing the influence of dust aerosol when it is respectively an inefficient, standard and a very efficient absorber. These values represent low, central and high content of iron oxides in dust determined from the mineralogical database. Linke et al. (2006 determined independently that iron-oxides represent 1.0 to 2.5% by volume using x-Ray fluorescence on 4 different samples collected over Morocco and Egypt. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between –0.47 and –0.24 Wm−2 at the top of the atmosphere, and between

  2. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  3. Source attribution of black carbon and its direct radiative forcing in China

    International Nuclear Information System (INIS)

    Yang, Yang; Wang, Hailong; Ma, Po-Lun; Rasch, Philip J.; Smith, Steven J.

    2017-01-01

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, and 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m -2 ) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.

  4. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  5. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E; Zubov, V; Egorova, T; Ozolin, Y [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  6. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  7. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    Science.gov (United States)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  8. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  9. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  10. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide

  11. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  12. Potential exposure to natural radiation inside dwellings, due to phosphogypsum use in the building industry

    International Nuclear Information System (INIS)

    Rosa, Roosevelt

    1997-01-01

    The interest of building industry to improve the standardization of building processes result in a increasing tendency of using the gypsum as boards, and as a projected gypsum mortars. On the other hand, the need of reuse industrial wastes to avoid environmental impact resulting of their deposition and to reduce the management costs, indicates the building industry as an important user of large quantities of industrial wastes, mainly that generated in the ore milling The industry of phosphate fertilizers is a typical example of this interaction. The phosphate rock milling through the wet process, reacting phosphate rock with sulfuric acid, produces substantial quantities of calcium sulfate as a by-product known as phosphogypsum, that are stored in stockpiles. The phosphate rock contains radionuclides of the U and Th decay series. During the chemical attack these radionuclides are distributed in different proportions between the phosphoric acid and the phosphogypsum. This work presents the radiological characterization phosphogypsum, produced by two national fertilizers industries. A methodology to quantify the radiation exposure, in a reference dwelling , due the use of phosphogypsum considering different scenarios, was established. The external irradiation and the inhalation of radon and thoron and their decay products in indoor air were considered. The values of individual effective dose equivalent ranged from 0.12 to 1.95 mSv.a 1 , depending on the phosphogypsum origin and the scenario considered. About 80% of the dose rises from the inhalation of thoron and its decay products. The results show the importance of Th series radioactive disequilibrium in the assessment. Depending on the phosphogypsum origin and scenario of use, the dose values justify the control of this practice. The general conclusion is that this practice have to be considered case by case and the proposed methodology is suitable to assess the dose and the radioactive disequilibrium consequences

  13. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Campos, L.L.; Rosa, L.A.R. da.

    1988-07-01

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137 Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO 4 : Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author) [pt

  14. The efficacy of sucralfate suspension in the prevention of oral mucositis due to radiation therapy

    International Nuclear Information System (INIS)

    Epstein, J.B.; Wong, F.L.W.

    1994-01-01

    The purpose of this study was to assess the value of sucralfate suspension in prevention of oral mucositis and for reduction of oral pain in patients who develop mucositis during radiation therapy. The study was a double-blind, placebo-controlled, randomized prospective trial of a sucralfate suspension in the prevention and management of oral mucositis during radiation therapy. Oral mucositis was assessed using a quantitative scale and symptoms were assessed using visual analogue scales. The statistical model was developed to detect a 40% reduction in mucositis. No statistically significant reduction in mucositis was seen. Early during radiation therapy less oral pain was reported in the sucralfate group, but as treatment progressed all patients experienced pain. Patients in the sucralfate group were prescribed topical and systemic analgesics later in the course of radiation therapy. Prophylactic oral rinsing with sucralfate did not prevent oral ulcerative mucositis. Sucralfate may reduce the experience of pain during radiation therapy. 32 refs., 3 tabs

  15. The efficacy of sucralfate suspension in the prevention of oral mucositis due to radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, J.B.; Wong, F.L.W. (British Columbia Cancer Agency, Vancouver (Canada))

    1994-02-01

    The purpose of this study was to assess the value of sucralfate suspension in prevention of oral mucositis and for reduction of oral pain in patients who develop mucositis during radiation therapy. The study was a double-blind, placebo-controlled, randomized prospective trial of a sucralfate suspension in the prevention and management of oral mucositis during radiation therapy. Oral mucositis was assessed using a quantitative scale and symptoms were assessed using visual analogue scales. The statistical model was developed to detect a 40% reduction in mucositis. No statistically significant reduction in mucositis was seen. Early during radiation therapy less oral pain was reported in the sucralfate group, but as treatment progressed all patients experienced pain. Patients in the sucralfate group were prescribed topical and systemic analgesics later in the course of radiation therapy. Prophylactic oral rinsing with sucralfate did not prevent oral ulcerative mucositis. Sucralfate may reduce the experience of pain during radiation therapy. 32 refs., 3 tabs.

  16. Monitoring and assessment of individual doses of occupationally exposed workers due to external radiation

    International Nuclear Information System (INIS)

    Kitaw, S. T.

    2015-05-01

    Exposure to external radiation occurs in many occupations. Any exposure to ionizing radiation has the tendency to change the biochemical make-up of the human body which may result in biological health effects of ionizing radiation. This study reviews the monitoring and assessment of external radiation doses in industrial radiography using thermoluminescence and direct reading dosimeters. Poor handling procedures such as inadequate engineering control of equipment, safety culture, management, and inadequate assessment and monitoring of doses are the causes of most of the reported cases of exposure to external radiation in industrial radiography. Occupational exposure data in industrial radiography from UNSCEAR report 2008 was discussed and recommendations were made to regulatory authorities, operating organizations and radiographers. (au)

  17. The Impact of Pre-Industrial Land Use Change on Atmospheric Composition and Aerosol Radiative Forcing.

    Science.gov (United States)

    Hamilton, D. S.; Carslaw, K. S.; Spracklen, D. V.; Folberth, G.; Kaplan, J. O.; Pringle, K.; Scott, C.

    2015-12-01

    Anthropogenic land use change (LUC) has had a major impact on the climate by altering the amount of carbon stored in vegetation, changing surface albedo and modifying the levels of both biogenic and pyrogenic emissions. While previous studies of LUC have largely focused on the first two components, there has recently been a recognition that changes to aerosol and related pre-cursor gas emissions from LUC are equally important. Furthermore, it has also recently been recognised that the pre-industrial (PI) to present day (PD) radiative forcing (RF) of climate from aerosol cloud interactions (ACI) due to anthropogenic emissions is highly sensitive to the amount of natural aerosol that was present in the PI. This suggests that anthropogenic RF from ACI may be highly sensitive to land-use in the PI. There are currently two commonly used baseline reference years for the PI; 1750 and 1860. Rapid LUC occurred between 1750 and 1860, with large reductions in natural vegetation cover in Eastern Northern America, Europe, Central Russia, India and Eastern China as well as lower reductions in parts of Brazil and Africa. This LUC will have led to significant changes in biogenic and fire emissions with implications for natural aerosol concentrations and PI-to-PD RF. The focus of this study is therefore to quantify the impact of LUC between 1750 and 1860 on aerosol concentrations and PI-to-PD RF calculations from ACI. We use the UK Met Office HadGEM3-UKCA coupled-chemistry-climate model to calculate the impacts of anthropogenic emissions and anthropogenic LUC on aerosol size distributions in both 1750 and 1860. We prescribe LUC using the KK10 historical dataset of land cover change. Monoterpene emissions are coupled directly to the prescribed LUC through the JULES land surface scheme in HadGEM3. Fire emissions from LUC were calculated offline using the fire module LPJ-LMfire in the Lund-Potsdam-Jena dynamic global vegetation model. To separate out the impacts of LUC from

  18. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  19. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    Science.gov (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m 2 and 33.45W/m 2 respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m 2 in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. SCC, Bowen's disease and BCC arising on chronic radiation dermatitis due to radiation therapy for tinea pedis

    International Nuclear Information System (INIS)

    Aoki, Eri; Aoki, Mikako; Ikemura, Akiko; Igarashi, Tsukasa; Suzuki, Kayano; Kawana, Seiji

    2000-01-01

    We reported a case who developed three different types of skin cancers: SCC, BCC, and Bowen's disease, on the chronic radiation dermatitis. He had been treated for his tinea pedis et palmaris with radiotherapy in 1940's. It is very ratre that three different types of skin cancers arise in the same patient. This is a second case reported in Japan. (author)

  1. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  2. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  3. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  4. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    Science.gov (United States)

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  5. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Sutton, A P

    2009-01-01

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  6. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  7. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals.

    Science.gov (United States)

    Race, C P; Mason, D R; Sutton, A P

    2009-03-18

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  8. The regulations for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1977-01-01

    Those who want to use, sell or dispose of radioactive isotopes as occupation should file applications for approval attached with the required documents. Those who want to change the approved items of use, sale or disposal of radioactive isotopes should file applications for approval. The number of documents for the application of approval are one original and four duplicates. The use, refilling, storage, transportation and disposal of radioactive isotopes should be carried out in accordance with the specified standards, respectively. Radiation dose rate, density of particle fluxes, and the state of contamination caused by radioactive isotopes should be measured in the specified places at the specified frequency, and the records of such measurements should be kept. Prevention of radiation injuries including the measures for finding those who suffer from radiation injuries and the measures for those who underwent or might undergo radiation injuries should be carried out in accordance with the respective specifications. (Rikitake, Y.)

  9. Repair of radiation damage of Micrococcus radioproteolyticus due to gamma and UV irradiation

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1982-01-01

    Cells were irradiated in dry state with gamma radiation and UV radiation. The post-irradiation warming of freeze dried cells (2 hours to 60deg or to 80deg) influenced the ability to repair sublethal damage. Heating to 80deg caused a mild reduction in survival. The repair of irradiated and heated cells required more time than that of cells which had only been irradiated. (M.D.)

  10. Explanation for Cancer in Rats, Mice and Humans due to Cell Phone Radiofrequency Radiation

    OpenAIRE

    Feldman, Bernard J.

    2016-01-01

    Very recently, the National Toxicology Program reported a correlation between exposure to whole body 900 MHz radiofrequency radiation and cancer in the brains and hearts of Sprague Dawley male rats. This paper proposes the following explanation for these results. The neurons around the rat's brain and heart form closed electrical circuits and, following Faraday's Law, 900 MHz radiofrequency radiation induces 900 MHz electrical currents in these neural circuits. In turn, these 900 MHz currents...

  11. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and Their Effects on Global Climate

    Science.gov (United States)

    Zhou, Chen; Zhang, Hua; Zhao, Shuyun; Li, Jiangnan

    2018-01-01

    The total effective radiative forcing (ERF) due to partial internally mixed (PIM) and externally mixed (EM) anthropogenic aerosols, as well as their climatic effects since the year of 1850, was evaluated and compared using the aerosol-climate online coupled model of BCC_AGCM2.0_CUACE/Aero. The influences of internal mixing (IM) on aerosol hygroscopicity parameter, optical properties, and concentration were considered. Generally, IM could markedly weaken the negative ERF and cooling effects of anthropogenic aerosols. The global annual mean ERF of EM anthropogenic aerosols from 1850 to 2010 was -1.87 W m-2, of which the aerosol-radiation interactive ERF (ERFari) and aerosol-cloud interactive ERF (ERFaci) were -0.49 and -1.38 W m-2, respectively. The global annual mean ERF due to PIM anthropogenic aerosols from 1850 to 2010 was -1.23 W m-2, with ERFari and ERFaci of -0.23 and -1.01 W m-2, respectively. The global annual mean surface temperature and water evaporation and precipitation were reduced by 1.74 K and 0.14 mm d-1 for EM scheme and 1.28 K and 0.11 mm d-1 for PIM scheme, respectively. However, the relative humidity near the surface was slightly increased for both mixing cases. The Intertropical Convergence Zone was southwardly shifted for both EM and PIM cases but was less southwardly shifted in PIM scheme due to the less reduction in atmospheric temperature in the midlatitude and low latitude of the Northern Hemisphere.

  12. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  13. Radiation dose to workers due to the inhalation of dust during granite fabrication

    International Nuclear Information System (INIS)

    Zwack, L M; Stewart, J H; McCarthy, J F; Allen, J G; McCarthy, W B

    2014-01-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr −1 ) and limits applicable to the general public (1 mSv yr −1 ). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m −3 over a full year had an estimated radiation dose of 0.062 mSv yr −1 . Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr −1 and 0.002 mSv yr −1 , respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr −1 . (paper)

  14. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    Science.gov (United States)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  15. Disorders of the endocrine system due to radiation and cytotoxic chemotherapy

    International Nuclear Information System (INIS)

    Shalet, S.M.

    1983-01-01

    Panhypopituitarism, infertility, gynaecomastia, impaired growth leading to short stature, failure to undergo normal pubertal development, hyperparathyroidism, hypothyroidism and thyroid tumours may complicate the treatment of malignant disease. The complexity of modern anti-cancer treatment has made it more difficult to delineate the exact aetiological role of radiotherapy and cytotoxic chemotherapy as many patients receive both modalities of therapy. In addition, combination chemotherapy has largely replaced treatment with a single cytotoxic drug, which means that it is often impossible to estimate the contribution of any one single drug to the adverse side effects of chemotherapy. The biological effect of a given radiation treatment regime depends not only on the total radiation dose received but also the method of irradiation, number of fractions, fraction size and duration of irradiation. Only a limited amount of information is available on dose-time relationships for radiation-induced damage to endocrine glands. (author)

  16. Analysis of the contended health risks due to digitally modulated mobile phone radiation

    International Nuclear Information System (INIS)

    Liesenkoetter, B.

    2002-01-01

    In the public discussion regarding the health risks of mobile phone system radiation, it is emphasized that the pulse slope of digital modulation, as defined in the GSM-Standard, will cause biological effects. In contrast, the high field strength of broadcasting and television radiation is not considered to be relevant. This paper compares quantitatively the slope of the digital GSM pulses with that of the synchronizing pulse of the television signal. The result shows clearly that the pulse spectrum of the television signal contains that of the GSM signal; in addition, the synchronizing impulse of television exhibits a much steeper slope. Considering the countrywide normal radiation intensities of television and mobile phone systems, it can be stated that the worldwide exposure to the common television signals over more than 50 years can disprove the contention of adverse biological health effects of the pulse slope of digitally modulated radiofrequency. (orig.) [de

  17. Disorders of the endocrine system due to radiation and cytotoxic chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shalet, S M [Christie Hospital and Holt Radium Inst., Manchester (UK)

    1983-11-01

    Panhypopituitarism, infertility, gynaecomastia, impaired growth leading to short stature, failure to undergo normal pubertal development, hyperparathyroidism, hypothyroidism and thyroid tumours may complicate the treatment of malignant disease. The complexity of modern anti-cancer treatment has made it more difficult to delineate the exact aetiological role of radiotherapy and cytotoxic chemotherapy as many patients receive both modalities of therapy. In addition, combination chemotherapy has largely replaced treatment with a single cytotoxic drug, which means that it is often impossible to estimate the contribution of any one single drug to the adverse side effects of chemotherapy. The biological effect of a given radiation treatment regime depends not only on the total radiation dose received but also the method of irradiation, number of fractions, fraction size and duration of irradiation. Only a limited amount of information is available on dose-time relationships for radiation-induced damage to endocrine glands.

  18. Low power radiofrequency electromagnetic radiation for the treatment of pain due to osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    U. Santosuosso

    2011-09-01

    Full Text Available Different techniques have been used in some rheumatic diseases to induce a therapeutic effect by heating deep tissues. These techniques are commonly known as ‘thermotherapy’ (1-4. It should be observed that adequate heating of deep tissues cannot be obtained by conduction or convection of heat because the skin and subcutaneous fat are good thermal insulators and because heating is reduced by blood flow in superficial vessels. Heating of deep tissues can instead be obtained by conversion of other forms of energy into heat. Conversion heat is generated by different types of radiations absorbed by deep tissues: when radiation interacts with tissues, some energy is converted into heat. High power radiofrequency electromagnetic radiation (RF, which produces strong thermal energy, has been widely applied in medicine for ablative procedures (5-7.

  19. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    Science.gov (United States)

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.

  20. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2005-01-01

    Purpose: Dynamic radiation therapy, such as intensity-modulated radiation therapy, delivers more complex treatment fields than conventional techniques. The increased complexity causes longer dose delivery times for each fraction. The cellular damage after a full treatment may depend on the dose rate, because sublethal radiation damage can be repaired more efficiently during prolonged dose delivery. The goal of this study was to investigate the significance of this effect in fractionated radiation therapy. Methods and Materials: The lethal/potentially lethal model was used to calculate lesion induction rates for repairable and nonrepairable lesions. Dose rate effects were analyzed for 9 different cell lines (8 human tumor xenografts and a C3H10T1/2 cell line). The effects of single-fraction as well as fractionated irradiation for different dose rates were studied. Results: Significant differences can be seen for dose rates lower than about 0.1 Gy/min for all cell lines considered. For 60 Gy delivered in 30 fractions, the equivalent dose is reduced by between 1.3% and 12% comparing 2 Gy delivery over 30 min per fraction with 2 Gy delivery over 1 min per fraction. The effect is higher for higher doses per fraction. Furthermore, the results show that dose rate effects do not show a simple correlation with the α/β ratio for ratios between 3 Gy and 31 Gy. Conclusions: If the total dose delivery time for a treatment fraction in radiation therapy increases to about 20 min, a correction for dose rate effects may have to be considered in treatment planning. Adjustments in effective dose may be necessary when comparing intensity-modulated radiation therapy with conventional treatment plans

  1. Radiation hazards due to activated corrosion and neutron sputtering products in fusion reactor coolant and tritium breeding fluids

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1985-01-01

    The accumulation of radioactive corrosion and neutron sputtering products on the surfaces of components in fusion reactor coolant and tritium breeding systems can cause significant personnel access problems. Remote maintenance techniques or special treatment may be required to limit the amount of radiation exposure to plant operational and maintenance personnel. A computer code, RAPTOR, has been developed to estimate the transport of this activated material throughout a fusion heat transfer and/or tritium breeding material loop. A method is devised which treats the components of the loop individually and determines the source rates, deposition and erosion rates, decay rates, and purification rates of these radioactive materials. RAPTOR has been applied to the MARS and Starfire conceptual reactor designs to determine the degree of the possible radiation hazard due to these products. Due to the very high corrosion release rate by HT-9 when exposed to LiPb in the MARS reactor design, the radiation fields surrounding the primary system will preclude direct contact maintenance even after shutdown. Even the removal of the radioactive LiPb from the system will not decrease the radiation fields to reasonable levels. The Starfire primary system will exhibit radiation fields similar to those found in present pressurized water reactors. (orig.)

  2. Findings of thyroid ultrasonography in patients with hypothyroidism exposed to ionizing radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Grid'ko, O.M.

    1997-01-01

    Comparative analysis of the findings of clinical and ultrasound study of the thyroid gland in 403 participants of the accident clean-up irradiated in the 'iodine' period and 57 patients with hypothyroidism (of them, 46 were exposed to radiation in the 'iodine' period and 11 in 'non-iodine' one) was carried out. The disease dynamics was investigated in 81 patients with acute radiation sickness. The structural changes suggest different ways of hypothyroidism development in the exposed persons and manifest themselves in two main clinical forms of the disease, atrophic and hypertrophic ones

  3. Growth, physiological, biochemical and productive changes in peas due to gamma radiation effect

    International Nuclear Information System (INIS)

    Stajkov, G.; Ivanov, K.; Antonov, M.

    1985-01-01

    Investigations concerning the mechanism of the stimulating effect of low doses of gamma radiation on peas were made in 1971-1983. Results showed that: a) gamma radiation with 1000 R enhanced the level and activity of indolyl auxines gibberellins and in the seeds, causing specific changes in catalase and peroxidase activity; b) the content of crude protein and essential aminoacids was raised; c) grain yield increased by 16% as compared to the control; d) the dose 1000 R proved to be the optimal one

  4. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  5. State of enforcement of the law concerning prevention from radiation hazards due to radio-isotopes

    International Nuclear Information System (INIS)

    1977-01-01

    In view of the recent advance of radiation utilization in many fields, the situation as of the end of fiscal 1976 under the law is described. The statistics on the number of enterprises concerning radioisotope usage, sales and waste-treatment are first given. Then, the measures taken by the Science and Technology Agency to improve radiation hazard prevention are explained, and cooperation with other governmental offices, efforts by the enterprises, steps taken for the enterprises of nondestructive testing, hospitals, universities, etc., and restudy on the law are described. (Mori, K.)

  6. Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes

    Czech Academy of Sciences Publication Activity Database

    Beck, P.; Bartlett, D. T.; Bilski, P.; Dyer, C.; Fluckiger, E.; Fuller, N.; Lantos, P.; Reitz, G.; Ruhm, W.; Spurný, František; Taylor, G.; Trompier, F.; Wissmann, F.

    2008-01-01

    Roč. 131, č. 1 (2008), s. 51-58 ISSN 0144-8420. [Annual Meeting of the European-Radiation-Dosimetry-Group (EURADOS). Paris, 21.01.2008-25.01.2008] R&D Projects: GA MŠk 1P05OC032 Grant - others:Evropské společenství(XE) ILSRA - 2004 - 248 Institutional research plan: CEZ:AV0Z10480505 Keywords : on-board airplanes * cosmic radiation * simulations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.951, year: 2008

  7. Possible Explanation for Cancer in Rats due to Cell Phone Radio Frequency Radiation

    Science.gov (United States)

    Feldman, Bernard J.

    Very recently, the National Toxicology Program reported a correlation between exposure to whole body 900 MHz radio frequency radiation and cancer in the brains and hearts of Sprague Dawley male rats. Assuming that the National Toxicology Program is statistically significant, I propose the following explanation for these results. The neurons around the brain and heart form closed electrical circuits and, following Faraday's Law, 900 MHz radio frequency radiation induces 900 MHz electrical currents in these neural circuits. In turn, these 900 MHz currents in the neural circuits generate sufficient localized heat in the neural cells to shift the equilibrium concentration of carcinogenic radicals to higher levels and thus, to higher incidences of cancer.

  8. Observations of black carbon aerosols characteristics over an urban environment: Radiative forcing and related implications.

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera; Rahman, Said

    2017-12-15

    With observations of black carbon (BC) aerosol concentrations, optical and radiative properties were obtained over the urban city of Karachi during the period of March 2006-December 2008. BC concentrations were continuously measured using an Aethalometer, while optical and radiative properties were estimated through the Optical Properties of Aerosols and Clouds (OPAC) and Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) models, respectively. For the study period, the measured BC concentrations were higher during January, February and November, while lower during May, June, July and August. A maximum peak value was observed during January 2007 while the minimum value was observed during June 2006. The Short Wave (SW) BC Aerosol Radiative Forcing (ARF) both at Top of the Atmosphere (ToA) and within ATMOSphere (ATMOS) were positive during all the months, whereas negative SW BC ARF was found at the SurFaCe (SFC). Overall, SW BC ARF was higher during January, February and November, while relatively lower ARF was found during May, June, July and August. Conversely, the Long Wave (LW) BC ARF at ToA and SFC remained positive, whereas within ATMOS it shifted towards positive values (heating effect) during June-August. Finally, the net (SW+LW) BC ARF were found to be positive at ToA and in ATMOS, while negative at SFC. Moreover, a systematic increase in Atmospheric Heating Rate (AHR) was found during October to January. Additionally, we found highest correlation between Absorption Aerosol Optical Depth (AOD abs ) and SW BC ARF within ATMOS followed by SFC and ToA. Overall, the contribution of BC to the total ARF was found to greater than 84% for the whole observational period while contributing up to 93% during January 2007. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  10. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  11. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  13. Study on the evaluation of radiation doses in dental radiography. Doses and risks due to dental full mouth examination

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Kanagawa Dental Coll., Yokosuka (Japan)

    1980-09-01

    Radiation doses and possible biological risks due to dental full mouth examination (adult: 10-film technique, child: 6-film technique) were evaluated based on preliminary experiments and statistical surveillance of patients' records. Dosimetrical studies were performed by using head and neck phantoms and a dental x-ray tube. Radiation doses were measured by x-ray films and thermoluminescence dosimeters. For the obtained doses of skin, eyes, thyroid gland and bone marrow, the biological risk of leukemia and thyroid cancer was discussed on the statistical basis of patients at Kanagawa Dental College Hospital. The major findings were as follows: The total number of patients who recieved full mouth x-ray examination at Kanagawa Dental College Hospital in 1978 was 1,099. The number of male patients was 382 (3,804 films) and that of female patients was 717 (7,138 films). In both sexes, the number of patients was the greatest in the group of 8 - 14 years of age. The collective doses of bone marrow due to full mouth 10-film examination performed at Kanagawa Dental College Hospital in 1978 were approximately 6.0 rad, which could induce leukemia with a probability of 1/8,000. The collective doses of thyroid gland were approximately 13 rad, which could induce lethal thyroid cancer with a probability of 1/15,000. The radiation dose due to the dental radiography for examination at Kanagawa Dental College Hospital was proved to be apparently below the level that could actually induce radiation injuries. But the collective radiation doses due to dental examination in Japan as a whole were approximately 8,000 times greater than that in Kanagawa Dental College Hospital.

  14. The order for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes, and the former ordinance No. 14, 1958, is hereby totally amended. Radioisotopes under the law are the isotopes which emit radiation, and of which the concentration exceeds the levels defined by the Director General of the Science and Technology Agency, their compounds or the substances containing these compounds, excluding those defined in the atomic energy act and other particular laws. The apparatuses fitted with radioisotopes under the law are electron capture detectors for gas chromatography. The radiation emitting installations under the law are cyclotron, synchrotron, synchro-cyclotron, linear accelerator, betatron, Van de Graaff accelerator, Cockcroft-Walton's accelerator, etc. The permission of usage under the law shall be obtained for each works or enterprise. Persons who intend to get the permission shall file the application for them attaching the documents describing expected period of usage and other papers specified by the Director General. The total quantity of radioisotopes sealed tightly for each works or enterprise under the law shall be 100 milli-curie. The design of apparatus for the prevention of radiation injuries, the capacities of storage facilities regularly inspected, the period of regular inspection, the confirmation of transport and disposal and fees to be paid, etc. are defined, respectively. (Okada, K.)

  15. Dose factors to calculate the radiation exposure due to radioactive waste air from nuclear facilities

    International Nuclear Information System (INIS)

    Brenk, H.D.; Vogt, K.J.

    1977-01-01

    An evaluation of the environmental impact of nuclear plants according to paragraph 45 of the Radiation Protection Directive of the Federal Republic of Germany requires the calculation of dose conversion factors indicating the correlation between the contaminated medium and individual radiation exposure. The present study is to be conceived as a contribution to discussion on this subject. For the determination of radiation exposure caused by the waste air of nuclear plants, models are being specified for computing the dose conversion factors for the external exposure pathways of β-submersion, γ-submersion and γ-radiation from contaminated ground as well as the internal exposure pathways of inhalation and ingestion, which further elaborate and improve the models previously applied, especially as far as the ingestion pathway is concerned, which distinguishes between 6 major food categories. The computer models are applied to those radionuclides which are significan for nuclear emitters, in particular nuclear light-water power stations. The results obtained for the individual exposure pathways and affected organs are specified in the form of tables. For this purpose, calculations were first of all carried out for the so-called 'reference man'. The results can be transferred to population groups with different consumption habits (e.g. vegetarians) by the application of correction factors. The models are capable of being extended with a view to covering other age groups. (orig.) [de

  16. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation.

    Science.gov (United States)

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings.

  17. BACTERIAL MORTALITY DUE TO SOLAR RADIATION, COMPARING EXPERIMENTAL AND STATISTICAL EVIDENCE

    Science.gov (United States)

    Many researchers report that sunlight is a primary stressor of beach indicator bacteria. Some water quality models include code that quantifies the effect of radiation on bacterial decay. For example, the EPA Visual Plumes model includes two coliform and one enterococcus submodel...

  18. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    International Nuclear Information System (INIS)

    El-Maghraby, T. A. F.; Cairo Univ., Cairo; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J.

    2000-01-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of 201 Tl and 111 In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients

  19. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    NARCIS (Netherlands)

    Heinemann, A.B.; Oort, van P.A.J.; Simoes Fernandes, D.; Maia, A.H.N.

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this

  20. Assessment of radiation exposure to miners due to radon and radon daughters

    International Nuclear Information System (INIS)

    Przyborowski, S.

    1979-01-01

    An overview is given of the basic considerations regarding the establishment of lung limits for miners exposed to radon and radon daughters. Problems associated with the practical conduct of radiation protection monitoring are also dealt with, for example, the implications of temporal and local variations in activity levels to the mode of sampling and the interpretation of results. (author)

  1. Systematic medical control of the personnel concerning damage due to ionizing radiation

    International Nuclear Information System (INIS)

    Djukic, Z.

    1961-01-01

    The department for medical monitoring of the staff employed at the Institute has performed 21395 medical check-ups of the personnel employed in the Institute and individuals who applied for different posts. Some new methods for laboratory analyses specific for personnel exposed to radiation were introduced. The activities of the department were fulfilled according to the plan

  2. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcingF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  3. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  4. Determination of radiation exposure of humans due to dermal contact with radionuclides

    International Nuclear Information System (INIS)

    Pratzel, H.G.

    1992-01-01

    It is the aim of this research project to determine the distribution of radioactive substances in the skin and organism, in order to be able to predict from these data the radiation exposure to be expected following contamination of the skin with radionuclides. Further investigations are to be carried out into the suitability of measures of prevention and decontamination. In view of the fact that only small amounts of those compounds are absorbed by the skin, the determination of the parameters chosen was carried out in radionuclide studies in young pigs. With the exception of the skin of the palms and soles, the radiation effects in man could easily be extrapolated from the results of these experiments. The findings revealed permit the following conclusions to be drawn: The incorporation of radioactive substances after dermal contamination is quite unavoidable, even if this is immediately followed by decontamination measures. The degree of incorporation and resulting radiation dose are only minor and remain several orders of magnitude below the dermal radiation dose. If the skin is contaminated with radioactive liquids, the extent of incorporation and accumulation is proportionate to the activity concentration of those liquids. The incorporated radiation dose is in direct proportion to the contaminated skin area and also shows a relationship to the duration of contamination, if the skin is wet. The uptake by the organism may be somewhat reduced, if decontamination is initiated immediately. Dermal protectives may help to reduce skin permeability and, thus, the uptake of radioactivity into the corneal layer and follicles. (orig./MG) [de

  5. The Effect of External Radiation Therapy in management of malignant obstructive Jaundice due to Porta Hepatis metastasis from Stomach Cancer

    International Nuclear Information System (INIS)

    Yang, Kwang Mo; Kim, Joon Hee; Kim, Chul Soo; Suh, Hyun Suk; Kim, Re Hwe

    1995-01-01

    Purpose : Since 1983, authors have conducted a study to evaluate the effect of external radiation therapy an to determine affected factors in management of the patients with malignant obstructive jaundice due to porta hepatis metastasis from stomach cancer. Materials and methods : Thirty two patients with malignant obstructive jaundice due to porta hepatis metastasis from gastric cancer were presented. We have analysed 23 patients who were treated with external radiation therapy of more than 3000 cGy. The radiation dose, disease extent at development of jaundice, total bilirubin levels before radiation therapy, differentiation of histology, combined treatment, intent of primary surgery, initial stage of gastric cancer were analyzed to determine affected factors in radiation therapy. External radiation therapy was delivered with a daily dose of 180-300 cGy. 5 times a week fractionation using 4 MeV linear accelerator. The radiation field included the porta hepatis with tumor mass by the abdominal ultrasonography or CT scan. In twenty three patients received more than 3000 cGy, total irradiation dose was ranged from 3000 cGy to 5480 cGy, median 3770 cGy. Among 23 patients, 13 patients were delivered more than equivalent dose of TDF 65(4140 cGy/23fx). Results : Among 23 patients, complete, partial and no response were observed in 13, 5, 5 patients, respectively. The median survival for all patients was 5 months. He significant prolongation of median survival was observed in complete responders(11 months) as compared to partial and no responders(5 months, 5 months, respectively). Out of 13 patients with complete response, 6 patients lived more than a year. Among 13 patients received more than 4140 cGy equivalent dose, complete, partial and no response were observed in 10, 2 and 1 patients, respectively. The median survival for all these patients was 9.5 months. The median survival for complete responders(10/13) was 11.5 months. Among 10 patients receiving less than 4140

  6. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  7. Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot

    Science.gov (United States)

    vanPoppel, Laura H.; Friedrich, Heiner; Spinsby, Jacob; Chung, Serena H.; Seinfeld, John H.; Buseck, Peter R.

    2005-01-01

    Nanoparticles are ubiquitous in nature. Their large surface areas and consequent chemical reactivity typically result in their aggregation into clusters. Their chemical and physical properties depend on cluster shapes, which are commonly complex and unknown. This is the first application of electron tomography with a transmission electron microscope to quantitatively determine the three-dimensional (3D) shapes, volumes, and surface areas of nanoparticle clusters. We use soot (black carbon, BC) nanoparticles as an example because it is a major contributor to environmental degradation and global climate change. To the extent that our samples are representative, we find that quantitative measurements of soot surface areas and volumes derived from electron tomograms differ from geometrically derived values by, respectively, almost one and two orders of magnitude. Global sensitivity studies suggest that the global burden and direct radiative forcing of fractal BC are only about 60% of the value if it is assumed that BC has a spherical shape.

  8. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [Dept. of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing (China)

    2016-08-15

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation.

  9. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review

    International Nuclear Information System (INIS)

    Wang, Liang

    2016-01-01

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation

  10. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  11. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  12. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  13. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Science.gov (United States)

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    Science.gov (United States)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  15. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    Science.gov (United States)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  16. Natural radiation dose due to 210Po and associated risk to certain fishes of Kudankulam Waters, Gulf of Mannar

    International Nuclear Information System (INIS)

    Praveen Pole, R.P.; Godwin Wesley, S.; Vijayakumar, B.

    2014-01-01

    With increasing emphasis on environmental protection, concern has switched over from the earlier target human being to non-human species regarding possible radiation risk. Alpha-emitter 210 Po (t 1/2 = 138.4 d) is the most important radionuclide, considering it as a potential natural source of internal radiation dose to marine organisms. Fishes are known to accumulate 210 Po to a large extent through food chains and certain marine fishes are potential bioindicators as they bioaccumulate the target radionuclide from surrounding waters. Hence it is imperative to assess the level of 210 Po and the radiological risk (risk quotient) due to the radiation dose received by different fish species collected from the coastal areas around the nuclear installation at Kudankulam

  17. Isotropization of the cosmic background radiation due to galactic gravitational screening

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1988-04-01

    The primordial objects with the masses of galaxies or their clusters formed at early stages such as z > 10 can play a powerful role of gravitational lenses and their random multiple scattering brings an effective screening for the cosmic background radiation. In a cold-dark-matter dominant model with the white-noise spectrum of initial density perturbations, it is shown that, if the primordial objects with the masses 10 12 h -1 (solar mass) are in the nonlinear stage at the epochs 1 + z = 10 ∼ 20, the objects with 6 x 10 14 h -1 (solar mass) are in the nonlinear stage at 1 + z = 6.3 ∼ 14, and accordingly the small-scale anisotropy of the radiation may be smoothed-out within 13 ∼ 28 minutes by this gravitational screening, where the Hubble constant H o = 100 h km s -1 Mpc -1 . (author)

  18. Morphological Changes of Yeast Cells due to Oxidative Stress by Mercury and Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hyoun; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in industry. Growth rate, mutation, and environmental conditions affect yeast size and shape distributions but, in general, the influence of spatial variations in large-scale bioreactors is not considered. Ionizing radiation induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm, and nucleus. Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. As a metal ion, it induces an oxidative stress or predisposes cells to an oxidative stress, with considerable damage to proteins, lipids and DNA. In this work, we investigated to effect of ionizing radiation (IR) and mercury chloride (II) on cell morphology.

  19. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different let

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.; Baldychev, A.S.; Smolin, V.A.

    1988-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the densitivity of cells by fusion was not lower than that by chromosome mutations

  20. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different LET

    International Nuclear Information System (INIS)

    Khair, M.; Gil'yano, N.Ya.; Malinovskij, O.V.; Smolin, V.A.

    1991-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the sensitivity of cells by fusion was not lower than that by chromosome mutations. (author). 6 refs., 6 figs

  1. Optical vortices and singularities due to interference in atomic radiation near a mirror.

    Science.gov (United States)

    Li, Xin; Shu, Jie; Arnoldus, Henk F

    2009-11-15

    We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous singularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.

  2. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, Maria Cristina Franco de

    2004-01-01

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  3. Changes in Handset Performance Measures due to Spherical Radiation Pattern Measurement Uncertainty

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    An important characteristic of a mobile handset is its ability to receive and transmit power. One way to characterize the performance of a handset in this respect is to use measurements of the spherical radiation pattern from which the total radiated power (TRP), total isotropic sensitivity (TIS)...... with respect to the environment. Standard deviations up to about 0.5dB and a maximum deviation of about 1.6dB were found....... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5dB with a maximum of about 1.4dB. For the MEG values the results depend on the orientation of the handset...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...

  4. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  5. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    International Nuclear Information System (INIS)

    Chen, J.; van de Geijn, J.; Goffman, T.

    1991-01-01

    In the conventional linear--quadratic model of single-dose response, the α and β terms reflect lethal damage created during the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with ''unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD

  6. On the theory of improved confinement due to stationary multifaceted asymmetric radiation from the edge

    International Nuclear Information System (INIS)

    Herrera, J.J.E.

    2002-01-01

    Multifaceted asymmetric radiation from the edge (MARFE's) are toroidally symmetric and poloidally asymmetric radiation bands that occur in tokamaks as a result of a thermal instability, originated by radiation losses. It was observed in TFTR and TEXTOR that they formed as density was increased, and impurities concentrated on the edge. Under certain circumstances, they could evolve into weakly poloidal symmetric structures that cooled the edge of the plasma to a few tens of eV, thus leading to detachment from the limiter. Although non-stationary MARFE's are often precursors of disruptions, the use of a stochastic divertor in TORE-SUPRA, and of feedback controlled gas-puff in HT-7 have proved the existence of stationary MARFE's. Their appearance has been found to depend strongly on the impurity content of the plasma. They trigger internal transport barriers, observed in the electron temperature profiles. The purpose of this work is: to take into account the edge control in order to understand the sustainment of stationary MARFE's, and to propose non-local mechanisms that can explain the formation of internal transport barriers. (author)

  7. On the theory of improved confinement due to stationary multifaceted asymmetric radiation from the edge

    International Nuclear Information System (INIS)

    Herrera, J.J.E.; Martinell, J.J.; Morozov, D.Kh.

    2003-01-01

    Multifaceted asymmetric radiation from the edge (MARFE's) are toroidally symmetric and poloidally asymmetric radiation bands that occur in tokamaks as a result of a thermal instability, originated by radiation losses. It was observed in TFfR and TEXTOR that they formed as density was increased, and impurities concentrated on the edge. Under certain circumstances, they could evolve into weakly poloidal symmetric structures that cooled the edge of the plasma to a few tens of eV, thus leading to detachment from the limiter. Although non-stationary MARFE's are often precursors of disruptions, the use of a stochastic divertor in TORESUPRA, and of feedback controlled gas-puff in HT- 7 have proved the existence of stationary MARFE' s. Their appearance has been found to depend strongly on the impurity content of the plasma. They trigger internal transport barriers, observed in the electron temperature profiles. The purpose of this work is to review the evidence of the existence of stationary MARFEs, and whether they can actually lead to improved confinement regimes, through non-local mechanisms. (author)

  8. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  9. Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity.

    Science.gov (United States)

    Song, Sang-Keun; Shon, Zang-Ho; Park, Yeon-Hee

    2017-12-01

    The temporal variations (diurnal and seasonal) of the optical properties and direct aerosol radiative forcing (DARF) of different aerosol components (water-soluble, insoluble, black carbon (BC), and sea-salt) were analyzed using the hourly resolution data (PM 2.5 ) measured at an urban site in Seoul, Korea during 2010, based on a modeling approach. In general, the water-soluble component was predominant over all other components (with a higher concentration) in terms of its impact on the optical properties (except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD, τ) at 500nm for the water-soluble component was 0.38±0.07 (0.06±0.01 for BC). The forcing at the surface (DARF SFC ) and top of the atmosphere (DARF TOA ), and in the atmosphere (DARF ATM ) for most aerosol components (except for BC) during the daytime were highest in spring and lowest in late fall or early winter. The maximum DARF SFC occurred in the morning during most seasons (except for the water-soluble components showing peaks in the afternoon or noon in summer, fall, or winter), while the maximum DARF TOA occurred in the morning during spring and/or winter and in the afternoon during summer and/or fall. The estimated DARF SFC and DARF ATM of the water-soluble component were in the range of -49 to -84Wm -2 and +10 to +22Wm -2 , respectively. The DARF SFC and DARF ATM of BC were -26 to -39Wm -2 and +32 to +51Wm -2 , respectively, showing highest in summer and lowest in spring, with morning peaks regardless of the season. This positive DARF ATM of BC in this study area accounted for approximately 64% of the total atmospheric aerosol forcing due to strong radiative absorption, thus increasing atmospheric heating by 2.9±1.2Kday -1 (heating rate efficiency of 39K day -1 τ -1 ) and then causing further atmospheric warming. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India.

    Science.gov (United States)

    Mor, Vikram; Dhankhar, Rajesh; Attri, S D; Soni, V K; Sateesh, M; Taneja, Kanika

    2017-05-01

    The present work is aimed to analyze aerosols optical properties and to estimate aerosol radiative forcing (ARF) from January to December 2013, using sky radiometer data over Rohtak, an urban site in North-Western India. The results reveal strong wavelength dependency of aerosol optical depth (AOD), with high values of AOD at shorter wavelengths and lower values at longer wavelength during the study period. The highest AOD values of 1.07 ± 0.45 at 500 nm were observed during July. A significant decline in Ångström exponent was observed during April-May, which represents the dominance of coarse mode particles due to dust-raising convective activities. Aerosols' size distribution exhibits a bimodal structure with fine mode particles around 0.17 µm and coarse mode particles with a radius around 5.28 µm. Single scattering albedo values were lowest during November-December at all wavelengths, ranging from 0.87 to 0.76, which corresponds to the higher absorption during this period. Aerosols optical properties retrieved during observation period are used as input for SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) to estimate the direct ARF at the surface, in the atmosphere and at the top of the atmosphere (TOA). The ARF at the TOA, surface and in the atmosphere are found to be in the range of -4.98 to -19.35 W m -2 , -8.01 to -57.66 W m -2 and +3.02 to +41.64 W m -2 , respectively. The averaged forcing for the whole period of observations at the TOA is -11.26 W m -2 , while at the surface it is -38.64 W m -2 , leading to atmospheric forcing of 27.38 W m -2 . The highest (1.168 K day -1 ) values of heating rate was estimated during November, whereas the lowest value (0.084 K day -1 ) was estimated for the February.

  11. Slot deformation of various stainless steel bracket due to the torque force of the beta-titanium wire

    Science.gov (United States)

    Huda, M. M.; Siregar, E.; Ismah, N.

    2017-08-01

    Stainless steel bracket slot deformation ffects the force applied to teeth and it can impede tooth movement and prolong orthodontic treatment time. The aim of this study is to determine the slot deformation due to torque of a 0.021 × 0.025 inch Beta Titanium wire with a torsional angle of 30° and 45° for five different bracket brands: y, 3M, Biom, Versadent, Ormco, and Shinye. The research also aims to compare the deformation and amount of torque among all five bracket brands at torsional angles of 30° and 45°. Fifty stainless steel edgewise brackets from the five bracket group brands (n=10) were attached to acrylic plates. The bracket slot measurements were carried out in two stages. In the first stage, the, deformation was measured by calculating the average bracket slot height using a stereoscopy microscope before and after application of torque. In the second stage, the torque was measured using a torque measurement apparatus. The statistical analysis shows that slot deformations were found on all five bracket brands with a clinical permanent deformation on the Biom (2.79 μm) and Shinye (2.29 μm) brackets. The most torque was observed on the 3M bracket, followed by the Ormco, Versadent, Shinye, and Biom brackets. When the brands were compared, a correlation between bracket slot deformation and the amount of torque was found, but the correlation was not statistically significant for the 3M and Ormco brackets and the Biom and Shinye brackets. There is a difference in the amount of torque between the five brands with a torsional angle of 30° (except the 3M and Ormco brackets) and those with a torsional angle of 45°. The composition of the metal and the manufacturing process are the factors that influence the occurrence of bracket slot deformation and the amount of torque. A manufacturing process using metal injection molding (MIM) and metal compositions of AISI 303 and 17-4 PH stainless steel reduce the risk of deformation.

  12. Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along-Coast Estuaries

    Science.gov (United States)

    Giddings, S. N.; MacCready, P.

    2017-12-01

    Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.Plain Language SummaryEstuarine systems provide extensive biological and ecological functions as well as contribute to human uses and economies. However, estuaries are susceptible to change and most estuaries have been significantly impacted, threatening

  13. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  14. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  15. Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.

    2017-11-01

    Aerosol measurements at two AERONET (AErosol RObotic NETwork) sites of the Iberian Peninsula: Madrid (40°.45N, 3.72W) and La Coruña (43°.36N, 8°.42W) have been analyzed for the period 2012-2015 to assess aerosol optical properties (intensive and extensive) throughout the atmospheric column and their radiative forcing (RF) and radiative forcing efficiency (RFeff) estimates at the Bottom and Top Of Atmosphere (BOA and TOA respectively). Specific conditions as dust-free and African dust have been considered for the study. Unprecedented, this work uses the quantification of the African dust aerosol at ground level which allows us to study such AERONET products at different intensity levels of African events: Low (L), High (H) and very high (VH). The statistical difference between dust-free and African dust conditions on the aforementioned parameters, quantified by means of the non-parametric Kolmogorov-Smirnov test, is quite clear in Madrid, however it is not in La Coruña. Sc