WorldWideScience

Sample records for radiation-crosslinked poly vinyl

  1. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  2. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-01-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the “bound” water in hydrogels is 50–70% and independent of gel fraction content. In addition to “bound” and “free” states, water in hydrogels is also present in the intermediate state. - Highlights: • The synthesis and the properties of poly(vinyl alcohol) hydrogels were studied. • PVA was modified by glycidyl methacrylate before gamma cross-linking. • The modification results in decreasing of PVA cross-linking dose by 3 orders lower. • The gel fraction and water content of the hydrogels were measured. • A fraction of the “bound” water in hydrogels is independent of gel fraction content

  3. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  4. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  5. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    Science.gov (United States)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  6. The effect of plasticiser on the properties of radiation crosslinked poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Jamaliah Shariff; Roslin Abu Bakar

    1996-01-01

    A study on the effects of plasticizers in the crosslinking of poly(vinyl chloride), PVC, by an electron beam irradiation was carried out. Different types of plasticizers were used and these, with other additives, were blended with PVC in a Brabender mixer. The blended compound was the irradiated with high energy electron beam. Subsequent analysis of its properties showed that the efficiency of crosslinking was better in the presence of the adipate and trimellitate. The tensile and elongation properties were acceptable. The ageing properties of the compounds with adipate and trimellitate-type plasticizers showed encouraging results

  7. Effect of gamma radiation on the poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Terence, M.C.; Guedes, S.M.L.

    2000-01-01

    The poly(vinyl alcohol) (PVAL) is a polymer used as bio material. The PVAL was used as ocular insert and may be used as a drug delivery system (DDS) for pair PVAL/gancyclovir, where the last one is used for treatment of people with retinitis caused by cytomegalovirus. These inserts are crosslinked systems. The crosslink was induced by gamma radiation applied in polymer. The samples of PVAL was irradiated by gamma rays with doses in the range 0 to 100 kGy. On irradiated PVAL samples was observed a low yellowness, attributed to the formation of polymeric radicals that are stable in the structure of the polymer, from radiolysis of PVAL. (author)

  8. Gamma irradiation Effect on the Non-Crosslinked and Crosslinked Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    El-Sawy, N.M.; El-Arnaouty, M.B.; Abdel Ghaffar, A.M.

    2008-01-01

    The non-crosslinked and crosslinked poly(vinyl alcohol) (PVA) films were prepared by the cast method then irradiated with gamma rays for various doses up to 300 kGy. The structure and characterization of PVA were determined by using Infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV). Swelling behaviour was also investigated. Mechanical properties have been examined with respect to the absorbed dose. The color of the films changed to yellowish-white after irradiation. Additional changes were observed using FTIR analysis on the degradation products demonstrated that the radiolysis of PVA was initiated by liberation of H and OH groups leading to scission of the main chains and formation of carbonyl and double bond groups. Thermogravimetric analysis (TGA) was performed

  9. Vitamin C and Poly(ethylene glycol) Protect Concentrated Poly(vinyl alcohol) Solutions against Radiation Cross-linking

    International Nuclear Information System (INIS)

    Oral, E.

    2006-01-01

    There is a need for an injectable material to augment damaged cartilage. We propose to make such self-associating poly(vinyl alcohol) (PVA) hydrogels. Physical associations can be formed in PVA using a gellant such as polyethylene glycol (PEG). The injectability of PVA solutions is compromised when sterilized due to chemical cross-linking. We hypothesized that an anticross-linking agent could prevent cross-linking of irradiated PVA solutions. PVA (17.5 wt/v %, MW= 115,000 g/mol) was prepared in water at 90 degree. PEG (MW=400 g/mol) was added at a ratio of PEG unit to PVA unit of 17, 86, 290, and 639 mol/mol. PVA solutions (17.5 wt/v %, MW= 16,000, 61,000, 81,000 and 115,000 g/mol) were also prepared. Vitamin C was added at a molar ratio of vitamin C to PVA unit of 0.75-10.4. Solutions were poured into syringes and γ-irradiated. The viscosity of injectable solutions was determined by using the bubble tube. Gel content of cross-linked samples was measured by boiling gels in water for 6 hours, drying at 90 degree and calculating the ratio of dry weight to 'as is' weight

  10. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Talita C.; Pinheiro, Christiano J.G., E-mail: talitacolombi@yahoo.com, E-mail: christrieste@yahoo.it [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Programa de Pós-Graduação em Engenharia Química; Paula, Heberth D., E-mail: hdpaula@gmail.com [Universidade Federal do Espirito Santo, Alegre (UFES), ES (Brazil). Departamento de Farmácia; Morais, Pedro A.B., E-mail: pedmora2005@gmail.com [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Química

    2017-07-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  11. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    International Nuclear Information System (INIS)

    Rezende, Talita C.; Pinheiro, Christiano J.G.; Paula, Heberth D.; Morais, Pedro A.B.

    2017-01-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  12. Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol Blend Membranes for Creatinine Transport

    Directory of Open Access Journals (Sweden)

    Retno Ariadi Lusiana

    2016-08-01

    Full Text Available Preparation of membrane using crosslinking reaction between chitosan and citric acid showed that functional group modification increased the number of active carrier groups which lead to better transport capacity of the membrane. In addition, the substitution of the carboxyl group increased creatinine permeation of chitosan membrane. The transport capacity of citric acid crosslinked chitosan membrane for creatinine was found to be 6.3 mg/L. The presence of cyanocobalamin slightly hindered the transport of creatinine although compounds did not able to pass through citric acid crosslinked chitosan/poly(vinyl alcohol blend membrane, as compounds no found in the acceptor phase.

  13. Physicochemical characteristics of gamma irradiation crosslinked poly(vinyl alcohol)/magnetite ferrogel composite

    OpenAIRE

    Marinović-Cincović, Milena T.; Radosavljević, Aleksandra N.; Krstić, Jelena I.; Spasojević, Jelena P.; Bibić, Nataša M.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2014-01-01

    Magnetic field sensitive gels, ferrogels are new promising class of hydrogels. The coupling of hydrogels and magnetic particles has potential application in soft actuators such as artificial muscles or for hyperthermia application. Here a composite of magnetite particles (Fe3O4) and poly(vinyl alcohol) (PVA) hydrogel is developed using gamma irradiation as a crosslinking agent. PVA and Fe3O4 were chosen because of their well-established biocompatibility, ra...

  14. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  15. Effect of different plasticizers on poly(N-vinyl-2-pyrrolidone) hydrogels cross-linked by radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Giannini, Danielle R.; Brant, Antonio J.C.; Riella, Humberto G.; Lugao, Ademar B.

    2011-01-01

    The use of hydrogel membranes usually demands polymers capable of forming films with high elastic and flexible properties besides having high water absorption. In terms of improvements of polymer plasticity, addition of special plasticizers to polymers can do it with promising results, although within limits of concentrations. The objective of this study was to evaluate the different effects of poly(enthylene glycol) (PEG) and glycerol as plasticizers on hydrogel membranes synthesized from poly(N-vinyl-2-pyrrolidone) (PVP) as the main polymer in aqueous polymeric solutions. For that, hydrogels of PVP/agar/PEG, PVP/agar/glycerol and without agar or plasticizer were simultaneously synthesized and sterilized by irradiation of mixtures of such products in aqueous solutions, using gamma-rays from 60 Co source at a dose of 25 kGy. The results based on gel fraction, swelling in water, and some mechanical tests suggest that the degree of PVP cross-linking prevailed over the greater hydrophilicity of glycerol compared to that of PEG with regard to the degree of swelling of the hydrogels. (author)

  16. Radiation crosslinking of polymer materials and its functional properties

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2006-01-01

    It was found out that radiation crosslinking of biodegradable polymer such as poly (butylene succinate, PBS) and poly(ε-caprolactone, PCL) could be achieved by radiation in the presence of small amount of trimethallyl isocyanurate (TMAIC) or 1% triallyl isocyanurate (TAIC). Such modification is very effective to improve heat resistance for PBS and PCL. Poly (lactic acid, PLA) undergoes crosslinking effectively with 3% TAIC by radiation. Outstanding feature of these polymers is their biodegradability even after crosslinking. Radiation crosslinking of polysaccharide derivatives such as carboxymethyl-cellulose (CMC) is also achieved in aqueous solution at high concentration (paste-like state). The crosslinking behavior was largely affected by the degree of substitution (DS) and polymer concentration. After removal of water the dry CMC gel is used as water absorbent material. This dry gel is the most effective for removal of large amounts of water from organic wastes, resulting in the acceleration of their fermentation. Measurement of swelling ratio of the dry CMC gel in 0.9% NaCl aqueous solution was carried out to expand application fields for this material. Radiation crosslinked poly (vinyl alcohol) hydrogel was successfully commercialized from July 2004 as wound dressing for accelerated healing. Furthermore, this material was also used as gel protector to prevent shore sore and was further commercialized. (author)

  17. Fluorescence Imaging in Genipin Crosslinked Chitosan–Poly(vinyl pyrrolidone Hydrogels

    Directory of Open Access Journals (Sweden)

    Simon Matcham

    2016-10-01

    Full Text Available Recent research has identified genipin as a promising natural crosslinking agent for biocompatible hydrogels as genipin is significantly less cytotoxic than current synthetic crosslinking agents, such as glutaraldehyde. Conveniently, fluorophores can be produced when genipin crosslinks. In this study, fluorescence intensity measurements of genipin crosslinked chitosan-poly(vinyl pyrrolidone hydrogels have been explored as a dynamic, in situ method for tracing sol-gel transition. These pH-responsive smart materials have a future in medical applications, in particular in tissue engineering and drug delivery, where methods to follow the process in situ and in real-time are crucial for future advancement. Samples were prepared using deionised water, pH 4, and pH 10 solutions, and studied at 24 and 37 °C over a 24 h period. Both temperature and pH have been found to affect sol-gel transition in the hydrogels studied. The transition from acidic (pH 4 to basic (pH 10 solution resulted in reduced fluorescence intensity suggesting that, under more basic conditions, genipin molecules self-polymerise, reducing the number of molecules available for reaction with the amino groups of chitosan. Three-dimensional representations of the fluorescence present in a hydrogel sample have also been produced from the data, enabling the visualisation of variation in fluorescence with time at the surface of the hydrogel.

  18. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    Science.gov (United States)

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  19. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation.

    Science.gov (United States)

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-04-08

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  20. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications

    OpenAIRE

    Bourke, Sharon L.; Al-Khalili, Mohammad; Briggs, Tonye; Michniak, Bozena B.; Kohn, Joachim; Poole-Warren, Laura A.

    2003-01-01

    The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As...

  1. Alanine/epr pellet dosimeter using poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer as a binder for radiation dosimetry

    International Nuclear Information System (INIS)

    Beshir, W.B.; Ezz El-Din, H.M.; Abdel-fatth, A.A.; Ebraheem, S.

    2005-01-01

    A new alanine pellet dosimeter was developed for gamma and electron beam radiation dosimetry. Alanine powder was mixed with a new binding material, poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer. Pellets were prepared by pressing fine powder alanine with 60% copolymer binder by using hydraulic press and a specially designed pressing die. The radiation-formed stable free radicals were analysed by using electron paramagnetic resonance (EPR) spectroscopy. The useful dose range of these pellets was found to ranges from 1 to 80 kGy. The stability of the radiation- induced response was also studied

  2. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine Dendrimer/Poly(vinyl alcohol Hybrid Membranes for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Shuhong Duan

    2014-04-01

    Full Text Available Poly(amidoamine (PAMAM dendrimers were incorporated into cross-linked poly(vinyl alcohol (PVA matrix to improve carbon dioxide (CO2 separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  3. Poly(vinyl alcohol)-heparin hydrogels as sensor catheter membranes

    NARCIS (Netherlands)

    Brinkman, E.; van der Does, L.; Bantjes, A.

    1991-01-01

    Poly(vinyl alcohol)-heparin hydrogels with varying water content were synthesized for use as sensor catheter membranes. Films were cast from aqueous mixtures of poly(viny) alcohol) (PVA), a photosensitive cross-linker p-diazonium diphenyl amine polymer (PA), glutaraldehyde (GA) and heparin. After

  4. Microencapsulation of Epoxidized Linseed Oil Liquid Cross-Linker in Poly(N-vinyl-pyrrolidone): Optimization by a Design-of-Experiments Approach

    NARCIS (Netherlands)

    Senatore, D.; Laven, J.; Benthem, van R.A.T.M.; La Camera, D.; With, de G.

    2010-01-01

    A liquid cross-linker, epoxidized linseed oil (ELO), was encapsulated in a plastic with a high glass transition temperature (poly(N-vinyl-2-pyrrolidone); PVP). The process parameters of the spray-drying employed were optimized by a Design-of-Experiments (DoE) approach. Three factors concerning both

  5. Effect of radiation on Poly Vinyl chloride (PVC)

    International Nuclear Information System (INIS)

    Massaud, F.; Haraga, S.; Benfaid, N.; Benayad, S.; Kabar, Y.; Elmesmary, Y; Elwerfeli, M.; Omran, Sh.

    1993-01-01

    Radiation crosslinking of polymeric materials is of increasing commercial importance because of the improved thermal, electrical and mechanical properties. Poly Vinylchloride (PVC) is one of the most important polymers. Many attempts were made to study the primary reactions induced by the direct effect of radiation on PVC. In this study, powder PVC was irradiated with different doses at ambient temperature. Formation of free radicals was investigated by electron spin resonance (ESR) method and molecular weight was determined by viscosity measurements. It has been observed that hydrogen chloride was evolved because of noticeable change in color. One type of radical, Poly enyl structure was trapped at room temperature. The non-symmetric singlet structure of the ESR spectra is due to the presence of oxygen. The radical concentration increased with increase of dose. The molecular weight of irradiated PVC was found to be inversely proportional to the increase of radiation dose, which is believed to be due to the occurrence of degradation. It can be concluded that gamma radiation will be the best method for crosslinking of PVC if multi-functional groups or monomers are present. (author)

  6. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail: rihamrashad@hotmal.com

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  7. Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly (acrylic acid) with poly (vinyl pyrrolidone) in aqueous medium

    Science.gov (United States)

    Ghaffarlou, Mohammadreza; Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    Functional nanogels were prepared from interpolymer complexes (IPC) of poly (vinyl pyrrolidone) and poly (acrylic acid) by gamma irradiation of their aqueous solutions. The coil size of IPCs prepared under different experimental conditions (polymer molecular weight, concentration, mixing ratios, pH and temperature) were measured by Dynamic Light Scattering (DLS) technique prior to irradiation. At relatively low absorbed doses of 5 and 10 kGy, IPC nanogels with a range of 30-250 nm diameters, -12 to -28 mV zeta potentials and polydispersities lower than 0.17 were obtained. The sizes of the nanogels were found to be smaller than the size of the precursor IPC coil sizes (40-300 nm) due to the formation of intra-chain crosslinks. Thus a recipe of preparing multifunctional nanogels with double amphiphilic properties carrying polyacidic and nonionic polymer structures with the range of above listed properties has been developed. These nanogels show narrow size distribution and high colloidal stability increasing their potential to be used as biocompatible drug carriers with controlled-release properties. PVP-PAA IPC nanogels were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques.

  8. Radiation-induced crosslinking of poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  9. Method of modifying a vinyl chloride resin by utilizing radiation cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kagiya, T; Fujimoto, T; Hosoi, F; Tsuneta, K; Atogawa, M

    1970-08-26

    The polyvinyl chloride is improved in its mechanical, thermal and chemical properties, with particular advantages gained in dimensional stability at temperatures higher than the plasticizing temperature. The process comprises irradiating a vinyl chloride resin with ionizing radiations in the presence of a vinyl acetate monomer. In this process, the irradiation of vinyl acetate effects cross-linking and the polymerization of the monomer simultaneously. The vinyl chloride resin may be a copolymer along with another monomer, a polyvinyl chloride derivative, a graft polymer of polyvinyl chloride, a mixture of vinyl chloride with another resin and a graft copolymer of vinyl chloride on another resin in any form. The addition of the vinyl acetate monomer to the vinyl chloride is not limited to any particular procedure. The vinyl acetate monomer may be added to the polyvinyl chloride in a quantity ranging from a trace to 200% by weight. The radiation dose may be 10/sup 2/ to 10/sup 9/, but preferably 10/sup 3/ roentgen. In one example, 36 parts by weight of market available vinyl acetate monomer immersed in 100 parts by weight of hard vinyl tube were placed in a stainless reacting vessel. After the replacement of inner air with nitrogen, the vessel was exposed to ..gamma.. beams of 4.8 x 10 roentgen from a Co-60 source. After dipping the exposed samples in boiled tetrahydrofuran for 48 hours, the insoluble substance in the samjle was 78.9% by weight. In addition, after heating at 180/sup 0/C for 30 minutes, the sample did not show any deformation.

  10. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells

    Science.gov (United States)

    Liu, Chien-Pan; Dai, Chi-An; Chao, Chi-Yang; Chang, Shoou-Jinn

    2014-03-01

    In this study, we report the synthesis and the characterization of poly (vinyl alcohol) based proton conducting membranes. In particular, we describe a novel physically and chemically PVA/HFA (poly (vinyl alcohol)/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. The key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane is found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. The proton conductivities and the methanol permeability of all the membranes are in the range of 10-3-10-2 S cm-1 and 10-8-10-7 cm2 s-1, respectively, depending on its binary crosslinking density, and it shows great selectivity compared with those of Nafion®-117. The membranes display good mechanical properties which suggest a good lifetime usage of the membranes applied in DMFCs.

  11. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chun-En [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); Lin, Chi-Wen [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin (China); Hwang, Bing-Joe [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); National Synchrotron Radiation Research Center, Hsinchu 300 (China)

    2010-04-15

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO{sub 3}H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 x 10{sup -2} S cm{sup -1} at room temperature from one of the synthesized membranes, higher than that of the Nafion {sup registered} membrane. Methanol permeability of the synthesized membranes measures about 1 x 10{sup -7} cm{sup 2} S{sup -1}, about one order of magnitude lower than that of the Nafion {sup registered} membrane. (author)

  12. Preparation of various hydrogels based on poly (Vinyl pyrrolidone) and poly ethylene glycol using gamma and electron irradiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2006-11-01

    Different hydrogels have been prepared using gamma and electron irradiation; the hydrogels are composed of poly(vinyl pyrolidone) (PVP), poly(ethylene glycol) (PEG). The influence of some process parameters on the properties of the hydrogels has been investigated as: the gel fraction, maximum swelling, swelling kinetics, and mechanical properties. In the first part of this study, hydrogel dressings have been prepared using electron irradiation, and the dressings are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG) and agar. The gel fraction increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. The prepared hydrogels dressings could be considered as a good barrier against microbes. In the second part, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. In the third part of the study, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and poly(ethylene glycol) (PEG) with various molecular weights, and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. The data show that PEG with low molecular weight needs a high dose for the gelation, and the presence of PVP lowers the needed gelation dose. The maximum swelling decreases with increasing irradiation dose and the PVP concentration, which is due to higher crosslinks between the polymer chains. (author)

  13. Preparation and physical properties of enhanced radiation induced crosslinking of ethylene-vinyl alcohol copolymer (EVOH)

    International Nuclear Information System (INIS)

    Deng Pengyang; Liu Meihua; Zhang Wanxi; Sun Jiazhen

    2007-01-01

    Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking

  14. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  15. Poly(vinyl pyrrolidone) (PVP) hydrogels study for ophthalmologic area utilization

    International Nuclear Information System (INIS)

    Amaral, Renata Hage; Rogero, Sizue Ota; Lugao, Ademar Benevolo; Cruz, Aurea S.; Sacramento, Rogerio S.; Lima Filho, Acacio A. Souza; Schor, Paulo

    2005-01-01

    Poly (vinyl pyrrolidone) (PVP) hydrogels produced by radiation-induced crosslinking were studied to compose drug delivery system to be used in the eye surface and to manufacture ophthalmic plugs. Some formulations with PVP and poly ethylene glycol (PEG) with different molar mass (300 and 600) were prepared utilizing 0.85% sodium chloride aimed to control the swelling capacity. The obtained hydrogels were characterized by gel fraction and swelling assays. The gel fraction and swelling results indicated no difference in the formulation containing or not NaCl. The gel fraction results varied from 62 to 81% and the swelling degree from 130 to 420%. In vitro assay of cytotoxicity by neutral red uptake method was the first biocompatibility test performed. The results showed no evidence of toxicity in the studied hydrogels. (author)

  16. Controlled synthesis of novel 3D dendritic Bi2S3 /cross-linked poly(vinyl alcohol) nanocomposites

    International Nuclear Information System (INIS)

    Wu, W-T; Shi Lei; Pang Wenmin; Wang Yusong; Zhu Qingren; Xu Guoyong

    2006-01-01

    Novel spherical three-dimensional (3D) dendritic Bi 2 S 3 /cross-linked poly(vinyl alcohol) (PVA) nanocomposites were successfully synthesized in aqueous solution of amphiphilic polyvinylacetone (PVKA) (ketalization degree D H = 0.549), via one-step in situ decomposition of the complex [Bi(Tu) x ] 3+ under γ-ray irradiation, utilizing the controllable hydrolysis property of PVKA in acidic solution. Herein, PVA chains are obtained from the hydrolysed PVKA. These uniform 3D spherical nanocomposites have a structure similar to that found in the natural lotus leaf, where every microscale papilla on the leaf surface is covered by nanoscale papillae

  17. Tailor-made starch-based conjugates containing well-defined poly(vinyl acetate and its derivative poly(vinyl alcohol

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Reversible addition-fragmentation chain transfer (RAFT polymerization was adopted to synthesize starch-based conjugates that possessed controllable architecture and properties. Starch-based xanthate agent was prepared and applied as chain transfer agent to conduct the living/controlled polymerization (LCP of vinyl acetate, which generated tailor-made conjugates of starch and well-defined poly(vinyl acetate (SVAc. The relevant derivatives, conjugates of starch and chain length-controlled poly(vinyl alcohol (SVA, were obtained subsequently. Various characterizations such as Fourier transform infrared spectra (FTIR, ultraviolet-visible spectroscopy (UV, proton nuclear magnetic resonance (1H NMR, gel permeation chromatography (GPC, X-ray diffraction (XRD, Thermogravimetric analysis (TGA, and dynamic mechanical thermal analysis (DMTA were performed to examine the structure of intermediates and the starch-based conjugates. Static contact angle measurements revealed that the hydrophilic character of starch-based conjugates was tunable. Well-defined SVAc was amphiphilic and it was able to self-assemble into size controllable micelles, which was verified by contact angles, transmission electron microscopy (TEM and dynamic light scattering (DLS tests. SVA exhibited much higher capability to form physically cross-linked hydrogel than starch did. Both the characteristic of SVAc and SVA were chain length-dependent.

  18. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  19. Influences of poly (vinyl alcohol molecular weight and carbon nanotubes on radiation crosslinking shape memory polymers

    Directory of Open Access Journals (Sweden)

    Aamer A.M. Alfayyadh

    2017-06-01

    Full Text Available Polyvinyl alcohol (PVA of two molecular weights was used to prepare shape memory polymers based on chemical-crosslinking by glutaraldehyde. The chemical-crosslinking was done in the presence of 2-carboxyethyl acrylate oligomers (CEA and nano-filler [multi-wall carbon nanotubes (MWCNT and functionalized carbon nanotubes (MWCNT-NH2] followed by radiation-induced crosslinking. The analysis of the material revealed an increase in the gel fraction and a significant reduction in swelling of the nanocomposite material that was crosslinked with both glutaraldehyde and ionizing radiation. The radiation crosslinked nanocomposites demonstrated approximately a 90% gelation over a range of 50–300 kGy irradiation doses. The scanning electron microscopy (SEM analysis showed a homogeneous distribution of nanocomposites in the composite matrix. The thermal properties of radiation crosslinked (PVA/CEA and (PVA-CEA-nano-fillers were investigated by a thermogravimetric analysis (TGA. The mechanical properties were examined via dynamic mechanical analysis (DMA which showed significant variation because of the addition of nanocomposites. This radiation crosslinked materials show good shape memory behavior that may be useful in many applications based on the range of temperatures at which Tan δ appears.

  20. Primary processes in radiation-induced crosslinking of poly(2-phenylbutadiene)

    International Nuclear Information System (INIS)

    Yamaoka, Hitoshi; Kato, Kazuo; Okamura, Seizo.

    1987-01-01

    The radiation-induced crosslinking of poly(2-phenylbutadiene)(PPB) in ethylene dichloride solution was studied in vacuum at 303 K. The G value of the crosslinking was estimated to be about 7.2. In order to detect the reaction intermediates under irradiation, optical absorption spectra in rigid matrices and ESR spectra in bulk were measured. The absorption spectra due to radical cation of PPB and due to α,α-disubstituted benzyl cation were observed in butyl chloride glass. ESR spectra owing to polyenyl type radical was found in the irradiated specimens of PPB and Diels-Alder type dimer of 2-phenylbutadiene. The primary processes in radiation-induced crosslinking of PPB were discussed on the basis of the results obtained. (author)

  1. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1984-01-01

    Enhanced crosslinking of synthetic polymer simultaneous with grafting and homopolymerization processes have been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. Extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. New method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  2. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  3. Terpyridine modified poly(vinyl chloride) : possibilities for supramolecular grafting and crosslinking

    NARCIS (Netherlands)

    Meier, M.A.R.; Schubert, U.S.

    2003-01-01

    Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two-step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an

  4. Investigation on the thermal properties of new thermo-reversible networks based on poly(vinyl furfural and multifunctional maleimide compounds

    Directory of Open Access Journals (Sweden)

    C. Gaina

    2012-02-01

    Full Text Available New thermo-reversible networks were obtained from poly(vinyl furfural and multifunctional maleimide monomers by Diels-Alder (DA and retro-DA reactions. The poly(vinyl furfural having acetalization degree of 15 and 25% were obtained by the acid-catalyzed homogenous acetalization of poly(vinyl alcohol with 2-furfural in a nonaqueous media. The thermal and viscoelastic behaviour of the cross-linked materials have been studied via differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis. The networks exhibit considerable swelling in those organic solvents that dissolve both poly(vinyl furfural and bismaleimides; by heating in aprotic dipolar solvents at 150°C, they become soluble.

  5. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1986-01-01

    Enhanced crosslinking of synthetic polymer simultaneously with grafting and homopolymerization processes has been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. The extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. A new method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  6. Raman spectroscopy of poly (3-hydroxybutyrate) modified with poly (vinyl acetate) by radiation- induced copolymerization

    International Nuclear Information System (INIS)

    Gonzalez, Maykel; Galego Fernandez, Norma; Ortiz del Toro, Pedro; Rapado, Manuel; Paredes

    2007-01-01

    Poly (3-hydroxybutyrate) (PHB) is an important material used in the field of medicine. However in common conditions, PHB has some deficiencies. It is very brittle and slightly hydrophobic polymer. This somewhat limit its applications. Radiation chemistry can be used to improve its chemical properties. In the present study, the substrate, modified by radiation-induced graft copolymerization with vinyl acetate (VAc), was characterized using FTIR and Raman spectroscopy. FTIR spectroscopy did not reveal any significant bands but Raman spectroscopy revealed the formation of a new band that characterize the material

  7. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    Science.gov (United States)

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  8. Radiation cross-linking of ethylene vinyl alcohol copolymer functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate

    International Nuclear Information System (INIS)

    Ekman, K.B.; Naesman, J.H.

    1993-01-01

    An ethylene vinyl alcohol copolymer was functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate using reactive processing in a mixer. The functionalization introduces pendant unsaturation to the polymer, which allows radiation cross-linked to gel contents >70% at radiation doses below 100 kGy. Unfunctionalized ethylene vinyl alcohol copolymer, on the other hand, forms no gel upon irradiation. The functionalization was completed within a few minutes of reactive mixing, which was confirmed with both FTIR and 13 C-NMR measurements. The oxygen permeability of ethylene vinyl alcohol copolymer increased with increasing degree of functionalization, and irradiation of the samples formed trapped radicals, which act as oxygen scavengers. Consequently no oxygen permeability was detected. However, radical activity was inhibited by annealing the samples at 110 C resulting in a 24% higher oxygen permeability value for the irradiated unfunctionalized copolymer. The oxygen permeability values of the irradiated functionalized samples were approximately 13% lower. Laminates of m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene vinyl alcohol copolymer and m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene hydroxyethyl methacrylate copolymer acquired improved adhesive strength both at dry and wet conditions as well as at elevated temperature upon exposure to radiation

  9. Polyurethanes Crosslinked with Poly(vinyl alcohol as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Justyna Kucińska-Lipka

    2018-02-01

    Full Text Available Novel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR crosslinked with poly(vinyl alcohol (PVA as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent (dimethylsulfoxide, DMSO. The raw materials used for the synthesis of PVA-crosslinked PURs were poly(ε-caprolactone (PCL, 1,6-hexamethylene diisocyanate (HDI, and PVA as a crosslinking agent. The obtained materials were studied towards their physicochemical, mechanical, and biological performance. The tests revealed contact angle of the materials surface between 38–47° and tensile strength in the range of 41–52 MPa. Mechanical characteristics of the obtained PURs was close to the characteristics of native human bone such as the cortical bone (TSb = 51–151 MPa or the cancellous bone (TSb = 10–20 MPa. The obtained PVA-crosslinked PURs did not show significant progress of degradation after 3 months of incubation in a phosphate-buffered saline (PBS. Accordingly, the obtained materials may behave similar to slowly-degradable materials, which can provide long-term physical support in, for example, tissue regeneration, as well as providing a uniform calcium deposition on the material surface, which may influence, for example, bone restoration. A performed short-term hemocompatibility study showed that obtained PVA-crosslinked PURs do not significantly influence blood components, and a cytotoxicity test performed with the use of MG 63 cell line revealed the great cytocompatibility of the obtained materials. According to the performed studies, such PVA-crosslinked PURs may be a suitable proposition for the field of tissue engineering in regenerative medicine.

  10. Radiation synthesis of size-controlled poly(N-vinyl pyrrolidone) nanogels and their use as antimicrobial agents

    International Nuclear Information System (INIS)

    Isik, S.D.; Gueven, O.

    2011-01-01

    Complete text of publication follows. Nanogels are swollen networks of hydrophilic polymers generally developed to carry drugs, proteins and biologically active substances for biomedical applications. They can be prepared by 1) physical assembling of interactive polymers, 2) polymerization of monomers in micro or nanoscale environment, 3) crosslinking of preformed polymers, 4) template-assisted nanofabrication of nanogel particles. Among these methods crosslinking of preformed polymer chains provide excellent applications, especially when ionizing radiation is used as the tool to induce crosslinking. Due to its low cytotoxicity, excellent biocompatibility and non-carcinogenic and non-allergic properties, poly(N-vinyl pyrrolidone) (PVP) has been widely used in biomedical applications, hence the main reason for its selection in this work for the synthesis of its nanogels. PVP nanogels were prepared by gamma irradiation of its dilute aqueous solutions up to 15 kGy. The coil sizes of PVP chains were initially controlled by using acetone/water mixture as the solvent and further irradiations fixed the sizes by intramolecular crosslinking. By changing the concentration of PVP solutions, solvent composition and dose it was possible to prepare nanogels within 40-230 nm sizes. The nanogels were characterized by dynamic light scattering, scanning electron microscopy and atomic force microscopy. GPC has also been used to follow the changes in the coil sizes and distributions upon irradiations. The PVP nanogels thus synthesized were complexed with iodine in aqueous KI-I 2 solutions. Nanogels comprised of typical PVP-iodine complexes were tested for their antiseptic properties.

  11. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lijing, E-mail: zhulijing@nimte.ac.cn; Song, Haiming; Wang, Jiarong; Xue, Lixin, E-mail: xuelx@nimte.ac.cn

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  12. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    International Nuclear Information System (INIS)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-01-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  13. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol) as an Electrolyte Membrane

    OpenAIRE

    Panu Danwanichakul; Pongchayont Sirikhajornnam

    2013-01-01

    The membrane of chitosan-grafted-poly(vinyl alcohol)/poly(vinyl alcohol) (CS-g-PVA/PVA) was investigated along with chitosan (CS), PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of ...

  14. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Science.gov (United States)

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  15. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol as an Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Panu Danwanichakul

    2013-01-01

    Full Text Available The membrane of chitosan-grafted-poly(vinyl alcohol/poly(vinyl alcohol (CS-g-PVA/PVA was investigated along with chitosan (CS, PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of Nafion 117 membrane. The conductivity of the crosslinked CS-g-PVA/PVA membrane was greater than others including Nafion 117 when the membranes were saturated with methanol solution of which concentration was greater than 20%. This fact and that the mechanical properties of the wet crosslinked CS-g-PVA/PVA membrane were comparable to those of other membranes made it a promising material to be used as an electrolyte membrane in a direct methanol fuel cell.

  16. Study on radiation effect of poly (vinyl alcohol) films irradiated by tritium decay

    International Nuclear Information System (INIS)

    Li Hairong; Peng Shuming; Zhou Xiaosong; Yu Mingming; Xia Lidong; Chen Xiaohua; Liang Jianhua

    2014-01-01

    The radiation effect of poly(vinyl alcohol) films used as a kind of gas-barrier material for inertial confinement fusion (ICF) targets was studied under the different conditions of β-ray from tritium decay. The changes of physical and chemical properties of the irradiated material samples were analyzed by FTIR, XRD and AFM. The tritium-hydrogen isotopic exchange reaction of the irradiated samples mainly occurs at C-H bond and the IR absorption peak of C-T bond obviously increases with the irradiation dose. For strong hydrogen bonding interaction, the isotopic exchange reaction doesn't occur at O-H bond. The crystallinity degree and surface morphology of the irradiated samples were changed. The tensile properties of irradiated poly(vinyl alcohol) films were measured by universal material testing machine. The results show that the change trend of mechanical properties is in accordance with the microstructures of the irradiated samples. (authors)

  17. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds.

    Science.gov (United States)

    Kumar, Anuj; Lee, Yujin; Kim, Doyeon; Rao, Kummara Madhusudana; Kim, Jisoo; Park, Soyoung; Haider, Adnan; Lee, Do Hyun; Han, Sung Soo

    2017-02-01

    Cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds were fabricated by using freeze casting and freeze drying method. In this study, the effect of crosslinking agents such as calcium chloride, orthophosphoric acid, and borax on morphological, structural, thermal, mechanical, and cytocompatibility (cell adhesion and proliferation) properties was investigated. The results showed that the change in type of crosslinking agent significantly changed the properties of the hybrid scaffolds. Based on this study, borax-crosslinked hybrid scaffold showed good fibrous porous structure with high porosity (95.2%), highest water uptake capacity, good thermal stability, mechanical stability (storage modulus), and in vitro cell adhesion and proliferation with fibroblast (NIH3T3) cells. This primarily research study explores the way for further use of this crosslinking agent to design and fabricate scaffolds for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  19. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y.-X.

    2016-01-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  20. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study of the structure and parameters of crosslinking of poly(n-vinil-2-pyrrolidone) based hydrophilic membranes induced by radiation

    International Nuclear Information System (INIS)

    Lopergolo, Lilian Cristine

    2002-01-01

    A hydrogel is a polymeric material that exhibits the ability to swell in water and retains a significant fraction of water within its structure, but does not dissolve in water. One of the major problems in the application of these materials is their relatively poor mechanical strength, attributed to the high degree of hydration of the gel. This work focused to the study of the interactions between hydrophobic and hydrophilized fibers, with the objective of optimization of the mechanical properties of poly(N-vinyl-2-pyrrolidone) membranes. The membranes were prepared by electron beam irradiation of an aqueous polymer solution. Non-woven polypropylene fiber grafted with methyl methacrylate was employed as reinforcement. Another form of the irradiation was investigated. Ultraviolet radiation was used as an alternative method for the production of PVP membranes. The resulting changes in the main properties of the membranes, such as gel content, swelling characteristics, cytotoxicity , mechanical behavior, crosslinking density, average molecular weight between crosslinks and size pore were investigated. (author)

  2. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.

    Science.gov (United States)

    Mitha, M K; Jayabalan, M

    2009-12-01

    Biodegradable hydroxyl terminated-poly(castor oil fumarate) (HT-PCF) and poly(propylene fumarate) (HT-PPF) resins were synthesized as an injectable and in situ-cross linkable polyester resins for orthopedic applications. An injectable adhesive formulation containing this resin blend, N-vinyl pyrrolidone (NVP), hydroxy apatite, free radical initiator and accelerator was developed. The Composite adhesives containing the ratio of resin blend and NVP, 2.1:1.5, 2.1:1.2 and 2.1:1.0 set fast with tolerable exothermic temperature as a three dimensionally cross linked toughened material. Crosslink density and mechanical properties of the crosslinked composite increase with increase of NVP. The present crosslinked composite has hydrophilic character and cytocompatibility with L929 fibroblast cells.

  3. Radiation-induced crosslinking and post-processing of poly(L-lactic acid) composite

    International Nuclear Information System (INIS)

    Nagasawa, Naotsugu; Kasai, Noboru; Yagi, Toshiaki; Yoshii, Fumio; Tamada, Masao

    2011-01-01

    Poly(L-lactic acid), PLLA, was irradiated using electron beams (EBs) in the presence of triallyl isocyanurate (TAIC) at 5% concentration as crosslinking agent. The crosslinked PLLA obtained has heat resistance, as demonstrated by retention of its original shape at glass transition temperature or even higher than 200 o C. As an application of this fact, crosslinked PLLA is applied in spectacle lens to prevent shape deformation of eyeglass frames in displaying and transporting. However, in this application to lens, it is not enough to improve the thermal deformation of PLLA under stress at 70 o C. Radiation-induced crosslinking of a PLLA/silicon dioxide (SiO 2 ) composite with TAIC and post-processing of the crosslinked PLLA composite by heating were further investigated from the viewpoint of thermal deformation. The PLLA materials have several advantages such as high heat resistance and transparency. It is therefore proved that the combination of radiation-induced crosslinking, composition of SiO 2 and post-heating is beneficial for expanding the applications of PLLA.

  4. Radiation-induced crosslinking and post-processing of poly(L-lactic acid) composite

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kasai, Noboru; Yagi, Toshiaki; Yoshii, Fumio; Tamada, Masao [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2011-02-15

    Poly(L-lactic acid), PLLA, was irradiated using electron beams (EBs) in the presence of triallyl isocyanurate (TAIC) at 5% concentration as crosslinking agent. The crosslinked PLLA obtained has heat resistance, as demonstrated by retention of its original shape at glass transition temperature or even higher than 200 {sup o}C. As an application of this fact, crosslinked PLLA is applied in spectacle lens to prevent shape deformation of eyeglass frames in displaying and transporting. However, in this application to lens, it is not enough to improve the thermal deformation of PLLA under stress at 70 {sup o}C. Radiation-induced crosslinking of a PLLA/silicon dioxide (SiO{sub 2}) composite with TAIC and post-processing of the crosslinked PLLA composite by heating were further investigated from the viewpoint of thermal deformation. The PLLA materials have several advantages such as high heat resistance and transparency. It is therefore proved that the combination of radiation-induced crosslinking, composition of SiO{sub 2} and post-heating is beneficial for expanding the applications of PLLA.

  5. Rubber-like poly(vinyl alcohol) gel

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Masao (Nippon Oil Co. Ltd., Yokohama (Japan). Central Technical Research Lab.)

    1990-09-01

    Anomalous poly (vinyl alcohol) gel has been found in our laboratory since 1980. The gel is prepared by repeated freezing (or freeze-dehydration) of aqueous poly (vinyl alcohol). Experiments establish the fact that anomalous gel is never produced in the course of freezing, but during sustained thawing the gelation does occur. Moreover, it was found that the softening point of the gel increases at 37degC. It is assumed that crystal nuclei are generated on freezing, then on thawing, some of them grow to very fine crystals which act as polymer network-knots (cross-linking). Additional freezing provide other seeds, which grow similarly, and these are accumulated until rubber-like gel is produced. The gel was always water-resistant at 37degC, and the potassium permanganate consumption of the extracted water layer remained far below the official restricted value for medical materials. The gel can be sterilized with gamma-rays or chlorhexidine. Moreover, it satisfies the official standards of acute toxicity, pyrogen, intracutaneous reaction, hemolyzation, and intracorporeal implantation, respectively. Applications to adhesion-preventing membrane (for joint or pericardium), tamponade (for jaw defects), electrode (for electroretinogram or artificial inner ear), artificial denture base and phantoms for magnetic resonance imaging were examined. (author) 54 refs.

  6. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  7. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  8. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  9. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  11. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    International Nuclear Information System (INIS)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V.

    2013-01-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  12. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)

    2013-11-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  13. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya

    2013-01-01

    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  14. Preparation of poly (vinyl alcohol) membranes grafted with n-vinyl pyridine/ acrylic acid binary monomers

    International Nuclear Information System (INIS)

    Ajji, A.; Ali, A.

    2014-03-01

    Poly(vinyl alcohol) films were grafted with two monomers using gamma radiation, acrylic acid and N-vinyl pyridine. The influence of different parameters on the grafting yield was investigated as: the comonomer concentration and composition, and irradiation dose. The suitable conditions of the process had been determined to prepare PVA membranes have both properties of the two monomers, acrylic acid and vinyl pyridine as comonomer concentration and composition, and irradiation dose. Some properties of the membranes had been investigated as maximum swelling and grafting. Also the ability of the grafted films to adsorb some heavy metals and dyes was elaborated and discussed.(author)

  15. Radiation crosslinking of polymer materials

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    It was found that some polyfunctional monomers (PFM) like triallyl isocyanurate (TAIC) and trimethallyl isocyanurate (TMAIC) when incorporated at low concentrations, are effective for promotion of crosslinking of biodegradable polymers such as polycaprolactone (PCL), poly(butylene succinate-co-adipate) (PBS) and poly(lactic acid) (PLA). PFM are kneaded with biodegradable polymers at molten condition before irradiation. Radiation crosslinking of PBS and PCL with 1% TAIC gave gel fractions of 80% at 20 kGy. This crosslinking is effective to improve deformation of biodegradable polymers at high temperature. The irradiated materials retained their biodegradability even after crosslinking when subjected to soil burial test. Irradiation at molten state (melting temperature, 340degC) led to crosslinking structures for polytetrafluoroethylene (PTFE). Crosslinked PTFE forms transparent films with high abrasion property and high radiation resistance. High-density polyethylene (HDPE) has a higher gel fraction in irradiation at molten state than irradiation at ordinary temperature. Crosslinked HDPE has been applied as knee joints in order to have high abrasion. Radiation crosslinked polycarbosilane (PCS) fiber gives high heat resistant silicon carbide (SiC) after firing. EB irradiation of PCS is effective to improve strength of product and to inhibit flow during carbonization. SiC, being resistant to high temperature will be applied in turbine and body of rockets. (author)

  16. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    Science.gov (United States)

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  17. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Thevy Ratnam, Chantara [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Kamaruddin, Nur Hasiba [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia)

    2017-04-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  18. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    International Nuclear Information System (INIS)

    Idris, Sarada; Bakar, Ahmad Ashrif A.; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-01-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  19. Poly(vinyl pyrrolidone)-Chitosan implant for endoscopic treatment of vesicoureteral reflux

    International Nuclear Information System (INIS)

    Relleve, Lorna S.; Abad, Lucille V.; Aranilla, Charito T.; Dela Rosa, A.M.; Bolong, David T.; Bisnar, Carlo C.

    2008-01-01

    Radiation-crosslinked poly(vinyl pyrrolidone) (PVP)-Chitosan was prepared as a potential injectable implant for endoscopic treatment of vesicoureteral reflux (VUR). The physical and histological properties of PVP-Chitosan implant in comparison with the commercial dextranomer/hyaluronic acid copolymer (Deflux) have been evaluated in vivo by subcutaneous and abdominal injection in rats over a period of 6 months. The PVP-Chitosan implant was easily injected through 26-gauge needle. Monthly gross examination of the implanted sites showed no significant decrease in volume of implant and no local inflammatory reaction. Histological findings indicated no evidence of migration to the distant organs after 6 months of implantation. Results of this study indicated that PVP-Chitosan implant has properties of a good tissue augmenting substance such as stability, biocompatibility and non-migration but long-term studies are needed to evaluate its therapeutic efficiency. (author)

  20. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    Science.gov (United States)

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions. © 2011 American Chemical Society

  1. Preparation of poly(vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid binary monomers

    International Nuclear Information System (INIS)

    Ajji, Zaki; Ali, Ali

    2006-01-01

    Poly(vinyl alcohol) films were grafted with two monomers using gamma radiation, acrylic acid and N-vinyl imidazole. The influence of different parameters on the grafting yield was investigated as: type of solvent and solvent composition, comonomer concentration and composition, addition of mineral acids, and irradiation dose. Water uptake in respect to the grafting yield was also evaluated. The ability of the grafted films to adsorb copper ions was elaborated and discussed for different grafting yields and ph values of the solution. (authors)

  2. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats

    International Nuclear Information System (INIS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-01-01

    Cross-linking of electrospun (e-spun) fibre mats (beaded fibre morphology with the average diameter of the fibre segments between beads being ∼108 nm) of poly(vinyl alcohol) (PVA) containing sodium salicylate (SS), used as the model drug, was achieved by exposing the fibre mats to the vapour from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals, followed by a heat treatment in a vacuum oven. With increasing the exposure time in the cross-linking chamber, the morphology of the e-spun fibre mats gradually changed from a porous to dense structure. Both the degree of swelling and the percentage of weight loss of the cross-linked fibre mats (i.e. ∼200-530% and ∼15-57%, respectively) were lower than those of the untreated ones (i.e. ∼610% and ∼67%, respectively). Cross-linking was also responsible for the monotonic increase in the storage moduli of the cross-linked SS-loaded e-spun PVA fibre mats with increasing exposure time in the cross-linking chamber. The release characteristic of the model drug from the SS-loaded e-spun PVA fibre mats both before and after cross-linking was assessed by the transdermal diffusion through a pig skin method. The cumulative release of the drug from these matrices could be divided into two stages: 0-4 and 4-72 h, in which the amount of SS released in the first stage increased very rapidly, while it was much slower in the second stage. Cross-linking slowed down the release of SS from the drug-loaded fibre mats appreciably and both the rate of release and the total amount of the drug released were decreasing functions of the exposure time interval in the cross-linking chamber. Lastly, the cross-linked SS-loaded e-spun PVA fibre mats were non-toxic to normal human dermal fibroblasts

  3. Radiation induced ionic polymerisation and grafting of vinyl monomers

    International Nuclear Information System (INIS)

    Stannett, V.T.

    1981-01-01

    Some special aspects of the radiation induced ionic polymerisation and grafting of vinyl monomers will be described. In particular the effects of solvents on the cationic polymerisation of the vinyl ethers will be discussed in detail. The unequivocal free ion nature of the polymerisation makes such information of considerable general interest. Estimates of the propagation rate constants with free cation polymerisation in solvents of different dielectric constants and solvation powers will be presented. Finally, some observations on the radiation induced graft polymerisation of ethyl vinyl ether to poly(vinyl chloride) and to polypropylene will be presented. (author)

  4. Polymer and Water Dynamics in Poly(vinyl alcohol/Poly(methacrylate Networks. A Molecular Dynamics Simulation and Incoherent Neutron Scattering Investigation

    Directory of Open Access Journals (Sweden)

    Ester Chiessi

    2011-10-01

    Full Text Available Chemically cross-linked polymer networks of poly(vinyl alcohol/poly(methacrylate form monolitic hydrogels and microgels suitable for biomedical applications, such as in situ tissue replacement and drug delivery. In this work, molecular dynamics (MD simulation and incoherent neutron scattering methods are used to study the local polymer dynamics and the polymer induced modification of water properties in poly(vinyl alcohol/poly(methacrylate hydrogels. This information is particularly relevant when the diffusion of metabolites and drugs is a requirement for the polymer microgel functionality. MD simulations of an atomic detailed model of the junction domain at the experimental hydration degree were carried out at 283, 293 and 313 K. The polymer-water interaction, the polymer connectivity and the water dynamics were investigated as a function of temperature. Simulation results are compared with findings of elastic and quasi-elastic incoherent neutron scattering measurements, experimental approaches which sample the same space-time window of MD simulations. This combined analysis shows a supercooled water component and an increase of hydrophilicity and mobility with temperature of these amphiphilic polymer networks.

  5. Synthesis of Poly(vinyl ether) Thermoplastic Elastomers Having Functional Soft Segments

    OpenAIRE

    今枝, 嗣人; 漆崎, 美智遠; 阪口, 壽一; 橋本, 保; Tsuguto, IMAEDA; Michio, URUSHISAKI; Toshikazu, SAKAGUCHI; Tamotsu, HASHIMOTO

    2013-01-01

    The ABA-type triblock copolymers consisting of poly(2-adarnantyl vinyl ether) [poly(2-AdVE) as outer hard segments and poly(6-acetoxyhexyl vinyl ether) [poly(AcHVE)] poly(6-hydroxyhexyl vinyl ether) [poly(H HVE)], or poly(2-(2-methoxyethoxy)ethyl vinyl ether [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxy, and oxyethylene units in their soft segments, the two polymer seg...

  6. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Science.gov (United States)

    Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-04-01

    This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.

  7. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  8. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna

    2015-01-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted. - Highlights: • PHB was indirectly grafted with PVA, by complete hydrolysis of grafted PVAc. • The effect of solvents on the grafting, crystallinity and biodegradation was studied. • The characterizations of the products were obtained by SEM, TGA, and DSC

  9. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: burillo@nucleares.unam.mx [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2016-10-30

    Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  10. Degradation of poly(vinyl chloride) films by X-rays radiation

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Kawano, Y.

    1984-01-01

    The degradation of pure poly(vinyl chloride) (PVC) films has been studied by X-rays radiation in vacuum. The films are transparent and become yellow with the exposure of radiation and this colour is enhanced with the time of irradiation. The infrared, ultraviolet and visible spectra changed in the irradiated material. The IR spectra show changes in itensities and band shifting, particularly in the region of C-Cl stretching vibrations indicating the occurrence of dehydrochlorination and a change in the conformation of the degraded PVC. The ultraviolet and visible spectra of irradiated films show a strong absorption band at 240 nm and many shoulders which are associated to dyenes, carbonyl and polyenes with few double bonds formed. The shoulder numbers increase in the spectra of samples kept for three months. This effect indicates that with irradiation, HCl is evolved resulting in the formation of polyenyl radicals, which propagate after irradiation. At the same time, should occur the reaction of these radicals with the atmospheric oxygen with formation of C=0 bonds. (Author) [pt

  11. Time domain NMR evaluation of poly(vinyl alcohol) xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano

    2016-05-15

    Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)

  12. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    Science.gov (United States)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  13. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  14. Physical changes on the radiation and heat induced poly(Vinyl alcohol) fibers

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Park, Kyung Ran; Park, Jong Seok; Lim, Youn Mook; Kang, Phil Hyun [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    Poly(vinyl alcohol) (PVA) has high tensile strength and flexibility as well as oxygen barrier properties. The water, which acts as a plasticizer, reduces the tensile strength of PVA and swells PVA as well. It needs to have high water-resistant depending on its applications, especially for the use as tire cords. The aim of this work was to investigate the effect of the annealing temperature and radiation on the Gel content and tensile strength of PVA fbers. For this purpose, gel fraction and tensile strength were determined and analyzed. Annealing was performed in the temperature range of 120-180℃ for 10 min. PVA fbers were irradiated by using a conventional electron beam irradiation at a radiation dose of 50⁓200 kGy, at a dose of 10 kGy/pass at room temperature (acceleration voltage of 1 MeV). Annealing markedly increased the Gel content and the tensile strength of PVA fbers. However irradiation lowered the Gel content and the tensile strength of PVA fbers because they were degraded easily by radiation.

  15. Separation of water and oil by poly (acrylic acid)-coated stainless steel mesh prepared by radiation crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Shin, Jung Woong; Park, Jong Seok; Lim, Young Mook; Jeun, Joon Pyo; Kang, Phil Hyun [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

  16. Graft copolymerization of styrene onto poly(vinyl alcohol) initiated by potassium diperiodatocuprate (III)

    International Nuclear Information System (INIS)

    Bai, L.; Wang, Ch.; Jin, J.; Liu, Y.

    2009-01-01

    The graft copolymerization of styrene onto poly(vinyl alcohol) is studied by using a novel redox system of potassium diperiodatocuprate-poly(vinyl alcohol) (Cu(III)poly(vinyl alcohol) in alkaline medium. Cu(III)-poly(vinyl alcohol) redox pair is an efficient initiator for this graft copolymerization which is proved by high graft efficiency (>97%) and high percentage of graft (>300%). Reaction conditions (monomer-to-poly(vinyl alcohol) weight ratio, initiator concentration, p H, time and temperature) affect the graft parameters which have been investigated systematically. The optimum reaction conditions are found as St/poly(vinyl alcohol) = 5.4; [Cu(III)] = 1*10 -2 M; p H = 12.7; temperature = 50 d eg C ; time = 3.5 h. Further, the equation of the overall polymerization rate can be written as follows: R p = k C 1.9 (St) C 1.7 (Cu(III)). The overall activation energy was calculated to be 42.0 kJ/mol based on the experimental data of the relations between R p and C(St); R p and C(Cu(III)); and R p and temperature. A mechanism is proposed to explain the formation of radicals and the initiation. The structure of the graft copolymers is confirmed by Fourier transfer infrared spectroscopy. Some peaks were compared with poly(vinyl alcohol) at 3080.34-3001.79 cm -1 (=C-H stretching in the phenyl ring), 1600.34-1450.95 cm -1 (C=C stretching in the phenyl ring), 755.17 cm -1 and 698.64 cm -1 (=C-H out-off-plane bending in phenyl ring) which are considered to belong to the characteristic absorption bands of phenyl group of polystyrene. Therefore it proves that the graft copolymer is composed of poly(vinyl alcohol) and polystyrene. thermal gravimetric analysis thermo grams of poly(vinyl alcohol) and poly(vinyl alcohol)-graft-polystyrene are investigated as well. As it is shown the initial decomposition temperature of poly(vinyl alcohol)-g-polystyrene(377.3 d eg C ) is much higher than that of poly(vinyl alcohol) (241.8 d eg C ), which indicates that the thermal stability of the

  17. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    International Nuclear Information System (INIS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-01-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded. - Highlights: ► Complete PLA stereocomplex was obtained from synthesized PLLA and a commercial PDLA. ► Melting temperature of stereocomplex were much improved by gamma irradiation. ► Crosslinking network inhibited the mobility of polymeric chains for crystallization. ► Biodegradability of PLLA was reduced by stereocomplexation and crosslinking.

  18. The Effects of Reaction Variables on Solution Polymerization of Vinyl Acetate and Molecular Weight of Poly(vinyl alcohol Using Taguchi Experimental Design

    Directory of Open Access Journals (Sweden)

    M.H. Navarchian

    2009-12-01

    Full Text Available Poly(vinyl acetate is synthesized via solution polymerization, and then it is converted to poly(vinyl alcohol by alkaline alcoholysis. The aim of the work study was to investigate statistically the  influence of reaction variables in vinyl acetate polymerization, the conversion of this monomer to polymer, degree of branching of acetyl group in poly(vinyl acetate, as well as the molecular weight of poly(vinyl alcohol, using Taguchi experimental design approach. The reaction variables were polymerization time, molar ratio of initiator to monomer, and volume ratio of monomer to solvent. The statistical analysis of variance of the results revealed that all factors have significantly influenced the conversion and degree of branching. Volume ratio of monomer to solvent is the only factor affecting the molecular weight of poly(vinyl alcohol, and has the greatest influence on all responses. By increasing this ratio, the conversion, degree of branching of acetyl group in poly(vinyl acetate, and molecular weight of poly(vinyl alcohol were increased.

  19. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    Science.gov (United States)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  20. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  1. Physically crosslinked poly(vinyl alcohol-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Poly(vinyl alcohol, PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES in (PVA and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS, which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.

  2. Influence of gamma irradiation dose and concentration of laponite clay on Poly (N-Vinyl-2-Pyrrolidone) hydrogels

    International Nuclear Information System (INIS)

    Santos, Vinicius J.; Zafalon, Angélica T.; Lugão, Ademar B.; Parra, Duclerc F.

    2017-01-01

    Hydrogels are polymeric biomaterials widely used in biomedicine and defined as an insoluble system of one or more crosslinked hydrophilic polymers, capable of absorbing large amounts of fluids without losing their physical integrity. Composed by one three-dimensional network of crosslinked polymer chains they can be synthesized by various physical and chemical methods including radiation. One of these methods is the gamma irradiation process, which forms the crosslinked network and sterilizes the material in a single step. In the biomedical field one of hydrogels applications is the transdermal dressings, these systems have an impact of great value in the treatment of wounds, as they can protect regions injured by burns, cuts and even chronic wounds. The association of clay to hydrogels promotes a modification of properties of these materials, such as swelling and gel fraction. Thus, the objective of this work was to evaluate the swelling properties and gel fraction of hydrogels based on polymer formulation of poly (N-vinyl-2-pyrrolidone), poly (ethylene glycol), agar containing nano-clay laponite RD in Different concentrations (0, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20%). The materials were mixed by stirring and heating and then processed by gamma radiation from Co-60 at doses of 10, 25, 50 and 70 kGy. To evaluate the gel fraction, the membranes were immersed in water for 3 weeks. The swelling was evaluated after 48 hours of immersion in distilled water at room temperature. It was observed that as the clay concentration increases regardless of the irradiation dose the amount of gel fraction decreased and the amount of water absorption increased. (author)

  3. Influence of gamma irradiation dose and concentration of laponite clay on Poly (N-Vinyl-2-Pyrrolidone) hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vinicius J.; Zafalon, Angélica T.; Lugão, Ademar B.; Parra, Duclerc F., E-mail: vinicius.jusan@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Hydrogels are polymeric biomaterials widely used in biomedicine and defined as an insoluble system of one or more crosslinked hydrophilic polymers, capable of absorbing large amounts of fluids without losing their physical integrity. Composed by one three-dimensional network of crosslinked polymer chains they can be synthesized by various physical and chemical methods including radiation. One of these methods is the gamma irradiation process, which forms the crosslinked network and sterilizes the material in a single step. In the biomedical field one of hydrogels applications is the transdermal dressings, these systems have an impact of great value in the treatment of wounds, as they can protect regions injured by burns, cuts and even chronic wounds. The association of clay to hydrogels promotes a modification of properties of these materials, such as swelling and gel fraction. Thus, the objective of this work was to evaluate the swelling properties and gel fraction of hydrogels based on polymer formulation of poly (N-vinyl-2-pyrrolidone), poly (ethylene glycol), agar containing nano-clay laponite RD in Different concentrations (0, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20%). The materials were mixed by stirring and heating and then processed by gamma radiation from Co-60 at doses of 10, 25, 50 and 70 kGy. To evaluate the gel fraction, the membranes were immersed in water for 3 weeks. The swelling was evaluated after 48 hours of immersion in distilled water at room temperature. It was observed that as the clay concentration increases regardless of the irradiation dose the amount of gel fraction decreased and the amount of water absorption increased. (author)

  4. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  5. Poly(aniline-co-m-aminobenzoic acid) deposited on poly(vinyl ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ ... along the polyaniline (PANI) chain results in self dop- ing of PANI and ..... The value of electrical conductivity is found to be ...

  6. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  7. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  8. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    Science.gov (United States)

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances. © 2014 Institute of Food Technologists®

  9. The role of unsaturations in the Gamma irradiation of crosslinkable polymers

    International Nuclear Information System (INIS)

    Satti, Angel J.; Ciolino, Andrés E.; Andreucetti, Noemí A.; Vallés, Enrique M.

    2015-01-01

    Nowadays, the understanding of the interaction of ionizing radiations with polymeric materials is becoming increasingly important. It is well known that many parameters regarding the synthesis of the polymers noticeably affect the irradiation process. In this work, an analysis of the effect of the type and the position of unsaturations in the molecular structure of crosslinkable polymers is performed. For such purpose, two solid semycristalline metallocenic ethylene 1-olefin copolymers (mEOC) which contain a low concentration of unsaturations from the synthesis, and their hydrogenated samples, were irradiated along with liquid poly(dimethylsiloxane) (PDMS) homo and copolymers containing different location and concentration of vinyl groups, which were structurally tailored through anionic synthesis. The source of irradiation was 60 Co, under vacuum at room temperature, in all the cases. The results indicated that terminal vinyls drastically accelerate the crosslinking to lower doses, even at much lower concentrations than other type and location of unsaturations for both, mEOC and PDMS, type of polymers. - Graphical abstract: Irradiated PEX # (ethylene copolymers with an # amount of 1-hexene -H- or 1-octadecene -OD) and their non-vinyl containing hidrogenated samples (PEX #h), along with irradiated vinyl functionalized siloxane polymers. Numbers within parentheses correspond to the number of vinyl groups per polymer chain for each irradiated polymer. Note that PDVi have been crosslinked with the lower dose of irradiation, although it has only one vinyl group. However, that is a terminal vinyl, while for the other polydimethylsiloxane derivatives, vinyls are within the main chain. - Highlights: • Terminal vinyls from metallocenic synthesis accelerate radioinduced crosslinking. • Trans vinyl structures are generated during irradiation, but vinyldenes are reluctant to react. • The position of the vinyl groups noticeably affects the irradiation process.

  10. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  11. Novel ionically crosslinked acrylamide-grafted poly(vinyl alcohol)/sodium alginate/sodium carboxymethyl cellulose pH-sensitive microspheres for delivery of Alzheimer's drug donepezil hydrochloride: Preparation and optimization of release conditions.

    Science.gov (United States)

    Bulut, Emine; Şanlı, Oya

    2016-01-01

    In this work, the graft copolymer, poly(vinyl alcohol)-grafted polyacrylamide (PVA-g-PAAm), was synthesized and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. Microspheres of PVA-g-PAAm/sodium alginate (NaAlg)/sodium carboxymethyl cellulose (NaCMC) were prepared by the emulsion-crosslinking method and used for the delivery of an Alzheimer's drug, donepezil hydrochloride (DP). The release of DP increased with the increase in drug/polymer ratio (d/p) and PVA-g-PAAm/NaAlg/NaCMC ratio, while it decreased with the increase in the extent of crosslinking. The optimum DP release was obtained as 92.9% for a PVA-g-PAAm/NaAlg/NaCMC ratio of 1/2/1, d/p ratio of 1/8, and FeCl3 concentration of 7% (w/v).

  12. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  13. Effect of Compatibilization on Poly-ε-Caprolactone Grafting onto Poly(ethylene-co-vinyl alcohol

    Directory of Open Access Journals (Sweden)

    Mohamed Taha

    2011-10-01

    Full Text Available The non-miscibility of the reactants during solvent free poly-ε-caprolactone grafting onto poly(ethylene-co-vinyl alcohol (EVOH dramatically affects reaction kinetics. Different solutions were proposed to accelerate the exchange reactions between poly(ethylene-co-vinyl alcohol and poly-ε-caprolactone. Reactions were conducted in a batch reactor or a mini twin-screw extruder. The addition of a poly(ethylene-co-vinyl alcohol-g-poly-ε-caprolactone copolymer increased the compatibility of the reactants and led to a higher reaction rate. This copolymer was either prepared separately and added at the reaction beginning or prepared in situ grafting caprolactone from EVOH. The reactive system evolution was analyzed using molar mass evolution, microstructure characterization, thermal properties and the reactive blend morphology. The compatibilization effect combined with optimized reaction conditions, such as concentration and nature of catalyst and temperature, resulted in an important increase in reaction rates. Among the tested catalysts, 1,5,7-Triazabicyclo [4.4.0]dec-5-ene was a more efficient catalyst for grafting reactions than Tin (II 2-ethylhexanoate.

  14. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  15. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  16. Evaluation of morphology and cell behaviour of a novel synthesized electrospun poly(vinyl pyrrolidone/poly(vinyl alcohol/hydroxyapatite nanofibers

    Directory of Open Access Journals (Sweden)

    Raheleh Faridi-Majidi

    2017-04-01

    Full Text Available Objective(s: Three-dimensional structures such as nanofibrous scaffolds are being used in biomedical engineering as well as provide a site for cells to attach and proliferate leading to tissue formation. In the present study, poly(vinyl pyrrolidone (PVP/ poly(vinyl alcohol(PVA hybrid nanofibrous scaffold was synthesized by electrospinning. Materials and Methods: The effect of adding nano hydroxyapatite (n-HA and also Epoxypropoxy-propyl-trimethoxysilane (EPPTMS as a crosslinking agent on morphology and cell behaviour of the nanofibers was investigated.Results: Scanning electron microscope (SEM observations showed that all kinds of nanofibers represented uniform and well-ordered morphologies without formation of any beads by controlling the synthesis parameters. The average ûber diameter of PVP-PVA was 260 nm. n-HA was synthesized by wet chemical process. The synthesized n-HA was characterized by XRD for structural analysis. Transmission electron microscope (TEM revealed that HA particles had nanosized dimensions (in the range of 40-100 nm. The presence of n-HA within electrospun PVP-PVA nanofibers was confirmed by XRD and Fourier transmission infrared spectroscopy (FTIR analyses. The average ûber diameter was decreased to 136 nm when n-HA was added in the composition of PVP-PVA. FTIR analysis depicted that PVP-PVA nanofibers were linked to EPPTMS as a biocompatible material by the covalent bond. Although adding n-HA caused to decrease the diameter of PVP-PVA nanofibers, addition of EPPTMS within PVP/PVA/n-HA nanofibers induced increasing distribution of fiber diameter as it enhanced to 195nm. In addition, the proper proliferation of G292 osteoblastic cells without any cytotoxicity was observed for the nanofiber.Conclusion: Since these materials have been known as biomaterials, PVP/PVA/n-HA-EPPTMS nanofibers can be propounded as a good candidate for bone tissue engineering application.

  17. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    International Nuclear Information System (INIS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-01-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties. - Highlights: • Poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends were prepared as new packaging film. • The blends are superior to PLA in oxygen gas barrier property. • The blends are suitable for gamma ray sterilization and maintain useful mechanical properties. • The blends are perfectly transparent

  18. Radiation-induced crosslinking of polyethylene in the presence of bifunctional vinyl monomers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.S.

    1976-10-06

    The apparent crosslinking produced by the radiation grafting of two monomers to polyethylene, acrylic acid and acrylonitrile, was investigated. Evidence is presented to show that covalent crosslinks are not produced during the radiation grafting step; covalent crosslinks are produced by the post-irradiation heat treatment associated with measurements of gel; the enhancement in gel fraction and physical properties arises from true crosslinks rather than chain entanglements; and there may be practical value associated with the sensitization of crosslinking produced by the methods employed in this work. The effect of monomer-solvent composition on the graft and gel yield was studied. Viscoelastic properties of grafted films were determined above the melting point of pure polyethylene. The kinetic data, infrared spectra, and viscoelastic properties are the bases for the following mechanism: (1) Acrylic acid-g-PE: Acrylic acid enters the film in the form of a hydrogen bonded dimer and undergoes a grafting reaction that produces hydrogen-bond crosslinks. The heat treatment during the conventional methods for determining of crosslinks convert them into intermolecular anhydride bonds. (2) Acrylonitrile-g-PE: In this, the post-grafting crosslinking is the result of a thermally induced chain reaction leading to an uninterrupted conjugated sequence. The length of the ring structure increases with time and temperature, and the intensity of color increases with the length of the ring structure.

  19. Radiation-induced crosslinking of polyethylene in the presence of bifunctional vinyl monomers

    International Nuclear Information System (INIS)

    Joshi, M.S.

    1976-01-01

    The apparent crosslinking produced by the radiation grafting of two monomers to polyethylene, acrylic acid and acrylonitrile, was investigated. Evidence is presented to show that covalent crosslinks are not produced during the radiation grafting step; covalent crosslinks are produced by the post-irradiation heat treatment associated with measurements of gel; the enhancement in gel fraction and physical properties arises from true crosslinks rather than chain entanglements; and there may be practical value associated with the sensitization of crosslinking produced by the methods employed in this work. The effect of monomer-solvent composition on the graft and gel yield was studied. Viscoelastic properties of grafted films were determined above the melting point of pure polyethylene. The kinetic data, infrared spectra, and viscoelastic properties are the bases for the following mechanism: (1) Acrylic acid-g-PE: Acrylic acid enters the film in the form of a hydrogen bonded dimer and undergoes a grafting reaction that produces hydrogen-bond crosslinks. The heat treatment during the conventional methods for determining of crosslinks convert them into intermolecular anhydride bonds. (2) Acrylonitrile-g-PE: In this, the post-grafting crosslinking is the result of a thermally induced chain reaction leading to an uninterrupted conjugated sequence. The length of the ring structure increases with time and temperature, and the intensity of color increases with the length of the ring structure

  20. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    Science.gov (United States)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  1. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  2. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  3. Poly(tetramethyleneterephthalate) crosslinked by irradiation

    International Nuclear Information System (INIS)

    Nyberg, D.D.

    1978-01-01

    Crosslinking, e.g., by irradiation, of a polymer comprising poly(tetramethyleneterephthalate) is made possible by the addition of a member selected from the group consisting of triallyl cyanurate and N,N'-m-phenylenedimaleimide. The resulting crosslinked modified polymer may be rendered heat recoverable

  4. Studies on physical properties and fractography of electron beam irradiated poly(vinyl chloride)/epoxidized natural rubber blend in the presence of trimethylolpropane triacrylate

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    The effect of irradiation on the 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was studied in the presence of 3 phr trimethylolpropane triacrylate (TMPTA). The blend was irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 200 kGy in air and room temperature. The tensile properties, resilience and gel fractions of the blends were measured. Electron beam irradiation of the blend in the presence of the TMPTA were found to cause crosslinking which in effect caused an enhancement in modulus and gel fraction together with a concomitant decline in ultimate elongation. The irradiation has resulted in a less hysteretic poly(vinyl chloride)/epoxidized natural rubber blend, with increased rebound resilience. The tensile strength of the blend reached a maximum at 60 kGy followed by a slight decrease at higher doses, implying embrittlement due to the excessive crosslinking. The scanning electron micrographs of the fracture surfaces of the irradiated blends show evidence consistent with the above contention. (Author)

  5. Studies on biodegradation of crosslinked hydroxy terminated-poly(proplyene fumarate) and formation of scaffold for orthopedic applications.

    Science.gov (United States)

    Shalumon, K T; Jayabalan, M

    2009-12-01

    Biodegradation of crosslinked-hydroxy terminated-poly(proplyene fumarate) (X-HTPPF) has been studied in simulated physiological media to assess the formation of porous scaffold structure for bone growth and remodeling in load bearing orthopedic applications. Variation in crosslink density and surface hydrophilicity of X-HTPPF are observed due to non-stoichiometric mass of reacting partners. These variations influence absorption of the medium and biodegradation during aging. Though the initial absorption of medium is relatively higher with the crosslinked polymer (PNVP1) having 63.6% HT-PPF and 36.4% comonomer n-vinyl pyrrolidone (NVP) during the initial period of aging, the weight loss due to subsequent degradation with time is relatively lesser. PNVP1 undergo slow degradation with formation of fibril structure on the surface. The present crosslinked material PNVP1 is a candidate for the load bearing orthopedic applications.

  6. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  7. Effect of Saponification Condition on the Morphology and Diameter of the Electrospun Poly(vinyl acetate) Nanofibers for the Fabrication of Poly(vinyl alcohol) Nanofiber Mats

    OpenAIRE

    Seong Baek Yang; Jong Won Kim; Jeong Hyun Yeum

    2016-01-01

    Novel poly(vinyl alcohol) (PVA) nanofiber mats were prepared for the first time through heterogeneous saponification of electrospun poly(vinyl acetate) (PVAc) nanofibers. The effect of varying the saponification conditions, including temperature, time, and concentration of the alkaline solution, on the morphology of the saponified PVA fibers were evaluated by field-emission scanning electron microscopy. At 25 °C, the saponified PVA fibers exhibited a broad diameter distribution. The average f...

  8. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    Science.gov (United States)

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  9. Radiation induced crosslinking of poly(L-lactic acid) for making the polymeric materials having high thermal stability and improved mechanical properties

    International Nuclear Information System (INIS)

    Tran Minh Quynh; Tran Bang Diep; Nguyen Van Binh; Nguyen Quang Long; Pham Duy Duong; Hoang Phuong Thao; Hoang Dang Sang; Pham Ngoc Lan

    2013-01-01

    Different poly(L-lactic acid) (PLLA) have been synthesized from L-lactic acid as well as L-lactide by direct polycondensation and ring opening polymerization. Depending on reaction time, the resulting products having viscosity average molecular weight ranging from 5 to 25,000 g.mol -1 . Plasticization effects of some popular plasticizer, especially is polyethylene glycols (PEG) for the synthesized PLLA were determined. The results suggested that PEG 1000 is a good plasticizer with relative high plasticization effect. The crosslinking plasticized materials were prepared form the plasticized PLLA by irradiation with various radiation doses. The crosslinking structures were introduced in different formulation of PLLA/PEG/TAIC, the crosslinking density increased with radiation dose and seemed to be saturated at 50 kGy. The stable crosslinking structure inhibited the mobility for crystallization of PLLA chains, thermal stability of plasticized PLLA crosslinked with TAIC at 50 kGy become higher than that of initial PLLA with very small endothermic peak at its melting temperature. The stress-strain curves of the crosslinking plasticized PLLA showed that the toughness of the materials reduced but still higher than that of initial PLLA, whereas its tensile strength was much improved by radiation crosslinking. The results also revealed that the crosslinking plasticized PLLA can be completely degraded by proteinase K as well as microorganisms existing in compost. (author)

  10. Interaction between poly(vinyl pyridine) and poly(2,6-dimethyl-1,4-phenylene oxide) : A copolymer blend miscibility study

    NARCIS (Netherlands)

    de Wit, Joost; van Ekenstein, Gert Alberda; ten Brinke, Gerrit

    2007-01-01

    The phase behavior of blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with random copolymers of styrene and 2-vinyl pyridine, Poly(S-co-2VP), as well as with random copolymers of styrene and 4-vinyl pyridine, Poly(S-co-4VP), has been investigated in order to estimate the values of the

  11. Preparation and characterization of film of poly vinyl acetate ethylene copolymer emulsion

    International Nuclear Information System (INIS)

    Zhang, Yanhua; Gu, Jiyou; Tan, Haiyan; Shi, Junyou; Di, Mingwei; Zuo, Yingfeng; Qiu, Si

    2013-01-01

    In order to improve the storage modulus and water resistance of poly (vinyl acetate), the vinyl acetate and poly (vinyl alcohol) (PVA) were respectively used as monomers and protective colloid to prepare a new kind of polyvinyl acetate emulsion adhesive by continuous emulsion polymerization. The dynamic mechanics, particle distribution, glass transition temperature, polymer emulsion structure of both polymerized and copolymerized emulsion were analyzed by SEM, DMA and XPS, respectively. The results indicated that the copolymerized emulsion has the appropriate particle size and the uniform particle distribution, the glass transition temperature increased from 50 °C to 70 °C, compared with poly (vinyl acetate). It could be seen from XPS spectra of copolymerized emulsion that key characteristic peak of C=O was still existent. X-ray photoelectron spectra revealed that the addition of EVA did not generate the new bond, whereas the maximum percentage increases in ester was determined in the composite film with the introduction of EVA of 25%, which indicated that the composite film has copolymer structure. The storage modulus and water resistance of poly (vinyl acetate) were improved due to the introduction of the EVA.

  12. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  13. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Science.gov (United States)

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-02-01

    An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young's modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler-matrix interface, in-situ polymerization combined with chemical grafting modification was a good choice to prepare graphene/PVA nanocomposite with excellent mechanical properties.

  14. Elution behavior of poly(ethylene glycol) through poly(vinyl alcohol) gel column using several solvents as eluents

    International Nuclear Information System (INIS)

    Hirayama, Chuichi; Motozato, Yoshiaki; Matsumoto, Kazuaki.

    1983-01-01

    γ-Irradiated poly(vinyl alcohol) beads, which were sufficiently allowed to swell in water, were washed with methanol, and then were packed into column. Gel chromatography was performed using methanol, benzene, esters and ketones as eluents and poly(ethylene glycol) as a sample. When the elution was carried out using methanol and benzene as eluents, elution behavior of samples was ordinary. When ethyl formate, methyl acetate and ethyl propionate were used as eluents, samples were slightly adsorbed and the elution was delayed. In the case the elution was carried out using ethyl acetate, propyl acetate, butyl acetate and ethyl methyl ketone as eluents, samples were adsorbed strongly on the bed material, and the adsorption curve was analogous to the calibration curve using methanol as an eluent. Dried poly(vinyl alcohol) gel as a packing material, showed ordinary elution behaviors for the samples. The adsorption of poly(ethylene glycol) on the present bed material was attributed to the existence of hydrated water on poly(vinyl alcohol) gel matrix. (author)

  15. Comparison Study On Sunlight Or Gamma Radiation Aging Resistance Of Poly (Vinyl Pyrrolidone) Aqueous Solution With PVP Nanogel

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thu Hong; Nguyen Nguyet Dieu; Nguyen Thanh Duoc

    2011-01-01

    Comparison study on sunlight or gamma-radiation aging resistance of poly (vinyl pyrrolidone) (PVP) aqueous solution with PVP nanogel at 0.5% was carried out. Sunlight or gamma- radiation aging resistance of PVP aqueous solution and nanogel was evaluated on the basis of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight (M w ). The PVP aqueous solution and nanogel exposed to sunlight in the storage duration of 3 months and to gamma radiation at absorbed doses of 0, 15, 30, 50 kGy were used for this study. Furthermore, the stability of PVP nanogel and of PVP aqueous solution was also studied on the change of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight, particle size distribution and coil size. The experimental results were shown that the aging resistance of PVP nanogel was higher than that of PVP aqueous solution when exposed to gamma radiation or sunlight. (author)

  16. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  17. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  18. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    International Nuclear Information System (INIS)

    Khoerunnisa, Fitri; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi

    2016-01-01

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp"3, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  19. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi [Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  20. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    Science.gov (United States)

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  1. Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate-Poly(dimethyl siloxane-Poly(methyl acrylate Block Copolymer/Poly(vinyl acetate Blend Membranes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2015-03-01

    Full Text Available Structure of polymeric materials is of the most important factors in determination of the characteristics and properties of the membranes. Various research and developments on polymeric membranes confirm the direct correlation between structure-properties of polymeric membranes. In this research, the structural outcome of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate/poly(vinyl acetate blend membranes and its relationship with gas permeation behavior of the blends were investigated. The flexible block copolymer of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate (PMA-PDMS-PMA was synthesized via atom transfer radical polymerization. Morphology and chemical structure of the synthesized block copolymer was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, X-ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. Blend membranes of PMA-PDMS-PMA and poly(vinyl acetate (PVAc were prepared by solution casting method in different compositions. By adding poly(vinyl acetate to PMA-PDMS-PMA block copolymer, the selectivity of the membranes for carbon dioxide/methane pair gases were increased by 55%. Fractional free volume (an indication of chain packing efficiency in blend membranes and dielectric constant (an indication of the molar volume and molar polarization of the blend membranes were obtained as the factors reflected the microstructural effect of PMA-PDMS-PMA and PVAc blend membranes. The efforts were directed toward expressing more precise structure-properties relationship of PMA-PDMS-PMA/PVAc blend membranes. The experimental permeability values of the blend membranes reported in this research were compared with the modified logarithmic model. The modified logarithmic model was evaluated for other blend membranes.

  2. Effect of Electron Beam Irradiation on the Structure and Optical Properties of Poly (vinyl alcohol)

    International Nuclear Information System (INIS)

    Abutalib, M.M.

    2011-01-01

    Samples from of the polymeric material poly (vinyl alcohol) PVA have been exposed to electron beam in the dose range 5-100 kGy. The modifications induced in PVA samples due to electron beam irradiation have been studied through different characterization techniques such as X-ray diffraction XRD, Fourier Transform Infrared spectroscopy FTIR and color difference studies. The FTIR spectroscopy indicated that the degradation is the dominant mechanism at the dose range 5-60 kGy. Above 60 and up to 100 kGy, crosslinking is achieved. The crosslinking reported by FTIR spectroscopy destroyed the degree of ordering in the PVA samples as revealed by XRD. Additionally, the non irradiated PVA samples showed significant color sensitivity towards electron beam irradiation that appeared in the increase of the green and blue color components. This was accompanied by a net increase in the darkness of the samples

  3. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  4. Ultraviolet and infrared spectral analysis of poly(vinyl)butyral films: correlation and possible application for high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ebraheem, S.; El-Kelany, M.; Beshir, W.; Abdel-Fattah, A.A.

    1999-01-01

    A detailed study was performed to develop the dosimetric characteristics of poly(vinyl)butyral film (PVB), to be used as a film dosimeter for high-dose gamma radiation dosimetry. The useful dose range of this polymeric film extends up to 350 kGy. Correlations were established between the absorbed dose of gamma radiation and the radiation-induced changes in PVB measured by means of ultraviolet (UV) and Fourier Transform Infrared (FTIR) spectrophotometry. The results showed a significant dependence of the response on the selected readout tool of measurements whether FTIR (at 1738 and 3400 cm -1 ) or UV (at 275 and 230 nm), as well as on the quantity used for calculation. The effect of relative humidity during irradiation on dosimeter performance as well as the post-irradiation stability at different storage conditions are also discussed. (author)

  5. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong, E-mail: pengchaorong_siae@163.com

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  6. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    International Nuclear Information System (INIS)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-01-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  7. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors.

    Science.gov (United States)

    Chen, Ya-Nan; Peng, Lufang; Liu, Tianqi; Wang, Yaxin; Shi, Shengjie; Wang, Huiliang

    2016-10-12

    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

  8. Effective immobilization of redox mediators in a poly (vinyl alcohol) matrix by using gamma-irradiation cross-linking

    International Nuclear Information System (INIS)

    Galiatsatos, C.; Mark, J.E.; Heineman, W.R.

    1987-01-01

    The development of electrodes with specific chemical properties by coating them with polymeric networks is the long-range goal of this research. Polymeric networks result from inserting chemical bonds between segments of different poly (vinyl alcohol) (PVAL) chains using gamma irradiation. The resulting three dimensional network adheres to the surface of graphite electrodes and therefore can be used as a convenient polymer matrix for the attachment and immobilization of electroactive redox molecules such as mediators. Two mediators, methyl viologen (MV) and 2,6-dichlorophenolindophenol (DCIP) were dissolved in aqueous solutions of PVAL and applied on electrode surfaces. The resulting electrodes were subjected to different irradiation doses. The irradiated PVAL/MV and PVAL/DCIP electrodes were evaluated for the following features: 1) effect of irradiation dose, 2) film thickness, 3) polymer/mediator ratio and 4) lifetime. For the radiation dose range 0-80 Mrad the PVAL/MV electrode exhibited a % BE varying between 14.3 (0 Mrads) and Mrads) and 52.0 (40 Mrads) while the PVAL/DCIP electrode varied between 5.3 (80 Mrads) and 31.3 (20 Mrads). This study suggests a way of immobilizing redox mediators in a PVAL matrix on surfaces of graphite electrodes

  9. Electron beam irradiation and addition of poly(vinyl alcohol) affect gelatin based-films properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Mastro, Nelida L. del

    2015-01-01

    Gelatin is a mixture of high molecular weight polypeptides, product of denaturation, and partial structural degradation of collagen, and one of the first materials employed as biomaterials. Aqueous solutions of gelatin (10%), glycerin as plasticizer and poly(vinyl alcohol) (PVA) up to 10% were prepared in a water bath at 70 deg C under constant stirring. Films were irradiated with 10 and 20 kGy using an electron beam accelerator, dose rate of 22.4 kGy s -1 , energy 1.407 MeV, at room temperature, in the presence of air. After irradiation, mechanical properties, color measurements, water absorption, moisture and film solubility were analyzed. The films showed an improvement in maximum force to rupture the film with increase of the irradiation dose. The higher the puncture force to rupture the lower the elongation at break. Colorimetric tests showed significant differences between samples, and also differences depending of the applied radiation dose, and analyzed color parameter. In water absorption tests a decrease of absorption percentage was found with the increase of the dose for PVA free and 5% PVA samples. The addition of PVA increased the water absorption for all applied doses. The modifications in gelatin colloids can be appointed to radiation-induced crosslinking. Also, the PVA concentration in the samples influenced the resultant material properties. (author)

  10. Electron beam irradiation and addition of poly(vinyl alcohol) affect gelatin based-films properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Mastro, Nelida L. del, E-mail: pinamura@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Gelatin is a mixture of high molecular weight polypeptides, product of denaturation, and partial structural degradation of collagen, and one of the first materials employed as biomaterials. Aqueous solutions of gelatin (10%), glycerin as plasticizer and poly(vinyl alcohol) (PVA) up to 10% were prepared in a water bath at 70 deg C under constant stirring. Films were irradiated with 10 and 20 kGy using an electron beam accelerator, dose rate of 22.4 kGy s{sup -1}, energy 1.407 MeV, at room temperature, in the presence of air. After irradiation, mechanical properties, color measurements, water absorption, moisture and film solubility were analyzed. The films showed an improvement in maximum force to rupture the film with increase of the irradiation dose. The higher the puncture force to rupture the lower the elongation at break. Colorimetric tests showed significant differences between samples, and also differences depending of the applied radiation dose, and analyzed color parameter. In water absorption tests a decrease of absorption percentage was found with the increase of the dose for PVA free and 5% PVA samples. The addition of PVA increased the water absorption for all applied doses. The modifications in gelatin colloids can be appointed to radiation-induced crosslinking. Also, the PVA concentration in the samples influenced the resultant material properties. (author)

  11. Study of chemical interaction induced by ionizing radiation poly(dimethylsiloxane-g-ethylene oxide) in the poly(n-vinyl-2-pyrrolidone) and agar membrane; Estudo da interacao quimica do poli(dimetilsiloxano-g-oxido de etileno) na membrana de poli(n-vinil-2-pirrolidona) e agar induzida com radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Aurea de Souza

    1999-07-01

    Membrane composed by poly(N-vinyl-2-pyrrolidone) (PVP) and agar was formulated with and without poly(dimethylsiloxane-g-ethylene oxide) (SEO) irradiated with electron beam with doses between 10-50 kGy. The radiolytic behaviour of each component, PVP, agar and SEO, was studied when irradiated by gamma ray, in the absence and presence of air and water, by electron paramagnetic resonance (EPR) at 77 K. The chemical interaction of SEO with PVP/agar membrane was investigated by: infrared spectroscopy, energy dispersive X-ray fluorescence, dynamic-mechanical analysis, scanning electron microscopy, gel and swelling analysis. The cytotoxicity of the PVP/agar/SEO membrane was evaluated by cellular suppression. The membrane radicals from PVP ({phi}NC.) and from water (H., OH. and H{sub 2}O) was observed by EPR at 77K. The agar radicals formed by hydrogen abstraction of C{sub 1} and C{sub 3} of {beta}-D-galactose and/or C{sub 1} and C{sub 4} of {alpha}-L-galactose, reacted primarily with water radicals in despite of they also took part in the membrane by chemical bond. The radicals from SEO (.CH{sub 2}{approx}, .Si{approx}, .O{approx}) participated in the inter and intramolecular crosslinking as co-crosslinker by polymeric bridge. The co-crosslinked action depended on its concentration associated to PVP concentration. The presence op acrylates increases the tensile break of the PVP/agar/SEO membrane significantly. (author)

  12. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  13. Laser induced augmentation of silver nanospheres to nanowires in ethanol fostered by Poly Vinyl Pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Suneetha, E-mail: sunikutty@gmail.com; Linslal, C.L.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Radhakrishnan, P.; Kailasnath, M.

    2014-11-30

    Highlights: • Silver nanospheres are synthesised in ethanol containing Poly Vinyl Pyrrolidone which acts as a polymeric capping agent to nanoparticles thus improving its stability. • Laser irradiation onto the colloidal solution of silver nanoparticles produced well defined nanowires through ripening mechanism promoted by Poly Vinyl Pyrrolidone. • Nanowires so formed are having an average length of 8.7 μm and width of 160 nm. - Abstract: Stable uniform silver nanospheres having an average diameter of 45 nm are synthesised in ethanol containing Poly Vinyl Pyrrolidone using Laser Ablation in Liquid technique. Further irradiation of the nanocolloidal solution by focussed laser beam produced stable well defined silver nanowires through ripening mechanism fostered by the presence of Poly Vinyl Pyrrolidone. Confirmation of the mechanism is obtained from Transmission Electron Microscopic images of the nanocolloidal solution irradiated for different time durations.

  14. Sorption of Different Dye Wastes By Poly(vinyl alcohol) /Poly (Carboxymethyl Cellulose) Blend Grafted Through A Radiation Method

    International Nuclear Information System (INIS)

    El-Salmawi Kariman, M.; Abu Zaid Magda, M.; Ibraheim Sayeda, M.; El-Naggar Abdel Wahab, M.; Zahran Abdel Hamid, H.

    1999-01-01

    The sorption of different dye wastes normaly released from industrial textile factories by a graft copolymer of poly(vinyl alcohol)/poly(carboxymethyl cellulose) blend with polystyrene has been investigated. The dye sorption was evaluated at different conditions. The amount of sorbed dye was determined by using a spectroscopic method. The blend graft copolymer showed a relatively high sorption for basic dye than other dyestuffs such as acid, reactive and direct. Moreover, it was found that the dye sorption did not depend on the weight of the blend graft copolymer or the volume of the waste solution. The treatment of the dye waste by using the prepared blend graft copolymer may be considered a practical one from the point of view of environmental methods

  15. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  16. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    Science.gov (United States)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  17. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    International Nuclear Information System (INIS)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca 2+ to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl 2 and aqueous (NH 4 ) 2 HPO 4 were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  18. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi, E-mail: tmizutan@mail.doshisha.ac.jp

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca{sup 2+} to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl{sub 2} and aqueous (NH{sub 4}){sub 2}HPO{sub 4} were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  19. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  20. APPLICATION OF TRITON X-100 COATED POLY VINYL ...

    African Journals Online (AJOL)

    Preferred Customer

    and Zn(II) ions based on the uptake of their complexes with ... The presence of heavy metals in ... Poly vinyl chloride high molecular weight was purchased .... 7.0 and then the charge intensity of the functional groups of solid materials played a ...

  1. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  2. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    The introduction of surface vinyl groups to PDMS microspheres broadens the latter's applicability range since the microspheres can be further functionalized or crosslinked into elastomers. Quantification of the surface vinyl concentration of PDMS microspheres is therefore essential. Here, a novel...

  3. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    Science.gov (United States)

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    Science.gov (United States)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  5. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    Energy Technology Data Exchange (ETDEWEB)

    Aldana, Ana Agustina, E-mail: aaldana@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Gonzalez, Agustin, E-mail: agustingonzalez@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Strumia, Miriam C., E-mail: mcs@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina); Martinelli, Marisa, E-mail: mmartinelli@fcq.unc.edu.ar [Departamento de Quimica Organica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (UNC), Edificio de Ciencias II, Medina Allende y Haya de la Torre, Ciudad Universitaria, Cordoba 5000 (Argentina)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Cross-linked chitosan films using genipin and/or PVP. Black-Right-Pointing-Pointer Propranolol hydrochloride was used like a model drug to release studies. Black-Right-Pointing-Pointer Incorporating PVP improves mechanical and diffusion properties. Black-Right-Pointing-Pointer Ch-Gen 0.10% and Ch-Gen 0.10%-PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ({sup 13}C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  6. Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs

    International Nuclear Information System (INIS)

    Aldana, Ana Agustina; González, Agustín; Strumia, Miriam C.; Martinelli, Marisa

    2012-01-01

    Highlights: ► Cross-linked chitosan films using genipin and/or PVP. ► Propranolol hydrochloride was used like a model drug to release studies. ► Incorporating PVP improves mechanical and diffusion properties. ► Ch–Gen 0.10% and Ch–Gen 0.10%–PVP have optimal behavior. - Abstract: The study of the physicochemical and functional properties of chitosan films cross-linked with genipin and poly(N-vinyl-2-pyrrolidone) (PVP) was performed in this work. Cross-linked films were prepared by casting method from acetic acid solutions. The structure and physical properties of the films were analyzed by infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 13 C NMR), differential scanning calorimetry (DSC) and mechanical testings. Propranolol hydrochloride was used like a model drug to determine the behavior of drug release from films. The drug release capacity was measured and compared with the degree of cross-linking, mechanical properties and swelling index. There was an appropriate balance of hydrophilicity, mechanical properties and diffusion by the incorporation of PVP into the networks cross-linked with genipin. The combination of both cross-linkers allows obtaining a soft and tough material potentially applicable as a controlled release. This research represents the first report where both cross-linkers, chemical and ionic agents, are used for obtaining films. These studies suggest that the chitosan films prepared here are promising drug delivery systems for buccal application, with thermal stability and acceptable mechanical properties. Buccal films may be preferred in terms of flexibility and comfort.

  7. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artifici...

  8. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol)

    NARCIS (Netherlands)

    Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend

  9. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: mariajhho@yahoo.com.b, E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Amato, Valdir S. [Hospital das Clinicas (HC/USP), Sao Paulo, SP (Brazil). Div. de Clinica de Molestias Infecciosas e Parasitarias

    2009-07-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  10. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B.; Amato, Valdir S.

    2009-01-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  11. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  12. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  13. Radiation-induced molecular imprinting of D-glucose onto poly(2-hydroxyethyl methacrylate) matrices using various crosslinking agents

    International Nuclear Information System (INIS)

    Ates, Zeliha; Gueven, Olgun

    2010-01-01

    Radiation-induced molecular imprinting of D-glucose onto poly(2-hydroxyethyl methacrylate) matrix was achieved to create three-dimensional cavities to recognize and bind D-glucose. The optimization of imprinting capability of matrices was achieved by investigating the effects of various parameters such as the type and amount of crosslinking agent, type of solvent, template to monomer ratio and total absorbed dose. Crosslinking agents with increasing chain lengths and different flexibilities were used in an attempt to elucidate the impact of relevant imprint parameters on the effectiveness of imprinting technique. The absorbed dose varied from 1 to 15 kGy. Cavity sizes of MIPs were measured by positron annihilation lifetime (PAL) experiments. Control matrices were synthesized with exactly the same composition in the absence of D-glucose. Separation of D-glucose has been shown to be successfully achieved in HPLC columns filled with MIPs whereas no separation was observed for non-imprint matrices.

  14. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  15. Influence of crosslinking process on the mechanical behavior of Poly(Dimethylsiloxane) (PDMS)

    International Nuclear Information System (INIS)

    Fernandes, Barbara Monteiro Pessoa; Weber, Ricardo Ponde; Elzubair, Amal; Suarez, Joao Carlos Miguez

    2010-01-01

    In the present work was studied the influence of the crosslinking process on the mechanical behavior of a composite with a poly(dimethylsiloxane) (PDMS) matrix filled with inorganic particles, used as dental impression material. The material was crosslinked chemically and by exposition to 400kGy gamma radiation dose. The material properties, before and after crosslinking, were analyzed through physical chemical and mechanical tests and microscopic exam. The results showed that the gamma irradiation, as compared to chemical cure process, produced higher degree of crosslinking, better wettability, adjusted hardness and low fragility. However, the microscopic exam showed that the gamma irradiated PDMS presents, as compared with the chemical cure, a greater number of defaults which resulted from the large concentration of released gases. The results allowed us to conclude that gamma irradiation is an adequate process to crosslink the studied PDMS composite, since we can reduce the quantity of gases formed in this process. (author)

  16. Radiation polymerization and crosslinking of N-isopropylacrylamide in aqueous solution and in solid state

    International Nuclear Information System (INIS)

    Safranj, A.; Yoshida, Masaru; Omichi, Hideki; Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi.

    1995-01-01

    Poly(N-isopropylacrylamide) hydrogels were synthesized by radiation induced simultaneous polymerization and cross-linking. Aqueous monomer solutions and pure monomer, without crosslinker, were irradiated in nitrogen atmosphere at a 60 Co gamma source. The conversion from monomer to polymer and cross-linked gel was investigated as a function of temperature and monomer concentration. The swelling behavior of the gels showed clear dependence on the synthesis conditions. (author)

  17. Novel method to prepare multiwalled carbon nanotube/poly(dimethyl siloxane) (MWCNT/PDMS) non-conducting composites

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Daugaard, Anders Egede; Skov, Anne Ladegaard

    In this study a new method of carbon nanotube (CNT) incorporation was employed for the preparation of ultraviolet (UV) curable CNT filled poly (dimethyl siloxane) (PDMS) composites. The composites were designed to contain loadings of CNT above the percolation threshold without becoming conductive...... due to a localized distribution of CNT. Ultrasonicated and dispersed multiwalled CNTs were mixed with short chain ,- vinyl terminated PDMS. When the whole mixture containing dispersed CNT and short chain PDMS was irradiated with UV radiation in presence of deficient amount of hexa functional thiol...... PDMS crosslinker and a photoinitiator, hyperbranced PDMS layer was formed over the CNTs. The prepared hyperbranched CNTs were mixed in different weight ratios (0.33%, 0.66%, 1%) with long chain ,- vinyl terminated PDMS and crosslinked subsequently with the same hexa functional thiol PDMS via UV...

  18. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  19. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  20. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; Heijblom, M.; Steenbergen, Wiendelt; van Leeuwen, Ton; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F–T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  1. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengchang; Liu, Pengqing, E-mail: liupq@scu.edu.cn; Zhao, Xiangsen; Xu, Jianjun, E-mail: xujj@scu.edu.cn

    2017-02-28

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  2. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    International Nuclear Information System (INIS)

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-01-01

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  3. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    Science.gov (United States)

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  4. Methacrylate based cross-linkers for improved thermomechanical properties and retention of radiation detection response in plastic scintillators

    Science.gov (United States)

    Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan

    2018-03-01

    Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.

  5. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    International Nuclear Information System (INIS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-01-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1–20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H 2 O 2 ) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H 2 O 2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (M c ) and crosslinking density (ρ x ) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H 2 O 2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial. - Highlights: ► A new radiation polymerization method is offered in dilute aqueous solution.► This method provides PVA

  6. Structure of chlorinated poly(vinyl chloride). III. Preparation of poly(vinyl chloride)-β,β-d2 as a model for the study of the mechanism of chlorination and of the chlorinated poly(vinyl chloride) structure

    International Nuclear Information System (INIS)

    Lukas, R.; Kolinsky, M.

    1976-01-01

    A method for the preparation of poly(vinyl chloride)-β,β-d 2 (PVC-β,β-d 2 ) as a model for the investigation of the mechanism of chlorination and of the CPVC structure has been suggested. The conditions of preparation of deuterated intermediates of a multistage synthesis of vinyl chloride-β,β-d 2 and of suspension-polymerized PVC-β,β-d 2 have been described including the mass balance. Malonic acid was used as the starting compound. Tacticity values of a sample of PVC-β,β-d 2 and its infrared and nuclear magnetic resonance (NMR) spectra are presented and compared with the data already published

  7. Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids

    Science.gov (United States)

    Rogojanu, Alina; Dascalu, Carmen Felicia; Zelinschi, Beatrice Carmen; Caprosu, Maria; Dorohoi, Dana Ortansa

    2011-10-01

    Pure and colored with phthalazinium ylids poly(vinyl-alcohol) (PVA) foils were stretched under gentile heating. The birefringence of the thin foils was determined with a Babinet compensator standardized for yellow radiation of a Sodium lamp. The determined birefringence of the colored PVA foils is higher than that of the pure PVA foils. This fact indicates that the phthalazinium ylids facilitate the increase in the anisotropy of the stretched foils. The visible absorption electronic band of phthalazinium ylids was used to estimate the dichroic ratio and the degree of order of the ylid molecules in the stretched PVA foils. An increase in dichroism and birefringence with the degree of stretching has been evidenced for uncolored and colored PVA foils.

  8. Development of swellable local implants of a polyethyleneimine-poly(vinyl pyrrolidone) (PEI-PVP) hydrogel as a socket filler.

    Science.gov (United States)

    Chang, Ching-Wen; Ho, Hsiu-O; Lo, Yi-June; Lee, Sheng-Yang; Yang, You-Ren; Sheu, Ming-Thau

    2012-01-01

    In this study, hydrogels composed of polyethyleneimine (PEI) and poly(vinyl pyrrolidone) K90 (PVP) cross-linked with various concentrations (0, 0.125, 0.25 and 0.5%) of glutaraldehyde were evaluated as a hydrogel filler for the local delivery of lidocaine after tooth extraction. The drug-release kinetics, swellability, cytotoxicity and wound healing after tooth extraction of these non-cross-linked and cross-linked PEI-PVP hydrogels were examined in male beagles and compared to values using Spongostan(®). Results demonstrated that the extent of cross-linking influenced the swelling of the resulting hydrogel, but the drug-release rates were similar. No significant changes were observed in gingival fibroblasts in contact with the PEI- PVP hydrogels or Spongostan(®). In the in vivo study, PEI-PVP hydrogels showed good retention in the socket for 2 days and showed comparable wound-healing rates within 2 weeks with those of Spongostan(®). In conclusion, PEI-PVP hydrogels are suitable for use as socket-dressing materials, and the release of local anaesthesia from PEI-PVP hydrogels can be sustained for a desirable period of time to prevent pain after a tooth extraction.

  9. Porous poly(vinyl alcohol)/sepiolite bone scaffolds: Preparation, structure and mechanical properties

    International Nuclear Information System (INIS)

    Killeen, Derek; Frydrych, Martin; Chen Biqiong

    2012-01-01

    Porous poly(vinyl alcohol) (PVA)/sepiolite nanocomposite scaffolds containing 0–10 wt.% sepiolite were prepared by freeze-drying and thermally crosslinked with poly(arylic acid). The microstructure of the obtained scaffolds was characterised by scanning electron microscopy and micro-computed tomography, which showed a ribbon and ladder like interconnected structure. The incorporation of sepiolite increased the mean pore size and porosity of the PVA scaffold as well as the degree of anisotropy due to its fibrous structure. The tensile strength, modulus and energy at break of the PVA solid material that constructed the scaffold were found to improve with additions of sepiolite by up to 104%, 331% and 22% for 6 wt.% clay. Such enhancements were attributed to the strong interactions between the PVA and sepiolite, the good dispersion of sepiolite nanofibres in the matrix and the intrinsic properties of the nanofibres. However, the tensile properties of the PVA scaffold deteriorated in the presence of sepiolite because of the higher porosity, pore size and degree of anisotropy. The PVA/sepiolite nanocomposite scaffold containing 6 wt.% sepiolite was characterised by an interconnected structure, a porosity of 89.5% and a mean pore size of 79 μm and exhibited a tensile strength of 0.44 MPa and modulus of 14.9 MPa, which demonstrates potential for this type of materials to be further developed as bone scaffolds. - Highlights: ► Novel PAA-crosslinked PVA/sepiolite nanocomposite scaffolds were prepared. ► They were highly porous with interconnected structures and exhibited good mechanical properties. ► The effects of sepiolite nanofibres on structure and properties of the scaffolds were investigated. ► Sepiolite nanofibres improved the mechanical properties of the solid material significantly.

  10. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    Science.gov (United States)

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  11. Radiation Effects on Mechanical Properties of LDPE/EVA blend

    International Nuclear Information System (INIS)

    Lee, Chung; Kim, Ki Yup; Im, Don Sun; Ryu, Boo Hyung

    2005-01-01

    Restricted properties and a limited use of homopolymers alone, have given rise to an exploration of composites, copolymers, blends, etc. Copolymers such as poly(ethylene-co-vinyl acetate) (EVA), poly(ethylene-co-butyl acrylate), poly(ethylene-co-ethyl acrylate) (EEA) have wide usages in different industry. Among the numerous ethylene copolymers, due to its wide range of properties depending on its vinyl acetate content, EVA has become one of the most useful copolymers in the electrical industry as a cable insulator, and in many other industries as a hot melt adhesive, a coating, etc. Several works looked at the influence of gamma rays on polymers. Zhang et al have blended EVA with PE because crosslinked PE has a low flexibility for use as a cable insulation. It was reported that the blend showed have a better elongation, flexibility and heat aging effect than PE, but its hardness and softening point were lower. In this study, the radiation degradation of LDPE/EVA blends as a function of the vinyl acetate contents was investigated by using TGA, gelation and elongation

  12. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch blends via reactive compatibilization

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    Poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi-step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and

  13. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  14. Magnetic polymer particles prepared by double crosslinking in reverse emulsion with potential biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Balaita, L.; Cadinoiu, A. N.; Postolache, P.; Šafaříková, Miroslava; Popa, M.

    2015-01-01

    Roč. 17, č. 7-8 (2015), s. 1198-1209 ISSN 1454-4164 Grant - others:Ministery of Education of the Czech Republic(CZ) MP0701 Institutional support: RVO:67179843 Keywords : acid-modified chitosan * drug-delivery * nanoparticles * release * microparticles * microspheres * stability * alcohol * complex * Chitosan * Poly(vinyl alcohol ) * Magnetic particles * Ionic crosslinking * Covalent crosslinking * Drug delivery Subject RIV: EH - Ecology, Behaviour Impact factor: 0.383, year: 2015

  15. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol ...

    Indian Academy of Sciences (India)

    WINTEC

    ray diffraction (XRD) analyses and electron diffraction pattern also revealed the forming of CuS crystal structure in the PVA fibres. Keywords. CuS nanoparticles; electrospinning; poly(vinyl alcohol). 1. Introduction. In the past decade, the preparation of low-dimensional semiconductor nanostructures has become a hotspot of.

  16. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  17. ANALYSIS OF ADIPATE ESTER CONTENTS IN POLY(VINYL CHLORIDE) PLASTICS

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Otero, Amalia Dopazo

    2006-01-01

    Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser can be used to determine the content of plasticizers in commercial flexible poly vinyl chloride (PVC) products. Our previous study [T. Nørbygaard, R.W. Berg, Analysis of phthalate ester content in PVC plastics by means of FT......-Raman Spectroscopy, Appl. Spectrosc. 58 (4) (2004) 410–413]—on detection of the presence of phthalate esters in PVC by FT-Raman spectroscopy — is here extended to the similar case of adipate esters (AEs) in samples of soft poly vinyl chloride plastics. Spectra of a range of adipate ester plasticizers (11 AEs......) in pure form are reported. We studied if qualitative and quantitative determination of the adipate ester content would be possible based on the use of proper reference samples. It was found that AEs as a group cannot be definitively identified by their characteristic Raman bands because other aliphatic...

  18. Properties of poly(vinyl alcohol)–borax gel doped with neodymium ...

    Indian Academy of Sciences (India)

    visible region then leads to luminescent emission in the near infra-red region. The spectral qualities of the ... molecular hydrogen bonding between the hydroxyl groups on poly(vinyl ..... mately results in near IR emissions. The maximum of the.

  19. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting

    International Nuclear Information System (INIS)

    Sato, Kohei; Ikeda, Shigetoshi; Iida, Minoru; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2003-01-01

    Polymer electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene (PTFE) [RX-PTFE] has been processed by radiation-grafting with reactive styrene monomers by γ-rays under atmospheric circumstances, and the characteristic properties of the obtained membranes have been studied. The grafting yields of styrene monomer onto RX-PTFE, which have various crosslinking densities, were in the range of 5-100%. At the reaction period of 24 h, the grafting yields for RX-PTFE with low crosslinking density, which was reacted at 60 deg. C, achieved 94%. As a tendency, the lower grafting temperature gives higher grafting ratio of styrene onto RX-PTFE. Moreover, the yields of subsequent sulfonation for all samples were close to 100%. Mechanical properties were decreased with increasing grafting yields; especially the membrane with higher grafting yields was brittle. Ion exchange capacity of sulfonated RX-PTFE reached 1.1 meq/g while maintaining the mechanical properties

  20. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    Science.gov (United States)

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Functionalization of poly (4-vinylpyrrolidone) through γ - radiation induced grafting

    International Nuclear Information System (INIS)

    Pande, C.S.; Ambasta, A.K.; Kumari, Mamta; Sharma, Ajay

    2002-01-01

    Cross-linked poly(N-vinylpyrrolidone) and N-vinylimidazole were mutually irradiated in water under nitrogen with γ-radiations. A detailed study of grafting was made under various reaction parameters. The results have been compared with the grafting done in air. (author)

  2. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    Science.gov (United States)

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  3. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol)

    Indian Academy of Sciences (India)

    Poly(vinyl alcohol) (PVA)/CuS composite nanofibres were successfully prepared by electrospinning technique and gas–solid reaction. Scanning electron microscopic (SEM) images showed that the average diameter of PVA/CuS fibres was about 150–200 nm. Transmission electron microscopy (TEM) proved that a majority ...

  4. Inhibiting the deterioration of plasticised poly (vinyl chloride) in museum collections

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2003-01-01

    Plasticized poly (vinyl chloride) (PVC) is found in museum collections as three dimensional objects and as packaging materials. Many PVC materials deteriorate within 25 years of acquisition. Migration and chemical breakdown of plasticizer, accompanied by dehydrochlorination of the polymer are the...

  5. Enhancement of conductivity in polyaniline-[poly(vinylidene chloride)-co-(vinyl acetate)] blends by irradiation

    International Nuclear Information System (INIS)

    Bodugoez-Sentuerk, Hatice; Gueven, Olgun

    2011-01-01

    In this study we have prepared conductive poly(aniline), (PANI) blends with poly(vinylidene chloride-co-vinyl acetate), [P(VDC-co-VAc)] copolymer with varying compositions using gamma radiation to induce conductivity. A number of blends with different compositions were prepared by solution casting followed by irradiation in a 60 Co gamma cell to different doses up to 800 kGy. Electrical conductivity of the blends was measured before and after irradiation using a four-probe technique. Increasing radiation dose resulted in an increase of 9 orders of magnitude in the conductivity of P(VDC-co-VAc)/(PANI) films reaching 0.1 S/cm at 500 kGy and beyond this dose a decrease was observed. Effect of film thickness on conductivity of the blends was investigated and a slight increase of an order of magnitude was observed on increasing the film thickness from 50 to 200 μm. It was also observed that PANI blends exhibited a stretch dependent small increase in conductivity. The conductivity of the irradiated films was found to be stable for up to 12 months under ambient conditions.

  6. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  7. Synthesis of EVA/MWNT nanocomposites by radiation induced crosslinking

    International Nuclear Information System (INIS)

    Dubey, K.A.; Bhardwaj, Y.K.; Chaudhari, C.V.; Sabharwal, S.

    2008-01-01

    Full text: EVA is widely used as an insulating material for high voltage cables and in the footwear and toy industries due to its high flexibility and chemical inertness. The nano-composites of EVA with MWNT are of the special interest because incorporation of suitable amount of MWNT in EVA matrix is expected to significantly enhance EVA's thermal and mechanical properties, and open a new domain of applications. The modification of EVA by using high-energy radiation and with particulate filler has been widely practiced; however, there is not much information available on the radiation processing of EVA nanocomposites. To understand the effect of radiation and of MWNT addition on the physico-mechanical characteristics of EVA, different compositions of ethylene vinyl acetate (EVA)/multiple walled carbon nanotube (MWNT) nanocomposites were prepared by mixing in Brabender and subjected to different doses of gamma radiation. The efficiency of radiation vulcanization was analyzed by gel-content, Charlesby-Pinner parameter and crosslinking density measurements. Gamma radiation induced crosslinking was found to increase with MWNT fraction in EVA/MWNT nanocomposites (P o /q o range: 1.15-0.98). These results ruled out the possibility of a significant neutralization of single ionization spurs by MWNT addition. The polymer-filler interaction parameter determined from Kraus plot indicated good interaction between EVA and MWNTs. Storage modulus changed from 7 x 10 7 Pa to 1.8 x 10 8 Pa with incorporation of 5% (wt/wt) MWNT while density increased from 0.78 g/cc to 0.80 g/cc

  8. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  9. Influence of inorganic salts mixture and a commercial additive on the degradation of poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Silva, Williams B. da; Vasconcelos, Henrique M. de; Aquino, Katia Aparecida da S.; Araujo, Elmo S. de

    2009-01-01

    Samples of commercial poly(vinyl chloride) (PVC) containing a Hindered Amine Stabilizer (HAS) and samples containing a salt mixture of CuCl 2 /KI both in 0.1, 0.3, 0.5 and 0.7wt% concentration of HAS or salt mixture were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature in air at 25 kGy, sterilization dose of PVC medical supplies. The viscosity-average molecular weight (Mv) was analyzed by viscosity technique. Comparison of viscosity results obtained before and after irradiation ( at 25 kGy) of PVC showed crosslinking effect is predominant. On the other hand the PVC-HAS systems and PVC-salt systems showed a decrease in Mv values on irradiated samples reflecting the main chain random scissions effect. However the PVC-salt at 0.5wt% concentration showed no significant degradation index value. This result suggests that salt keeps the good radiolytic stabilization behavior of gamma-irradiated PVC and the HAS additive is not efficient on radiolytic stabilization of PVC. The CuCl 2 /KI mixture at 0.5wt% in the PVC matrix influenced the thermal behavior of the polymer increasing of 42 deg C in maximum thermal degradation temperature. In addition, the salt mixture influences significantly the Young's Modulus of PVC increasing the rigidity of polymer. (author)

  10. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  11. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films.

    Science.gov (United States)

    Ino, Julia M; Sju, Ervi; Ollivier, Véronique; Yim, Evelyn K F; Letourneur, Didier; Le Visage, Catherine

    2013-11-01

    Engineered grafts are still needed for small diameter blood vessels reconstruction. Ideal materials would prevent thrombosis and intimal hyperplasia by displaying hemocompatibility and mechanical properties close to those of native vessels. In this study, poly(vinyl alcohol) (PVA)/gelatin blends were investigated as a potential vascular support scaffold. We modified a chemically crosslinked PVA hydrogel by incorporation of gelatin to improve endothelial cell attachment with a single-step method. A series of crosslinked PVA/gelatin films with specific ratios set at 100:0, 99:1, 95:5, and 90:10 (w/w) were prepared and their mechanical properties were examined by uniaxial tensile testing. Tubes, obtained from sutured films, were found highly compliant (3.1-4.6%) and exhibited sufficient mechanical strength to sustain hemodynamic strains. PVA-based hydrogels maintained low level of platelet adhesion and low thrombogenic potential. Endothelial cell adhesion and proliferation were drastically improved on PVA/gelatin films with a feed gelatin content as low as 1% (w/w), leading to the formation of a confluent endothelium. Hydrogels with higher gelatin content did not sustain complete endothelialization because of modifications of the film surface, including phase segregation and formation of microdomains. Thus, PVA/gelatin (99:1, w/w) hydrogels appear as promising materials for the design of endothelialized vascular materials with long-term patency. Copyright © 2013 Wiley Periodicals, Inc.

  12. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  13. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi

    2006-01-01

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  14. Interstrand DNA crosslinking by 4,5',8-trimethylpsoralen plus monochromatic ultraviolet light

    International Nuclear Information System (INIS)

    Cohen, L.F.; Ewig, R.A.G.; Kohn, K.W.; Glaubiger, D.

    1980-01-01

    DNA crosslinking by 4,5',8-trimethylpsoralen plus monochromatic ultraviolet light of wavelength 365 nm was studied in mouse L1210 leukemia cells. DNA breaks and crosslinking were evaluated by alkaline elution of DNA from poly(vinyl chloride) filters. Trimethylpsoralen plus 365 nm light produced DNA crosslinks but not breaks. The kinetics of crosslinging were linear with respect to concentration and second-order with respect to light exposure time. The latter finding supports the proposed two photon mechanism for the formation of diadducts. In contrast to DNA crosslinking agents such as nitrogen mustard, nitrosoureas and platinums, trimethylpsoralen crosslinks were resistant to proteolytic digestion. Thus, trimethylpsoralen plus 365 nm light produced interstrand crosslinks, as proposed for a bifunctional agent binding to bases on opposite DNA strands. (Auth.)

  15. Effect of various solvents on the viscosity-average molecular weight of poly (vinyl acetate)

    International Nuclear Information System (INIS)

    Rehman, W.U.; But, M.A.; Chughtai, A.; Jamil, T.; Sattar, A.

    2006-01-01

    Solution polymerization of Vinyl Acetate was carried out in various solvents (benzene, toluene, ethyl acetate, acetonitrile). Dilute solution viscometry was used to determine the viscosity-average molecular weight of the resulting Poly (Vinyl Acetate) (PV Ac) in each case. The viscosity-average molecular weight (M,J of PVAc was found to increase in the order benzene < toluene < ethyl acetate < acetonitrile, It was concluded that under the same reaction conditions (polymerization time, initiator quantity, solvent/monomer ratio, temperature), acetonitrile served as the best solvent for solution. polymerization of Vinyl Acetate monomer. (author)

  16. Characterization and enhancement of the electrical performance of radiation modified poly (vinyl alcohol/gelatin copolymer films doped with carotene

    Directory of Open Access Journals (Sweden)

    S. Lotfy

    2014-07-01

    Full Text Available A series of poly (vinyl alcohol/gelatin copolymer (PVA/Gel with different entrapped carotene (Carot concentration into the films has been devised. The films were irradiated with γ-rays at dose levels of 10, 50, 100, 150 and 250 kGy. The crystalline and chemical structures of the samples have been studied using XRD and FTIR techniques. The direct current electrical conductivity (σDC has been determined from the proposed sampling before and after gamma exposure. It is clearly demonstrated that the electrical conductivity of PVA/Gel/Carot films was increased from two to three orders of magnitude due to carotene doping, and decreased one order of magnitude due to gamma radiation. The obtained results can be attributed to the existence of the conjugated double bonds in the aliphatic side chain of the carotene molecule. Thus, this work suggests the possibility of the use of the gamma irradiated PVA/Gel/Carot films in different electronic applications.

  17. Improving the Performances of Poly(vinylphosphonic acid) by Compositing or Copolymerization with Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole)

    International Nuclear Information System (INIS)

    Han, Shuaiyuan; Yue, Baohua; Yan, Liuming

    2014-01-01

    Graphical abstract: - Highlights: • Poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) is synthesized • PVPA/PMVTri polymeric composite proton conducting membranes are prepared • The proton conductivity of PVPA is improved by compositing with PMVTri • The water resistance of PVPA is improved by compositing with PMVTri • The oxidative stability is greatly improved - Abstract: The poly(vinylphosphonic acid) (PVPA), poly(4-(α-methyl)vinyl-1H-1,2,3-triazole) (PMVTri), and poly(VPA-co-MVTri) were synthesized, and proton exchange membranes were prepared based on the acid-base polymeric composite of PVPA and PMVTri, and acid-base amphoteric copolymer of poly(VPA-co-MVTri). The overall performances of PVPA, proton conductivity, thermal and oxidative stability, and water resistance, are greatly improved by compositing of PMVTri or copolymerization with 4-(α-methyl)vinyl-1H-1,2,3-triazole (MVTri). About four or eight folds improvement in maximum proton conductivity was observed in the polymeric composite of PVPA/PMVTri or acid-base amphoteric copolymer poly(VPA-co-MVTri) because of the redistribution of ions in the heterostructures of PVPA and PMVTri, respectively, compared with the pristine PVPA. At the same time, the oxidative stability and the water resistance of PVPA were also greatly improved attributing to the absent of α-H in the main chain of PMVTri and the acid-base interaction between the phosphonic acid groups and the triazolyl groups, respectively

  18. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    Science.gov (United States)

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  19. Crosslinking of electrospun poly (VDF-co-HFP) nanofibrous membranes by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Kim, Yun Hye; Lim, Youn Mook; Choi, Jae Hak; An, Sung Jun; Park, Jong Seok; Nho, Young Chang

    2008-01-01

    Poly (VDF-co-HFP)/PEGDMA nanofibrous membranes (NFMs) have been prepared by an electrospinning process. Since electrospun NFMs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly (VDF-co-HFP) is a polymer electrolyte binder. In order to improve their mechanical properties, poly (VDF-co-HFP)/PEGDMA NFMs were crosslinked by a gamma-ray irradiation. Then the crosslinked NFMs were characterized through an electrolyte uptake, IR structural analysis, and SEM morphological investigation

  20. Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sarıtaş, Sevilay; Eşsiz, Serpil; Sarı, Bekir, E-mail: bsari@gazi.edu.tr

    2017-07-01

    Highlights: • In this study, ternary composite/nanocomposite films were synthesized. • Magnetic field-sensitive folding films were prepared without any elastomer. • Morphological studies show that all composite films have a smooth surface. • The ternary composites/nanocomposite show improved thermal stability compared to the pure PF. - Abstract: In this study, polyfuran and poly(vinyl acetate)/poly(vinyl chloride)/polyfuran ternary composites were synthesized via the chemical polymerization method. The temperature and magnetic field–sensitive novel composites and the nanocomposite were obtained in the form of powders and films. It was observed that the prepared novel conductive films have superior properties at a certain temperature range (25–50 °C) such as bending and folding. The structural properties, thermal behavior, surface morphology, internal structure, and surface roughness of the prepared samples were investigated by various characterization techniques. The conductivities of the samples were measured at room temperature and different temperatures by the four-point technique. X-ray Diffraction analysis results demonstrated that the PF and composites have an amorphous structure, whereas the nanocomposite is in crystalline form. The saturation magnetization (Ms) values of the magnetite and nanocomposite were found to be 58.9 and 5.3 emu g{sup −1}, respectively. It was found that magnetite-doped nanocomposite has superparamagnetic properties at room temperature.

  1. Synthesis of crosslinked poly (styrene-co-divinylbenzene-co ...

    Indian Academy of Sciences (India)

    Synthesis of crosslinked poly(styrene--divinylbenzene--sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density. Dhamodaran Arunbabu Mousumi Hazarika Somsankar Naik Tushar Jana. Polymers Volume 32 Issue 6 December 2009 pp 633-641 ...

  2. High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)

    International Nuclear Information System (INIS)

    Jiang Chun-Xia; Yang Xiao-Yan; Zhao Kai; Wu Xiao-Ming; Yang Li-Ying; Cheng Xiao-Man; Yin Shou-Gen; Wei Jun

    2011-01-01

    The performance of polymer field-effect transistors is improved by thermal crosslinking ofpoly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 10 5 and the saturate field-effect mobility of 0.34cm 2 V −1 s −1 , by using a suitable ratios of ditert butyl peroxide, 0.5 wt% ofpoly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability. (cross-disciplinary physics and related areas of science and technology)

  3. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  4. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  5. Application of functional polymers synthesized by radiation

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2005-01-01

    It was found that polysaccharide derivatives undergo crosslinking under ionization irradiation at high concentration - so called 'paste-like' conditions. The crosslinking behavior of carboxymethylcellulose (CMC) was largely affected by concentration and degree of substitution (DS). The concentration of 20-30% for DS 1.3 and 50 - 60% for DS 2.2 were the most effective for crosslinking of CMC. Bedsore prevention mat filled up with CMC soft hydrogel crosslinked by irradiation at a paste-like condition was applied as a health care product. It was conformed that CMC dry gel is effective as an absorber of water, even up to 60-70% in order to carry out fermentation effectively of original excrement from livestock, which include 90% of water. Polylactic acid (PLA) irradiated in the presence of polyfunctional monomer (PFM), triallyisocyanurate (TAIC) results in crosslinking. The crosslinked PLA possesses such properties as biodegradability, transparency, high heat-stability and it can be use as heat-shrinkable tubes. Radiation crosslinked poly (vinyl alcohol) hydrogel was applied as wound healing dressing material and it was commercialized since July 2004. (author)

  6. Composite poly(vinyl alcohol/poly(vinyl acetate electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs

    Directory of Open Access Journals (Sweden)

    Jannesari M

    2011-05-01

    Full Text Available Marziyeh Jannesari1, Jaleh Varshosaz2, Mohammad Morshed1, Maedeh Zamani11Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran; 2Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IranAbstract: The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol (PVA, poly(vinyl acetate (PVAc, and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl, were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release.Keywords: biodegradable polymers, drug delivery, controlled release, electrospun nanofibers, wound dressing

  7. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    Science.gov (United States)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  8. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    International Nuclear Information System (INIS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-01-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time

  9. Preparation of Macroporous Poly (vinyl alcohol-co-triallyl isocyanurate) Beads Bearing Aminocarboxylic Acid as Functional Groups by Suspension Polymerization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Macroporous poly (vinyl acetate-co-triallyl isocyanurate) beads were prepared with suspension polymerization method. The copolymer beads were then transformed into poly (vinyl alcohol-co-triallyl isocyanurate) by ester exchange reaction. Aminocarboxylic acids were immobilized on the copolymer beads by the esterification of hydroxyl groups with diethyl-lenetriaminepentaacetic bisanhydride. The weak acid exchange capacities, specific surface areas and mean pore diameters of the resultant resin beads were measured.

  10. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    International Nuclear Information System (INIS)

    Surry, K J M; Austin, H J B; Fenster, A; Peters, T M

    2004-01-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s -1 , and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz) -1 . T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process

  11. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  12. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  13. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  14. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey)

    2010-07-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  15. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    International Nuclear Information System (INIS)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat

    2010-01-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  16. Dehydrochlorinated poly vinyl alcohol (PVA) films for food irradiation dosimeters

    International Nuclear Information System (INIS)

    Susilawati; Saion, E.B.; Doyan, A.; Lepit, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation sensitive dosimeters based on dyed poly vinyl alcohol (PVA) films containing chloral hydrate CCl 3 CH(OH) 2 and acid-sensitive cresol-red dye have been developed for use in food irradiation dosimetry. These polymer dosimeters undergo colour change from yellow (colour of basic form) to red (colour of acid form) upon exposure to gamma radiation. The radiation-induced change in colour was analysed using UV-Vis spectrometer. The absorption spectra produced two absorption modes, peaking at 438 nm for low doses and 529 nm for high doses. The dose-response was obtained by the changes in absorbance as a function of the absorbed dose. Results of the dose-response curves show the absorption decreases and increases experientially at modes 438 nm and 529 nm respectively with absorbed dose. The change in colour of the irradiated films was analysed using Raman spectrometer, which provides the spectra of molecular stretching modes of vibration of some chemical bonds in the films. The relative intensity at C-Cl stretching peaks of chloral hydrate decreases with absorbed dose and makes the films more acidic. Consequently the relative intensity at S-H and C=C stretching peaks of the dye increases with absorbed dose as the acid reacts with the dye and changes the structure and colour of the dye. (Author)

  17. Crosslink the Novel Group of Polymeric Binders BioCo by the UV-radiation

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2016-06-01

    Full Text Available The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid/sodium salt of carboxymethyl starch (PAA/CMS-Na applied as a binder for moulding sands (as a novel group binders BioCo. The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of binder-mineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology.

  18. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Science.gov (United States)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  19. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    International Nuclear Information System (INIS)

    Lin Qianqian; Li Yang; Yang Mujie

    2012-01-01

    Highlights: ► Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. ► Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. ► The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  20. Effect of homopolymer poly(vinyl acetate on compatibility and mechanical properties of poly(propylene carbonate/poly(lactic acid blends

    Directory of Open Access Journals (Sweden)

    J. Gao

    2012-11-01

    Full Text Available A small amount of homopolymer poly(vinyl acetate (PVAc is used to compatibilize the biodegradable blends of poly(propylene carbonate (PPC and poly(lactic acid (PLA. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC results show that PVAc is selectively localized in the PLA phase and at the interface between PPC and PLA phases. As a result, these interface-localized PVAc layers act as not only a compatibilizer to improve the phase dispersion significantly but also a bridge to increase the interfacial adhesion between PPC and PLA phases dramatically. Both of them are believed to be responsible for the enhancement in mechanical properties. This work provides a simple avenue to fabricate eco-friendly PPC/PLA blends with high performance, and in some cases, reducing the demand for petroleumbased plastics such as polypropylene.

  1. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    International Nuclear Information System (INIS)

    Jia Xin; Li Yanfeng; Zhang Bo; Cheng Qiong; Zhang Shujiang

    2008-01-01

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement

  2. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  3. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  4. Study of induced cross-linking by ionizing radiation of polyvinylpyrrolidone (PVP)/carboxymethylcellulose (CMC)

    International Nuclear Information System (INIS)

    Alcantara, Mara T.S.; Chirinos, Hugo; Amaral, Renata H.; Rogero, Sizue O.; Lugao, Ademar B.

    2005-01-01

    The polymeric hydrogels are materials with capacity to absorb great amount of water. They present interesting characteristics for many applications in the industry and as biomaterials. The hydrogel membrane with PVP, poly ethylene glycol and agar, crosslinked and sterilized simultaneously by radiation was introduced in the European market and now it is reaching other regions. In this work the hydrogel studied was synthesized with PVP and CMC and crosslinked by gamma radiation. It was applied factorial planning methodology using the gel fraction as basic parameter. Antagonistic interaction was observed between PVP and CMC. High concentrations of PVP help the crosslinking and the opposite with CMC. On the other hand, for low concentrations of PVP the dose influences considerable the gel fraction what it does not happen for high concentrations. From these results it was made an analysis of response surface allowing the optimization of the concentrations of the variables PVP and CMC. (author)

  5. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    International Nuclear Information System (INIS)

    Abd-El Kader, F.H.; Osman, W.H.; Hafez, R.S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  6. Model experiments on the sensitization of polyethylene cross-linking of oligobutadienes

    International Nuclear Information System (INIS)

    Brede, O.; Beckert, D.; Hoesselbarth, B.; Specht, W.; Tannert, F.; Wunsch, K.

    1988-01-01

    In presence of ≥ 1 % of 1,2-oligobutadiene the efficiency of the radiation-induced cross-linking of polyethylene was found to be increased in comparison to the pure matrix. Model experiments with solutions of the sensitizer in long chain n-alkanes showed that after addition of alkyl radicals onto the oligobutadiene (reaction with the vinyl groups) the sensitizer forms an own network which is grafted by the alkyl groups. In comparison to this grafting reaction proceeding with G of about 5 the vinyl consumption happened with about the threefold of it indicating a short (intra- and intermolecular) vinyl reaction chain. Pulse radiolysis measurements in solutions of the 1,2-oligobutadiene in n-hexadecane and in molten PE blends resulted in the observation of radical transients of the cross-linking reaction. (author)

  7. Radiation-induced synthesis of poly(acrylic acid) nanogels

    Science.gov (United States)

    Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr

    2018-01-01

    Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.

  8. Radiation crosslinking of polypropylene

    International Nuclear Information System (INIS)

    Nojiri, A.; Sawasaki, T.

    1984-01-01

    The radiation crosslinking of polypropylene with several kinds of polyfunctional monomers has been examined, and it has been clarified that the enhanced crosslinking may be classified into two types. In particular, the irradiation crosslinking process of polypropylene containing a polyfunctional monomer having an acryloyloxy group giving a specific gel - dose curve has been studied by infrared absorption spectrum and oxygen absorptivity measurement in comparison with the non-enhanced system. (author)

  9. Radiation crosslinking of polymer blends

    International Nuclear Information System (INIS)

    Spenadel, L.

    1979-01-01

    Rocked by the one-two punch of rising energy costs and tougher pollution controls, a growing number of companies are looking to radiation crosslinking as a cheaper, cleaner alternative to heat and costly chemical crosslinking agents such as peroxides. With the development of larger, more powerful electron beam machines it is now possible to irradiate parts as thick as 400 mils in a single pass. Two application areas which have been investigated at our laboratory are the electron beam processing of thermoplastic elastomeric automotive parts and EPDM electrical insulation. This paper covers work carried out to develop the necessary technology base for the radiation crosslinking of ethylene propylene/polyolefin blends. Initial results indicate that EP/PE blends of electrical insulation quality cross-link quite readily when irradiated. On the other hand, EP/PP blends developed for automotive fascia require the addition of crosslinking monomers such as trimethylol propane trimethacrylate in order for crosslinking to predominate over chain scission. Crosslinking EP/PP blends improve mar resistance, flexural set and deformation at elevated temperatures. These are all key properties for automotive fascia. (author)

  10. Automobile parts by radiation crosslinking

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. The crosslinking causes improvement in strength, heat stability and processability to gives network structure for polymer materials and hence crosslinked materials are used in various fields, especially car parts. Electron beam (EB) of short time irradiation is used for these modifications. Irradiated (pre-vulcanized) before sulfur vulcanization rubber tires, heat resistant wires/cables, shrinkable tubes and foams of car parts are achieved by EB crosslinking. Polyethylene and polyvinyl chloride are used in cables and wires, polypropylene in plastic foams and natural rubber etc. In this paper radiation processing of tire, wire/cables, foams, shrinkable tubes and circuit protection devices (CPT) are explained. (author)

  11. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  12. Shape memory behaviour of radiation-crosslinked PCL/PMVS blends

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu Shuogui; Wang Jinhua; Zhang Longbin

    2006-01-01

    The performance and radiation crosslinking of polycaprolactone (PCL) and polymethylvinylsiloxane (PMVS) blends has been investigated. Radiation crosslinking of PCL/PMVS blends followed the Charlesby-Pinner equation, and PMVS promoted the radiation crosslinking of the blends. As the concentration of PMVS increased, the gelation dose and the ratio of degradation to crosslinking (p 0 /q 0 ) decreased and the efficiency of radiation crosslinking increased. The elastic modulus below the melting point of PCL of radiation-crosslinked PCL/PMVS blends decreased with the increase of PMVS, and increased above the melting point. The crosslinked PCL/PMVS blends exhibited excellent shape memory effects, and the ratios of deformation to recovery were more than 95%

  13. Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone.

    Science.gov (United States)

    Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; ElMahmoudy, Mohammed; Uguz, Ilke; Sanchez-Sanchez, Ana; Sardon, Haritz; Castro, Begoña; Malliaras, George G; Mecerreyes, David

    2017-05-31

    Recent interest in bioelectronics has prompted the exploration of properties of conducting polymer films at the interface with biological milieus. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) from a commercially available source has been used as a model system for these studies. Different cross-linking schemes have been used to stabilize films of this material against delamination and redispersion, but the cost is a decrease in the electrical conductivity and/or additional heat treatment. Here we introduce divinylsulfone (DVS) as a new cross-linker for PEDOT:PSS. Thanks to the higher reactiveness of the vinyl groups of DVS, the cross-linking can be performed at room temperature. In addition, DVS does not reduce electronic conductivity of PEDOT:PSS but rather increases it by acting as a secondary dopant. Cell culture studies show that PEDOT:PSS:DVS films are cytocompatible and support neuroregeneration. As an example, we showed that this material improved the transconductance value and stability of an organic electrochemical transistor (OECT) device. These results open the way for the utilization of DVS as an effective cross-linker for PEDOT:PSS in bioelectronics applications.

  14. Additive effects on phase transition and interactions in poly(vinyl methyl ether) solutions

    Czech Academy of Sciences Publication Activity Database

    Starovoytova, Larisa; Šťastná, J.; Šturcová, Adriana; Konefal, Rafal; Dybal, Jiří; Velychkivska, Nadiia; Radecki, M.; Hanyková, L.

    2015-01-01

    Roč. 7, č. 12 (2015), s. 2572-2583 ISSN 2073-4360 R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : additives * LCST * poly(vinyl methyl ether) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.944, year: 2015

  15. Recycling tires? Reversible crosslinking of poly(butadiene).

    Science.gov (United States)

    Trovatti, Eliane; Lacerda, Talita M; Carvalho, Antonio J F; Gandini, Alessandro

    2015-04-01

    Furan-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  17. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  18. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour [Radiation Application Research School, Nuclear Science and Research Institute, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2009-07-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  19. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    International Nuclear Information System (INIS)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour

    2009-01-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  20. Evaluation of scission and crosslinking yields in γ-irradiated poly(acrylic acid) and poly(methacrylic acid) from weight- and Ζ-average molecular weights determined by sedimentation equilibrium

    International Nuclear Information System (INIS)

    Hill, D.J.T.; O'Donnell, J.H.; Winzor, C.L.; Winzor, D.J.

    1990-01-01

    Weight- and Ζ-average molecular weights, M-bar W (D) and M-bar Ζ (D), of poly(methacrylic acid) (PMMA) and poly(acrylic acid) (PAA) have been determined by sedimentation equilibrium in the ultracentrifuge after various doses D of γ-radiation in vacuum. Relationships between [M i (0)/M i (D)-1]/D and D (i=w or Ζ), derived recently by O'Donnell and coworkers, have been used to determine radiation chemical yields for scission and crosslinking of G(S)=6.0, G(X)=0 for PMAA and G(S)=0, G(X)=0.44 for PAA. Allowance was necessary for the effects of COOH decomposition on the average values of the molecular weight and partial specific volume for irradiated PAA. (author)

  1. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    Science.gov (United States)

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  2. Development of new materials by utilizing radiation crosslinking

    International Nuclear Information System (INIS)

    Ueno, Keiji; Uda, Yujiro; Suzuki, Shizuo

    1989-01-01

    About 30 years have elapsed since the cables by electron beam crosslinking were developed as the first industrial utilization of radiation in Japan. At present about 200 electron beam accelerators are used industrially in Japan, and cable industry ranks at the top, followed by foaming polyethylene and curing, and the preliminary vulcanization of tires. The effect of these irradiations is the reforming of polymers by radiation crosslinking. In cables, the heat resistance and chemical resistance of insulators are improved by radiation crosslinking. By applying radiation crosslinking to polyurethane elastomer, its weakest point, waterproof property, was improved. Moreover, by using this crosslinked polyurethane elastomer for cable coating, the reliability of the sensor cables for brake system was able to be remarkably improved. As another new application of radiation crosslinking process, the improvement of the heat resistance of engineering plasties was examined. The structure of radiation crosslinked urethane elastomer cables, their endurance in hot water and oil, and the life, and the characteristics of sensor cables are reported. Multi-functional monomers, the molecular structure, and the various characteristics of engineering plastics are described. (K.I.)

  3. Effect of Molecular Weight on the Thermal and Spectroscopic Properties of Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    Khafagy, R.M.; Abd El-Kader, K.M.; Badr, Y.A.

    2009-01-01

    Thin films of Poly(vinyl alcohol) (PVA) with molecular weights 5000, 17000,72000 and 125000 g/mol were prepared by casting technique.Samples were thermally and spectroscopically investigated using TGA, DSC, FTIR and FT-Raman spectroscopy, in order to show how the thermal stability and structure of PVA might be correlated with its molecular weight. Thermal analysis showed that samples degrade in two steps mechanism. The mechanism observed for degradation in an inert atmosphere was in accordance with the accepted mechanism of elimination followed by pyrolisation. PVA 5000MW and PVA 17000Mw showed almost similar thermal behavior due to their expected similar structure. PVA 72000Mw showed lower thermal stability since it is characterized with the presence of the unstable C-O-C ether linkages, which lead to the fast melting of this sample. PVA 125000Mw showed the highest thermal stability because crosslinking of the main chains takes place due to introducing additional PVA units, which substitute each over oxygen atom. ΔH values obtained from DSC showed good accordance with TGA and Drtg analysis. Moreover, FTIR and FT-Raman results agreed well with thermal analysis, and confirmed our supposed structural changes which might take place as the molecular weight of the sample changes: since the water uptake, presence of ether linkages, and double bonds formulation due to crosslinking, were confirmed with FTIR and FT-Raman spectral analysis. The crystallinity percentage of the samples was calculated from Raman spectra and results confirmed our spectroscopic explanations. The thermal and spectroscopic behavior of the samples was explained as a result of the competitive action of at least three factors due to increasing the molecular weight: (i) diminution of the existing physical network due to changes in hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties due to the specific chemical structure after crosslinking

  4. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  5. Characterization of plasma-polymerized 4-vinyl pyridine with silver nanoparticies on poly(ethylene terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, J.; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2006-01-01

    scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Different thicknesses Of poly(4-vinyl pyridine) coating under different plasma polymerization conditions were studied. Silver nanoparticles with diameter around 50nm deposit were precipitated...... on the poly(4-vinyl pyridine) coating by UV irradiation in Silver nitride water solution, in order to enhance the anti-microbial properties. Different kinds of modified PET films were tested for anti-microbial properties against yeast (Debaryomyces hansenii) by using microbiological analyser mu-4200...

  6. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    Science.gov (United States)

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  7. 13C n.m.r. study of solvation mechanisms in the radiation-induced polymerization of vinyl ethers

    International Nuclear Information System (INIS)

    Deffieux, A.; Subira, F.; Stannett, V.T.

    1984-01-01

    A 13 C n.m.r. study of the microstructure of ethyl vinyl ether (EVE) and isopropyl vinyl ether (IPVE) polymers prepared under various experimental conditions and using chemical or γ-ray initiation has been made. Long stereo-sequence assignments were conducted for poly EVE allowing determination of the configurational statistics of propagation in the radiation-induced polymerization of EVE in low polar solvents. Stereo-sequence intensities are found in good agreement with the Markovian model. The results are considered as further support for the occurrence of a specific interaction between the growing active centres and the polymer chains. In the case of IPVE polymers much more important overlappings of the resonance patterns are observed thus preventing any similar detailed study. (author)

  8. Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties.

    Science.gov (United States)

    Chen, Yipeng; Wang, Hanwei; Dang, Baokang; Xiong, Ye; Yao, Qiufang; Wang, Chao; Sun, Qingfeng; Jin, Chunde

    2017-05-12

    Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling high-performance composites. Inspired by the layered structure and extraordinary strength and toughness of natural nacre, nacre-like nanolignocellulose/poly (vinyl alcohol)/TiO 2 composites possessed the similar layered structure of natural nacre were constructed through hot-pressing process. Poly (vinyl alcohol) and TiO 2 nanoparticles have been used as nanofillers to improve the mechanical performance and synchronously endow the superior photocatalytic activity of the composites. This research would be provided a promising candidate for the photooxidation of volatile organic compounds also combined with outstanding mechanical property.

  9. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  10. Biaxial stress-strain behavior of chemical and physical gels of poly(vinyl alcohol)

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2008-01-01

    Roč. 49, č. 10 (2008), s. 2560-2567 ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(vinyl alcohol) gels * pure shear behavior * constitutive equation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.331, year: 2008

  11. Fracture behavior of highly toughened poly(lactic acid)/ethylene-co-vinyl acetate blends

    NARCIS (Netherlands)

    Zeng, Q.; Feng, Y.; Wang, R.; Ma, P.

    2018-01-01

    Poly(lactic acid) (PLA) is brittle which restricts the range of its applications. The toughness of PLA was effectively improved in this work by incorporation of rubber grade ethylene-co-vinyl acetate (EVM). For example, the elongation at break of PLA increased by about 50 times after the addition of

  12. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid)/Kaolin Composite Superabsorbents

    OpenAIRE

    Koroush Kabiri; Siavash Nafisi; Mohammad jalaledin Zohuriaan-Mehr; Ali Akbar Yousefi

    2013-01-01

    Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5%) was due to polyethylene glycol diacrylate 1000 (PEGDA-1000). Then, kaolin-containing poly(potassium acrylate-acrylic acid) superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated...

  13. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  14. Modeling of the Migration of Glycerol Monoester Plasticizers in Highly Plasticized Poly(vinyl chloride)

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Kristiansen, Jørgen K.

    2009-01-01

    soybean oil (ESBO) with regard to their migration from three different types of poly(vinyl chloride) into isooctane at 20, 40, and 60 degrees C. Diffusion coefficients derived from the experimental migration data were evaluated against diffusion coefficients estimated from a model based solely...

  15. Poly(vinyl-alcohol)/poly(ethylene-glycol)/poly(ethylene-imine) blend membranes - structure and CO2 facilitated transport

    International Nuclear Information System (INIS)

    Ben Hamouda, S.; Quang, Trong Nguyen; Langevin, D.; Sadok, Roudeslic

    2010-01-01

    Poly(vinyl-alcohol) (PVA)/poly(ethylene-imine) (PEI)/poly(ethylene-glycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO 2 /N 2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO 2 permeability decreased with an increase in CO 2 partial pressure in feed gas, while the N 2 permeability remained constant. This result indicated that only CO 2 was transported by the facilitated transport mechanism. The CO 2 and N 2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO 2 to N 2 transport showed a maximum. When CO 2 is humidified, its permeability through the blend membranes is much higher than that of dry CO 2 , but the change in permeability due to the presence of humidity is reversible. (authors)

  16. Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking

    International Nuclear Information System (INIS)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak

    2014-01-01

    In this study, poly(lactic acid) (PLA)/poly(ethylene glycol)-functionalized polyhedral oligomeric silsesquioxane (PEG-POSS) nanocomposites with or without triallyl isocyanurate (TAIC) were investigated by melt blending and electron beam irradiation to enhance the flexibility of PLA. Based on the results of the crosslinking degree measurements, the PLA/PEG-POSS nanocomposites were crosslinked by electron beam irradiation in the presence of triallyl isocyanurate (TAIC) and their crosslinking degree reached up to 80% based on the absorbed dose and their compositions. From the results of the FE-SEM and EDX Si-mapping, the crosslinked PLA/PEG-POSS nanocomposites were homogenous without a micro-phase separation or radiation-induced morphological change. Based on the results of the tensile test, the PLA/PEG-POSS nanocomposites containing 15 wt% PEG-POSS exhibited the highest flexibility, and their tensile strength showed a maximum value of 44.5 MPa after electron beam irradiation at an absorbed dose of 100 kGy in the presence of TAIC, which is comparable to non-biodegradable polypropylene. The results of the dynamic mechanical analysis revealed that the crosslinked PLA/PEG-POSS nanocomposites exhibited a higher thermal resistance above their melting temperature in comparison to that of the neat PLA, although their glass transition temperature was lower than that of the neat PLA. The enzymatic biodegradation test revealed that the PLA/PEG-POSS nanocomposites were biodegradable even though their biodegradability was deteriorated in comparison to that of the neat PLA. - Highlights: • PLA/PEG-POSS nanocomposites were prepared by melt blending. • The nanocomposites containing TAIC were crosslinked by electron beam irradiation. • The mechanical properties of the nanocomposites were comparable to polypropylene. • The crosslinked nanocomposites can be biodegradable

  17. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Benadda

    2014-10-01

    Full Text Available In the present work poly (N-vinyl-2-pyrrolidone-co-methyl methacrylate copolymers were prepared successfully and cleanly by a one step process via cationic copolymerization of N-vinyl-2-pyrrolidone (NVP with methyl methacrylate (MMA, in heterogeneous phase using “Maghnite-H+” (Mag-H+ as catalyst in bulk, Maghnite is a montmorillonite sheet silicate clay exchanged with protons to produce Maghnite-H+. Temperature is varied between 20 and 80 °C. The effects of reaction temperature, amount of Mag-H+ on the yield and the intrinsic viscosity (η were investigated. A typical reaction product of poly (NVP-co- MMA was analyzed by infra red spectroscopy (FTIR and 1H-NMR, 13C-NMR spectroscopy as well as by viscosimetry. © 2014 BCREC UNDIP. All rights reservedReceived: 24th November 2013; Revised: 30th June 2014; Accepted: 8th July 2014How to Cite: Benadda, M., Ferrahi, M.I., Belbachir, M. (2014. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 201-206. (doi: 10.9767/bcrec.9.3.5743.201-206Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.5743.201-206

  18. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin.

    Science.gov (United States)

    Kulkarni, Raghavendra V; Sreedhar, V; Mutalik, Srinivas; Setty, C Mallikarjun; Sa, Biswanath

    2010-11-01

    Interpenetrating network (IPN) hydrogel membranes of sodium alginate (SA) and poly(vinyl alcohol) (PVA) were prepared by solvent casting method for transdermal delivery of an anti-hypertensive drug, prazosin hydrochloride. The prepared membranes were thin, flexible and smooth. The X-ray diffraction studies indicated the amorphous dispersion of drug in the membranes. Differential scanning calorimetric analysis confirmed the IPN formation and suggests that the membrane stiffness increases with increased concentration of glutaraldehyde (GA) in the membranes. All the membranes were permeable to water vapors depending upon the extent of cross-linking. The in vitro drug release study was performed through excised rat abdominal skin; drug release depends on the concentrations of GA in membranes. The IPN membranes extended drug release up to 24 h, while SA and PVA membranes discharged the drug quickly. The primary skin irritation and skin histopathology study indicated that the prepared IPN membranes were less irritant and safe for skin application. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites

    NARCIS (Netherlands)

    Geven, Mike Alexander; Barbieri, D.; Yuan, Huipin; de Bruijn, Joost Dick; Grijpma, Dirk W.

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with

  20. Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE)

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Jehnichen, D.; Pompe, G.; Lunkwitz, K.

    2001-01-01

    The effect of electron beams on poly(tetrafluoroethylene) (PTFE) at elevated temperatures above the melting point on oxygen-free conditions has been studied using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), Fourier-transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and tensile test. The investigations have shown that the chemical structure and several properties of PTFE are greatly altered by the irradiation. DSC and WAXS indicate that the crystallinity of the PTFE irradiated with high doses is reduced. CF 3 side groups and branched structures are assumed to hinder the crystallization. TGA has shown that the thermal stability of the radiation-modified PTFE is considerably lower than that of unirradiated PTFE

  1. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  2. The influence of stretching on tensile strength and solubility of poly(vinyl alcohol) fibres

    NARCIS (Netherlands)

    Heikens, D.; Bleijenberg, A.C.A.M.; Hoppenbrouwers, J.J.M.; Barentsen, W.M.

    1971-01-01

    The strength of wet-spun poly(vinyl alcohol) (pva) fibres is given as function of bath-stretching, wet-stretching and hot-stretching. In the two equations derived for strength of wet-stretching and hot-stretching the complex influence of the bath-stretching and hot-stretching is demonstrated. The

  3. Poly(ethylene oxide) surfactant polymers

    OpenAIRE

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; MARCHANT, ROGER E.

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  4. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  5. Microfabrication of crosslinked PTFE by synchrotron radiation

    International Nuclear Information System (INIS)

    Sato, Yasunori; Yamaguchi, Daichi; Oshima, Akihiro; Washio, Masakazu; Katoh, Takanori; Aoki, Yasushi; Ikeda, Shigetoshi; Tanaka, Shigeru

    2003-01-01

    Microfabrication of crosslinked polytetrafluoroethylene (PTFE) using synchrotron radiation (SR) has been demonstrated for production of micro-components applicable to radiation fields. The method of microfabrication was readily capable of obtaining a microstructure with aspect-ratio of 25 made of crosslinked PTFE. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. The results show that the etching rate of crosslinked PTFE depends only on the degree of crosslinking. The effect of molecular motion on etching process was discussed from temperature dependence on etching rate. Moreover, in order to examine whether any change of chemical structures and crystallinity would be induced by SR-irradiation on PTFE, SR-irradiated PTFE was measured by NMR spectroscopy and DSC analysis. The results showed that the crosslinking reaction of PTFE would be induced by SR-irradiation in the solid state. (author)

  6. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  7. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Science.gov (United States)

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  8. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  9. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents

    Science.gov (United States)

    Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2018-01-01

    Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.

  10. Influence of polymer chain architecture of poly(vinyl alcohol) on the inhibition of ice recrystallization

    NARCIS (Netherlands)

    Olijve, L.L.C.; Hendrix, M.M.R.M.; Voets, I.K.

    2016-01-01

    Poly(vinyl alcohol) (PVA) is a water-soluble synthetic polymer well-known to effectively block the recrystallization of ice. The effect of polymer chain architecture on the ice recrystallization inhibition (IRI) by PVA remains unexplored. In this work, the synthesis of PVA molecular bottlebrushes is

  11. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    International Nuclear Information System (INIS)

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-01-01

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness

  12. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Warangkhana, Phromma; Rathanawan, Magaraphan, E-mail: rathanawan.k@chula.ac.th [Chulalongkorn University, Petroleum and Petrochemical College - Bangkok (Thailand); Jana Sadhan, C., E-mail: janas@uakron.edu [The University of Akron, Department of Polymer Engineering, Ohio (United States)

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  13. Radiation induced copolymerization of N-vinyl-2-pyrrolidone with vinyl acetate [Paper No. RD-3

    International Nuclear Information System (INIS)

    Ramakrishna, M.S.; Dhal, P.K.; Deshpande, D.D.; Babu, G.N.

    1982-01-01

    Copolymerization of N-vinyl-2-pyrrolidone (NVP) with vinyl acetate (VAC) was carried out using gamma-ray radiation. The compositions of the copolymers were determined from elemental analysis and the monomer reactivity ratios have been calculated using YBR method. The glass transition temperature and the intrinsic viscosities of the copolymers have been determined. All the experimental results were discussed in terms of the nature of the monomers. (author)

  14. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  15. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance.

    Science.gov (United States)

    Wang, Kai; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Meng, Qinghai; Ma, Yanwei; Wei, Zhixiang

    2015-12-02

    A high-strength poly(vinyl alcohol) chemical hydrogel (PCH) film is prepared by coupling covalent crosslinking with a film-casting process. Conducting polyaniline (PANI) is then embedded in the PCH film by in situ growth to form a composite film with a PANI-hydrogel-PANI configuration, which leads to a new conceptual flexible supercapacitor with all-in-one configuration that exhibits superior electrochemical performance and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The influence of Poly-Vinyl-Chloride tubing on the isolated perfused rat´s heart.

    NARCIS (Netherlands)

    Meijler, F.L.; Durrer, D.

    1950-01-01

    There are types of poly-vinyl-chloride tubing sold and used for medical and biological purposes which deteriorate heart action in a few minutes. A simple method for testing P.V.C. tubing can be found in the isolated rat's he art perfused according to Langendorff.

  17. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Nishii, Masanobu; Hatada, Motoyoshi

    1975-01-01

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  18. Effect of irradiation on poly(vinyl chloride)/epoxidized natural rubber blend in the presence of additives: FTIR analysis

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Dahlan; Baharin, A.; Nasir, M.

    2001-01-01

    The effect of irradiation on the structure of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR) was studied using the Fourier Transform Spectroscopy (FTIR). The 50/50 PVC/ENR blend was irradiated by using 3.0 MeV electron beam machine at 0 and 200 kGy irradiation doses. The influence of several additives such as TMPTA, Irganox 1010, and tribasic lead sulfate on the irradiation induced changes of the blend was investigated. It was found that upon irradiation, ring opening of the epoxide groups, oxidation as well crosslinking at residual double bonds occurred, leading to decreases in the intensities of the epoxide and cis double bond bands and an increases in ether and furan bands. The addition of Irganox 1010 and tribasic lead sulfate were found to inhibit the irradiation-induced reaction in the blend to a considerable extent. The importance of TMPTA in preventing the intramolecular ring opening side chain reaction was also discussed. However, studies did not reveal the exact nature of the irradiation-induced reactions involved in the blend. (Author)

  19. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  20. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  1. Facile preparation of layered double hydroxide/MoS{sub 2}/poly(vinyl alcohol) composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Keqing, E-mail: zhoukq@cug.edu.cn [Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei, 430074 (China); Hu, Yixin [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Liu, Jiajia [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Jiang, Saihua [School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma' anshan, Anhui, 243002 (China)

    2016-08-01

    In present study, the layered double hydroxide/MoS{sub 2} hybrids are facilely synthesized by self-assembly of exfoliated MoS{sub 2} nanosheets and layered double hydroxide nanoplates via electrostatic interaction, with the aim of combining their physical and chemical functionalities to form a promising nanofiller for flame retardancy in polymer composites. The structure and morphology of the layered double hydroxide/MoS{sub 2} hybrids are probed by X-ray diffraction and transmission electron microscopy. Subsequently, the hybrids are incorporated into poly (vinyl alcohol) to serve as reinforcements. The flame retardant efficiency of MoS{sub 2} nanosheets in poly (vinyl alcohol) is significantly enhanced after the incorporation of layered double hydroxide nanoplates, which can be explained by the forming of a compact and uniform char during combustion. - Highlights: • The LDH/MoS{sub 2} hybrids were facilely synthesized by self-assembly method. • The flame retardant efficiency of LDH/MoS{sub 2} hybrids in PVA was significantly enhanced. • It is a promising strategy for improving the flame retardant efficiency of MoS{sub 2}.

  2. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol) Blend Nanofibers

    OpenAIRE

    Shuai Li; Xu-Hong Yang

    2014-01-01

    Wool keratin/poly(vinyl alcohol) (PVA) blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution...

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  4. Morphological, dielectric and electric conductivity characteristics of clay-containing nanohybrids of Poly(N-Vinyl Carbazole) and Polypyrrole

    CSIR Research Space (South Africa)

    Haldar, I

    2012-10-01

    Full Text Available Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared...

  5. Study on properties of poly(vinyl alcohol/polyacrylonitrile blend film

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available In this work, a series of poly(vinyl alcohol (PVA/polyacrylonitrile (PAN blend films with different PAN mole contents were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. Surface morphologies of PVA/PAN blend films were analyzed by Scanning Electronic Microscopy (SEM and Atomic Force Microscopy (AFM. Thermal, mechanical, and chemical properties of PVA/PAN blend films were investigated by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, Tensile Tests, and Surface Contact Angle Tests. The results showed that the introduction of PAN could exert marked effects on the properties of PVA films.

  6. Poly High Internal Phase Emulsion for the Immobilization of Chemical Warfare Agents.

    Science.gov (United States)

    Wright, Alexander J; Main, Marcus J; Cooper, Nicholas J; Blight, Barry A; Holder, Simon J

    2017-09-20

    We report a facile method for the absorption (characterized by the weight/weight swelling degree, Q) of a variety of chemical warfare agents (CWAs); including sulfur mustard (HD) (Q = 40) and V-series (VM, VX, i-Bu-VX, n-Bu-VX) of nerve agents (Q ≥ 45) and a simulant, methyl benzoate (Q = 55), through the use of a poly(styrene-co-vinyl benzyl chloride-co-divinylbenzene) lightly cross-linked poly high internal phase emulsion (polyHIPE). By varying the vinyl benzyl chloride (VBC) content and the volume of the internal phase of the precursor emulsion it is demonstrated that absorption is facilitated both by the swelling of the polymer and the uptake of liquid in the pores. In particular the sample prepared from a 95% internal emulsion water content showed rapid swelling (<5 min to total absorption) and the ability to swell both from a monolithic state and from a compressed state, making these systems ideal practical candidates for the rapid immobilization of CWAs.

  7. Morphology in binary blends of poly(vinyl methyl ether) and epsilon-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, MC; Bogels, EJF; vanEkenstein, GORA; tenBrinke, G; Bras, W; Komanschek, BE; Ryan, AJ

    The morphology of symmetric diblock copolymer of epsilon-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  8. Morphology in binary blends of poly(vinyl methyl ether) and ε-caprolactone-trimethylene carbonate diblock copolymer

    NARCIS (Netherlands)

    Luyten, M.C.; Bögels, E.J.F.; Alberda van Ekenstein, G.O.R.; Brinke, G. ten; Bras, W.; Komanschek, B.E.; Ryan, A.J.

    1997-01-01

    The morphology of symmetric diblock copolymer of ε-caprolactone (PCL) and trimethylene carbonate (PTMC), in blends with poly(vinyl methyl ether) (PVME) is investigated with (modulated) differential scanning calorimetry (d.s.c.), time resolved small angle (SAXS) and wide angle (WAXS) X-ray

  9. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  10. EB radiation crosslinking of elastomers

    International Nuclear Information System (INIS)

    Bik, J.; Rzymski, M.; Gluszewski, W.; Zagorski, Z.P.

    2002-01-01

    Complete text of publication follows. The first paper in the series described by the general title, starts with radiation crosslinking of hydrogenated butadiene-nitrile rubber (HBNR). This high-tech elastomer is obtained by catalytic hydrogenation of >C=C 99.5 and 94.5% of starting double bonds. Samples were irradiated with 10 MeV electrons, monoenergetical, 6 kW power, used as scanned beam over the conveyor, securing homogeneity of dose distribution. The doses were up to 300 kGy, applied in 20 kGy increments to avoid radiation generated heating of the material. The influence of presence or absence of oxygen was considered. Irradiated samples were investigated for the extend of crosslinking in the function of dose and for properties important for understanding of mechanisms. Samples are transparent, what allowed conventional absorption spectrophotometry, also time resolved. The quantitative interpretation of results shows that for 100 crosslinks there are 6-9 acts of chain-scission. It is less, than expected from the participation of multi-ionization spurs, also in the solid state, as announced during the previous, 9th Tihany Conference. However, the apparent lower yield of multi-ionization spurs is explained by partial conversion of products into crosslinks of specific type. Our investigations confirm the usefulness of consideration of radiation spurs in polymers as well as in all, low LET irradiated media

  11. Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL Biosensors

    Directory of Open Access Journals (Sweden)

    Ji-Hye Park

    2014-01-01

    Full Text Available Vinyl polymer-grafted multiwalled carbon nanotube (MWNT supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP of the vinyl monomers acryloyl diphosphoric acid (ADPA, acrylic acid (AA, sodium styrenesulfonate (NaSS, and methacrylic acid (MA onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE and a screen printed electrode (ECL-SPE were fabricated by immobilization of Ru(bpy3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH was immobilized onto an ECL-GCE sensor prepared by poly(NaSS-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks.

  12. Effect of Poly(Vinyl Alcohol) Addition on the Properties of Hydrothermal Derived Calcium Phosphate Cement for Bone Filling Materials

    Science.gov (United States)

    Razali, N. N.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    The effect of addition of poly(vinyl alcohol) on hydrothermal derived calcium phosphate cement has been studied. The precursors used to prepare the cement were calcium oxide (CaO) and ammonium dihydrogen phosphate (NH4H2PO4); the reaction was conducted in water at 80-100°C. To improve properties of CPC, poly(vinyl alcohol) (PVA) of 1wt% and 2wt% was added to the liquid phase of CPC and the results were compared to CPC without PVA addition. The addition of PVA was proved to bring remarkable effects on cohesion, setting time and mechanical strength of CPC which make it suitable physically for injectable bone filler applications.

  13. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  14. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    Science.gov (United States)

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).

  15. Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Sol

    DEFF Research Database (Denmark)

    Knaapila, Matti; Stewart, Beverly; Costa, Telma

    2016-01-01

    We report on a multiscale polymer-within-polymer structure of the cationic conjugated polyelectrolyte poly{[9,9-bis(6-N,N,N-trimethylammonium)hexyl]fluorene phenylene} (HTMAPFP) in aqueous poly(vinyl alcohol).(PVA) sol. Molecular dynamics simulations and small-angle neutron scattering (SANS) data...... show that HTMA-PFP forms aggregates in water but becomes entangled by PVA (with a 1:1 molar ratio of HTMA-PFP to PVA) and eventually immersed in PVA clusters (with the ratio 1:4). This is attributed to the hydrophobic hydrophilic balance. Contrast variation data with regular and deuterated PVA support...

  16. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  17. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  18. Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

    Science.gov (United States)

    Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun

    2011-07-15

    Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of radiation-induced crosslinking on thermal and mechanical properties of poly(lactic acid) composites reinforced by basalt fiber

    International Nuclear Information System (INIS)

    Liu Meihua; Zhang Wanxi; Yin Yuan; Wei Wei; Zheng Chunbai; Deng Pengyang; Shen Shirley

    2013-01-01

    Poly (lactic acid)/ basalt fiber (PLA/BF) composites were prepared by melt blending with a cross-linking agent, triallyl isocyanurate (TAIC). The thermal and mechanical properties of the composites were investigated through gel fraction, heat defection temperature (HDT), tensile tests and scanning electron microscopy (SEM). Under certain conditions, the HDT of composites was dramatically increased to 140℃ after irradiation. Tensile properties were enhanced as well. Both these improvements were consistent with changes of the fracture morphology. Compatibilization and concomitant enhancement of the interfacial adhesive between the polymer matrix and the inorganic fiber were achieved as seen from SEM photos, as a result of the formation of co-crosslinking and grafting structures at the interface according to the determination of gelation extraction. (authors)

  20. IR Laser-Induced Degradation of Poly(vinyl acetate): Novel Thermal Reactions in the Solid Polymers

    Czech Academy of Sciences Publication Activity Database

    Kupčík, Jaroslav; Blazevska-Gilev, J.; Pola, Josef

    2005-01-01

    Roč. 26, č. 5 (2005), s. 386-389 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GA104/04/2028 Institutional research plan: CEZ:AV0Z40720504 Keywords : laser ablation * laser-induced polymers * poly(vinyl acetate) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.126, year: 2005

  1. The effect of poly(vinyl alcohol) type and radiation treatment on the properties of starch-poly(vinyl alcohol) films

    Science.gov (United States)

    Cieśla, Krystyna; Abramowska, Anna; Boguski, Jacek; Drewnik, Joanna

    2017-12-01

    Our present study concerns the effect of application of various PVA substrates and the influence of ionising radiation on the properties of films based on starch and PVA. Four PVAs revealing various molecular masses (in the range of 11-145 kDa) were selected for this purpose. The films characterized by starch: PVA ratios of 40:60 were prepared by solution casting and irradiated with 60Co gamma rays (under nitrogen) and with fast electrons (under air) applying the absorbed dose of 25 kGy. Mechanical properties of the films (tensile strength, elongation at break and Young Modulus) were examined, as well as the contact angle to water and swelling in water, in regard for evaluation of the hydrophilic/hydrophobic properties. Gel content in the samples was also determined. Physicochemical properties of the films and their sensitivity to irradiation strongly depend on the applied PVA substrate. This can be related to differences in the capability of particular PVAs for forming the crosslinked starch-PVA network during the films' synthesis and future treatment. In particular, the usage of the PVA characterized by the high molecular mass has appeared more rewarding as compared to those based on the low molecular mass PVAs. Additionally, properties of these films were not affected or improved after irradiation.

  2. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites

    International Nuclear Information System (INIS)

    Bakar, Nurfatimah Abu; Chee, Ching Yern; Abdullah, Luqman Chuah; Ratnam, Chantara Thevy; Ibrahim, Nor Azowa

    2015-01-01

    Highlights: • Study on thermal and dynamic mechanical properties of PVC/EVA/PMMA grafted kenaf fiber. • PMMA grafted kenaf fiber showed good interaction with PVC/EVA blends. • Thermal stability of the composites increase upon PMMA grafting on kenaf fiber. • The crystallinity of the composites decrease upon PMMA grafting on kenaf fiber. • PMMA grafted fiber provides more reinforcement on PVC/EVA/grafted PMMA composite. - Abstract: The effects of kenaf and poly (methyl methacrylate grafted kenaf on the thermal and dynamic mechanical properties of poly (vinyl chloride), PVC and ethylene vinyl acetate, EVA blends were investigated. The PVC/EVA/kenaf composites were prepared by mixing the grafted and ungrafted kenaf fiber and PVC/EVA blend using HAAKE Rheomixer at a temperature of 150 °C and the rotor speed at 50 rpm for 20 min. The composites were subjected to Differential Scanning Calorimetric (DSC), Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) and Scanning Electron Microscopy (SEM) studies. The DSC data revealed that the crystallinity of the EVA decreased with the addition of 30% grafted and ungrafted kenaf fibers. TGA and derivative thermogravimetric (DTG) curves displayed an increase in the thermal stability of the composites upon grafting of the fiber. Studies on DMA indicate that the T g of the PVC and EVA in the PVC/EVA/kenaf composites has been shifted to higher temperature with the addition of the kenaf fiber. The presence of PMMA on the surface of grafted kenaf fiber was further confirmed by the analytical results from FTIR. The morphology of fractured surfaces of the composites, which was examined by a scanning electron microscope, showed the adhesion between the kenaf fiber and the PVC/EVA matrix was improved upon grafting of the kenaf fiber

  3. Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Jung, Ho-Young; Shin, Seung-Shik; Choi, Nam-Soon; Sung, Shi-Joon; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, the proton conducting membrane based on semi-interpenetrating polymer networks (IPNs) of Nafion and crosslinked poly(AMPS) was prepared and characterized. The modification of Nafion with crosslinked poly(AMPS) such as hydrocarbon polymer changed the state of water in membranes. Without a significant increase of the membrane resistance, the semi-IPNs demonstrated a reduction of the methanol permeability, comparing to the native Nafion. And the maximum power density of AMPS60 increased as much as 22.2% compared with Nafion

  4. Thermodynamic and Kinetic Behavior of the Polystyrene/Poly(vinyl methyl ether) Blend as Studied by Excimer Fluorescence.

    Science.gov (United States)

    1986-01-02

    AD-A±63 895 THERMODYNAMIC AND KINETIC BEHAVIOR OF THE / POLYSTYRENE/POLY(YINYL METHYL E..(U) STANFORD UNIY CALIFDEPT OF CHEMICAL ENGINEERING C N...Polystyrene/Poly(vinyl methyl ether) Blend 7. DEcFRMN 81 toOR 30USptE8 00~ as Studied by Excimer Fluorescence 6 EFRIGOG EOTNME *AUTHOR() a. CONTRACT OR GRANT...werea fondoare ihemoriisof * ~ Ex e sp fluodecositionsdu to deud Gen e and hoog Pinus Florsneis shownhase migrationprocSECURITY CLASIFICTIO OFd

  5. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Science.gov (United States)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  6. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    International Nuclear Information System (INIS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-01-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  7. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    Science.gov (United States)

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  8. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    Directory of Open Access Journals (Sweden)

    Tippawan Siritientong

    2013-01-01

    Full Text Available The genipin-cross-linked silk sericin/poly(vinyl alcohol (PVA films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  9. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    International Nuclear Information System (INIS)

    Stein, A.D.; Hoffman, D.A.; Frank, C.W.; Fayer, M.D.

    1992-01-01

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from T g +75 to T g +150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends

  10. Miscibility and specific interactions in blends of poly(n-vinyl-2-pyrrolidone) and acid functional polyester resins.

    NARCIS (Netherlands)

    Senatore, D.; Berix, M.J.A.; Laven, J.; Benthem, van R.A.T.M.; With, de G.; Mezari, B.; Magusin, P.C.M.M.

    2008-01-01

    Miscibility and intermol. interactions of novel blends of poly(N-vinyl-2-pyrrolidone) (PVP) and acid functional polyester resins (APE) were studied by use of Differential Scanning Calorimetry (DSC), Attenuated Total Reflectance Fourier Transform IR (ATR-FTIR), Cross-Polarization Magic Angle Spinning

  11. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  12. Radiation processing. Present situation of the applications in Europe

    International Nuclear Information System (INIS)

    Laizier, J.

    1977-01-01

    A review is given of radiation processings in Europe: sterilization, food irradiation, sewage treatment, cross-linking of polyethylenes, vinyl polychlorides, rubbers and polymers, electron beam drying of coatings on wood, plastics and paper, production of wood-plastic composites, polymerization of ethylene and vinyl monomers [fr

  13. Scaffold of chitosan/poly(vinyl alcohol) blend chemically crosslinked by glutaraldehyde for tissue engineering applications

    International Nuclear Information System (INIS)

    Costa Junior, Ezequiel de S.; Laguardia-Nascimento, Mateus; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2009-01-01

    Chitosan/PVA based films were chemically crosslinked by glutaraldehyde (GA) in order to achieve scaffolds for potential tissue engineering application. Both precursors and developed films were characterized by FTIR and XRD in order to determine the presence of chemicals groups and nanostructural order, respectively. The results have showed that the GA crosslinking have altered the crystallinity of the chitosan and the increase on the C=N bands and decreasing of NH 2 bands suggest that Chitosan/GA crosslinking has preference to occur in the carbon 2 by Schiff's base. The mechanical properties, swelling behavior, degradation rate in vitro and cellular viability were compatible with the characteristic of an epithelial tissue. The material presented a toughness range from 1.4 to 34MJ/m3, swelling from 150% to 700% in 24h, degradation rate from 20% to 75% (wt%) in 24h and cellular viability in vitro above 60% compared to the cellular control. The developed scaffolds from the films have also showed swelling and degradation in vitro properties well-matched for biomedical applications in tissue engineering (author)

  14. Radiation cross-linking of fluoropolymers: Pt.2

    International Nuclear Information System (INIS)

    Sun Jiazhen; Zhu Xianglin; Zhang Yuefang

    1987-01-01

    On the basis of the results of IR analysis, ESR, ESCA and chemical anlaysis, the mechanism of radiation crosslinking of fluoropolymer Fs-46 was suggested. The crosslinking point of Fs-46 is not on the side chain-CF 3 -group, as Bowers suggest with their theoretical analysis, it may carried out with recombination of two side chain radicals directly, crosslinking with H type, or recombination of side chain radicals and chain end radicals through branching and then crosslinking. It is crosslinking with T type or Y type. The later one is the probable mechanism

  15. Characterization and improvement of PVAl/PVP/PEG hydrogels

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose A.; Parra, Duclerc F.; Almeida, Monise F.; Lugao, Ademar B.

    2009-01-01

    The use of hydrogels matrices for particular drug release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-vinyl-2-pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. In this study it was compared the hydrogels reticulation for irradiation gamma O 2 and N 2 atmosphere. The characterization of the hydrogels was conducted and the toxicity was evaluated. The dried hydrogel was analyzed by differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel determinations. The membranes have no toxicity and gel content revealed the crosslinking degree. (author)

  16. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2014-01-01

    Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.

  17. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  18. Characterisation of radiation crosslinked polydimethylsiloxane

    International Nuclear Information System (INIS)

    Preston, C.M.L.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1998-01-01

    Polysiloxanes, or silicones, are used widely in industry, as lubricants and process additives, as well as in many household products. The most common of the silicones is polydimethylsiloxane (PDMS). The fact that silicones crosslink during exposure to high energy radiation is well established. However, despite the number of studies performed on these systems, the exact mechanism of crosslinking has yet to be determined. Nuclear Magnetic Resonance spectroscopy (NMR) provides a useful method for the analysis of crosslinked polymer systems. Linear uncrosslinked PDMS is easily characterised in the solution state by NMR, as PDMS is readily soluble in common organic solvents. However, the onset of gelation caused by crosslinking results in an insoluble polymer network. The use of cross-polarisation (CP) and magic-angle spinning (MAS) in conjunction with high power decoupling has been shown to greatly enhance sensitivity of the NMR technique in solids. The true mechanism of crosslinking between polymer chains will be discussed

  19. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  20. Photo-degradation of poly(neopentyl isophthalate). Part II: Mechanism of cross-linking.

    NARCIS (Netherlands)

    Malanowski, P.; Benthem, van R.A.T.M.; Ven, van der L.G.J.; Laven, J.; Kisin, S.; With, de G.

    2011-01-01

    The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized

  1. Radiation effect of ethylene/vinyl alcohol copolymer

    International Nuclear Information System (INIS)

    Liu Meihua; Jilin Univ., Changchun; Deng Pengyang; Sun Jiazhen; Dong Lisong; Sun Guoen; Zhang Wanxi

    2006-01-01

    The radiation effect of ethylene-vinyl alcohol copolymer (EVOH), EVOH/glycerin blend was studied by solvent extraction, gel permeation chromatography (GPC) and Fourier transform infrared spectrum (FTIR) methods. Samples were irradiated up to 1800 kGy at room temperature under N 2 . The results show that degradation is the main reaction in pure EVOH. Trace gel content could be found in E151 irradiated to at least 800 kGy, and only 5.9% gel content was found in the sample irradiated to 1200 kGy. While trace gel content could be found in F101 irradiated to at least 1800 kGy, the different gelation doses of E151 and F101 are due to different contents of vinyl alcohol units. Unsaturation structure can be found in the irradiated EVOH. The content increased at first, and then decreased, with the dose. The existence of double bond enhances the radiation efficiency of EVOH. For EVOH/glycerin blend, the gel content was higher than that of pure EVOH when the absorbed dose exceeds 800 kGy, and the gel content increased with the absorbed dose. But it cannot enhance radiation efficiency of EVOH as water. (authors)

  2. Study of morphology and mechanical properties of hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether)

    International Nuclear Information System (INIS)

    Bitekenova, A.; Dzhusupbekova, A.; Khutoryanskij, V.; Nurkeeva, Z.

    2003-01-01

    The hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether) were obtained from blend of the corresponding monomers. Radiation crosslinking of composite materials are realize by γ-irradiation method and the gelation doses were calculated. It was shown that mechanical properties of films depend on composition (content of notion component) and conditions of crosslinking. The morphology of polymeric films was investigated by scanning electron microscopy

  3. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite.

    NARCIS (Netherlands)

    Wang, M.; Li, Y.; Wu, J.; Xu, F.; Zuo, Y.; Jansen, J.A.

    2008-01-01

    A novel porous composite material composed of hydroxyapatite, poly(vinyl alcohol) (PVA), and gelatin (Gel) was fabricated by emulsification. Scanning electron microscopy showed that the material had a well-interconnected porous structure including many macropores (100-500 microm) and micropores

  4. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Science.gov (United States)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  5. Post irradiation effects on the graft of poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) films

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Zen, Heloisa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    Radiation induced grafting of monomers into fluorinated polymers was designed as an alternative route to polymer modification. In this work, grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) was studied. Radiation-induced grafting of styrene onto PFA films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60 Co source. The films of PFA were irradiated at 20, 40, 80 and 100 kGy doses at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established between 7 and 28 days when films of PFA were maintained in styrene/toluene 1:1 v/v solution at room temperature. After these periods the grafting degrees were evaluated in the samples. The highest degree of grafting was achieved after 14 days. Chemical modifications were evaluated by infrared spectroscopic analysis (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC) and also by scanning electron microscopy (SEM). The degree of grafting (DOG) was determined gravimetrically. The results showed that irradiated PFA films at 100 kGy exhibited higher grafting degree. Surface analysis by SEM technique of irradiated, grafted and original films have presented an homogeneous surface. (author)

  6. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    International Nuclear Information System (INIS)

    Bhagat, D. J.; Dhokane, G. R.; Bajaj, N. S.

    2016-01-01

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  7. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R. [Arts, Science and Commerce College, Chikhaldara, 444807, Maharashtra (India); Bajaj, N. S. [Toshniwal Arts, Science and Commerce College, Sengaon, Maharashtra (India)

    2016-05-06

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  8. Influence of polyvinyl alcohol amount on producing in situ photo-crosslinked thioamide functionalized nanofiber membranes

    Directory of Open Access Journals (Sweden)

    Zeytuncu Bihter

    2015-01-01

    Full Text Available Poly(vinyl alcohol/maleic anhydride/acryloyl thioamide monomer (PVA/MA/ATM photo-cured nanofiber membranes and pure PVA nanofiber membranes were produced by electrospinning technique. In situ UV radiation was applied during the electrospinning in order to provide polymerization during the jet flight and promote crosslinking of ATM and MA with PVA. The cross-linking was examined by Fourier-transform infrared spectroscopy (FTIR. The morphology and thermal behavior of electrospun nanofiber were characterized by scanning electron microscope (SEM and thermogravimetric analysis (TGA, respectively. The surface area of nanofiber membranes was measured by Brunauer-Emmert-Teller (BET analysis. Furthermore, water durability test was examined. Water durability test demonstrated that in situ photo-cured PVA/MA/ATM nanofiber membrane had the least average mass loss. The surface areas of PVA/MA/ATM nanofiber membranes were 160-280 m2/g. The surface area and diameter of PVA/MA/ATM nanofibers decreased as the PVA content increased. The diameter of nanofibers was obtained less than 100 nm. The results showed that the water-insoluble nanofiber membranes with better chemical and thermal resistance were obtained. These nanofiber membranes may be a promising candidate for the usage of water treatment.

  9. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Stein, A.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States)); Hoffman, D.A. (Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)); Frank, C.W. (Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States)); Fayer, M.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States))

    1992-02-15

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from {ital T}{sub {ital g}}+75 to {ital T}{sub {ital g}}+150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends.

  10. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  11. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid/Kaolin Composite Superabsorbents

    Directory of Open Access Journals (Sweden)

    Koroush Kabiri

    2013-01-01

    Full Text Available Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5% was due to polyethylene glycol diacrylate 1000 (PEGDA-1000. Then, kaolin-containing poly(potassium acrylate-acrylic acid superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated. Absorption capacity of the composite hydrogels (having ~38% kaolin was unexpectedly higher than that of kaolin-free hydrogels. This was attributed to an interfering effect of kaolin during the polymerization. Glass transition temperature was increased with crosslinker concentration enhancement and addition of kaolin up to about 10oC and 28oC, respectively. Making such K-containing superabsorbents may be taken as an effective action to achieve more durable and cheaper superabsorbents for agricultural uses.

  12. Statistical analysis of nitrogen-containing vinyl copolymers: radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Peppas, N.A.; Gehr, T.W.B.

    1979-01-01

    Radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone was carried out at 5 0 C using γ-irradiation of 1450 rads/min. Copolymers prepared at conversions lower than 5% were analyzed by a saponification technique. Various linear and nonlinear statistical analysis techniques were used to determine the reactivity ratios of this system as r 1 = 0.348 and r 2 = 3.108. These data were examined and analyzed in relation to problems of elemental analysis involving nitrogen-containing copolymers and to discrepancies in the reactivity ratios obtained by previous investigators. The presence of oxygen and a higher dose rate did not affect the copolymer composition within statistical error. Hydrolyzed copolymers prepared by this method have potential applications as biocompatible materials

  13. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe...

  14. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Science.gov (United States)

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  15. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2011-05-01

    The study was aimed at the evaluation of N-vinyl pyrrolidone (NVP) incorporated polymethacrylic acid-chitosan microparticles for oral drug delivery applications. Poly (methacrylic acid)-chitosan (PMC) and poly(methacrylic acid-vinyl pyrrolidone)-chitosan (PMVC) microparticles were prepared by an ionic-gelation method. Mucoadhesion behaviour of these particles was evaluated by ex-vivo adhesion method using freshly excised rat intestinal tissue. Cytotoxicity and absorption enhancing property of PMC and PMVC particles were evaluated on Caco 2 cell monolayers. Protease enzyme inhibition capability and insulin loading/release properties of these hydrogel particles was evaluated under in vitro experimental conditions. Addition of NVP units enhanced the mucoadhesion behavior of PMC particles on isolated rat intestinal tissue. Both PMC and PMVC particles were found non-toxic on Caco 2 cell monolayers and PMC particles was more effective in improving paracellular transport of fluorescent dextran across Caco 2 cell monolayers as compared to PMVC particles. However, protease inhibition efficacy of PMC particles was not significantly affected with NVP addition. NVP incorporation improved the insulin release properties of PMC microparticles at acidic pH. Hydrophilic modification seems to be an interesting approach in improving mucoadhesion capability of PMC microparticles.

  16. Poly (vinyl alcohol-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available PVA-sodium alginate (SA hydrogel membranes containing sodium ampicillin as a topical antibiotic were developed using the freeze–thawing method for wound dressing application. Aqueous solution of sodium alginate has been blended in a certain ratio with PVA, followed by the crosslinking method has been conducted by freeze–thawing method as physical crosslinking instead of the use of traditional chemical crosslinking to avoid riskiness of chemical reagents and crosslinkers. The physicochemical properties of PVA-SA membranes e.g. gel fraction and water uptake % have been performed. Increased SA content with PVA decreased gel fraction, elasticity, and elongation to break of PVA-SA membranes. However, it resulted in an increase in swelling degree, protein adsorption, and roughness of membrane surface. High SA content in PVA membranes had apparently an impact on surface morphology structure of hydrogel membranes. Pore size and pore area distribution have been observed with addition of high SA concentration. However, high SA content had an insignificant effect on the release of ampicillin. The hydrolytic degradation of PVA-SA membranes has prominently increased with increasing SA content. Furthermore, hemolysis (% and in vitro inhibition (% for both Gram positive and negative bacteria have been sharply affected by addition of SA into PVA, indicating the improved blood hemocompatibility. Thus, PVA-SA hydrogel membrane based wound dressing system containing ampicillin could be a good polymeric membrane candidate in wound care.

  17. Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering.

    Science.gov (United States)

    Zhao, Nifang; Yang, Miao; Zhao, Qian; Gao, Weiwei; Xie, Tao; Bai, Hao

    2017-05-23

    Through designing hierarchical structures, particularly optimizing the chemical and architectural interactions at its inorganic/organic interface, nacre has achieved an excellent combination of contradictory mechanical properties such as strength and toughness, which is highly demanded yet difficult to achieve by most synthetic materials. Most techniques applied to develop nacre-mimetic composites have been focused on mimicking the "brick-and-mortar" structure, but the interfacial architectural features, especially the asperities and mineral bridges of "bricks", have been rarely concerned, which are of equal importance for enhancing mechanical properties of nacre. Here, we used a modified bidirectional freezing method followed by uniaxial pressing and chemical reduction to assemble a nacre-mimetic graphene/poly(vinyl alcohol) composite film, with both asperities and bridges introduced in addition to the lamellar layers to mimic the interfacial architectural interactions found in nacre. As such, we have developed a composite film that is not only strong (up to ∼150.9 MPa), but also tough (up to ∼8.50 MJ/m 3 ), and highly stretchable (up to ∼10.44%), difficult to obtain by other methods. This was all achieved by only interfacial architectural engineering within the traditional "brick-and-mortar" structure, without introducing a third component or employing chemical cross-linker as in some other nacre-mimetic systems. More importantly, we believe that the design principles and processing strategies reported here can also be applied to other material systems to develop strong and stretchable materials.

  18. Radiation induced estane polymer crosslinking

    International Nuclear Information System (INIS)

    Fletcher, M.; Foster, P.

    1997-01-01

    The exposure of polymeric materials to radiation has been known to induce the effects of crosslinking and degradation. The crosslinking phenomena comes about when two long chain polymers become linked together by a primary bond that extends the chain and increases the viscosity, molecular weight and the elastic modules of the polymer. This process has been observed in relatively short periods of time with fairly high doses of radiation, on the order of several megarads/hour. This paper address low dose exposure over long periods of time to determine what the radiation effects are on the polymeric binder material in PBX 9501. An experimental sample of binder material without explosives will be placed into a thermal and radiation field produced from a W-48 put mod 0. Another sample will be placed in a thermal environment without the radiation. The following is the test plan that was submitted to the Pantex process. The data presented here will be from the first few weeks of exposure and this test will be continued over the next few years. Subsequent data will hopefully be presented in the next compatibility and aging conference

  19. Amphiphilic Imbalance and Stabilization of Block Copolymer Micelles on-Demand through Combinational Photo-Cleavage and Photo-Crosslinking.

    Science.gov (United States)

    Zhang, Xuan; Wang, Youpeng; Li, Guo; Liu, Zhaotie; Liu, Zhongwen; Jiang, Jinqiang

    2017-01-01

    An amphiphilic block copolymer of poly(ethylene oxide)-b-poly((N-methacryloxy phthalimide)-co-(7-(4-vinyl-benzyloxyl)-4-methylcoumarin)) (PEO 45 -b-P(MAPI 36 -co-VBC 4 )) is designed to improve the micellar stability during the photo-triggered release of hydrophobic cargoes. Analysis of absorption and emission spectra, solution transmittance, dynamic light scattering, and transmission electron microscopy supports that polymer micelles of PEO 45 -b-P(MAPI 36 -co-VBC 4 ) upon the combinational irradiation of 365 and 254 nm light can be solubilized through the photolysis of phthalimide esters and simultaneously crosslinked via the partially reversible photo-dimerization of coumarins. The photo-triggered release experiment shows that the leakage of doxorubicin molecules from crosslinked micelles can be predictably regulated by controlling the irradiation time of 365 and 254 nm light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  1. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  2. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  3. Radiation Induced Grafting of Styrene onto ETFE: Influence of Crosslinker

    International Nuclear Information System (INIS)

    Gursel, S. A.

    2006-01-01

    Polymer electrolyte fuel cells are promising types of electrochemical devices for future power production with low operation temperature. In order to make this technology attractive, further cost reduction and improved reliability are required. These can be achieved in part by means of radiation induced grafting for the preparation of low cost proton-conducting polymer membranes. Indeed, the method can be performed with low-cost starting materials (fluorinated and partially fluorinated polymers). In our laboratory at Paul Scherrer Institut, most of the work has been performed using styrene and DVB as the monomers and poly (tetrafluoroethylene-co-hexafluoropropylene) as the base material. Performance comparable to Nafion 112 membranes and durability of several thousands hours at steady-state conditions have been achieved for this type of membranes under fuel cell operation conditions. Previously, poly(ethylene-alt-tetrafluoroethylene) (ETFE) based membranes have been prepared in the presence of divinylbenzene (DVB) as the crosslinking agent and found to exhibit encouraging fuel cell performance. However, the synthesis parameters were not optimized in detail to further improve the membrane properties. Recently, we have investigated the parameters of ETFE based grafting without crosslinking agent. In this study, proton-exchange membranes were prepared by pre-irradiation grafting of styrene onto ETFE and subsequent sulfonation in the presence of DVB containing different isomers (m- and p-isomer of DVB and m- and p-ethylvinylbenzene) as the crosslinker. The grafted films and membranes with varying DVB concentrations and similar degree of grafting (25%) were characterized by Fourier transform infrared spectroscopy (FTIR-ATR) and differential scanning calorimetry (DSC). In addition, dimensional changes and fuel cell relevant properties were examined. FTIR-ATR measurements revealed that the p- isomers are more reactive than m-isomers, and the grafted films are more highly

  4. Graft Copolymerization of Styrene from Poly(vinyl alcohol via RAFT Process

    Directory of Open Access Journals (Sweden)

    Gholam Ali Koohmareh

    2011-01-01

    Full Text Available Polystyrene, PS, was grafted from poly(vinyl alcohol, PVA, backbone by reversible addition-fragmentation chain transfer (RAFT polymerization. The hydroxyl groups of the PVA were converted into aromatic dithioester RAFT agent and polymerization began in the presence of this agent. The structure of compounds was confirmed by FT-IR and 1HNMR spectroscopy. The graft copolymer was characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Grafted polystyrene chains were cleaved from the PVA backbone by acidic hydrolysis of the PVA-g-PS, and its polydispersity index, PDI, was determined by gel permeation chromatography (GPC showing narrow molecular weight distribution.

  5. Preparation and characterization of novel biocompatible cryogels of poly (vinyl alcohol) and egg-albumin and their water sorption study.

    Science.gov (United States)

    Bajpai, A K; Saini, Rajesh

    2006-01-01

    Polyvinyl alcohol (PVA) and egg albumin are water-soluble, biocompatible and biodegradable polymers and have been widely employed in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of poly (vinyl alcohol) and egg albumin were prepared by cyclic freezing/thawing processes of aqueous solutions containing PVA and egg albumin. The FTIR analysis of prepared cryogels indicated that egg albumin was successfully introduced into the formed hydrogel possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups present in PVA and egg albumin. The gels were also characterized thermally and morphologically by DSC and SEM-techniques, respectively. The prepared so called 'cryogels' were evaluated for their water uptake potential and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The effect of salt solution and various simulated biological fluids on the swelling of cryogel was also studied. The in vitro biocompatibility of the prepared cryogel was also judged by methods such as protein (BSA) adsorption, blood clot formation and percentage hemolysis measurements.

  6. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    International Nuclear Information System (INIS)

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-01-01

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature (∼27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at ∼650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  7. Electron Beam Damage in Poly(Vinyl Chloride) and Poly(Acrylonitrile) as Observed by Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.

    2003-01-01

    AES spectra of spun-cast films of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) were collected over a period of time to determine specimen damage during exposure to a 10kV electron beam. For the PVC, loss of chlorine was observed over a period of 203 minutes to the extent that the final chlorine concentration was only 20% of its original value. PAN exhibited a loss in nitrogen content over a period of 120 minutes, but the rate of damage to the polymer was significantly less than PVC. Figure 1 shows the atomic concentration in the PVC film as a function of dose (time). It takes a dose of approximately 7.0x10-5 Ccm-5 for the chlorine concentration to fall from its original value by 10% (one definition of critical dose). Figure 2 shows a similar drop in nitrogen concentration in the PAN film as a function of dose. For this polymer, it takes a dose of 1.3x10-3 Ccm-2 for the nitrogen concentration to fall by 10%

  8. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    International Nuclear Information System (INIS)

    Momesso, Roberta G.R.A.P.; Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose R.; Spencer, Patrick J.; Lugao, Ademar B.

    2010-01-01

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  9. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    Energy Technology Data Exchange (ETDEWEB)

    Momesso, Roberta G.R.A.P., E-mail: robertapassarelli@yahoo.com.b [IPEN/CNEN-SP-Instituto de Pesquisas Energeticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP, CEP 05508-000 (Brazil); Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose R.; Spencer, Patrick J.; Lugao, Ademar B. [IPEN/CNEN-SP-Instituto de Pesquisas Energeticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP, CEP 05508-000 (Brazil)

    2010-03-15

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  10. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    Science.gov (United States)

    Momesso, Roberta G. R. A. P.; Moreno, Carolina S.; Rogero, Sizue O.; Rogero, José R.; Spencer, Patrick J.; Lugão, Ademar B.

    2010-03-01

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  11. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Crosslinked poly(ether block amide) composite membranes for organic solvent nanofiltration applications

    KAUST Repository

    Aburabie, Jamaliah; Peinemann, Klaus-Viktor.

    2016-01-01

    Poly(ether block amide) – Pebax® – based membranes are well described for gas separation applications. But only a few publications exist for their application in pressure driven liquid applications like ultrafiltration and nanofiltration. Here we use the commercially available Pebax® 1657 for the preparation of membranes for the filtration of organic solvents. Porous polyacrylonitrile membranes were coated with Pebax® 1657 which was then crosslinked. Toluene diisocyanate (TDI) was used as a crosslinker agent for the coating. Reaction time and crosslinker concentration were optimized for the aimed application. The Pebax® coating and the impact of the TDI on the resulting crosslinked membranes were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). SEM analysis shows a uniform thin coating of the PEBAX that covers the pores of the PAN membranes. FTIR and DSC analysis confirm the crosslinking reaction. Crosslinked Pebax® membranes show high stability toward ethanol propanol, acetone and even dimethylformamide (DMF). In the case of DMF applications, the standard PAN was replaced by crosslinked PAN developed in our laboratory. In order to increase the membranes permeances, graphene oxide (GO) nanosheets were incorporated in the Pebax® coating. These GO containing membranes showed strongly increased permeances for selected solvents. © 2016 Elsevier B.V.

  13. Crosslinked poly(ether block amide) composite membranes for organic solvent nanofiltration applications

    KAUST Repository

    Aburabie, Jamaliah

    2016-10-01

    Poly(ether block amide) – Pebax® – based membranes are well described for gas separation applications. But only a few publications exist for their application in pressure driven liquid applications like ultrafiltration and nanofiltration. Here we use the commercially available Pebax® 1657 for the preparation of membranes for the filtration of organic solvents. Porous polyacrylonitrile membranes were coated with Pebax® 1657 which was then crosslinked. Toluene diisocyanate (TDI) was used as a crosslinker agent for the coating. Reaction time and crosslinker concentration were optimized for the aimed application. The Pebax® coating and the impact of the TDI on the resulting crosslinked membranes were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). SEM analysis shows a uniform thin coating of the PEBAX that covers the pores of the PAN membranes. FTIR and DSC analysis confirm the crosslinking reaction. Crosslinked Pebax® membranes show high stability toward ethanol propanol, acetone and even dimethylformamide (DMF). In the case of DMF applications, the standard PAN was replaced by crosslinked PAN developed in our laboratory. In order to increase the membranes permeances, graphene oxide (GO) nanosheets were incorporated in the Pebax® coating. These GO containing membranes showed strongly increased permeances for selected solvents. © 2016 Elsevier B.V.

  14. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...

  15. The Effect of Double Crosslinker on Precipitation Polymerization of Poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    Hajar Es-haghi

    2014-06-01

    Full Text Available Cross-linked poly(acrylic acids were prepared by dual cross-linkers via precipitation polymerization method in a binary organic solvent. Polyethylene glycol diacrylate (PEGDA-400 as a long-chain cross-linker and di(trimethylol propane tetraacrylate (DTMPTA as multifunctional cross-linker were used. PEGDA-400 was utilized to increase thickening properties and DTMPTA was used to improve the gel strength. The dual cross-linkers effect on the sample features (i.e., equilibrium swelling, thickening properties and rheological properties was investigated. Maximum amount of swelling was obtained by a high percentage of long-chain cross-linker. The apparent viscosity of the microgels was measured to determine their thickening properties for aqueous media. Maximum viscosity occurred at DT25-PE75 which was dependent on the type of cross-linkers in the polymer structure. The Flory-Rehner equation (from swelling ratio data and rubber elasticity theory (from rheometry data were used to discuss the network structure of the polymer. Increasing density of the network was shown by a sample containing high percentage of a four-functional cross-linker. The rheological properties of the cross-linked polymers were measured to determine storage modulus (strength network. The rheological behaviors demonstrated that the synthesized polymer containing a high amount of four-functional cross-linker had higher storage modulus (G′ than other samples. In addition the consistency coefficient (m and flow behavior index (n parameters of Ostwald equation were investigated as well. As a result, n values in each sample were found to be smaller than 1 and these results were fitted clearly with the pseudoplastic model. Apparent and rotational viscosities were used to determine the optimal cross-linker type (synthesized sample contained a high percentage of long-chain cross-linker.

  16. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films

    Science.gov (United States)

    Hajar, M. D. S.; Supri, A. G.; Hanif, M. P. M.; Yazid, M. I. M.

    2017-10-01

    In this study, films consisting of a blend of poly (ethylene oxide)/poly (vinyl chloride) (PEO/PVC) and a conductive filler, graphite were prepared and characterized for their mechanical and electrical properties. Solid polymer blend films based on PEO/PVC (50/50 wt%/wt%) with different graphite loading were prepared by using solution casting technique. Electrical conductivity results discovered the conductivity increased with increasing of filler loading. However, increasing amount of graphite loading led to a decreased in tensile strength and young’s modulus of PEO/PVC/Graphite polymer films. The dispersion of graphite and mechanism of conductive path in the polymer films were also investigated by scanning electron microscopy (SEM). The morphology of the PEO/PVC/Graphite polymer films shows that agglomeration occurred to complete the connection of conductive path, thus improving the conductivity behavior of the polymer films.

  17. Melt-processable, radiation cross-linkable E--CTFE copolymer compositions

    International Nuclear Information System (INIS)

    Robertson, A.B.; Schaffhauser, R.J.

    1976-01-01

    Melt-processable, radiation cross-linkable ethylene/chlorotrifluoroethylene copolymer compositions are provided which contain about 0.1 to 5 percent by weight of the copolymer of a radiation cross-linking promoter, about 0.01 to 5 percent by weight of an anti-oxidant and about 0.1 to 30 precent by weight of an acid scavenger. Such compositions do not give off odors when irradiated to cross-link the copolymer and do not develop bubbles after irradiation. 15 claims, no drawings

  18. Poly(vinyl acetate)/clay nanocomposite materials for organic thin film transistor application.

    Science.gov (United States)

    Park, B J; Sung, J H; Park, J H; Choi, J S; Choi, H J

    2008-05-01

    Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.

  19. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

    Science.gov (United States)

    Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu

    2016-02-10

    Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.

  20. Radiation crosslinking of elastomers

    International Nuclear Information System (INIS)

    Pearson, D.S.

    1981-01-01

    In the first part of this paper a review is presented of recent results which show that the tensile strength and fatigue life of synthetic elastomers cured by radiation are essentially equivalent to those prepared by other crosslinking techniques. An explanation for the conflict of these new results with the earlier studies on natural rubber is presented. Investigations into the mechanisms and kinetics of crosslinking mentioned above have also shown that the irradiation method should be ideal for preparing well characterized networks. Such materials are useful for testing theoretical relationships between the structure of rubber networks and their stress-strain behavior. The second part of this paper is devoted to this aspect. (author)

  1. Basic and engineering studies of radiation induced reactions in the liquid phase. Final technical report, June 1, 1970-May 31, 1974

    International Nuclear Information System (INIS)

    1978-06-01

    Laboratory studies reported on are ionic polymerization under superdry conditions, emulsion polymerization, and vinyl chloride polymerization. Engineering studies include the effect of moisture level on radiation-induced solution polymerization, effect of dose rate on radiation-induced emulsion polymerization of styrene, the effect of soap exchange in styrene emulsion polymerization, pilot plant studies of radiation induced emulsion polymerization of vinyl chloride, pilot plant studies of radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate, pilot plant study of radiation-induced graft emulsion polymerization of styrene onto polyvinyl chloride and poly(vinyl chloride-vinyl acetate), and radiation-induced precipitation polymerization of vinyl chloride in a flow reactor

  2. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  3. Crossover from Rouse dynamics to the α- relaxation in a poly(vinyl ethylene)

    International Nuclear Information System (INIS)

    Arbe, A.; Colmenero, J.; Richter, D.; Monkenbusch, M.; Willner, L.; Farago, B.

    2004-01-01

    By means of neutron spin echo (NSE) we have explored the dynamics of poly(vinyl ethylene) on length scales covering Rouse dynamics and below. The results establish the simultaneous existence of a generic sublinear diffusion regime which underlies the α-process in addition to the Rouse process. Both regimes are separated by a well- defined dynamic crossover. From that the size of the Gaussian blobs making up the Rouse model is determined directly. The glassy dynamics may thus be identified with subdiffusive motions occurring within these Gaussian blobs. (author)

  4. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  5. Nanoclay filled hydrogels of poly (2-hydroxyethyl methacrylate-co-acrylamide) copolymers prepared by gamma radiation

    International Nuclear Information System (INIS)

    Rapado Paneque, M.; Matos Cause, W.; Barreras Gonzalez, G.; Griffith Perez, J.; Amalvy, J. I.; Van Espen, P.; Peniche, C.

    2011-01-01

    Hydrogels are polymers characterized by their ability to absorb a considerable amount of water. Hydrogels consist of polymer molecules physically or chemically crosslinked, forming a molecular network, so that in water they swell to an equilibrium value, preserving their shape [1]. The aim of this work was to prepare by gamma radiation poly (2-hydroxyethyl methacrylate-co-acrylamide) hydrogels, p(HEMA-co-AAm), doped with Nanoclay (laponite XLG). (Author)

  6. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  7. Flexible, elastic and tear-resistant networks prepared by photo-crosslinking poly(trimethylene carbonate) macromers

    NARCIS (Netherlands)

    Schuller-Ravoo, S.; Feijen, J.; Grijpma, D. W.

    2012-01-01

    Poly(trimethylene carbonate) (PTMC) macromers with molecular weights (M-n) between 1000 and 41,000 g mol(-1) were prepared by ring opening polymerization and subsequent functionalization with methacrylate end groups. Flexible networks were obtained by radical photo-crosslinking reactions of these

  8. Effect of dynamic crosslinking on phase morphology and mechanical properties of polyamide 6,12/ethylene vinyl acetate copolymer blends

    Directory of Open Access Journals (Sweden)

    Fabrício Bondan

    2015-03-01

    Full Text Available The dynamic crosslinking of polyamide 6,12 and ethylene vinyl acetate (PA6,12/EVA blends in the mixing chamber of a torque rheometer was investigated. EVA was selectively crosslinked within the PA6,12 phase through free radical reactions using dycumil peroxide. The degree of EVA crosslinking in the PA12,6/EVA materials was estimated based on the gel content (insoluble EVA fraction. The PA6,12/EVA phase morphology was investigated by scanning electron microscopy. The mechanical properties were investigated by determining the tensile strength and hardness. The half-life time ( for homolytic scission of the dcumil peroxide (DCP was ~6s, and this time is longer than the dispersion time of the DCP in the blends. The addition of DCP resulted in increased torque values due to specific crosslinking in the EVA phase. For the pure EVA and its blends with PA6,12 the stabilized torque values increased proportionally with the amount of DCP in the system, due to a higher degree of crosslinking of the elastomeric phase. The gel content of the dynamically crosslinked blends increased with the amount of DCP incorporated until 4 phr. At 1 phr the gel content value was 2.6wt.%, while at 4 phr it was 17wt.%. For the polymer blend with 8 phr of DCP a lubricating effect contributed to reducing the gel content. The dynamically crosslinked blends, regardless of the amount of DCP added, showed a reduction in the mechanical properties, which is related to the morphological features of the system due to the low mechanical fragmentation during melt processing.

  9. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells

    International Nuclear Information System (INIS)

    Li, Pin-Chieh; Liao, Guan–Ming; Kumar, S. Rajesh; Shih, Chao-Ming; Yang, Chun-Chen; Wang, Da-Ming; Lue, Shingjiang Jessie

    2016-01-01

    Highlights: • Preparation of chitosan nanoparticles from bulk to enhance the degree of deacetylation. • The incorporation of chitosan nanoparticles into a QPVA matrix to form a nanocomposite membrane. • The nanocomposite constructed into thin-film membranes using the solution casting method. • To improve permeability, glutaraldehyde was cross-linked with the nanocomposite membranes. • A direct methanol alkaline fuel cell was studied at different temperatures. - Abstract: In this study, we designed a method for the preparation of chitosan nanoparticles incorporated into a quaternized poly(vinyl alcohol) (QPVA) matrix for direct methanol alkaline fuel cells (DMAFCs). The structural and morphological properties of the prepared nanocomposites were studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM) and dynamic laser-light scattering (DLS). The crystallinity of the nanocomposite solid electrolytes containing 0 and 10% chitosan nanoparticles were investigated using differential scanning calorimetry (DSC). The electrochemical measurement of resulting nanocomposite membranes were analyzed according to the following parameters: methanol permeability, liquid uptakes, ionic conductivity and cell performances. The composite membranes with 10% chitosan nanoparticles in a QPVA matrix (CQPVA) show suppressed methanol permeability and higher ionic conductivity than pristine QPVA. In addition, the glutaraldehyde cross-linked nanocomposite film exhibited improvement on the methanol barrier property at 80 °C. The peak power density of the DMAFCs reached 67 mW cm −2 when fed into 1 M of methanol in 6 M of KOH.

  10. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  11. Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation

    Science.gov (United States)

    Moriwaki, Saburo; Qian, Qingrong; Sunohara, Satoshi; Machida, Motoi; Tatsumoto, Hideki

    Waste poly (vinyl chloride: PVC) resins are experimentally dehydrochlorinated by microwave irradiation. The following unique results are obtained: (1) plasticizer in PVC resin absorbs microwave power more effectively than PVC polymer. The higher the plasticizer content in PVC resin, the higher is the dehydrochlorination reaction (2) low PVC polymer content materials such as cushion floor require high microwave irradiation power to secure a high dehydrochlorination yield, (3) calcium carbonate in PVC resin reacts with released hydrochloric acid gas and results calcium chloride during microwave irradiation, (4) additives in PVC resin strongly influence dehydrochlorination yield, (5) it is evidenced that the PVC copolymer is also dehydrochlorinated by microwave irradiation.

  12. Heat resistance and local structure of FeCl2-absorbed crosslinked poly(γ-glutamic acid)

    International Nuclear Information System (INIS)

    Nishida, T.; Kamezawa, H.; Hara, T.; Matsumoto, Y.

    2001-01-01

    Fiber of Japanese food natto (Bacillus subtilis) is known to be superabsorbent poly(γ-glutamic acid) (PGA). NaCl particles precipitate in FeCl 2 -absorbed crosslinked PGA when heated at crystallization temperature of 320 deg C for 10 to 60 min. After heat treatment the Moessbauer spectrum of FeCl 2 -crosslinked PGA consists of a quadrupole doublet due to FeCl 2 x 2H 2 O. The Moessbauer spectrum of anhydrous FeCl 2 reagent heated under the same condition shows an intense sextet due to α-Fe 2 O 3 . These results prove that the superabsorbent polymer, crosslinked PGA, has higher heat resistance. (author)

  13. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide)

    International Nuclear Information System (INIS)

    Zhang, Zhi-xing; Liao, Fei; He, Zhen-zhen; Yang, Jing-hui; Huang, Ting; Zhang, Nan; Wang, Yong; Gao, Xiao-ling

    2015-01-01

    In this work, different contents of poly(L-lactide) (PLLA) (20–50 wt%) were introduced into poly(ethylene vinyl acetate) (EVA) to prepare the samples with a tunable shape memory behavior. Morphological characterization demonstrated that with increasing PLLA content from 20 to 50 wt%, the blend morphology changed from sea-island structure to cocontinuous structure. In all the samples, PLLA was amorphous and it did not affect the crystallization of polyethylene part in the EVA component. The presence of PLLA greatly enhanced the storage modulus of samples, especially at relatively low temperatures. The shape memory behaviors of samples were systematically investigated and the results demonstrated that the EVA/PLLA blends exhibited a tunable shape memory effect. On one hand, PLLA accelerated the shape fixation and enhanced the fixity ratio of samples. On the other hand, PLLA reduced the dependence of shape fixity of samples on fixity temperatures. Specifically, for the first time, a critical recovery temperature was observed for the immiscible shape memory polymer blends. In this work, the critical recovery temperature was about 53 °C. At recovery temperature below the critical value, the blends exhibited smaller recovery ratios compared with the pure EVA, however, at recovery temperature above 53 °C, the blends exhibited higher recovery ratios. (paper)

  14. Impact of Industrial Grade Modified PVA to Vinyl Acetate Semi-continuous Emulsion Polymerization and Properties of Final Product

    Directory of Open Access Journals (Sweden)

    Mindaugas DUBININKAS

    2013-03-01

    Full Text Available Successful vinyl acetate radical emulsion polymerization in water with different type of industrial grade poly(vinyl alcohol were produced by semi continuous way. The poly(vinyl alcohol type has crucial impact on dispersion rheological as well on films and bonding strength properties. It should be stated that the films containing modified poly (vinyl alcohol has better water resistance and mechanical properties. Poly(vinyl alcohol with higher ethylene moieties content and high hydrolization degree determines extremely low viscosity of final dispersion.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3823

  15. Structure, corrosion behavior and mechanical property of a novel poly(vinyl alcohol) composite in simulated body fluid.

    Science.gov (United States)

    Li, Juan; Suo, Jinping; Zou, Peng; Jia, Lintao; Wang, Shifang

    2010-01-01

    The data for long-term drug-delivery systems are scarce compared to the short-term systems because the required research efforts are more time-consuming. In this study, we report a novel cross-linked composite based on poly(vinyl alcohol) (PVA) containing cupric ions for long-term delivery, which is helpful for contraception and trace element balance in the human body. The composition, corrosion products, crystal structure, chemical structure and mechanical stability of the composite, after being immersed in simulated body fluid (SBF) for one year, were studied by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and mechanical testing. The results show that no other new elements, such as P, Cl and Ca, appear on the surface of the composite and no Cu(2)O was formed after immersion in SBF for one year. The effectiveness of copper can be greatly improved and the side-effects caused by these compounds might also be eliminated. Furthermore, this novel composite exhibits long-term mechanical stability in SBF. The present in vitro long-term data suggest that this novel copper-containing composite may serve as a substitute for conventional materials of copper-containing intrauterine devices (Cu-IUDs) and as a carrier for controlled-release material in a variety of other applications.

  16. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid Bioadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2014-01-01

    Full Text Available The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT. Therefore, poly(methyl vinyl ether maleic acid [P(MVEMA] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1, iv solution of sCT (5 μg·kg−1, and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.

  17. Radiation crosslinking of highly plasticized PVC

    Science.gov (United States)

    Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.

    1996-02-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.

  18. Radiation crosslinking of highly plasticized PVC

    International Nuclear Information System (INIS)

    Mendizabal, E.; Cruz, L.; Jasso, C.F.; Burillo, G.; Dakin, V.I.

    1996-01-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolecules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield (G c ) and molecular weight of interjunctions chains (M c ), were calculated for different systems studied. Addition of ethylene glycol dimethyacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment. (author)

  19. In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts

    OpenAIRE

    Cutiongco, Marie Francene A.; Anderson, Deirdre E. J.; Hinds, Monica T.; Yim, Evelyn K. F.

    2015-01-01

    Synthetic small diameter vascular grafts with mechanical properties of native arteries, resistance to thrombosis and capacity to stimulate in situ endothelialization are an unmet clinical need. Poly(vinyl alcohol) hydrogel (PVA) is an excellent candidate as a vascular graft due to its tunable mechanical properties. However, the hydrophilicity and bio-inertness of PVA prevents endothelialization in vivo. We hypothesize that the modification of PVA with biomolecules and topographies creates a h...

  20. Novel synthesis on poly (vinyl alcohol): characterization, complexation a biological activity

    International Nuclear Information System (INIS)

    El-Sawy, N.M.; Elassar, A.Z.; Al-Fulaij, O.

    2002-01-01

    Poly(vinyl alcohol), PVA, readily condensed with phenyl hydrazine and malononitrile in basic medium to give the hydrazone and pyran derivatives, respectively. PVA reacted with chloroacetonitrile, biuet and thiophene carbonyl chloride to give modified polymeric materials. While addition of PVA to acrylonitrile and phenyl isothiocyanate gives the ether and thiocarbamate ester derivatives, respectively. Hydroxylamine hydrochloride reacted with the modified, carbonitrile containing, polymer to give the amidoxime derivative. The amidoximated products of PVA and carbamate ester of polymeric material were complexed with CUCL2 solution. The complex materials were confirmed by using UV and ESDS measurements. The morphology of PVA and complex with CUII was observed by SEM. Biological activity of some of the prepared compounds was investigated toward bacteria and fungi

  1. Optimization of crosslinked poly(vinyl alcohol) nanocomposite films for mechanical properties.

    Science.gov (United States)

    Rouhi, Milad; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad

    2017-02-01

    The effects of glycerol, bacterial cellulose nanocrystal (BCNC) and boric acid concentrations on the mechanical properties of PVA based films, including ultimate tensile strength (UTS), elongation at break (EAB), tensile Young's modulus (TYM), tensile toughness to break (TT), ultimate puncture strength (UPS), puncture deformation (PD), puncture Young's modulus (PYM) and puncture toughness to break (PT), were scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R 2 values ranging from 0.945 to 0.977 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum UTS (72.84MPa), EAB (293.43%), UPS (4.64MPa) and PD (31.80%) could be achieved at 13.89% glycerol concentration, 5.00% BCNC concentration and a boric acid content of 1.96%. The predicted values for optimum conditions were in good agreement with experimental data. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the formation of intramolecular and intermolecular hydrogen and ether crosslinkages in PVA and/or BCNC chains when boric acid is applied. Results showed that PVA/BCNC nanocomposite films plasticized with glycerol and crosslinked with boric acid showed appropriate mechanical properties that made them suitable as a disposable packaging film. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Synthesis and characterization of UV photocrosslinkable hydrogels with poly(N-vinyl-2-pyrrolidone): Determination of the network mesh size distribution

    DEFF Research Database (Denmark)

    Marizza, Paolo; Abrami, M.; Keller, Stephan Sylvest

    2016-01-01

    Hydrogels of poly(n-vinyl-2-pyrrolidone) were produced by UV irradiation of aqueous solutions of the polymer in presence of hydrogen peroxide, used as initiator. The mechanical and the nanostructural properties of the gels were characterized by a combination of experimental techniques including...

  3. Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride)

    Science.gov (United States)

    In this work, for the first time, a castor oil derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC). The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (...

  4. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  5. Radiation vulcanization of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-02-01

    An abstract of the radiation process of polymer materials and the polymer reaction by radiation is explained. Main radiation is 250 keV to 10 MeV of electron rays in the industry. Radiation cross-linked rubber has less the tensile strength than that by sulfur and organic peroxide crosslinking. The main origins of low tensile strength are caused by cut of backbone chain and ozone depend on radiation. Acceleration of crosslinking and short time of radiation are necessary to improve these defects. To accelerate crosslinking, we used crosslinking accelerators, for example, three poly-functional monomers (PFM). The maximum tensile strength of styrene-butadiene rubber (SBR) not added crosslinking accelerators showed 3 MPa at 110 kGy, but SBR added A-TMMT (tetramethylolmethane tetraacrylate) showed 5.5 MPa at 110 kGy. Radiation crosslinking of many kinds of rubber: isoprene (IR), SBR, CR, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), butyl rubber (IIR), chlorinated butyl rubber (CIIR), EPM and TPE are explained. (S.Y.)

  6. Radiation vulcanization of rubbers

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2002-01-01

    An abstract of the radiation process of polymer materials and the polymer reaction by radiation is explained. Main radiation is 250 keV to 10 MeV of electron rays in the industry. Radiation cross-linked rubber has less the tensile strength than that by sulfur and organic peroxide crosslinking. The main origins of low tensile strength are caused by cut of backbone chain and ozone depend on radiation. Acceleration of crosslinking and short time of radiation are necessary to improve these defects. To accelerate crosslinking, we used crosslinking accelerators, for example, three poly-functional monomers (PFM). The maximum tensile strength of styrene-butadiene rubber (SBR) not added crosslinking accelerators showed 3 MPa at 110 kGy, but SBR added A-TMMT (tetramethylolmethane tetraacrylate) showed 5.5 MPa at 110 kGy. Radiation crosslinking of many kinds of rubber: isoprene (IR), SBR, CR, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), butyl rubber (IIR), chlorinated butyl rubber (CIIR), EPM and TPE are explained. (S.Y.)

  7. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    Science.gov (United States)

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles. © 2014 Wiley Periodicals, Inc.

  8. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    International Nuclear Information System (INIS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-01-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39–132 kg mol −1 . Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm −3 , that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby–Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain. - Highlights: • Radiation synthesis of bioactive hydrogel wound dressing based on PVP. • Sol-gel analysis, radiation yield of crosslinking and degradation, gel fraction.

  9. The effect of chain flexibility and chain mobility on radiation crosslinking reactions of polymers

    International Nuclear Information System (INIS)

    Sun Jiazhen

    2003-01-01

    Flexibility of polymer chains is an important factor to effects of radiation crosslinking of the polymer. Polymers with flexible chains are easier to be crosslinked, with lower dose of gelation, than polymers with more rigid chains. And it is known that most polymers with abnormal rigidity can be radiation-crosslinked only at high temperatures when the molecular chains get enough mobility. The flexibility of polymer chains also influences the relationship between degree of degradation and radiation dose. A chain flexibility factor β has been introduced to modify the Charlesby-Pinner equation of sol-fraction and radiation dose. The new relationship equation applies to a wider range of polymers in radiation crosslinking. Studies also show that for flexible polymers with lower T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in H type, whereas for rigid polymers with higher T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in T type

  10. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    A series of latex interpenetrating polymer networks (LIPNs) were prepared via a two-stage emulsion polymerization of methyl methacrylate (MMA) or mixture of MMA and n-butyl acrylate (n-BA) on crosslinked poly(n-butyl acrylate)(PBA) seed latex using {sup 60}Co {gamma}-ray radiation. The particles of resultant latex were produced with diameters between 150 and 250 nm. FTIR spectra identified the formation of crosslinked copolymers of PMMA or P(MMA-co-BA). Dynamic light scattering (DLS) showed that with increasing n-BA concentration in second-stage monomers, the particle size of LIPN increased. Transmission electron microscope(TEM) photographs showed that the morphology of resultant acrylate interpenetrating polymer network (IPN) latex varied from the distinct core-shell structure to homogenous particle structure with the increase of n-BA concentration, and the morphology was mainly controlled by the miscibility between crosslinked PBA seed and second-stage copolymers and polarity of P(MMA-co-BA)copolymers. In addition, differential scanning calorimeter (DSC) measurements indicated the existence of reinforced miscibility between PBA seed and P(MMA-co-BA)copolymer in prepared LIPNs.

  11. Synthesis and characterization of CdxMn1-xS nanoparticles stabilized with poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Schatkoski, Vanessa M.; Mansur, Alexandra A.P.; Mansur, Herman S.; Gonzalez, Juan C.

    2011-01-01

    Colloidal luminescent semiconductor nanocrystals, also known as quantum dots, have attracted considerable attention due to their significant potential application. The doping of nanocrystalline semiconductors with divalent manganese ions results in new optical properties of these semimagnetic semiconductor quantum dots. In this work we report the synthesis and characterization Cd x Mn 1-x S nanoparticles using poly(vinyl alcohol) as stabilizing agent. Different fractions of Cd 2+ /Mn 2+ ions were investigated aiming the production of stable nanoparticles with different photoluminescence properties. (author)

  12. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    International Nuclear Information System (INIS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-01-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of∼6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ∼10 nm and ∼20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV–vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, E g , are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules. - Highlights: ► AgNPs of different structure and optical properties were obtained by γ-irradiation. ► Different PVP concentration and molecular weight induced different structure. ► Rod-shaped AgNPs were obtained with lower PVP concentration and molecular weight. ► Stabilization by coordination bonding between AgNPs and N from pyrrolidone

  13. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    Science.gov (United States)

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Production of radiation crosslinked polymeric compositions using diacetylenes

    International Nuclear Information System (INIS)

    Patel, G.N.

    1979-01-01

    Crosslinked polymeric compositions, useful as electrical insulators, heat shrinkable packaging, and lightweight foam plastics, are described. The crosslinked polymeric compositions are produced by admixing a diacetylene monomer, oligomer, polymer or mixture thereof, wherein the monomer has the formula, RNHCO-O-CH 2 -C==C-C==C-CH- 2 -O-OCNHR' in which R and R' are the same or different and are alkyl containing 1 to 20 carbon atoms, with a thermoplastic crosslinkable polymer and then subjecting the resulting mixture to actinic radiation

  15. Crystallinity changes of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) as a function of radiation dose

    International Nuclear Information System (INIS)

    Nogueira, Beatriz R.; Martins, Joao F.T.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2011-01-01

    The treatment with electron-beam radiation is a promising approach to the controllable modification of the properties of the polymeric materials, in order to adjust their properties. In recent years, electron-beam irradiation have been efficiently applied in the flexible packaging industry to promote cross-linking and scission of the polymeric chains in order to improve material mechanical properties. On the other hand, ionizing irradiation can also affect the polymeric materials itself leading to a production of free radicals. These free radicals can in turn lead to degradation and or cross-linking phenomena. In the present work the changes in thermal properties of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) resin were investigated. The EVOH resin was irradiated up to 500 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The EVOH samples irradiated from 300 kGy presented increases in melting temperature, except for 350 kGy. The changes in properties of the EVOH resin after irradiation were evaluated by differential scanning calorimetry (DSC) and X-Rays Diffraction (XRD). The correlation between the properties of EVOH non-irradiated and irradiated EVOH samples were discussed. The XRD results showed a slight shift of diffraction peaks, as well as an increase of width, DSC results also showed differences on crystallinity degree, for irradiated EVOH samples, which suggests that a decrease or an increase in degree crystallinity of EVOH will depends on radiation dose applied. These results are very important because shows a slight decrease in crystallinity of irradiated EVOH, a decrease in the crystallinity degree usually is related with an increase of the amorphous phase due to, probably, the predominance of molecular chain cross-linking of EVOH over the molecular chain scission and degradation process, caused by ionizing radiation, and a consequent improvement of their properties, such as thermal, mechanical

  16. Properties of poly(vinyl alcohol)-borax gel doped with neodymium and praseodymium

    International Nuclear Information System (INIS)

    Lawrence, Mathias B.; Desa, J.A.E.; Rai, Renu; Aswal, V.K.

    2014-01-01

    Neodymium and praseodymium ions, singly and in combination, have been doped into a poly(vinyl alcohol)-borax matrix. X-ray diffraction shows structural correlations from 2 to 6 Å and 15 Å, while small angle neutron scattering indicates that the rare-earth ions do not affect the nanoscale structures of the gels. Differential scanning calorimetry shows the glass transition temperature to increase with concentration of Pr in the gel. Excitation in the ultraviolet region leads to luminescent emission in the visible region. Simultaneous absorption in the visible region then leads to luminescent emission in the near infra-red region. The spectral qualities of the emission bands can be varied by choosing appropriate relative ratios of rare-earth species. (author)

  17. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  18. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    Science.gov (United States)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  19. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  20. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  1. Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Şadan Özden

    2016-01-01

    Full Text Available Deposition of poly(4-vinyl phenol insulator layer is carried out by applying the spin coating technique onto p-type GaAs substrate so as to create Al/poly(4-vinyl phenol/p-GaAs metal-oxide-semiconductor (MOS structure. Temperature was set to 80–320 K while the current-voltage (I-V characteristics of the structure were examined in the study. Ideality factor (n and barrier height (ϕb values found in the experiment ranged from 3.13 and 0.616 eV (320 K to 11.56 and 0.147 eV (80 K. Comparing the thermionic field emission theory and thermionic emission theory, the temperature dependent ideality factor behavior displayed that thermionic field emission theory is more valid than the latter. The calculated tunneling energy was 96 meV.

  2. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    International Nuclear Information System (INIS)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-01-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  3. A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds.

    Science.gov (United States)

    Roy, Sunanda; Kuddannaya, Shreyas; Das, Tanya; Lee, Heng Yeong; Lim, Jacob; Hu, Xiao 'Matthew'; Chee Yoon, Yue; Kim, Jaehwan

    2017-06-01

    The excellent biocompatibility, biodegradability and chemo-thermal stability of poly(vinyl alcohol) (PVA) have been harnessed in diverse practical applications. These properties have motivated the fabrication of high performance PVA based nanofibers with adequate control over the micro and nano-architectures and surface chemical interactions. However, the high water solubility and hydrophilicity of the PVA polymer limits the application of the electrospun PVA nanofibers in aqueous environments owing to instantaneous dissolution. In this work, we report a novel yet facile concept for fabricating extremely light, fluffy, insoluble and stable three dimensional (3D) PVA fibrous scaffolds with/without coating for multifunctional purposes. While the solubility, morphology, fiber density and mechanical properties of nanofibers could be tuned by optimizing the cross-linking conditions, the surface chemical reactivity could be readily enhanced by coating with a polydopamine (pDA) bioinspired polymer without compromising the stability and innate properties of the native PVA fiber. The 3D pDA-PVA scaffolds exhibited super dye adsorption and constructive synergistic cell-material interactions by promoting healthy adhesion and viability of the human mesenchymal stem cells (hMSCs) within 3D micro-niches. We foresee the application of tunable PVA 3D as a highly adsorbent material and a scaffold material for tissue regeneration and drug delivery with close consideration of realistic in vivo parameters.

  4. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-08-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  5. Graft copolymerization of vinyl monomers onto nylon 6 fibers by γ-ray pre-irradiation in air

    International Nuclear Information System (INIS)

    Iwasaki, Tatsuo; Ueda, Yoshitsugu

    1992-01-01

    Vinyl acetate, methyl methacrylate, alkyl acrylates, acrylonitrile, and acrylamide, were grafted onto nylon 6 fibers by the γ-ray pre-irradiation technique, and the effects of grafting on the microstructure and the mechanical properties of the graft copolymers were investigated. According to the analysis by wide-angle X-ray diffraction, the degree of crystallization decreased by increasing the percent graft of poly(vinyl acetate) in the grafted nylon 6 films. The mechanical parameters, such as the Young's modulus and the tensile strength at break, increased with increasing percent graft up to 50%. When percent grafting was smaller than 50%, rather homogeneous amorphous materials were obtained with vinyl acetate, while heterogeneous ones were obtained with other vinyl monomers. A poly(vinyl alcohol) grafted nylon 6 was obtained effectively by saponification of poly(vinyl acetate) grafted nylon 6, the former showing higher mechanical properties than the latter. Similar behavior was observed after saponification of the poly(methyl acrylate) grafted nylon 6. (author)

  6. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    Science.gov (United States)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  7. Sliding friction at poly(vinyl alcohol)-modified carbon nanotube interfaces

    Science.gov (United States)

    Zhang, Xiaohua

    2018-01-01

    The sliding friction between adjacent carbon nanotubes (CNTs) determines greatly the mechanical property of CNT assembly materials. In order to enhance the intertube friction, polymer molecules are often introduced between CNTs. This paper reveals a new energy dissipation mechanism for the deformed CNT contacts by poly(vinyl alcohol) (PVA). When PVA is introduced into a CNT bundle, most segments of the polymer chain lay on the grooves of adjacent CNTs, while several short segments span over the contact CNTs by inducing a structural deformation on the tubular structure. During the tube sliding, the deformation is recovered and a new one is formed at the next position, contributing to new energy dissipation to prevent the tube sliding. As a result, the friction force can be enhanced by up to eight-fold. This study indicates that a network of transverse polymer chains and longitudinal CNTs is important towards high mechanical properties.

  8. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  9. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    International Nuclear Information System (INIS)

    Zaragoza, J; Chang, A; Asuri, P

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials. (paper)

  10. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition

    International Nuclear Information System (INIS)

    Shaikh, Rubina P; Kumar, Pradeep; Choonara, Yahya E; Du Toit, Lisa C; Pillay, Viness

    2012-01-01

    The effects of modifying electrospun poly(vinyl alcohol) (PVA) nanofibers through crosslinking using glutaraldehyde (GA) are explored in this paper. Various concentrations of PVA solutions containing model drugs rifampicin (RIF) and isoniazid (INH) were electrospun and thereafter crosslinked using GA vapors. PVA nanofibers demonstrated high drug entrapment efficiency of 98.77% ± 1.384% and 95.07% ± 1.988% for the INH- and RIF-loaded PVA nanofibers, respectively. The surface morphology, molecular vibrational transitions, tensile attributes and in vitro drug release were characterized and supported by in silico molecular mechanics simulations. Results indicated that crosslinking caused a significant reduction in the rate of drug release where 81.11% ± 2.35% of INH and 59.31% ± 2.57% of RIF were released after 12 h. Tensile properties such as the ultimate strength and Young's modulus increased after crosslinking, caused by crosslinks forming between PVA nanofibers as was revealed through scanning electron microscopy analysis. Fourier Transform infrared analysis was conducted to further support the mode of crosslinking. Additionally, image processing analysis was carried out to quantify the effect of formulation variables on the morphology of nanofibers. Furthermore, the effect of GA-induced crosslinking and addition of drugs on the performance of electrospun fibers was further elucidated and conceptualized using a molecular mechanics assisted model building and energy refinement approach via molecular mechanics energy relationships by exploring the spatial disposition of energy-minimized molecular structures of the polymer, crosslinker and the drugs. (paper)

  11. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruizhi; Zhang Jianfeng; Fan Yuwei; Xu Xiaoming [Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States); Stoute, Diana; Lallier, Thomas, E-mail: xxu@lsuhsc.edu [Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States)

    2011-06-15

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 {sup 0}C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  12. Radiation synthesis and characterization of pH-sensitive poly(acrylic acid-co-N-vinyl-2-pyrrolidone) hydrogels

    International Nuclear Information System (INIS)

    Yang Mingcheng; Zhu Jun; Song Weidong; Song Hongyan; Zhu Chengshen

    2006-01-01

    Hydrogels are crosslinked, three-dimensional hydrophilic polymer networks that swell but do not dissolve when brought into contact with water. These materials have been investigated extensively for potential applications in the biomedical field because of their similarities to soft tissues and their good tissue and blood compatibility. More specifically, pH-sensitive hydrogels are used for sustained gastro-intestinal drug delivery systems due to the intimacy and extended duration of contact. In this work, pH-sensitive copolymer hydrogels were prepared using acrylic acid and N-vinyl-2-pyrrolidone by γ-ray irradiation at ambient temperature. Effects of dose, monomer concentration, monomer composition, temperature and pH on the swelling ratio (SR) of the copolymer hydrogels were investigated in detail. The results show that SR of the copolymer hydrogels decreases with the monomer concentration and with the increase of absorbed dose. These copolymer hydrogels show good pH-sensitive behavior. These material shows no noticeable change in swelling at lower pH (pH<4) but an abrupt increase in swelling at higher pH (from pH7 to pH9.8). At pH 1.4, the SR of the copolymer hydrogels increases with the temperature. To the contrary, at pH 9.8, the SR of the copolymer hydrogels decreases with the temperature. (authors)

  13. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  14. UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds

    NARCIS (Netherlands)

    Sayyar, S.; Bjorninen, M.; Haimi, Suvi; Miettinen, S.; Gilmore, K.; Grijpma, Dirk W.; Wallace, G.

    2016-01-01

    Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical

  15. UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds

    NARCIS (Netherlands)

    Sayyar, Sepidar; Bjorninen, Miina; Haimi, Suvi; Miettinen, Susanna; Gilmore, Kerry; Grijpma, Dirk; Wallace, Gordon

    2016-01-01

    Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical

  16. Modification Of Poly(glycidyl Methacrylate) Grafted Onto Crosslinked Pvc With Tertiary Amine Group And Use For Removing Acidic Dyes From Water

    OpenAIRE

    Yorgun, Gülden

    2009-01-01

    In this study, glycidylmethacrylate is grafted onto partially dehydrochlorinated poly(vinyl chloride) (DHPVC) using ATRP method and polymerization kinetics of the reaction is studied. Then, the polymeric resin was interacted with excess of diethylamine, giving a tertiary amine containing sorbent. Surface initiated polymerizations have been widely used to overcome inadequate properties of poly(vinylchloride) (PVC). Epoxy group is one of the most important type to be integrated into polymers. T...

  17. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  19. bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers.

    Science.gov (United States)

    Islamova, Regina M; Dobrynin, Mikhail V; Ivanov, Daniil M; Vlasov, Andrey V; Kaganova, Elena V; Grigoryan, Galina V; Kukushkin, Vadim Yu

    2016-03-05

    cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C₅H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl₂(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.

  20. Radiation polymerization of 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water system

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    Polymerization was studied using mixtures of 2-hydroxyethyl methacrylate(HEMA)-water, vinyl pyrrolidone(NVP)-water and 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water. The mixtures were irradiated with gamma radiation from a 60 Co source. Irradiation was carried out at temperatures of 0, -24, -45, -63, -78, and -196 degC. The dependence was studied of the polymerization rate on temperature during irradiation for the individual mixtures, as were the effect of monomer composition on the polymerization of the HEMA-NVP-water system at 0 degC, the effect of water on NVP polymerization and the relationship between water absorption and the composition of the monomer. (E.S.). 4 figs., 6 refs

  1. The γ-radiation induced grafting of unsaturated segmented polyurethanes with N-vinyl pyrrolidone

    International Nuclear Information System (INIS)

    Egboh, S.H.; George, M.H.; Barrie, J.A.

    1984-01-01

    Linear unsaturated segmented polyurethanes have been modified by hydrophilic grafting at 40 deg C with N-vinyl pyrrolidone, in N,N-dimethylformamide as solvent, using 60 Cobalt γ-irradiation. Graft copolymers were isolated from homopolymers by selective solvent extraction using a Soxhlet apparatus. The effects of reaction time, total dose, temperature and monomer concentration, on the graft yields have been examined. Relatively high irradiation doses were avoided during the grafting experiments to prevent possible degradation of the segmented polyurethanes and gelation of the homopolymer, poly(N-vinyl pyrrolidone). The ungrafted and grafted copolymers were characterized, and the graft copolymers were shown to be more thermally stable than the original polyurethanes, by thermogravimetric analysis. An explanation for the observed variation of the graft yields with some of the experimental variables is suggested. (author)

  2. Radiation chemical grafting of vinyl acetate and styrene on nitrocellulose

    International Nuclear Information System (INIS)

    Chapiro, A.; Foex, M.; Jendrychowska-Bonamour, A.M.

    1977-01-01

    Vinyl acetate and styrene were grafted onto nitrocellulose using the direct radiation grafting technique with 500 and 3000 Ci 60 Co γ sources. For vinyl acetate, the reaction proceeds homogeneously. The kinetics are dominated by degradative chain transfer to the nitrocellulose. The polymerization of vinyl acetate was examined in the presence of isoamyl nitrate, a model for nitrocellulose; the transfer constant was determined and the results are treated semi-quantitatively. For styrene, grafting occurs in a swollen film irradiated in the presence of excess monomer. The diffusion of styrene into nitrocellulose is extremely slow; methanol was added to the reaction mixture to favour diffusion which was found to obey Fick's law. The diffusion constant and activation energy of diffusion are evaluated. The grafting kinetics are controlled by monomer diffusion, accounting for the increase of dose-rate exponent with temperature. A spontaneous grafting process occurs in the absence of irradiation. It is initiated by macroradicals arising from thermal decomposition of nitrocellulose. (author)

  3. Reinforcement of poly (vinyl alcohol films with alpha-chitin nanowhiskers

    Directory of Open Access Journals (Sweden)

    Hugo Lisboa

    2018-03-01

    Full Text Available Abstract Composites Films were produced using Poly (Vinyl Alcohol as the soft material and reinforced with Chitin Nanowhiskers(NWCH as the rigid material. The present work studies the reinforcing mechanisms of NWCH in PVA films, made through a solvent casting technique and characterized for their calorimetric, swelling and mechanical properties. DSC tests revealed a sharp increase of 45 °C in glass transition temperatures with only 1.5% NWCH, while melting temperature had a small increases suggesting an anti-plasticizing effect. Swelling tests revealed decreasing hygoscopy when NWCH volume fraction increases. Estimates for elastic tensile modulus using a model that predicts the formation of a percolating network were not consistent with the experimental data of tensile tests suggesting that contrary to the reinforcement with cellulose nanowhiskers the percolating network is not primarily responsible for the reinforcement of the films. By adjusting the Halpin-Tsai equations, modified by Nielsen it was found that the mechanical properties were mainly influenced by the packing of the NWCH.

  4. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  5. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    International Nuclear Information System (INIS)

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-01-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables

  6. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation.

    Science.gov (United States)

    Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long

    2017-11-01

    A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High performances unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties

    Directory of Open Access Journals (Sweden)

    J. D. Rusmirovic

    2016-02-01

    Full Text Available Influences of the vinyl modified nanosilica Aerosil® 380, i.e./i>, vinyl and methacryloyl silane coupling agent and linseed oil fatty acids (BD reactive residues, on the mechanical properties of the unsaturated polyester resins (UPes based nanocomposites, was studied. The polycondensation of maleic anhydride and products of poly(ethylene terephthalate (PET depolymerization with propylene glycol, with and without separation of ethylene glycol, yields UPe1 and UPe2 resin, respectively. The hydroxyl terminated PET depolymerization products (glycolyzates and UPes were characterized by acid and hydroxyl values, Fourier Transform Infrared (FTIR and nuclear magneti resonance (NMR spectroscopies. Transmission electron microscopy (TEM confirmed that silica nanoparticles formed domains of aggregates in the polymer matrix. An increase from 195 to 247% of stress at break (σb, and from 109 to 131% of impact strength (σi of UPes based nanocomposites was obtained for 1 wt% addition of vinyl modified silica. Flexural strength (σf increase from 106 to 156% for both UPes based nanocomposites with 1 wt% addition of BD modified silica. Cross-linking density (ν, storage modulus (G', tanδ and Tg of the nanocomposite were determined from the dynamic mechanical testing and discussed in relation to the structure of silica modification.

  8. Competition between dewetting and cross-linking in poly(N-vinylpyrrolidone)/polystyrene bilayer films.

    Science.gov (United States)

    Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara

    2011-12-06

    We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society

  9. Vinyl ester resin and process for curing same with ionizing radiation in the presence of amines

    International Nuclear Information System (INIS)

    Mani, I.

    1975-01-01

    The addition of about 2 to 5 weight percent of certain amines to a thermosettable mixture of certain vinyl monomers and a polymerizable vinyl ester resin reduces the dosage level of ionizing radiation required to cure the mixture. (U.S.)

  10. Radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate in an engineering flow system

    International Nuclear Information System (INIS)

    Tsai, J.T.; Stahel, E.P.; Stannett, V.T.

    1979-01-01

    A flow reactor system was used to study the radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate. The emulsion was recirculated from a stirred vessel through transfer lines to a tubular reactor located within a high-intensity Co-60 source. The effects of physical chemical variables such as soap concentration, phase ratio, reaction temperature and residence time distribution on the molecular weight properties were investigated. The rate of copolymerization was found to be proportional to the 0.17 power of the soap concentration. Variation of the monomer-water ratio produced no significant change in rate. The rate increased with an increase in temperature over the range 5 to 50 0 C, while the average molecular weights of the copolymer increased with decreasing polymerization temperature. The molecular weight distribution in this engineering system was found to be essentially similar to those produced in a batch system

  11. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs.

    Science.gov (United States)

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E; Clark, Corrie; Wooley, Karen L

    2013-10-21

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)- block -poly(DL-lactide) (PAEA 90 - b -PDLLA 40 ) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) ( i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine.

  12. Poly(acrylamide) films at the solvent-induced glass transition: Adhesion, tribology, and the influence of crosslinking

    NARCIS (Netherlands)

    Li, A.; Ramakrishna, S.N.; Kooij, Ernst S.; Espinos-Marzal, R.M.; Spencer, N.D.

    2012-01-01

    Adhesive and nanotribological properties of end-grafted poly(acrylamide) (PAAm) films with various degrees of crosslinking, and in the presence of solvents over a broad spectrum of quality, were investigated by means of colloidal-probe atomic force microscopy. The solvent consisted of a mixture of

  13. Nanofibre Electrospinning Poly(vinyl alcohol and Cellulose Composite Mats Obtained by Use of a Cylindrical Electrode

    Directory of Open Access Journals (Sweden)

    Anna Sutka

    2013-01-01

    Full Text Available A study of nanofibre composites obtained by electrospinning from poly(vinyl alcohol (PVA solutions of steam exploded hemp fibres and shives is reported. A combined treatment of steam explosion (SE, ball milling, and high-intensity ultrasound (HIUS is applied to prepare cellulose nanofibres (CNF from hemp fibres (CNF-F and shives (CNF-S. The reflectance Fourier transform infrared (FTIR ATR spectroscopy is used to analyze the obtained PVA/CNF composite mats. Morphology of the PVA/CNF composites was studied by scanning electron microscopy (SEM.

  14. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  15. Poly(vinyl chloride-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available A novel approach was developed for the surface modification of the multi-walled carbon nanotubes (MWCNTs with high percentage of grafting (PG% by the grafting of polymer via the Friedel-Crafts alkylation. The graft reaction conditions, such as the amount of catalyst added, the reaction temperature, and the reaction time were optimized for the Friedel-Crafts alkylation of the MWCNTs with poly(vinyl chloride (PVC with anhydrous aluminum chloride (AlCl3 as catalyst in chloroform (CHCl3. The Fourier Transform Infrared (FT-IR, Raman, and thermogravimetric (TGA analysis showed that PVC had been successfully grafted onto MWCNTs both at the ends and on the sidewalls by the proposed Friedel-Crafts alkylation. The PVC grafted MWCNTs (PVC-MWCNTs could be dispersed well in organic solvent and the dispersion was more stable.

  16. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    Science.gov (United States)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  17. Thermal stability of homo- and copolymers of vinyl fluoride

    International Nuclear Information System (INIS)

    Raucher, D.; Levy, M.

    1979-01-01

    The thermal stability of poly(vinyl fluoride)(PVF) was studied by thermal gravimetry and mass spectrometry (TGA and TGA-MS). In low-molecular-weight polymers a two-step decomposition pattern was observed. It consisted of the dehydrofluorination to a polyene chain followed by decomposition of the resulting polyene at higher temperatures. Copolymers of vinyl fluoride-vinyl acetate (VF-VAc) and vinyl fluoride-vinyl chloride (VF-VCl) showed a simultaneous evolution of hydrofluoric acid and acetic acid and hydrofluoric acid and hydrochloric acid, respectively. This suggests that after the elimination of the weakest link a spontaneous elimination of neighboring HF molecules takes place

  18. Influence of γ-radiation on the D.C. conductivity of poly(3-hexadecylthiophene) doped with iron trichloride in an atmosphere of organic agents

    International Nuclear Information System (INIS)

    Cik, G.; Szabo, L.; Merasicky, J.

    1996-01-01

    The influence of γ-radiation on the d.c. conductivity of poly(3-hexadecylthiophene) (PHDT) doped with FeCl 3 in chloroform, toluene, ethanol and nitrobenzene atmospheres has been studied. A different course of d.c. conductivity changes taking place in the atmosphere of solvent vapors (chloroform, toluene) and precipitants (ethanol, nitrobenzene) has been found. The character of changes can be influenced by polymer cross-linking initiated by γ-radiation. (author). 8 refs., 5 figs

  19. The influence of water quality on properties of hydrogel membranes prepared by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Sisti, Cristina; Furusawa, Helio A.; Lugao, Ademar B.

    2009-01-01

    Insoluble hydrogels are crosslinked polymeric materials which have ability to absorb significant amounts of water in their three-dimensional polymeric matrix. Ionizing radiation has been used in hydrogels preparation allowing the structure formation and sterilization simultaneously in only one step without necessity to add any initiators crosslinkers. These advantages make irradiation an useful method for synthesis of hydrogels, especially for biomedical use. There are numerous applications of hydrogels such as contact lenses, drug delivery devices, wound dressings, etc. Poly(N-vinyl-2-pyrrolidone) (PVP) is a water soluble polymer, which exhibits a series of interactions in aqueous solutions. The aim of this work is to investigate the effect of ions present in distillated water to prepare PVP hydrogels because Hofmeister series ions have the capacity to change the water structure that represents the largest fraction of the system. Another reason is that the use of high purity water can be costly in large industrial production of these materials. Hydrogels with 12% and 20% of PVP were prepared using distillated and ultrapure water. The polymerization was induced by gamma radiation at 25 kGy. For the investigation of the distillated water effect, the ions present as impurities were identified by ion chromatography. Physical-chemical properties such as degree of crosslinking of hydrogels was determined using gel fraction methodology and swelling kinetic was studied in the prepared hydrogels. (author)

  20. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend

    International Nuclear Information System (INIS)

    Yasin, Tariq; Khan, Sajid; Nho, Young-Chang; Ahmad, Rashid

    2012-01-01

    In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc. - Highlights: ► We have recycled waste tire dust and blended it with EPDM. ► EB crosslinking is carried in the presence of polyfuntional monomers. ► Radiation gave better network with higher thermal stability than sulfur. ► The absence of toxic chemicals in EB blends will increase its acceptability.

  1. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  2. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  3. Radiation synthesis of functionalising polymer and creation of composition materials on their basis

    International Nuclear Information System (INIS)

    Mun, G.A.; Nurkeeva, Z.S.; Akhmetkalieva, G.T.; Urkimbaeva, P.I.; Park, L.K.; Lyssukhin, S.N.; Chakrov, P.V.

    2005-01-01

    critical solution temperature (LCST) in aqueous solutions, which value strongly depends on the ration of hydrophilic and hydrophobic monomeric units in copolymers. The hydrogels of copolymers based on these monomeric pairs possess thermo-sensitivity and undergo contraction upon increase of temperature. The possibility for modification of temperature-responsive properties of hydrogels by interactions with surfactants and polyacrylic acid is shown. pH-sensitive hydrogels were synthesized by copolymerization of systems VBE-acrylic acid (AA), VEEG-VBE-AA, VEEG-HEMA-AA, VEEG- butylmethacrylate-AA as well as by polymerization of AA within PVEEG network. The release of drugs from pH-sensitive hydrogels is studied. Novel hydrophilic films were prepared based on polyacrylic acid (Paa) and poly(vinyl ether of ethyleneglycol) (PVEEG). The films were found to be insoluble in buffer solutions with pH 4.0, which is caused by complex formation between PAA and PVEEG in acidic media via hydrogen bonding. It was shown that PAA-PVEEG films form a cross-linked gel upon thermal and gamma-radiation treatment. The hydrophilic films of PAA-PVEEG with immobilized local anesthetic drug lidocaine hydrochloride were developed. Fundamental knowledge in the area of radiation polymerization of vinyl ethers were effectively realized by them upon executing of research on the synthesis of novel film materials by radiation grafting of functional polymers VEEG and vinyl ether of mono-ethanol amine onto polyethylene and polypropylene with further metallization. It was showed that modified polyolefin films are perspective for application in separation of ions of transition and heavy metals, as a catalyst-active metal platform and conducting materials, etc. The possibility of application of the obtained functionalising polymers in advanced technologies and medicine has been studied

  4. Photo-Fries rearrangements of 1-naphthyl (R-2-phenylpropanoate in poly(vinyl acetate and ethyl acetate: influence of medium polarity and polymer relaxation on motions of singlet radical pairs

    Directory of Open Access Journals (Sweden)

    Xu Jinqi

    2006-01-01

    Full Text Available Both the regio- and stereo-chemistries of the photoreactions of 1-naphthyl (R-2-phenylpropanoate have been investigated in poly(vinyl acetate films in their glassy (at 5masculineC and melted (at 50masculineC states and in ethyl acetate. These results are compared with those from irradiations in polyethylene films and in n-hexane. The regioselectivity of the intermediate 1-naphthoxy/(R-2-phenylpropanoyl radical pair combinations is much higher in both the melt and glassy states of poly(vinyl acetate films than that in the melt state of completely amorphous polyethylene films, but the stereoselectivity of intermediate prochiral 1-naphthoxy/1-phenylethyl radical pair combinations is much lower in poly(vinyl acetate. The results emphasize the need to control the ratio between the rates of radical tumbling and translation, as well as the ratio between the rates of in-cage motions and cage-escape, if high stereo- and regio-selectivities of combination products are to be achieved. A mechanistic picture of how the radicals of the intermediate pairs are affected by and interact with the various media is advanced.

  5. Poly(Dimethylsiloxane)-Poly(Vinyl Alcohol) Coated Solid Phase Micro extraction Fiber for Chloropyrifos Analysis

    International Nuclear Information System (INIS)

    Wan Aini Wan Ibrahim; Nor Fairul Zukry Ahmad Rasdy; Norfazilah Muhamad

    2016-01-01

    Traditional liquid - liquid extraction of pesticides consumes large volumes of organic solvent which are hazardous to the operator and is not environment friendly. Solid phase micro extraction (SPME) is a solvent less extraction method which is safer to the operator and is environmental friendly. A sol-gel hybrid fibre coating material, poly(dimethylsiloxane)-poly(vinyl alcohol) (PDMS-PVA) was synthesized and used in head space solid phase micro extraction (HS-SPME) of chloropyrifos. The thickness of the synthesised PDMS-PVA fiber coating was 13.5 μm and it is thermally stable up to 400 degree Celsius. The PDMS-PVA sol-gel hybrid fiber was also stable to two organic solvents tested; acetonitrile and dichloromethane (1 hour dipping) and showed no significant changes in extraction performance for chloropyrifos. Extracted chloropyrifos was analysed using gas chromatography electron capture detector (GC-ECD). Optimum SPME parameters affecting the PDMS-PVA HS-SPME performance namely extraction time (15 min), extraction temperature (50 degree Celsius), desorption time (5 min), desorption temperature (260 degree Celsius) and stirring rate (120 rpm) were used for extraction. It was found that HSSPME using PDMS-PVA sol-gel fiber gave significantly better extraction performance of chloropyrifos compared to commercial 100 μm PDMS fiber. The PDMS-PVA fiber showed excellent operational performances such as temperature stability (up to 380 degree Celsius), coating lifetime (up to 170 times use) and organic solvent stability. The PDMS-PVA-HS-SPME method showed excellent recovery for chloropyrifos from tomatoes (98.0 %, 5.9 % RSD) at 0.01 μg/ g spiked level (5 times lower than maximum residue limit set by European Union). (author)

  6. Radiation cured and monomer modified silicon elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1979-01-01

    A method is described for the production of a tear resistant silicone elastomer, which has improved elongation properties. This elastomer is the radiation induced reaction product of a noncured methyl vinyl silicone resin (VMQ) and uniformly dispersed therein a blend of a polyfunctional acrylic crosslinking monomer and a filler

  7. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    Science.gov (United States)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  8. Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging applications

    Science.gov (United States)

    Negrin, M.; Macerata, E.; Consolati, G.; Quasso, F.; Genovese, L.; Soccio, M.; Giola, M.; Lotti, N.; Munari, A.; Mariani, M.

    2018-01-01

    Within the context of new bioplastic materials, poly(butylene succinate) (PBS) and four novel poly(butylene/thiodiethylene succinate) random copolymers (PBS-PTDGS), in sheets as well as in films, were exposed to gamma radiation, in air and in water, and their behavior along with the effect on their biodegradability was investigated. The molecular weight data obtained from gel permeation chromatography indicate that the sensibility to radiation increases with the amount of sulfur-containing co-unit (TDGS). At 200 kGy the average molecular weight of PBS film halves, while for P(BS60TDGS40) the residual molecular weight is about 20%. The calculated intermolecular crosslink Gx and scissioning Gs yields confirmed that degradation is predominant over crosslink for all the aliphatic systems. As shown by thermal analyses, gamma radiation affects the thermal properties, leading to an increased crystallinity of the systems, remarkable for PBS, and lower decomposition temperatures. Variations of crystallinity with the increasing absorbed dose were confirmed also by PALS analyses. Water contact angle measurements revealed post-irradiation wettability alterations that could positively affect polymer biodegradability. In particular, when irradiated in water at 100 kGy PBS film exhibits a water contact angle decrease of about 17%, indicating an enhanced wettability. After degradation in compost, changes in the surface morphology were observed by means of SEM and sample weight losses were determined, at different extent, according to the irradiation environment. Interestingly, after 52 days in compost PBS films, both pristine and irradiated in air at 25 kGy, showed a residual weight of about 60%, while the ones irradiated in water at 25 kGy of about 44%. Experimental data confirmed that gamma irradiation could represent a viable treatment to enhance biodegradation in compost of PBS and PBS-based copolymers.

  9. Study of poly (acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogel using gamma radiation initiation

    International Nuclear Information System (INIS)

    Zhang, C.; Easteal, A.J.

    1998-01-01

    Full text: Poly (acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid ) (PAAM-co-AMPS) polyelectrolyte hydrogels were formed by using γ-radiation to initiate polymerization and cross-linking. The dependence of chain growth and cross-linking of liquid-like gel on absorbed dose was observed by viscosity measurement. It was found that the viscosity of liquid-like gel increased non-linearly with increasing radiation dose. Crosslinking took place at about 2,300 Gy. It was noted that an ageing effect occurred, such that the viscosity of liquid-like gels decreased significantly on standing. X-ray diffraction revealed that after dehydration the dried gels were amorphous, suggesting that radiation polymerization occurs by random initiation and propagation. Differential scanning calorimetry (DSC) indicated a clear distinction between the thermal behaviour of the homopolymer gels formed by irradiation, and the behaviour of the copolymer gels. PAAM-co-AMPS gels have enhanced thermal stability in comparison to PAAM and PAMPS. The melting points of water in the gels initially increase with increasing dose, and decrease slightly at very high radiation dose. Those trends can be explained by the variation in the numbers of solute molecules or ions in the gels with absorbed dose. Melting points of water in gels can be used for observation of the polymerization process associated with irradiation. Copolymer composition (expressed by either f 1 (AAM molal fraction ) or f 2 (AMPS molal fraction) ) associated with radiation dose was determined by both elemental analysis and FTIR. Both methods show that f 1 increases to a maximum with increasing dose, and subsequently decreases. It is concluded that PAAM-co-AMPS hydrogels were synthesised successfully by gamma radiation initiation, and that copolymer compositions are dependent on radiation dose

  10. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Kannan, R., E-mail: rksrsrk@gmail.com [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Material Sciences & Engineering, Cornell University, Ithaca, NewYork-14853 (United States); Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Sivakumar, M. [School of Physics, Alagappa University, Karaikudi-630004 (India)

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  11. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry.

    Science.gov (United States)

    Niu, Yan; Zhang, Xiaofang; He, Xu; Zhao, Jiangqi; Zhang, Wei; Lu, Canhui

    2015-01-01

    A mechanochemical approach to improve the dispersion and the degree of crosslinking between cellulose fiber and polymer matrix is presented herein to create high performance poly(vinyl alcohol) (PVA)/cellulose biocomposites in a solvent-free and catalyst-free system. During a pan-milling process, the hydrogen bonds in both cellulose and PVA were effectively broken up, and the released hydroxyl groups could react with succinic anhydride (SA) to form covalent bonds between the two components. This stress-induced chemical reaction was verified by fourier transform infrared spectroscopy. The reaction kinetics was discussed according to the conversion rate of SA during the pan-milling process. Soxhlet extraction with hot water showed that the crosslinked PVA/cellulose retained more PVA in the composites due to the homogeneous and heterogeneous crosslinking. Scanning electron microscope images indicated the dispersion and interfacial interactions between PVA and cellulose were largely improved. The resulting composites exhibited remarkably enhanced mechanical properties. The tensile strength increased from 8.8 MPa (without mechanochemical treatment) to 18.2 MPa, and elongation at break increased from 76.8 to 361.7% after the treatment. Their thermal stability was also significantly improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drozdova, Maria G., E-mail: drozdovamg@gmail.com [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Zaytseva-Zotova, Daria S. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Akasov, Roman A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya str., 8/2, Moscow 119048 (Russian Federation); Golunova, Anna S.; Artyukhov, Alexander A. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Udartseva, Olga O.; Andreeva, Elena R. [Institute of Biomedical Problems of Russian Academy of Sciences, Khoroshevskoe Shosse 76a, Moscow 123007 (Russian Federation); Lisovyy, Denis E.; Shtilman, Michael I. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Markvicheva, Elena A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation)

    2017-06-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  13. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    International Nuclear Information System (INIS)

    Drozdova, Maria G.; Zaytseva-Zotova, Daria S.; Akasov, Roman A.; Golunova, Anna S.; Artyukhov, Alexander A.; Udartseva, Olga O.; Andreeva, Elena R.; Lisovyy, Denis E.; Shtilman, Michael I.; Markvicheva, Elena A.

    2017-01-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  14. Process for crosslinking methylene-containing aromatic polymers with ionizing radiation

    Science.gov (United States)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1990-01-01

    A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.

  15. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC)

    Science.gov (United States)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.

    2006-01-01

    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  16. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  17. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol Blend Nanofibers

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2014-01-01

    Full Text Available Wool keratin/poly(vinyl alcohol (PVA blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermal gravimetric analysis (TGA, and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution. FTIR and XRD analyses data demonstrated that there were good interactions between keratin and PVA in the blended nanofibers caused by possibly hydrogen bonds. The TGA study revealed that the thermal stability of the blend nanofibers was between those of keratin and PVA. Tensile test indicated that the addition of PVA was able to improve the mechanical properties of the electrospun nanofibers.

  18. Preparation and characterization of intrinsically coloured polymers using high energy radiation induced processes

    International Nuclear Information System (INIS)

    Guthrie, J.T.

    1978-07-01

    Information on the development in research is given in the utilization of high energy radiation sources in polymerizations and on polymer characterization in the following three areas: studies on the nitrile-styrene system, studies on the radiation induced polymerization of 2-vinyl anthraquinone and the graft polymerization of vinyl monomers onto cellulose in the DMSO/HCHO/cellulose system. Within the framework of research in radiation induced polymerization, samples of 2-vinyl anthraquinone were subjected to X-ray diffraction and e.s.r. examinations and the kinetics and mechanism of γ-ray induced solution polymerization of 2-vinyl anthraquinone in methylene chloride and dimethyl sulfoxide was investigated. Methylene chloride was found to be an efficient solvent for poly(2-vinyl anthraquinone). The rate of polymerization in methylene chloride was 10 3 times greater than that obtained using dimethyl sulfoxide as solvent

  19. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend

    KAUST Repository

    Jose, Jobin Vinodh

    2014-10-03

    Polymer nanocomposites based on poly(vinyl alcohol)/starch blend and carbon nanotubes (CNT) were prepared by solution mixing, followed by casting. Glycerol was used as a plasticizer and added in the starch dispersion. The uniform dispersion of CNT in water before mixing with PVA/starch blend, was achieved by using an Ultrasonicator probe. The composites were characterized by measurement of tensile properties, thermal analysis, FE-SEM, TEM, XRD studies, and water uptake. It was observed that the decrease in tensile strength, modulus, and elongation at break on addition of starch into PVA can be arrested by incorporation of CNT. The strong physical bonding such as hydrogen bonding among the hydroxyl groups of polymer components and oxygen containing groups on CNT surface resulted in a more tortuous path for the water to follow, lowering of water uptake. Thermal analysis and spectroscopic images showed an increase in blend homogeneity in the presence of CNT.

  20. Radiation cross-linked PVC and its applications

    International Nuclear Information System (INIS)

    Lan Junming; Chen Ruyan; Jia Chaoxing; Li Min; Li Chengxin

    1990-04-01

    The radiation cross-linking technique is adopted for improving the polyvinyl chloride (PVC) heat-resistance and reducing its thermocontractibility. For examining its properties a small insulation sheath made from modified PVC material has been tested at 260 0 5 seconds. The results obtained were satisfactory

  1. Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe2O3 nanofibrous composites

    International Nuclear Information System (INIS)

    Kim, Hae-Rim; Kim, Byoung-Suhk; Kim, Ick-Soo

    2012-01-01

    The Ag-decorated poly(vinyl alcohol) (PVA) composite nanofibrous webs incorporating Fe 2 O 3 nanoparticles were fabricated by electrospinning and metal-deposition methods for electromagnetic interference (EMI) shielding applications. The Ag-decorated PVA/Fe 2 O 3 composite nanofiber webs with various Ag thicknesses and different amounts of Fe 2 O 3 nanoparticles were prepared and used for EMI shielding measurement. For the EMI SE measurement, a near-field antenna measurement system was used. The measurement of EMI SE was carried out at the frequency range from 0.5 to 18 GHz, and the electromagnetic parameters were measured. The morphologies and microstructures of the resultant PVA/Fe 2 O 3 composite nanofiber webs were characterized using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), respectively. The effects of surface morphologies and Fe 2 O 3 nanoparticles on the EMI shielding effectiveness of Ag-decorated PVA/Fe 2 O 3 composite nanofiber webs were investigated. -- Highlights: ► We prepare Ag-decorated poly(vinyl alcohol) nanowebs incorporating Fe 2 O 3 nanoparticles. ► Solvents will affect the fiber morphologies and Fe 2 O 3 nanoparticles dispersion. ► EMI shielding effectiveness depends on the metal thickness and Fe 2 O 3 nanoparticles dispersion.

  2. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    Science.gov (United States)

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  3. FLUORESCENCE PROBING OF THE FORMATION OF HYDROPHOBIC MICRODOMAINS BY CROSS-LINKED POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES) IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, J B F N

    Pyrene has been used as a fluorescence probe to investigate the conformational behavior of cross-linked poly(alkylmethyldiallylammonium bromides) in aqueous solutions. Binding of pyrene to hydrophobic microdomains, formed by the polysoaps, is reflected by a change in the ratio I-1/I-3 of the

  4. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    International Nuclear Information System (INIS)

    Teichmann, Juliane; Valtink, Monika; Funk, Richard H W; Engelmann, Katrin; Nitschke, Mirko; Pette, Dagmar; Gramm, Stefan; Werner, Carsten; Härtel, Frauke V; Noll, Thomas

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. (paper)

  5. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    Science.gov (United States)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  6. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol

    Czech Academy of Sciences Publication Activity Database

    Velychkivska, Nadiia; Bogomolova, Anna; Filippov, Sergey K.; Starovoytova, Larisa; Labuta, J.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1419-1428 ISSN 0303-402X R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : phase separation * coil-globule transition * poly(vinyl methyl ether) Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.723, year: 2016

  7. Potentiometric titration of polyhexamethylene biguanide hydrochloride with potassium poly(vinyl sulfate) solution using a cationic surfactant-selective electrode.

    Science.gov (United States)

    Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki

    2008-03-01

    A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.

  8. Blends of ethylene-co-vinyl acetate and poly(3-hydroxybutyrate with adhesion property

    Directory of Open Access Journals (Sweden)

    A. de Lucas-Freile

    2018-07-01

    Full Text Available The structure and properties of ethylene-co-vinyl acetate (EVA and poly(3-hydroxybutyrate (PHB blends depended on their PHB content, i.e. PHB phase dominated the structure for amounts of PHB higher than 50 wt%, whereas EVA phase is dominant for PHB content lower than 50 wt%. EVA/PHB (70:30 blend showed unexpected different structure because of higher miscibility and the creation of new interfacial interactions between C=O and CH3 groups of PHB and CH3 and C=O groups of EVA, these interactions led changing of the phase structure of ethylene and vinyl acetate domains in EVA. As a consequence, improved thermal, viscoelastic and morphological properties were obtained. EVA+PHB blends containing 60 wt% or more PHB did not show tack and, interestingly, the addition of 20–30 wt% PHB enhanced the tack and displaced the maximum tack of pure EVA to lower temperature. The tack of EVA/PHB (70:30 blend was the highest among all blends because of its particular structure, fibrillation was also shown. Finally, the adhesion of EVA+PHB blends containing 20–30 wt% PHB to polypropylene (PP substrate was higher than the one of pure EVA because of the interactions between the ethylene domains in EVA phase of the blend and PP substrate surface.

  9. Synthesis and properties of radiation stabilized poly(α-amino acid)

    International Nuclear Information System (INIS)

    Nakagawa, T.; Shibata, T.

    1981-01-01

    In previous papers, one of the authors reported that modified poly(vinyl chloride) containing dithiocarbamate group has an excellent antiradiation property against γ-irradiation from the viewpoint of a negligibly small gaseous product, especially hydrogen chloride which was generated by radiolysis. Our studies of antiradiation polymers have now been extended to examine the stability of modified poly(α-amino acid) against γ-irradiation. Poly(α-amino acid) membranes have already been shown to be biologically compatible with blood and tissue. However, for practical uses of synthetic biomaterials, they would be required to be stable in the sterilization processing. The sterilization by γ-irradiation is more profitable for poly(α-amino acid) membranes which are less thermally stable. On the other hand, the transport of oxygen through poly(α-amino acid) membranes is of special interest because of the importance as a biomaterial for artificial lungs, skin and corneas. The purpose of the present study is to synthesize the antiradiation poly(α-amino acid) membranes by dithiocarbamate substitution, as well as to study the effect of dithiocarbamate substitution on the transport property of gases. (author)

  10. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO).

    Science.gov (United States)

    Gutha, Yuvaraja; Pathak, Janak L; Zhang, Weijiang; Zhang, Yaping; Jiao, Xu

    2017-10-01

    Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  12. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  13. Characterization of Plasma-Polymerized 4-vinyl pyridine on Poly(Ethylene Terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, Juan; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2005-01-01

    As an efficient way to create an anti-bacterial function on polymer surfaces, we have used plasma polymerisation to create a poly-4-vinyl-pyridine coating on the surface of a common polymer, PET, a polymerisation process that we have shown also works well on several other polymers. We have found....... The mechanical strength of the bond between the substrate and the surface layer has been tested by several methods, and the antibacterial effect of the surface layer with and without silver nano particles has been estimated by measuring electrical resistance as a function of time. The bacteria investigated were...

  14. Preparation and characterization of acrylic acid-grafted poly (vinyl alcohol) hydrogel actuators using γ-ray irradiation

    International Nuclear Information System (INIS)

    An, Sung Jun; Lim, Youn Mook; Gwon, Hui Jeong; Kim, Yun Hye; Youn, Min Ho; Nho, Young Chang; Han, Dong Hyun; Kim, Chong Yeal

    2008-01-01

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and artificial muscles. In this study, poly (vinyl alcohol)(PVA) grafted acrylic acid monomer (PVA-g-AAc) hydrogels were prepared by 60 Co γ-ray irradiation and their properties such as degree of grafting and weight swelling in electrostimulation as an artificial muscle and actuator were investigated

  15. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    International Nuclear Information System (INIS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-01-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat

  16. A study of poly(vinyl alcohol thermal degradation by thermogravimetry and differential thermogravimetry

    Directory of Open Access Journals (Sweden)

    Julián Esteban Barrera

    2007-05-01

    Full Text Available The thermal degradation of poly(vinyl alcohol (PVA having different degrees of hydrolysis and molecular weights was studied by thermogravimetry (TGA and differential thermogravimetry (DTGA. Four degradation events were identified whose intensity was related to the degree of hydrolysis. It was verified that the solid-state degradation mechanism for high hydrolysis degrees corresponded to eliminating water-forming side groups in stoichiometric amounts. The presence of acetate groups and lower melting points delayed the polymer’s thermal decomposition at lower hydrolysis degrees. There was no direct correlation in these samples between weight-loss during the first degradation event and the stoichiometric quantities which would be produced by eliminating the side groups. Reaction order and energy activation value qualitative coincidence was found by evaluating experimental data by using Freeman-Carroll and Friedman kinetic models.

  17. Poly/vinyl alcohol/ membranes for reverse osmosis

    Science.gov (United States)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.

  18. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-03-01

    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  19. Polyurethane/poly(vinyl alcohol hydrogel coating improves the cytocompatibility of neural electrodes

    Directory of Open Access Journals (Sweden)

    Mei Li

    2015-01-01

    Full Text Available Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS. However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU and poly(vinyl alcohol (PVA when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12 cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility.

  20. Fabrication of 3D interconnected porous TiO{sub 2} nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Joo Hwan; Koh, Jong Kwan; Seo, Jin Ah; Kim, Jong Hak [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Jong-Shik, E-mail: jonghak@yonsei.ac.kr [Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2011-09-07

    Porous TiO{sub 2} nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 {mu}m long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO{sub 2} sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO{sub 2} nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M{sub w}) and 0.74% for high M{sub w} polymer electrolytes.