WorldWideScience

Sample records for radiation x-rays surveillance

  1. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  2. Supervision of professional personnel exposed to ionizing radiation (X-rays); Surveillance du personnel professionnellement expose aux radiations ionisantes (rayons X)

    Energy Technology Data Exchange (ETDEWEB)

    Chalabreysse, J. [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1964-10-01

    After a short introduction giving the physical characteristics and the possible interactions of X-rays, this report considers in more detail the basis of the dosimetry and the units used. Taking into account the dangers of irradiation and the professional norms applicable, the report reviews the physical methods (collective and individual dosimetry) and the biological method (based on the systematic supervision of the hemogram) which are used to ensure that these professional norms an respected. As an example the influence is studied of repeated doses of X-rays on the hemogram of X-ray operators when the individual radiation levels are known through dosimetric films. Two processes are used: one considers the mean values (irradiation and average hemogram for each person), the other requires the use of an electronic computer and uses each haematological variable as a function of the monthly or cumulative doses; it gives correlation coefficients for the different variables. In conclusion, the results obtained are compared to those conventionally accepted, and the validity of the hemogram is estimated as a criterion for the supervision. (author) [French] Apres avoir rappele brievement les caracteristiques physiques et le mode d'interaction des rayons X, ce rapport reprend les bases de la dosimetrie et les unites qui sont utilisees. Considerant les dangers entraines par une irradiation et rappelant les normes professionnelles, il envisage les methodes physiques (dosimetrie collective et individuelle) et la methode biologique (basee sur la surveillance systematique de l'hemogramme), utilisees pour faire respecter ces normes professionnelles. En application est etudiee l'influence, sur l'hemogramme des manipulateurs radio, des rayons X subis a doses repetees, connaissant les niveaux individuels d'irradiation gr e au film dosimetrique. Deux procedes sont utilises, l'un considere les valeurs moyennes (irradiation et hemogramme moyens pour

  3. Radiation Exposure in X-Ray and CT Examinations

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiation Dose in X-Ray and CT Exams What ... page for more information. top of page Measuring radiation dosage The scientific unit of measurement for radiation ...

  4. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...

  5. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...

  6. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  7. [Clinical applications of synchrotron radiation X-ray].

    Science.gov (United States)

    Uyama, C

    1994-09-01

    Synchrotron Radiation X-ray (SR X-ray) is an extremely strong X-ray source with a photon number more than 10(4) compared with that of the current X-ray tube. X-rays obtained by monochromatizing SR X-ray have been applied to new techniques for medical diagnosis. Several studies are now being conducted at the beam site for medical use at the Accumulation Ring of the High Energy Physics Research Institute, Tsukuba. Applications being studied include (1) energy subtraction coronary angiography. (2) microdetection of metas in samples excised from subjects. (3) monochromatic X-ray computed tomography and so on. Energy subtraction coronary angiography might have a safety advantage over the current selective coronary angiography. Microdetection of mandatory metals and poisonous heavy metals in in vivo samples contributes to the development of pathologic knowledge and clinical treatment of cancer and heavy metal toxications. Monochromatic X-ray CT is expected to detect diseases in the early stage due to increased accuracy in CT values.

  8. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  9. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  10. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  11. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  12. Characterization of X-Ray FEL Radiation

    CERN Document Server

    Bionta, R M

    2005-01-01

    The Linac Coherent Light Source (LCLS) will generate X-FEL radiation with photon energies tunable from 826 eV to 8261 eV. It is expected that elements of the Linac and Undulator systems will require careful tuning in order to achieve lasing at these wavelengths. The tuning will be guided by measurements of both the electron and photon beam characteristics. The primary characteristics of the photon beam that can be measured are the total pulse energy, its spatial shape, and spectra. During the initial commissioning phase, these measurements will be performed on the spontaneous radiation emitted by one or more undulators as they are added to the LCLS. The next phase of commissioning requires detecting and measuring faint (unsaturated) FEL radiation for the purposes of tuning the Linac and undulator to achieve saturation. During the last phases of commissioning these measurements will have to be performed on the saturated FEL beam. The photon measurements are complicated by the large dynamic range required, the ...

  13. Sample Environment in Experiments using X-Ray Synchrotron Radiation

    DEFF Research Database (Denmark)

    Buras, B

    1984-01-01

    Modern electron (positron) storage rings are able to emit very intense X-ray radiation with a continuous spectrum extending to 0.1 A, from bending magnets and insertion devices (wavelength shifters and multipole wigglers). It can be used directly for white beam experiments and/or for monochromatic...... the design of the special environment, the experimental method used, and the X-ray beam tailored to the experiment with respect to wavelength. intensity, cross-section, divergence and polarization. This is discussed in some detail and illustrated by examples....

  14. Image responses to x-ray radiation in ICCD camera

    Science.gov (United States)

    Ma, Jiming; Duan, Baojun; Song, Yan; Song, Guzhou; Han, Changcai; Zhou, Ming; Du, Jiye; Wang, Qunshu; Zhang, Jianqi

    2013-08-01

    When used in digital radiography, ICCD camera will be inevitably irradiated by x-ray and the output image will degrade. In this research, we separated ICCD camera into two optical-electric parts, CCD camera and MCP image intensifier, and irradiated them respectively on Co-60 gamma ray source and pulsed x-ray source. By changing time association between radiation and the shutter of CCD camera, the state of power supply of MCP image intensifier, significant differences have been observed in output images. A further analysis has revealed the influence of the CCD chip, readout circuit in CCD camera, and the photocathode, microchannel plate and fluorescent screen in MCP image intensifier on image quality of an irradiated ICCD camera. The study demonstrated that compared with other parts, irradiation response of readout circuit is very slight and in most cases negligible. The interaction of x-ray with CCD chip usually behaves as bright spots or rough background in output images, which depends on x-ray doses. As to the MCP image intensifier, photocathode and microchannel plate are the two main steps that degrade output images. When being irradiated by x-ray, microchannel plate in MCP image intensifier tends to contribute a bright background in output images. Background caused by the photocathode looks more bright and fluctuant. Image responses of fluorescent screen in MCP image intensifier in ICCD camera and that of a coupling fiber bundle are also evaluated in this presentation.

  15. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  16. X-rays and extreme ultraviolet radiation principles and applications

    CERN Document Server

    Attwood, David

    2016-01-01

    With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.

  17. X-ray magnetic diffraction of ferromagnets with synchrotron radiation

    CERN Document Server

    Ito, M

    2002-01-01

    X-ray magnetic diffraction experiment of ferromagnets that utilizes elliptically polarized synchrotron radiation is presented. First we have reviewed shortly historical backgrounds and theoretical aspects of the experiment. We have presented how the magnetic form factors are measured and are separated into the spin-moment component and the orbital-moment component in this experiment. Peculiar features of the polarization factor of this experiment have been explained. We have introduced two examples of the experiment. One is the measurement of the spin-magnetic form factor of SmAl sub 2 with white X-rays from a bending magnet at the Photon Factory. The other is the measurement of the orbital-magnetic form factor of Holmium Iron Garnets with monochromatic X-rays from an undulator at the SPring-8. Finally we summarize the article and show some future prospects of this experiment. (author)

  18. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  19. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  20. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  1. 21 CFR 892.5900 - X-ray radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control x...

  2. Radiation-induced thumbs carcinoma due to practicing dental X-ray

    OpenAIRE

    Halboub, Esam S; Imad Barngkgei; Osama Alsabbagh; Omar Hamadah

    2015-01-01

    Dealing with diagnostic X-ray radiation may result in serious health problems, unless protection guidelines are followed. This became prevalent immediately a decade following the invention of X-ray radiation, where it had not been known that the accumulative exposure to X-ray radiation may carry huge health hazards. The reoccurrence of various fatal cancer cases compelled the concerned health authorities to develop safety standards to be followed by all X-ray clinics and technicians worldwide...

  3. Generation of Coherent X-Ray Radiation through Modulation Compression

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; /LBL, Berkeley; Wu, Juhao; /SLAC

    2012-06-12

    In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  4. X-ray absorption spectroscopy of warm dense matter with betatron x-ray radiation (Conference Presentation)

    Science.gov (United States)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation for x-ray absorption spectroscopy of HED matter at large-scale laser facilities. A detailed presentation of the source mechanisms and characteristics in the blowout regime of laser-wakefield acceleration will be followed by a description of recent experiments performed at the Linac Coherent Light Source (LCLS). At LCLS, we have recently commissioned the betatron x-ray source driven by the MEC short pulse laser (1 J, 40 fs). The source is used as a probe for investigating the X-ray absorption near edge structure (XANES) spectrum at the K- or L-edge of iron and silicon oxide driven to a warm dense matter state (temperature of a few eV and solid densities). The driver is either LCLS itself or an optical laser. These experiments demonstrate the capability to study the electron-ion equilibration mechanisms in warm dense matter with sub-picosecond resolution.

  5. Exploration of Monoenergetic X-Ray Mammography with Syncrotron Radiation

    National Research Council Canada - National Science Library

    Johnston, Richard

    1998-01-01

    .... Specifically developed as part of our x-ray mammography program utilizing monochromatic x-rays from a synchrotron source, this technique has produced images of test objects and tissue whose contrast...

  6. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  7. Characteristic, parametric, and diffracted transition X-ray radiation for observation of accelerated particle beam profile

    Science.gov (United States)

    Chaikovska, I.; Chehab, R.; Artru, X.; Shchagin, A. V.

    2017-07-01

    The applicability of X-ray radiation for the observation of accelerated particle beam profiles is studied. Three types of quasi-monochromatic X-ray radiation excited by the particles in crystals are considered: characteristic X-ray radiation, parametric X-ray radiation, diffracted transition X-ray radiation. Radiation is collected at the right angle to the particle beam direction. It is show that the most intensive differential yield of X-ray radiation from Si crystal can be provided by characteristic radiation at incident electron energies up to tens MeV, by parametric radiation at incident electron energies from tens to hundreds MeV, by diffracted transition X-ray radiation at GeV and multi-GeV electron energies. Therefore these kinds of radiation are proposed for application to beam profile observation in the corresponding energy ranges of incident electrons. Some elements of X-ray optics for observation of the beam profile are discussed. The application of the DTR as a source of powerful tunable monochromatic linearly polarized X-ray beam excited by a multi-GeV electron beam on the crystal surface is proposed.

  8. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    Science.gov (United States)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  9. Graded X-ray Optics for Synchrotron Radiation Applications.

    Science.gov (United States)

    Erko, A; Veldkamp, M; Gudat, W; Abrosimov, N V; Rossolenko, S N; Shekhtman, V; Khasanov, S; Alex, V; Groth, S; Schröder, W; Vidal, B; Yakshin, A

    1998-05-01

    Using X-ray diffractometry and spectral measurements, the structure and properties of graded X-ray optical elements have been examined. Experimental and theoretical data on X-ray supermirrors, which were prepared by the magnetron sputtering technique using precise thickness control, are reported. Measurements on graded aperiodic Si(1-x)Ge(x) single crystals, which were grown by the Czochralski technique, are also presented. The lattice parameter of such a crystal changes almost linearly with increasing Ge concentration. The measurements indicate that Si(1-x)Ge(x) crystals with concentrations up to 7 at.% Ge can be grown with a quality comparable to that of pure Si crystals.

  10. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  11. Radiation-induced thumbs carcinoma due to practicing dental X-ray

    Directory of Open Access Journals (Sweden)

    Esam S Halboub

    2015-01-01

    Full Text Available Dealing with diagnostic X-ray radiation may result in serious health problems, unless protection guidelines are followed. This became prevalent immediately a decade following the invention of X-ray radiation, where it had not been known that the accumulative exposure to X-ray radiation may carry huge health hazards. The reoccurrence of various fatal cancer cases compelled the concerned health authorities to develop safety standards to be followed by all X-ray clinics and technicians worldwide. This report documents the clinical case of a dental radiographer, who developed thumbs carcinoma after 15 years of practicing the profession, most likely due to his neglect of the X-ray radiation protection guidelines.

  12. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Bernt Lindtjorn

    Abstract. Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose x- ray examinations performed with significant consequences for individual ...

  13. Reflectivity studies on a synchrotron radiation mirror in the hard X-ray regime

    CERN Document Server

    Keil, P; Novikov, D V; Hahn, U; Frahm, R

    2001-01-01

    The optical performance and roughness parameters of an X-ray mirror that was used for several years in a synchrotron radiation beamline are determined by studying its X-ray reflectivity and diffuse scattering behavior. These values are compared to the data derived from topographic measurements with an atomic force microscope (AFM).

  14. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Objectives: To calculate collective dose of the population as a result of radiation dose from diagnostic x-rays, thereby to estimate the annual incidence of cancer which would be reduced by the use of rare earth intensifying screen. Methods: Data on the number of diagnostic procedures using x-ray examination in year 2007 ...

  15. A Furnace for Diffraction Studies using Synchrotron X-Ray Radiation

    DEFF Research Database (Denmark)

    Buras, B.; Lebech, Bente; Kofoed, W.

    1984-01-01

    A furnace for diffraction studies using synchrotron X-ray radiation is described. The furnace can be operated between ambient temperature and 1 800 °C with a temperature stability better than 5 °C for temperatures above 300 °C. Kapton windows allow almost 360° access for the X-ray beam...

  16. Soft X-ray synchrotron radiation investigations of actinidematerials systems utilizing X-ray emission spectroscopy and resonantinelastic X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-03

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies.

  17. Radiation exposure during chest X-ray examinations in a premature intensive care unit: phantom studies

    Energy Technology Data Exchange (ETDEWEB)

    Duetting, T.; Foerste, B.; Darge, K.; Troeger, J. [Heidelberg Univ. (Germany). Dept. of Paediatric Radiology; Knoch, T. [Heidelberg Univ. (Germany). Central Radiation Protection

    1999-03-01

    Background. There are few reports on the radiation dose received by infants, their family and radiographers exposed to scatter radiation in a premature baby intensive care unit. Objective. To evaluate the degree of radiation exposure from diagnostic X-ray examinations with mobile X-ray machines in a premature intensive care unit. Materials and methods. The radiation exposure of an adjacent newborn, the radiographer and other persons in the room was simulated using phantoms during X-ray examination of the chest using vertical and horizontal beams. Results. Most of the measured doses were below the registration limit of the measuring apparatus and had to be extrapolated by multiple exposures. Without exception, the maximal doses were significantly lower than the permitted limit for persons not professionally exposed to X-rays. Conclusions. Recommendations to avoid unnecessary radiation exposure are given. (orig.) With 2 figs., 3 tabs., 10 refs.

  18. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  19. Synchrotron X-Ray Radiation and Deformation Studies

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren

    machining. The conical slit has six 25µm thick conically shaped openings matching six of the Debye-Scherrer cones from a fcc powder. By combining the conical slit with a micro-focused incoming beam of hard X-rays an embedded gauge volume is defined. Using a 2D detector, fast and complete information can...... the embedded grains within thick samples in three dimensions. All essential features like the position, volume, orien-tation, stress-state of individual grains can be determined, including the morphology of the grain boundaries. The first results obtained by using the novel tracking technique are presented...... in combination with synchrotron X-ray tomography in order to gain new in-formation on the wetting kinetics of liquid gallium in aluminium grain boundaries. Finally, an electron microscopy investigation was carried out in order to describe the lattice rotations and texture evolution in uniaxially compressed...

  20. Temporal structure of X-ray radiation pulses of picosecond laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V S; Kovkov, D V; Matafonov, A P; Karabadzhak, G F; Raikunov, G G [Central Research Institute of Machine Building, Korolev, Moscow region (Russian Federation); Faenov, A Ya; Pikuz, S A; Skobelev, I Yu; Pikuz, T A; Fokin, D A; Fortov, V E [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Ignat' ev, G N; Kapitanov, S V; Krapiva, P S; Korotkov, K E [All-Russian Institute of Automatics, Moscow (Russian Federation)

    2013-09-30

    The shape of the X-ray pulse generated by picosecond laser plasma is experimentally studied. The unusual phenomenon was experimentally observed for the first time for targets made of moderate-heavy chemical elements, namely, the pulse of hard X-ray radiation generated by laser plasma at the laser radiation flux of ∼10{sup 18} W cm{sup -2} had a longer duration than the pulse of softer X-ray radiation. A simple kinetic model is suggested for explaining this fact. We have suggested a method for controlling the temporal shape of X-ray pulse emitted by laser plasma by varying the contrast of laser pulse. (interaction of laser radiation with matter)

  1. [X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of preneoplastic gastric mucosa changes].

    Science.gov (United States)

    Akberov, R F; Gorshkov, A N

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology.

  2. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  3. The reduction methods of operator's radiation dose for portable dental X-ray machines

    OpenAIRE

    Jeong-Yeon Cho; Won-Jeong Han

    2012-01-01

    Objectives This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Materials and Methods Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter s...

  4. White Beam, X-Ray, Energy-Dispersive Diffractometry using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Gerward, Leif; Buras, B.; Olsen, J. Staun

    1978-01-01

    The special features of left double quote white right double quote beam X-ray energy-dispersive diffractometry using synchrotron radiation are discussed on the basis of experiments performed at the Deutsches Electronen-Synchrotron, DESY.......The special features of left double quote white right double quote beam X-ray energy-dispersive diffractometry using synchrotron radiation are discussed on the basis of experiments performed at the Deutsches Electronen-Synchrotron, DESY....

  5. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  6. Controlled Betatron X-ray radiation from tunable optically injected electrons

    CERN Document Server

    Corde, S; Fitour, R; Faure, J; Tafzi, A; Goddet, J P; Malka, V; Rousse, A

    2011-01-01

    The features of Betatron X-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate X-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London), 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and X-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron X-ray source in the keV range.

  7. Controlled Betatron X-Ray Radiation from Tunable Optically Injected Electrons

    CERN Document Server

    Corde, S; Fitour, R; Faure, J; Tafzi, A; Goddet, J P; Malka, V; Rousse, A

    2011-01-01

    The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

  8. The reduction methods of operator's radiation dose for portable dental X-ray machines

    Directory of Open Access Journals (Sweden)

    Jeong-Yeon Cho

    2012-08-01

    Full Text Available Objectives This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Materials and Methods Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp. at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. Results The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. Conclusions When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  9. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  10. The hydrodynamic and radiative properties of low-density foams heated by x-rays

    Science.gov (United States)

    Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klir, D.; Rezack, K.; Orekhov, A.; Borisenko, L.; Krousky, E.; Pfeifer, M.; Dudzak, R.; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, J.; Zhidkov, N.

    2015-09-01

    An advanced type of hydrodynamic stable plasma targets with homogeneous distribution of plasma parameters has been proposed for application in experiments on heavy ion stopping in plasmas and relativistic laser based particle acceleration. Plasma was created via x-ray heating of polymer aerogels with a mean density 103 times lower than that of solid matter. Hydrodynamic and radiation properties of low-density polymer aerogels heated by x-rays, which were generated due to laser interaction with a gold hohlraum, have been investigated experimentally and numerically. In experiments carried out at the PALS laser facility in Prague, the parameters of the hohlraum based soft x-ray source and the fraction of x-ray energy absorbed by foam layers have been measured. The results of these experiments and numerical simulations show that the x-ray heat process occurs via propagation of supersonic radiation driven heat waves. The measured heat wave velocity of 107 cm s-1 allows one to estimate the plasma temperature reached as 25 eV. The hydrodynamic stability of x-ray heated plasma layers has been demonstrated by means of an optical streak camera viewing the plasma expansion process. Simulations of the foam heating process denote rather homogeneous distribution of the plasma temperature and density in the x-ray heated plasma layer and sharp plasma boundaries. The investigated features of such plasma targets are a great advantage for experiments with heavy ion and relativistic laser beams.

  11. Zone Plates for Hard X-Ray FEL Radiation

    Science.gov (United States)

    Nilsson, D.; Holmberg, A.; Sinn, H.; Vogt, U.

    2011-09-01

    We investigated theoretically the use of zone plates for the focusing of the European X-ray Free Electron Laser (XFEL). In a finite-element simulation the heat load on zone plates placed in the high intensity x-ray beam was simulated for four different zone plate materials: gold, iridium, tungsten, and CVD diamond. The main result of the calculations is that all zone plates remain below the melting temperature throughout a full XFEL pulse train of 3000 pulses. However, if the zone plate is placed in the direct beam it will experience large and rapid temperature fluctuations on the order of 300 K. The situation is relaxed if the optic is placed behind a monochromator and the fluctuations are reduced to around 20 K. Besides heat load, the maximization of the total efficiency of the complete optical system is an important issue. We calculated the efficiency of different zone plates and monochromator systems and found that the final beam size of the XFEL in combination with its monochromaticity will be important parameters.

  12. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  13. Synchrotron radiation x-ray topography of crystallographic defects in GaN

    OpenAIRE

    Sintonen, Sakari

    2014-01-01

    In this thesis, the crystal structures of bulk, homoepitaxial and heteroepitaxial GaN were characterized by synchrotron radiation x-ray topography (SR-XRT), x-ray diffraction (XRD) and defect selective etching (DSE). The SR-XRT image contrast of threading screw dislocations and threading mixed dislocations in GaN were determined. The images caused by the strain fields of threading screw dislocations and threading screw dislocation clusters were simulated, and the simulated and experimental...

  14. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose

    OpenAIRE

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15%...

  15. A microfocus X-ray fluorescence beamline at Indus-2 synchrotron radiation facility.

    Science.gov (United States)

    Tiwari, M K; Gupta, P; Sinha, A K; Kane, S R; Singh, A K; Garg, S R; Garg, C K; Lodha, G S; Deb, S K

    2013-03-01

    A microfocus X-ray fluorescence spectroscopy beamline (BL-16) at the Indian synchrotron radiation facility Indus-2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X-ray fluorescence mapping, X-ray microspectroscopy and total-external-reflection fluorescence characterization. The beamline is installed on a bending-magnet source with a working X-ray energy range of 4-20 keV, enabling it to excite K-edges of all elements from S to Nb and L-edges from Ag to U. The optics of the beamline comprises of a double-crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick-Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.

  16. Dosages of ionizing radiation during limb diagnostic X-ray examinations

    Directory of Open Access Journals (Sweden)

    Marcin Bekas

    2016-06-01

    Full Text Available Background: X-ray examination is associated with the patient’s exposure to ionizing radiation. The dose values depend on the type of the medical procedure used, the X-ray unit technical condition and exposure conditions selected by X-ray technicians. The aim of this study has been to assess the entrance surface dose (ESD values received by patients during the limb X-ray examination. The results should help doctors in making the decision about sending patients for X-ray examination. At the same time the X-ray unit condition and examination method performance are important for the radiological protection of the medical staff. Material and Methods: The study covered the total number of 118 X-ray units located in 56 public healthcare entities and private medical centers in the Masovian Voivodeship. The measurement of the radiation dose rate received by patients was based on our own research procedures. Results: The research has found that there are even more than 10-fold differences in the dose values received by adult patients with several-fold differences in the case of children patients. The broadest dose value range for adult patients was related to femur radiography. The ESD values for this procedure ranged 70.9–765.2 μGy (with the average value of 319.7 μGy. The broadest dose value range for children was related to the knee radiography. The range for children aged 5 years old was 11.8–95.8 μGy (with the average value of 48.9 μGy. Conclusions: It is essential to immediately implement X-ray room working procedures for the purpose of performing diagnostic examinations based on the existing model procedures. Med Pr 2016;67(3:321–326

  17. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  18. Influence of X-ray tube spectral distribution on uncertainty of calculated fluorescent radiation intensity

    Energy Technology Data Exchange (ETDEWEB)

    Sitko, Rafal [Institute of Chemistry, Silesian University, 40-006 Katowice (Poland)], E-mail: rafal.sitko@us.edu.pl

    2007-08-15

    The relative radiation intensity (R{sub i}) defined as fluorescent radiation intensity of analyte in specimen to fluorescent radiation intensity of pure element or compound, e.g., oxide is used in calculation in both fundamental parameter methods and in theoretical influence coefficient algorithms. Accuracy of calculated R{sub i} is determined by uncertainties of atomic parameters, spectrometer geometry and also by X-ray tube spectral distribution. This paper presents the differences between R{sub i} calculated using experimental and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al., Ebel, and Finkelshtein-Pavlova. The calculations are performed for the most common targets, i.e., Cr, Mo, Rh and W. In this study, R{sub i} is calculated for V, Cr, Mn, Fe, Co, Ni, Cu and Mo in steels as an example. The differences between R{sub i} calculated using different X-ray tube spectrum algorithms are presented when pure element standard, multielement standard similar to the analyzed material and one pure element standard for all analytes is used in X-ray fluorescence analysis. The differences between R{sub i} for intermediate-thickness samples (and also for thin films) and for X-ray tube, which ran for many hours, are also evaluated.

  19. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Science.gov (United States)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.

    1989-01-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.

  20. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D. (Columbia Univ., New York, NY (USA); Maryland Univ., College Park (USA); Negev Univ., Beersheba (Israel))

    1989-08-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well. 59 refs.

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  2. Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Menzel, Magnus [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Scharf, Oliver [IfG Institute for Scientific Instruments GmbH, Berlin (Germany); Radtke, Martin; Reinholz, Uwe; Buzanich, Günther [BAM Federal Institute of Materials Research and Testing, Berlin (Germany); Lopez, Velma M.; McIntosh, Kathryn [Los Alamos National Laboratory, Los Alamos, NM (United States); Streli, Christina [Atominstitut, TU Wien, Vienna (Austria); Havrilla, George Joseph [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-09-01

    Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by “drop on demand” technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation. - Highlights: • Use of a color X-ray camera and drop on demand printing to diagnose X-ray shading • Specimens were obtained uniform and well-defined in shape and concentration by printing. • Direct visualization and determination of shading in such specimens using the camera.

  3. Miniature CNT-based X-ray tube: assessment for use in intraoperative radiation therapy

    Directory of Open Access Journals (Sweden)

    Mahmoud-Pashazadeh Ali

    2017-09-01

    Full Text Available Carbon nanotube (CNT is a new technology used to generate gamma photons in X-ray tubes. CNTs, in comparison to other small X-ray sources, produce high X-ray intensities and as they are not based on a thermionic principle they considered cold electron sources with a very high conversion of electrical to photon energy. Their small size and other interesting properties could make them feasible for use in intraoperative radiation therapy applications. In this study, physical characteristics of the photon beam generated by the CNT-based X-ray source were assessed. A soft X-ray ionization chamber and a flat panel detector was used to measure dose and photon counts, respectively. The repetitively produced pulses had almost the same photon intensities with differences of less than 1% between them. For a typical selected pulse, the variation in the pulse amplitude was also insignificant, which shows a stable radiation exposure of the tube during the ON-mode. When moving from the center of the beam profile to the lateral distance of 25 mm, both intensity profile and dose profile showed a falling trend by a factor of almost 3 in the measured values.

  4. Radiation Hydrodynamic simulations of Coronae and Disk winds in X-ray Binaries

    Science.gov (United States)

    Higginbottom, N.; Proga, D.

    2017-10-01

    X-ray spectra of several Low Mass X-ray binaries show evidence of disk-winds in the high/soft state. A promising driving mechanism for these outflows is the thermal expansion of X-ray heated material in the outer disk atmosphere. First, we demonstrate through hydrodynamical simulations that the properties of thermally-driven winds depend critically on the shape of the thermal equilibrium curve, which determines the thermal stability of the irradiated material. For a given SED, the thermal equilibrium curve depends on the balance between the heating and cooling mechanisms at work. Then, we use the photoionization code Cloudy to generate heating and cooling rates based on current atomic data, which we use in a 2.5D hydrodynamic model to simulate thermal winds in a typical black-hole X-ray binary. The resulting flow, calculated in the optically thin limit, has a significant mass-loss rate, likely at the level where the wind could affect the inner disk and cause state change. Finally, we discuss a more complete simulation of a disk wind in a low mass X-ray binary, dropping the assumption that the wind is everywhere optically thin, using our Monte-Carlo radiative transfer code to calculate the radiation field within the wind and to update the heating rates.

  5. CCD detectors for X-ray synchrotron radiation application

    CERN Document Server

    Fedotov, M G

    2000-01-01

    In this paper the possibility of the application of some types of CCDs for the study of fast processes (by recording an image formed by a short flash of synchrotron radiation) is considered. The first results of model experiments are also described.

  6. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams

    Science.gov (United States)

    Gossman, Michael S.; Ketkar, Amruta; Liu, Arthur K.; Olin, Bryan

    2012-10-01

    Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49 Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential.

  7. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 193–196 c Indian Academy of Sciences. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets. Jin Zhang1,∗. , Jin-Ming Bai2, Liang Chen2 & Enwei Liang3. 1College of Physics and Electronic Engineering, Guangxi Teachers Education University,. Nanning 530001, China.

  8. Observation of parametric X-ray radiation in an anomalous diffraction region

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, V.I., E-mail: vial@x4u.lebedev.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Eliseyev, A.N., E-mail: elisseev@pluton.lpi.troitsk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Irribarra, E., E-mail: esteban.irribarra@epn.edu.ec [Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito (Ecuador); Kishin, I.A., E-mail: ivan.kishin@mail.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Kubankin, A.S., E-mail: kubankin@bsu.edu.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Nazhmudinov, R.M., E-mail: fizeg@bk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation)

    2016-08-19

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets. - Highlights: • Parametric X-ray radiation below the low energy threshold for diffraction of free X-rays. • Experimental separation of the contributions from different radiation mechanisms. • PXR from relativistic electrons in mosaic crystals and textured polycrystlas.

  9. Parametric X-ray radiation in crystals theory, experiments and applications

    CERN Document Server

    Baryshevsky, Vladimir G; Ulyanenkov, Alexander P

    2005-01-01

    This systematic and comprehensive monograph is devoted to parametric X-ray radiation (PXR). This radiation is generated by the motion of electrons inside a crystal, whereby the emitted photons are diffracted by the crystal and the radiation intensity critically depends on the parameters of the crystal structure. Nowadays PXR is the subject of numerous theoretical and experimental studies throughout the world. The first part of the book is a theoretical treatment of PXR, which includes a new approach to describe the radiation process in crystals. The second part is a survey of PXR experimental results and the possible applications of PXR as a tool for crystal structure analysis and a source of tunable X-ray radiation.

  10. Synchrotron radiation X-ray tomographic microscopy (SRXTM of brachiopod shell interiors for taxonomy: Preliminary report

    Directory of Open Access Journals (Sweden)

    Motchurova-Dekova Neda

    2010-01-01

    Full Text Available Synchrotron radiation X-ray tomographic microscopy (SRXTM is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In “Rhynchonella” flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.

  11. Evaluation of dental X-ray apparatus in terms of patient exposure to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Jerzy Olszewski

    2017-08-01

    Full Text Available Background: The use of X-ray in dental procedures causes exposure of the patient to ionizing radiation. This exposure depends primarily on the parameters used in tooth examination. The aim of the study was to determine the patients exposure and to assess the technical condition of X-ray tubes. Material and Methods: Seventeen hundred dental offices were covered by the questionnaire survey and 740 questionnaires were sent back. Direct measurements were performed in 100 units by using the thermoluminescent detectors and X-ray films. Results: The results showed that the most commonly used exposure time is 0.22±0.16 s. The average entrance dose for the parameters used most commonly by dentists is 1.7±1.4 mGy. The average efficiency of X-ray tube estimated on the basis of exposures is 46.5±23.7 μGy/mAs. Conclusions: The study results indicate that the vast majority of X-ray tubes meet the requirements specified in the binding regulations. Med Pr 2017;67(4:491–496

  12. [Evaluation of dental X-ray apparatus in terms of patient exposure to ionizing radiation].

    Science.gov (United States)

    Olszewski, Jerzy; Wrzesień, Małgorzata

    2017-06-27

    The use of X-ray in dental procedures causes exposure of the patient to ionizing radiation. This exposure depends primarily on the parameters used in tooth examination. The aim of the study was to determine the patients exposure and to assess the technical condition of X-ray tubes. Seventeen hundred dental offices were covered by the questionnaire survey and 740 questionnaires were sent back. Direct measurements were performed in 100 units by using the thermoluminescent detectors and X-ray films. The results showed that the most commonly used exposure time is 0.22±0.16 s. The average entrance dose for the parameters used most commonly by dentists is 1.7±1.4 mGy. The average efficiency of X-ray tube estimated on the basis of exposures is 46.5±23.7 μGy/mAs. The study results indicate that the vast majority of X-ray tubes meet the requirements specified in the binding regulations. Med Pr 2017;67(4):491-496.

  13. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  14. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  15. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    Science.gov (United States)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  16. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    Energy Technology Data Exchange (ETDEWEB)

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm/sup 2/ in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs.

  17. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  18. Blackening of unprotected dental X-ray films due to scattered radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sewerin, I.; Stoltze, K.

    1988-01-01

    Unexposed films awaiting exposure as well as exposed films awaiting processing are subjected to scattered radiation if kept unprotected in the dental X-ray clinic. The purpose of the present study was to analyze the influence of various storing principles, film speed, and distance from X-ray source upon the degree of film blackening. Test films were subjected to scattered radiation from 150 exposures. Maximum additional blackening (0.27 D) was recorded for type E films not protected by lead foil at the shortest distance studied (55 cm). At a distance of 200 cm blackening was reduced to 0.02 D and could be further reduced by utilizing the inherent protective effect of the lead foil. It is concluded that if dental X-ray films not in use are kept a distance of 200 cm from the X-ray source and protected by lead foil additional blackening due to scattered radiation is negligible and further protective precautions are unnecessary.

  19. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Science.gov (United States)

    Korotchenko, K. B.; Eikhorn, Yu. L.; Dabagov, S. B.

    2017-11-01

    In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110) with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110)) within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z 2 - b (Z , z) / z with the function b (Z , z) depending on the screening parameter and the ion charge number z = Z -Ze.

  20. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tilikin, I. N., E-mail: ivan.tilikin@gmail.com; Shelkovenko, T. A.; Pikuz, S. A., E-mail: pikuz@mail.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Knapp, P. F.; Hammer, D. A. [Cornell University (United States)

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  1. Recollections on Sixty Years of NBS Ionizing Radiation Programs for Energetic X Rays and Electrons1

    OpenAIRE

    Koch, H. William

    2006-01-01

    These recollections are on ionizing radiation programs at the National Bureau of Standards (NBS) that started in 1928 and ended in 1988 when NBS became the National Institute of Standards and Technology (NIST). The independent Council on Ionizing Radiation Measurements and Standards (CIRMS) was formed in 1992. This article focuses on how measurements and standards for x rays, gamma rays, and electrons with energies above 1 MeV began at NBS and how they progressed. It also suggests how the rad...

  2. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  3. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    Science.gov (United States)

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2017-08-22

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Radiation chemistry of polymeric X-ray resists; Zur Strahlenchemie polymerer Roentgenresists

    Energy Technology Data Exchange (ETDEWEB)

    Wollersheim, O.

    1995-03-01

    In this study, the radiation chemical reactions in poly(methyl-methacrylate) (PMMA) and homo- and copolymers of lactide and glycollide during X-ray exposure with synchrotron radiation from the Bonn ELSA electron storage ring are quantitatively analyzed. In situ studies of the irradiated PMMA and lactide/glycollide polymers with mass spectroscopy, infrared spectroscopy and ESR spectroscopy combined with ex situ methods as size exclusion chromatography and titration lead to a complete and quantitative understanding of the radiation chemical reactions in both polymer classes. The implications for the application of the polymers in the X-ray deep etch lithography, which is the appropriate process for the production of microsystem components, are discussed. (orig.)

  5. Influence of radiation on the enterotoxin and thermoresistant deoxyribonuclease production by Staphylococcus sp. [X rays

    Energy Technology Data Exchange (ETDEWEB)

    Szulc, M.; Pliszka, A.; Peconek, J. (Szkola Glowna Gospodarstwa Wiejskiego, Warsaw (Poland). Katedra Higieny Produktow Zwierzecych)

    1980-01-01

    Six strains of Staph. aureus present in the environment with and without protein were exposed to X rays in the doses range from 1 to 400 Gy. The production of enterotoxin and thermoresistant deoxyribonuclease by enterotoxic strains No 262 and 100 was determined. All the strains showed similar radiosensitivity to X rays. About 1 per cent of protein in the environment exposed to radiation increased the resistance of Staphylococcus strains. The doses of radiation from 1 to 400 Gy did not influence the enterotoxin A and B production by bacteria multiplied from those which had survived the radiation. The irradiation of the strains present in the environment without protein brought about a temporary inhibition of thermoresistant deoxyribonuclease production.

  6. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    Directory of Open Access Journals (Sweden)

    Honghui Cheng

    2017-02-01

    Full Text Available Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD, and synchrotron radiation light source. The applications of ex situ and in situ time-resolved SR-XRPD in hydrogen storage materials, are reviewed in detail. Future trends and proposals in the applications of the advanced XRPD techniques in hydrogen storage materials are also discussed.

  7. Simulation of experiments with partially coherent x-rays using Synchrotron Radiation Workshop

    Science.gov (United States)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Fluerasu, Andrei; Wiegart, Lutz

    2017-08-01

    High-accuracy physical optics calculation methods used in the "Synchrotron Radiation Workshop" (SRW) allow for multiple applications of this code in different areas, covering development, commissioning, diagnostics and operation of X-ray instruments at light source facilities. This presentation focuses on the application of the SRW code for the simulation of experiments at these facilities. The most complete and most detailed simulation of experiments with SRW is possible in the area of elastic coherent scattering, where the interaction of radiation with samples can be described with the same transmission-type "propagators" that are used for the simulation of fully- and partially-coherent radiation propagation through X-ray optical elements of beamlines. A complete "source-to-detector" simulation of such an experiment for a lithographic sample is described here together with comparisons of the simulated coherent scattering data with actual measurements results, obtained at the Coherent Hard X-ray (CHX) beamline of the National Synchrotron Light Source II (NSLS-II). Particular attention is paid to the analysis of visibility of speckles and intensity levels in the scattered radiation patterns at different degrees of coherence of the radiation entering the sample.

  8. Soft x rays as a tool to investigate radiation-sensitive sites in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, D.J.; Zaider, M.

    1983-01-01

    It is now clear that the initial geometrical distribution of primary radiation products in irradiated biological matter is fundamental to the observed end point (cell killing, mutation induction, chromosome aberrations, etc.). In recent years much evidence has accumulated indicating that for all radiations, physical quantities averaged over cellular dimensions (micrometers) are not good predictors of biological effect, and that energy-deposition processes at the nanometer level are critical. Thus irradiation of cells with soft x rays whose secondary electrons have ranges of the order of nanometers is a unique tool for investigating different models for predicting the biological effects of radiation. We demonstrate techniques whereby the biological response of the cell and the physical details of the energy deposition processes may be separated or factorized, so that given the response of a cellular system to, say, soft x rays, the response of the cell to any other radiation may be predicted. The special advantages of soft x rays for eliciting this information and also information concerning the geometry of the radiation sensitive structures within the cell are discussed.

  9. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  10. Managing radiation degradation of CCDs on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Bissell, Bradley A.; Blackwell, William C.; Cameron, Robert A.; Chappell, Jon II.; DePasquale, Joseph M.; Gage, Kenneth R.; Grant, Catherine E.; Harbison, Christine F.

    2005-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra Team developed, implemented, and maintains a radiation-protection program. This program - involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing - has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 2.9x10^-6 (2.3%) for the front- illuminated CCDs and 0.95x10^-6 (6.5%) for the back-illuminated CCDs. This paper describes the current status of Chandra radiation-management program.

  11. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    Science.gov (United States)

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  12. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  13. Production of High Harmonic X-Ray Radiation from Non-linear Thomson at LLNL PLEIADES

    CERN Document Server

    Lim, Jae; Betts, Shawn; Crane, John; Doyuran, Adnan; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a “figure-8” motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: $aL=e*EL/m*c*ωL ≥ 1$. With large $aL$ this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  18. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    Science.gov (United States)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  19. Human lymphocytes exposed to low doses of X-rays are less susceptible to radiation-induced mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, K.T.; Memisoglu, A.; Frenkel, D.; Liber, H.L. (Harvard School of Public Health, Boston, MA (United States))

    1991-08-01

    Human lymphocytes exposed to low doses of X-rays become refractory to the subsequent induction of chromosomal damage by high doses of radiation. The current study was designed to test the effect of pre-treatment of human T-lymphocytes with a low dose of X-rays on the induction of mutations at the hprt locus by a subsequent challenge dose. When cells were exposed to 1 cGy X-rays 24 h after phytohemag-glutinin stimulation, the yield of mutations induced by a 300 cGy X-ray dose given 16 h later was reduced by approximately 70% from the control level of X-ray-induced mutations. This indicates that this previously described adaptive response to low dose X-rays also results in lymphocytes becoming refractory to the induction of gene mutations. (author). 22 refs.; 2 tabs.

  20. Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-03-03

    We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

  1. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  2. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  3. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  4. Measurement of the energy and power radiated by a pulsed blackbody x-ray source.

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F. (International Specialty Products, Wayne , NJ); Korde, R. (International Radiation Detectors, Torrance, CA); Haslett, C.L. (Ktech Corporation, Albuquerque, NM); Wall, D.L. (Resonetics, Nashua, New hampshire); Ruggles, Laurence E.; Ramirez, L.E. (ATK Mission Research Corporation, Albuquerque, NM); Stygar, William A.; Porter, John Larry, Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B. (International Specialty Products, Wayne , NJ); Pyle, John H. (Ktech Corporation, Albuquerque, NM); Mazarakis, Michael Gerrassimos; Ives, Harry Crockett, III (EG& G, Albuquerque, NM); Seamen, Johann F.; Simpson, Walter W.

    2006-02-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-{micro}m-diameter pinholes in a 50-{micro}m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of {approx}1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented.

  5. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    Directory of Open Access Journals (Sweden)

    H. C. Ives

    2006-11-01

    Full Text Available We have developed a diagnostic system that measures the spectrally integrated (i.e. the total energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38×38 square array of 10-μm-diameter pinholes in a 50-μm-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode’s output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and—on every shot—provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects of the sensitivity of an array-diode combination is presented.

  6. Computer simulation of heat transfer in zone plate optics exposed to x-ray FEL radiation

    Science.gov (United States)

    Nilsson, D.; Holmberg, A.; Sinn, H.; Vogt, U.

    2011-06-01

    Zone plates are circular diffraction gratings that can provide diffraction-limited nano-focusing of x-ray radiation. When designing zone plates for X-ray Free Electron Laser (XFEL) sources special attention has to be made concerning the high intensity of the sources. Absorption of x-rays in the zone material can lead to significant temperature increases in a single pulse and potentially destroy the zone plate. The zone plate might also be damaged as a result of temperature build up and/or temperature fluctuations on longer time scales. In this work we simulate the heat transfer in a zone plate on a substrate as it is exposed to XFEL radiation. This is done in a Finite Element Method model where each new x-ray pulse is treated as an instantaneous heat source and the temperature evolution between pulses is calculated by solving the heat equation. We use this model to simulate different zone plate and substrate designs and source parameters. Results for both the 8 keV source at LCLS and the 12.4 keV source at the European XFEL are presented. We simulate zone plates made of high Z metals such as gold, tungsten and iridium as well as zone plates made of low Z materials such as diamond. In the case of metal zone plates we investigate the influence of substrate material by comparing silicon and diamond substrates. We also study the effect of different cooling temperatures and cooling schemes. The results give valuable indications on the temperature behavior to expect and can serve as a basis for future experimental investigations of zone plates exposed to XFEL radiation.

  7. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  8. Radiation protection and the safe use of X-ray equipment: Laws, regulations and responsibilities

    Directory of Open Access Journals (Sweden)

    Charles Petrus Herbst

    2012-06-01

    Full Text Available Lately, South Africa’s regulatory framework for electromagnetic medical devices has come under considerable pressure. In this article the legislative framework and regulatory infrastructure are scrutinized, by looking at how the legislature has given form to protective measures against ionizing radiation. Although the Hazardous Substances Act provides for effective protection against radiation, poor administration led to insufficient staffing levels, uncertainty about Regulations and licensing conditions and therefore undermines a sound radiation protection infrastructure. The legal basis of enforcing licensing conditions through a website without proper consultation with interested and affected parties is questionable and ineffective in controlling radiation levels. Effective and legal radiation control is possible by activating the National Advisory Committee on Electronic Products provided for in Regulation R326 published in 1979, but never implemented. The possible impact of annual quality assurance tests currently enforced through licensing conditions on the radiation dose of the population is not cost effective as new training and accreditation structures had to be created. The fact that generally more than 80% of overexposures are caused by human error is a clear indication that training of the daily users of X-ray equipment should be emphasized and not the training and accreditation of the technicians responsible for a single quality assurance test per year. Constructive engagement with the professional bodies involved in the medical use of X-rays through a National Advisory Committee on Electronic Products may be a cost effective solution for lowering radiation dose to the population.

  9. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    Science.gov (United States)

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  10. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    CERN Document Server

    Mekaru, H; Hattori, T

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the p...

  11. High-Resolution X-Ray Scattering Topography Using Synchrotron Radiation Microbeam

    Science.gov (United States)

    Chikaura, Yoshinori; Suzuki, Yoshifumi; Kii, Hideki

    1994-02-01

    Although spatial resolution is the most essential factor determining the function of X-ray topography, it has not been improved in 30 years in spite of increasing requirements for highly-resolvable topography in materials science. X-ray scattering topography using a microbeam is a method capable of overcoming this resolution problem. Because the maximum resolution of an apparatus using a sealed-off tube is limited to 20 µ m, we designed and constructed scattering topography equipment using a synchrotron radiation microbeam. In the experiment, the slit system forms the microbeam 7 µ m in diameter. We observed a cellulose distribution in bamboo as a testing material. When the scanning step was 2 µ m, we attained spatial resolution less than 5 µ m.

  12. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M.Q.; Craft, B.; Williams, G.P. (eds.)

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  13. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  14. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  15. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  17. The dynamical influence of radiation in type 1 X-ray bursts

    Science.gov (United States)

    Walker, Mark A.; Meszaros, P.

    1989-01-01

    Consideration is given to the dynamical effects upon an accretion disk of incident radiation generated by thermonuclear burning on the surface of a nonrotating, nonmagnetic neutron star - as exemplified in type 1 X-ray burst sources. Under these conditions, it is found that the torque applied by the radiation field leads to enhanced mass transfer, and the associated accretion power contributes substantially to the total luminosity of the burst. However, this accretion will provide a smaller fraction of the total burst energy if the neutron star possesses a magnetosphere or is in rapid rotation.

  18. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  19. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  20. X-ray diffraction studies on single and mixed confectionery fats using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    MacMillan, S.C.; Roberts, K.J.; Wells, M.; Polgreen, M.; Smith, I. [Heriot-Watt University, Edinburgh, (United Kingdom). Department of Mechanical and Chemical Engineering, Centre for Molecular and Interface Engineering

    1999-12-01

    and stirring rate (shear rate). The X-rays used are from a high intensity synchrotron radiation source, enabling polymorphic phase transformations for a variety of fat mixtures to observed. Copyright (1999) Australian X-ray Analytical Association Inc.

  1. X-ray spectra of plasma radiation from laser induced low-power vacuum discharge

    Science.gov (United States)

    Romanov, I. V.; Kologrivov, A. A.; Paperny, V. L.; Rupasov, A. A.; Starodub, A. N.

    2018-02-01

    The x-ray spectra of plasma radiation in the wavelength range 30–300 Å are studied. The radiation is emitted from plasma of a vacuum discharge with storage energy less than 30 J that is initiated on an Al or Fe cathode by beam from neodymium laser with a power density up to 1012 W cm‑2. It is shown that both the spectral composition and intensity of radiation of hot micropinch plasma that is formed in the cathodic jet are determined by the set of the discharge and the laser pulse characteristics. By optimizing these characteristics, a mode of the discharge operation is attainable, in which a significant portion of the radiation energy is located in the long-wave band of the quasi-continuum (230–270 Å and 160–200 Å for Al and Fe cathodes, respectively). That makes it possible to treat such a discharge as an intense source of narrow-band soft x-ray radiation.

  2. Substantial radiation reduction in pediatric and adult congenital heart disease interventions with a novel X-ray imaging technology

    National Research Council Canada - National Science Library

    Haas, Nikolaus A; Happel, Christoph M; Mauti, Maria; Sahyoun, Cherif; Tebart, Lea Z; Kececioglu, Deniz; Laser, Kai Thorsten

    2015-01-01

    .... This study aims at quantifying the patient radiation dose reduction after the introduction of an X-ray imaging technology using advanced real time image noise reduction algorithms and optimized...

  3. Uncooled Radiation Hard Large Area SiC X-ray and EUV Detectors and 2D Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize large area, uncooled and radiative hard 4H-SiC EUV ? soft X-ray detectors capable of ultra...

  4. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    Energy Technology Data Exchange (ETDEWEB)

    Garanin, S. G.; Ivanovskiy, A. V., E-mail: ivanovsky@elph.vniief.ru [All-Russia Research Institute of Experimental Physics (Russian Federation)

    2015-12-15

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  5. Ionizing radiation regulations and the dental practitioner: 2. Regulations for the use of X-rays in dentistry.

    Science.gov (United States)

    Rout, John; Brown, Jackie

    2012-05-01

    The first article in this series covered radiation hazards and protection. To minimize the potential harmful effects of X-rays, legislation has been introduced by a number of countries including the European Union.

  6. Radiation safety and quality in diagnostic x-ray imaging 2001; Saeteilyturvallisuus ja laatu roentgendiagnostiikassa 2001

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Parviainen, T. (eds.)

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  7. The development of new radiation protocols for insect sterilization using long wavelength x-rays

    Science.gov (United States)

    Urquidi, Jacob; Brar, Ramaninder K.; Rodriguez, Stacy; Hansen, Immo

    2015-07-01

    Control of insect species for the protection of crops, livestock, and prevention of disease such as dengue fever and malaria is a high priority in today's global economy. Traditional methods such as pesticides have fallen out of favor because its effects are indiscriminate as well as adverse and unpredictable impacts on the environment. Modern novel techniques such as genetic modification have had trouble gaining traction due to ethics concerns and the potential for unforeseen side effects. One approach that has gained traction and has proven its efficacy is the use of ionizing radiation to affect sterility in insect species in order to scale back their population. Known as Sterile Insect Technique (SIT), it has proven very effective in eradicating certain dipteran insect populations. However, when standard sterilization methods developed for dipertans are applied to mosquito populations significant complications arise, such as an inability to compete with non-irradiated males and high mortality rates. We have investigated the effect of treatment with x-rays of different wavelengths on x-ray sterilized mosquito males. Our results have demonstrated that longer wavelength x-rays have a significant effect on the outcome of the sterile males' longevity as well as an increase on the efficacy of sterilization while employing a substantially lower dose.

  8. Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Felicie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, and institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.

  9. Synchrotron radiation micro-X-ray fluorescence analysis: A tool to increase accuracy in microscopic analysis

    CERN Document Server

    Adams, F

    2003-01-01

    Microscopic X-ray fluorescence (XRF) analysis has potential for development as a certification method and as a calibration tool for other microanalytical techniques. The interaction of X-rays with matter is well understood and modelling studies show excellent agreement between experimental data and calculations using Monte Carlo simulation. The method can be used for a direct iterative calculation of concentrations using available high accuracy physical constants. Average accuracy is in the range of 3-5% for micron sized objects at concentration levels of less than 1 ppm with focused radiation from SR sources. The end-station ID18F of the ESRF is dedicated to accurate quantitative micro-XRF analysis including fast 2D scanning with collection of full X-ray spectra. Important aspects of the beamline are the precise monitoring of the intensity of the polarized, variable energy beam and the high reproducibility of the set-up measurement geometry, instrumental parameters and long-term stability.

  10. The development of new radiation protocols for insect sterilization using long wavelength x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Urquidi, Jacob, E-mail: jurquidi@nmsu.edu; Brar, Ramaninder K. [X-ray and Neutron Science Laboratory, Department of Physics, New Mexico State University, Las Cruces, NM (United States); Rodriguez, Stacy; Hansen, Immo [Molecular Vector Physiology Lab, Department of Biology, New Mexico State University, Las Cruces, NM (United States)

    2015-07-23

    Control of insect species for the protection of crops, livestock, and prevention of disease such as dengue fever and malaria is a high priority in today’s global economy. Traditional methods such as pesticides have fallen out of favor because its effects are indiscriminate as well as adverse and unpredictable impacts on the environment. Modern novel techniques such as genetic modification have had trouble gaining traction due to ethics concerns and the potential for unforeseen side effects. One approach that has gained traction and has proven its efficacy is the use of ionizing radiation to affect sterility in insect species in order to scale back their population. Known as Sterile Insect Technique (SIT), it has proven very effective in eradicating certain dipteran insect populations. However, when standard sterilization methods developed for dipertans are applied to mosquito populations significant complications arise, such as an inability to compete with non-irradiated males and high mortality rates. We have investigated the effect of treatment with x-rays of different wavelengths on x-ray sterilized mosquito males. Our results have demonstrated that longer wavelength x-rays have a significant effect on the outcome of the sterile males’ longevity as well as an increase on the efficacy of sterilization while employing a substantially lower dose.

  11. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  12. Radiation exposure dose and health management history during 50 years of x-ray working

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T. (Hashimura Daini Hospital, Osaka (Japan))

    1981-01-01

    My X-ray working history has become 50 years at the end of April, 1980. At this chance, the following data were summarized; the case numbers of X-ray photographs (517,132 cases), total amounts of radiation exposure dose (66.85 roentgen) and the results of blood test, which were experienced during past 50 years. The amounts of exposure dose during 35 years till 1965 were measured using my own method, which measured the film blackening as 30 milli-roentgen per week by certain standard method. After 1966 till 1980, the exposure dose were recorded using that of the film-badge service of Nippon Hoan Yohin Kyokai. The total amounts of exposure dose during 50 years were about 1/4 of D = 5 (N - 18). The results of blood test during last 27 years were found to be normal values. Then, it is happy to say that my body has been protected completely, from radiation hazard as a result of taking radiation protection and checking blood test always at my daily radiation works. The data of my own experiences during 50 years are summarized and reported in this paper.

  13. Paediatric x-ray radiation dose reduction and image quality analysis.

    Science.gov (United States)

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  14. [Standards and guidelines of radiation protection and safety in dental X-ray examinations].

    Science.gov (United States)

    Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y

    2017-12-09

    With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.

  15. Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam

    Science.gov (United States)

    Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.

    2018-01-01

    MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.

  16. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Science.gov (United States)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  17. A Spectrometer for X-Ray Energy-Dispersive Diffraction using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Staun Olsen, Janus; Buras, B; Gerward, Leif

    1981-01-01

    Describes a white-beam X-ray energy-dispersive diffractometer built for Hasylab in Hamburg, FRG, using the synchrotron radiation from the electron storage ring DORIS. The following features of the instrument are discussed: horizontal or vertical scattering plane, collimators, sample environment......, remote control of the goniometer, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH2 using a diamond anvil cell....

  18. An x-ray fluorescence study of lake sediments from ancient Turkey using synchrotron radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Alatas, A.; Alp, E. E.; Friedman, E. S.; Jennings, G.; Johnson, C. E.; Lai, B.; Mini, S. M.; Sato, Y.; Wilkinson, T. J.; Yener, K. A.

    1999-03-10

    Sediments from relic Lake Golbasi were analyzed by X-ray fluorescence with synchrotrons radiation to determine changes in element concentrations over time with selected elements serving as proxies for environmental change. Increases in Ca and Sr suggest soil formation during a dry period, from ca. 4500 BC to ca. 200 AD at which point K, Rb, Zr, Ti, and Y increase, indicating the return of a wet environment. Soil erosion, represented by Cr and Ni, increases ca. 7000 BC, probably as a consequence of environmental change, prior to suggested exploitation of natural resources by the newly urbanized society of the third millennium BC.

  19. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  20. X-ray grating interferometer for biomedical imaging applications at Shanghai Synchrotron Radiation Facility.

    Science.gov (United States)

    Xi, Yan; Kou, Binquan; Sun, Haohua; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X; Xiao, Tiqiao; Wang, Yujie

    2012-09-01

    An X-ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption-based micro-computed tomography, this set-up has shown much better soft tissue imaging capability. In particular, using the set-up, the carotid artery and the carotid vein in a formalin-fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set-up for biomedical imaging applications at SSRF.

  1. X-ray photoelectron spectroscopy study of synchrotron radiation irradiation of a polytetrafluoroethylene surface

    CERN Document Server

    Haruyama, Y; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The effect of synchrotron radiation (SR) irradiation of a polytetrafluoroethylene (PTFE) surface was investigated using X-ray photoelectron spectroscopy (XPS). After the SR irradiation, the relative intensity of the F ls peak to the C ls peak decreased markedly. The chemical composition ratio to the F atoms to C atoms was estimated to be 0.29. From the curve fitting analysis of C ls and F ls XPS spectra, the chemical components and their intensity ratio were determined. The reason for the chemical composition change by the SR irradiation was discussed. (author)

  2. The hydrodynamic and radiative properties of low-density foams heated by x-rays

    Czech Academy of Sciences Publication Activity Database

    Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klír, Daniel; Řezáč, Karel; Orekhov, A.; Borisenko, L.; Krouský, Eduard; Pfeifer, Miroslav; Dudžák, Roman; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, Jiří; Zhidkov, N.

    2015-01-01

    Roč. 57, č. 9 (2015), 094001-094001 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LG13029; GA MŠk LM2010014 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 Keywords : hohlraum * low density polymer aerogel * opacity * Planckian radiation * plasma * x-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.404, year: 2015 http://iopscience.iop.org/article/10.1088/0741-3335/57/9/094001;jsessionid=E4079D2364DFCC5CA64FBF3B9F73D180.c2.iopscience.cld.iop.org

  3. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  4. Synchrontron VUV and Soft X-Ray Radiation Effects on Aluminized Teflon FEP

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1998-01-01

    Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.

  5. Feasibility of external beam radiation therapy to deep-seated targets with kilovoltage x-rays.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Weil, Michael D; Breitkreutz, Dylan Yamabe; Wilfley, Brian P; Graves, Edward E

    2017-02-01

    Radiation therapy to deep-seated targets is typically delivered with megavoltage x-ray beams generated by medical linear accelerators or 60 Co sources. Here, we used computer simulations to design and optimize a lower energy kilovoltage x-ray source generating acceptable dose distributions to a deep-seated target. The kilovoltage arc therapy (KVAT) x-ray source was designed to treat a 4-cm diameter target located at a 10-cm depth in a 40-cm diameter homogeneous cylindrical phantom. These parameters were chosen as an example of a clinical scenario for testing the performance of the kilovoltage source. A Monte Carlo (MC) model of the source was built in the EGSnrc/BEAMnrc code and source parameters, such as beam energy, tungsten anode thickness, beam filtration, number of collimator holes, collimator hole size and thickness, and source extent were varied. Dose to the phantom was calculated in the EGSnrc/DOSXYZnrc code for varying treatment parameters, such as the source-to-axis distance and the treatment arc angle. The quality of dose distributions was quantified by means of target-to-skin ratio and dose output expressed in D50 (50% isodose line) for a 30-min irradiation in the homogeneous phantom as well as a lung phantom. Additionally, a patient KVAT dose distribution to a left pararenal lesion (~1.6 cm in diameter) was calculated and compared to a 15 MV volumetric modulated arc therapy (VMAT) plan. In the design of the KVAT x-ray source, the beam energy, beam filtration, collimator hole size, source-to-isocenter distance, and treatment arc had the largest effect on the source output and the quality of dose distributions. For the 4-cm target at 10-cm depth, the optimized KVAT dose distribution generated a conformal plan with target-to-skin ratio of 5.1 and D50 in 30 min of 24.1 Gy in the homogeneous phantom. In the lung phantom, a target-to-skin ratio of 7.5 and D50 in 30 min of 25.3 Gy were achieved. High dose conformity of the 200 kV KVAT left pararenal plan was

  6. Effects of plasma radiation on wound healing compared with X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, E.; Pena E, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin V, J. C., E-mail: erica.azorin@inin.gob.mx [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Blvd. Prol. Calz. de los Heroes No. 908, Col. La Martinica, Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The radiation emitted by the plasma needle has shown high efficiency in the inactivation of microorganisms and the acceleration of the healing process; apparently such effects are related to the antioxidant activity, induction of cell damage and the generation of free radicals. To take advantage of plasma clinical applications it is essential to understand the cellular mechanisms activated by the exposure of human cells to radiation emitted by cold plasma. In this work we present the results of the characterization of the responses of human skin fibroblasts exposed to the radiation emitted by a plasma by varying the magnitude of flow, electrical power, time and composition of the cell culture medium comparing it with the response of these fibroblasts to low energy X-rays. (Author)

  7. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  8. R&D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; /Fermilab /Northern Illinois U.; Brau, C.A.; Choi, B.K.; Gabella, W.E.; Jarvis, J.D.; Mendenhall, M.H.; /Vanderbilt U.; Lewellen, J.W.; /Naval Postgraduate School; Mihalcea, D.; /Northern Illinois U.

    2012-08-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B {approx} 10{sup 12} photons.(mm-mrd){sup -2}.(0.1% BW){sup -1} .s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  9. The Swedish radiation protection institute's regulations on x-ray diagnostics; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations are applicable to practices with ionising radiation with respect to medical and dental diagnostics by means of external radiation sources like x-rays or radioactive substances. The regulations are also applicable to medical or dental use of such radiation sources for planning and guidance, for research and for legal and insurance related examinations.

  10. The state of occupational radiation protection and monitoring in public and private X-ray facilities in Edo state, Nigeria.

    Science.gov (United States)

    Eze, K C; Nzotta, C C; Marchie, T T; Okegbunam, B; Eze, T E

    2011-01-01

    To find out the state of radiation protection and monitoring practices of the public and private X-ray centres in Edo state. Survey visits were made to all the functional X-ray facilities in Edo state and the available facilities identified, staff interviewed and collected data analyzed. There are 18 functional X-ray facilities comprising 10 (55.56%) publicly owned and eight (44.44%) privately owned. Only two (20%) of the public and five (62.5%) of the private X-ray units have personnel and environmental monitoring. All the X-ray centers in both public and private hospitals have effective lead aprons. All the public (100%) and only four (50%) of the private centers have gonadal shield although none is using them on a routine basis. Qualified radiographers are available only in five (50%) of the public and six (75%) of the private centers. Only three (30%) of the public X-ray centers have the services of radiologists. Among the private X-ray units, five (62.5%) have radiologist while three (37.5%) have no radiologist. Only one (10%) of the public centers and one (12.5%) private X-ray centre have a purpose-built adequately designed X-ray unit with barium plasters and lead lining of walls and doors. There is also only limited lead lining of doors and walls in three (37.5%) private units while no lead lining or barium plasters are used in five (62.5%) of the private units. No X-ray unit in Edo state uses digital radiography or computerized information system. This means that lost hard copy must be repeated, leading to more radiation to patients and staff. There are inadequate radiation protection and monitoring practices in most of the functional X-ray facilities in Edo state with only five (62.5%) of the private and two (20%) of the public X-ray units monitored. There is poor adherence to the advice of the medical physicists due to the cost implications of the implementation.

  11. Radiation safety and quality control assurance in X-ray diagnostics 1998; Saeteilyturvallisuus ja laadunvarmistus roentgendiagnostiikassa 1998

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A. [ed.

    1998-03-01

    The report is based on a seminar course of lectures `Radiation safety and quality assurance in X-ray diagnostics 1998` organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  12. X-ray fluorescence analysis in environmental radiological surveillance using HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Peraza, E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)]. E-mail: eduardo.herrera@cimav.edu.mx; Renteria Villalobos, M. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Montero Cabrera, M.E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Munoz Romero, A. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)

    2004-10-08

    X-ray fluorescence (XRF) has been proven to be a valuable tool for determining trace quantities of heavy metals, such as uranium and lead, in different types of samples. The present paper demonstrates the applicability of XRF spectrometry to measure the concentrations of these heavy metals in samples from natural ore and soil. The values of uranium concentrations in rock from the Pena Blanca uranium ore, in Chihuahua, Mexico, were calculated for the purpose of precertifying the rock powders samples. The comparison with other techniques, such as inductively coupled plasma atomic emission spectrometry, atomic absorption spectrometry, alpha spectrometry and electron microscopy, was used to complete the precertification process, so that the sample powders may be used as secondary standards. The source-sample-detector geometry and the incident angle are the most important factors for obtaining low detection limits. The selected system uses a {sup 57}Co source of about 0.1 mCi to excite the K X-rays from uranium and lead. X-rays were recorded on a CANBERRA HPGe coaxial detector. The comparative results for two incident angles (90 deg and 180 deg ) performed previously by other authors show that the best geometry is the backscattering geometry. In the present paper, using EGS4 code system with Monte Carlo simulation, it was possible to determine the location and distribution of background produced by the Compton edge in the optimized geometry. This procedure allowed to find the minimum detectable concentration of uranium and lead, which was experimentally calculated using standards. The possibility of performing in vivo measurements rapidly and easily, as well as the factors affecting accuracy and the minimum detectable concentration in several samples are also discussed.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  16. UV/X-Ray Diffraction Radiation for non-intercepting Micron-Scale Beam Size Measurement

    CERN Document Server

    -; Lefevre, T; Karataev, P; Billing, M

    2012-01-01

    Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarizes the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. Therefore DR can be used to develop non-invasive diagnostic tools. The aim of this project is to measure the transverse (vertical) beam size using incoherent DR. To achieve the micron-scale resolution required by CLIC, DR in UV and X-ray spectral-range must be investigated. During the next few years, experimental validation of such a scheme will be conducted on the CesrTA at Cornell University, USA. Here we present the current status of the experiment preparation.

  17. RADIATION LOAD IN THE PROCESS OF X-RAY DIAGNOSTICS WITH THE USE OF MICROFOCUS METHODS

    OpenAIRE

    N. N. Potrakhov; A. Ju. Griaznov; A. N. Barkovsky

    2008-01-01

    The article regards the perspectives of microfocus X-ray equipment implementation in the medical X-ray diagnostics. It demonstrates the advantages of suggested equipment in comparison with traditional X-ray diagnostic machines with the big focus in the terms of dental X-ray diagnostics. The article shows the significant patient's exposure doses reduction with improving of diagnostic quality of the obtained images. It emphasizes the need of the regulatory basis of the enhancement for microfocu...

  18. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  19. Effects of X-ray and extreme UV radiation on circumbinary planets

    Science.gov (United States)

    Sanz-Forcada, J.; Desidera, S.; Micela, G.

    2014-10-01

    Context. Several circumbinary planets have recently been discovered. The orbit of a planet around a binary stellar system poses several dynamic constraints. In addition to these constraints, the effects that radiation from the host stars may have on the planet atmospheres must be considered. We here evaluate these effects. Because of the configuration of a close binary system, these stars have a high rotation rate, even for old stars. The fast rotation of close, tidally locked binaries causes a permanent state of high stellar activity and copious XUV radiation. The accumulated effects are stronger than for normal exoplanets around single stars and cause a faster evaporation of their atmospheres. Aims: We evaluate the effects that stellar radiation has on the evaporation of exoplanets around binary systems and on the survival of these planets. Methods: We considered the X-ray and EUV spectral ranges (XUV, 1-912 Å) to account for the photons that are easily absorbed by a planet atmosphere that is mainly composed of hydrogen. A more complex atmospheric composition is expected to absorb this radiation more efficiently. We used direct X-ray observations to evaluate the energy in the X-rays range and coronal models to calculate the (nondetectable) EUV part of the spectrum. Results: We considered in this problem different configurations of stellar masses, and a resonance of 4:1 and 3:1. The simulations show that exoplanets orbiting close binary systems in a close orbit will suffer strong photoevaporation that may cause a total loss of atmosphere in a short time. We also applied our models to the best real example, Kepler-47 b, to estimate the current mass-loss rates in circumbinary planets and the accumulated effects over the time. Conclusions: A binary system of two solar-like stars will be highly efficient in evaporating the atmosphere of the planet (less than 6 Gyr in our case). These systems will be difficult to find, even if they are dynamically stable. Still

  20. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    Science.gov (United States)

    Wolff, Michael Thomas; Becker, Peter A.; Gottlieb, Amy; Fuerst, Felix; Britton Hemphill, Paul; Marcu-Cheatham, Diana; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Joern; Wood, Kent

    2016-04-01

    We report on new spectral modeling of an observation of the accreting X-ray pulsar Her X-1 by the Nuclear Spectroscopic Telescope Array (NuSTAR). We utilize a radiation-dominated radiative shock model that is an implementation of the analytic work of Becker & Wolff (2007) on Comptonized accretion flows onto magnetic neutron stars within the XSPEC analysis environment. We obtain a good fit to the Her X-1 spin-phase averaged 4 to 78 keV X-ray spectrum observed by NuSTAR during a main-on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous spectral models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the details of our spectral fitting model and we discuss the interpretation of the resulting accretion flow physical parameters.This research is supported by the NASA Astrophysics Data Analysis Program.

  1. X-ray technology and radiation protection in dentistry practice. 3. ed.; Roentgentechnik und Strahlenschutz in der Zahnaerztlichen Praxis. Ein Handbuch fuer Zahnaerztliche Fachangestellte

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, M.

    2012-07-01

    The booklet includes the following chapters: (1) General information on X-ray technology. (2) Contact with patients. (3) Hygienic measures in the X.ray diagnostics. (4) Fundamentals of radiation protection. (5) Dose units and their measurement. (6) X-ray devices and image receiver systems. (7) Imaging problems and image quality. (8) Radiation protection problems. (9) Quality assurance. (10) Fundamentals on the radiological setting technology. (11) Information of the Federal dentist's organization on quality assurance in dental X-ray technology. (12) Fundamentals of radiation biology. (13) Natural radiation sources. (14) Artificial radiation sources. (15) Legal regulations. (16) Physical quantities and units. (17) Basic knowledge on radiation protection.

  2. Identification of Nano-Objects in Substances by Using of X-Ray Electron Radiation

    CERN Document Server

    Grishin, Vladislav K

    2005-01-01

    Using opportunity of X-ray emission, arising at process of fast charge interaction with media atomic electrons, for nano-object discovery and diagnostics in substances is discussed. This kind of of X-ray emission termed as polarization bremsstrahlung radiation (PB) depends very strongly on media structure. As result spectra of PB in a media containing nano-inhomogeneities (as fullerenes, nanotubes, composite structures as fullerites) reflex structural characteristics of last ones. Fullerenes in carbon soot as example of an amorphous substance with mentioned structure inhomogeneities are considered. It is shown that spectra of PB on fullerenes contain a series of oscillations which give the valuable information about single- ore multilayers fullerene structures. The main peak of emission is placed in energy area of PB photons less than 1-1.5 keV. Here PB obtains a coherent character due to which one PB intensity is very high because it becomes to proportional square of all fullerene electrons number. Due to PB...

  3. Radiation properties of Ni-like molybdenum x-ray laser at PALS

    Science.gov (United States)

    Albrecht, M.; Kozlova, M.; Nejdl, J.

    2017-05-01

    We present lasing in Ni-like molybdenum x-ray laser (18.9 nm) demonstrated with grazing incidence pumping and complete diagnostics of the generated EUV beam. This source of EUV radiation was the first experimental realization of transient x-ray laser at the PALS laboratory. The experiment was performed on a 10 Hz Ti:Sapphire laser system with highly efficient grazing incidence pumping by single beam with profiled laser pulse which included a long prepulse followed by a short main pump pulse. The plasma column was created by focusing of the pumping laser beam on a slab target by a spherical mirror in two different off-axis configurations. Lasing close to saturation with EUV pulses of energy around 100 nJ was demonstrated with less than 500 mJ pumping energy on target. Experimental data from far-field images were analyzed by applying the generalized Van Cittert-Zernike theorem which in general relates field correlation function at the source with intensity in the far-field and can give information about the source size.

  4. Evaluation of osteoporotic bone structure through synchrotron radiation X-ray microfluorescence images

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Pantaleao, T.U.; Correa da Costa, V.M. [Biophysics Institute, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo 2030, Sala I-133, Cidade Universitaria, 21941-914 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    The abnormal accumulation or deficiency of trace elements may theoretically impair the formation of bone and contribute to osteoporosis. In this context, the knowledge of major and trace elements is very important in order to clarify many issues regarding diseases of the bone, such as osteoporosis, that remain unresolved. Several kinds of imaging techniques can be useful to access morphology and the minerals present in osteoporotic bones. In this work, synchrotron radiation X-ray microfluorescence was used as an X-ray imaging technique to investigate bone structures. Therefore, this research aims to improve the knowledge about some aspects of bone quality. The measurements were carried out at the Brazilian Synchrotron Laboratory Light Laboratory, in Brazil. A white beam with an energy range of 4-23 keV, a 45 deg./45 deg. geometry and a capillary optics were used. It was demonstrated that bone quality can and must be evaluated not only by considering the architecture of bones but also by taking into account the concentration and the distribution of minerals. Our results showed that the elemental distributions in bone zones on a micron scale were very helpful to understand functions in those structures.

  5. RADIATION LOAD IN THE PROCESS OF X-RAY DIAGNOSTICS WITH THE USE OF MICROFOCUS METHODS

    Directory of Open Access Journals (Sweden)

    N. N. Potrakhov

    2008-01-01

    Full Text Available The article regards the perspectives of microfocus X-ray equipment implementation in the medical X-ray diagnostics. It demonstrates the advantages of suggested equipment in comparison with traditional X-ray diagnostic machines with the big focus in the terms of dental X-ray diagnostics. The article shows the significant patient's exposure doses reduction with improving of diagnostic quality of the obtained images. It emphasizes the need of the regulatory basis of the enhancement for microfocus machines application in X-ray diagnostics.

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  8. Conical diffraction effect in optical and x-ray Smith-Purcell radiation

    Directory of Open Access Journals (Sweden)

    D. Yu. Sergeeva

    2015-05-01

    Full Text Available Smith-Purcell radiation is a well-known phenomenon, which provides a noninvasive scheme for diagnostics of charged particle beams and is used as an effective source of electromagnetic waves, e.g., in the orotron, the free electron laser, etc. In this paper we develop the theory of Smith-Purcell radiation (SPR for the little-investigated case of arbitrary angles between the charged particle trajectories and the rulings of a grating. The effect of conical diffraction arising here changes drastically the space distribution of the radiation. By contrast to the only existing approach, described by Haeberle et al. [Phys. Rev. E 55, 4675 (1997], which requires difficult numerical calculations, we give a fully analytic theory of SPR. Also, in this paper we present for the first time the theory of x-ray Smith-Purcell radiation. Evanescent waves on the surface are shown to lead to strong enhancement of Smith-Purcell radiation, through a resonant mechanism. The results are important for the description of real divergent high-brightness beams and for the development of novel noninvasive diagnostic schemes based on the Smith-Purcell effect.

  9. Effect of X-ray radiation exposure on lyophilized recombinant activated factor VII (formulated for storage at room temperature).

    Science.gov (United States)

    Vestergaard, Susanne; Nedergaard, Hanne; Jonasdottir, Oktavia; Wagner Kristiansen, Morten; Mette Nøhr, Anne; Bjerre, Jens

    2009-11-01

    To investigate effects of air transport and X-ray radiation exposure through airport security of a new room temperature-stable rFVIIa formulation (NovoSeven/NovoSeven RT, Novo Nordisk A/S, Bagsvaerd, Denmark) lyophilized using in vitro study methodology, thus evaluating possible effects of exposure through airport security and airplane travel. The effect of X-ray radiation exposure of rFVIIa and the solvent histidine at two different doses (400 microSv and 2000 microSv) was examined immediately after exposure, and post-exposure after storage at 30 degrees C for 1 month. References samples, not exposed to X-ray radiation, were used for comparison. Stability of rFVIIa after X-ray radiation exposure. All product parameters analyzed were within the acceptance criteria as well as within shelf life specification limits for the selected parameters for each product. The product rFVIIa and solvent histidine are therefore not expected to be affected as a consequence of airplane traveling and X-ray exposure during airport security check using hand luggage scanners.

  10. Spectroscopic Studies of the Soft X-Ray Radiation from Gas-Puff Z-Pinches on Cobra

    Science.gov (United States)

    Shelkovenko, T. A.; Pikuz, S. A.; de Grouchy, P. W. L.; Qi, N.; Atoyan, L.; Kusse, B. R.; Hammer, D. A.

    2015-11-01

    Gas-puff Z-pinch experiments have been conducted on the 0.8-1.2 MA, 100-240 ns pulse duration COBRA pulsed power generator. Triple nozzle gas-puff loads consisting of Ne, Ar and Kr gases in different combination and pressures with pre-ionization were used in the most recent experiments. Photo-conducting diodes (PCDs) and pinhole cameras with different filters were used to study the X-ray timing, intensity and spatial distribution in different energy bands. Spectrographs with spatial and temporal resolution were used to study the soft x-ray radiation from the gas-puff Z-pinches. One spectrograph with two spherically bent mica crystals was used to study radiation with 200 micron spatial resolution and high spectral resolution. An x-ray streak camera with one spherically bent quartz crystal was used to study the x-ray radiation with up to 10 ps temporal resolution. The x-ray spectra were used to estimate spatial and temporal distributions of plasma parameters and determine the intensity of the line and continuum radiation from the Z-pinches plasma. Work supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836.

  11. Assessment of TID Effect of FRAM Memory Cell Under Electron, X-Ray, and Co- 60 gamma Ray Radiation Sources

    Science.gov (United States)

    Shen, Jingyu; Li, Wei; Zhang, Yuanbin

    2017-03-01

    This paper investigates the total ionizing dose (TID) effect of the memory cell of the ferroelectric random access memory (FRAM) under electron, X-ray, and Co-60 γ ray radiation sources. An electron accelerator and an X-ray microbeam from synchrotron, which are used to simulate the given radiation environments, offer local irradiation on the FRAM memory cell. In addition, the Co-60 γ ray source provides global irradiation on the full chip of FRAM. The FRAM memory cell is proved to have a lower failure threshold for TID effect than the ferroelectric thin-film capacitor due to the performance degradation of nMOS transistor in memory cell. The failure phenomenon is studied according to the experimental results of different radiation sources, and the failure mechanism is discussed based on the technology and the characteristics of FRAM memory cell in circuit-level. The difference of device performance is also analyzed for electron irradiation and X-ray irradiation.

  12. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    Science.gov (United States)

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. © 2012 International Union of Crystallography

  13. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  14. X-ray spectromicroscopy of fast heavy ions and target radiation

    CERN Document Server

    Rosmej, O N; Geissel, M; Rosmej, F; Blakevic, A; Jacoby, J; Dewald, E; Roth, M; Brambrinz, E; Weyrich, K; Hoffmann, Dieter H H; Pikuz, T A; Faenov, A Y; Magunov, A I; Skobelev, I Y; Borisenko, N G; Shevelko, V P; Golubev, A A; Fertman, A; Turtikov, V; Sharkov, B Yu

    2002-01-01

    A new technique for X-ray spectromicroscopy of fast heavy ion radiation during the ion interaction with stopping media is presented using focusing spectrometers with spatial resolution. Spherically bent crystals of quartz and mica with small curvature radii, R=150 mm, and large apertures were used as dispersive elements in experiments on fast Ni ions with energies of 5.9 and 11.2 MeV/u which are being stopped in different media: Ar gas, SiO sub 2 -aerogels and solid quartz. Spectrally high (lambda/DELTA lambda=1000-3000) and spatially high (up to 10-100 mu m) resolved K alpha-satellite spectra of Ni projectiles as well as of the ionized stopping media were observed.

  15. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  16. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

  17. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    Science.gov (United States)

    Caffrey, Martin

    1984-05-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 Å) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 × 10 10 photon s -1 mm -2, corresponding to a cumulative radiation dose of ≦10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement.

  18. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  19. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields

    Science.gov (United States)

    Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Objectives: Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Methods: Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. Results: The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. Conclusions: The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination. PMID:26313308

  20. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    Science.gov (United States)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  1. Study of Increased Radiation When an X-ray Tube is Placed in a Strong Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.F.; /Stanford U., Dept. Radiol. /Stanford U., Phys. Dept.; Pelc, N.J.; /Stanford U., Dept. Radiol. /Stanford U., Dept. Bioeng.; Nelson, W.R.; /SLAC; Fahrig, R.; /Stanford U., Dept. Radiol.

    2007-01-12

    When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial

  2. Development of a portable monitor for detecting gamma radiation and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Paulo J. da [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Lira, Carlos A.B. de O., E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    There are several ways to prevent individuals from receiving excessive or unnecessary doses of radiation, and area monitoring contributes to the radiation protection in the assessment whether these means are really efficient. The area monitoring is used to give an indication of radiation levels in certain locations. Using this method, one can estimate the dose received by staff occupying a particular area for a certain period of time. Hence, the purpose of this work was the construction of a portable monitor, consisting of an ionization chamber, with a volume of approximately 517 cc and built from tissue-equivalent material, and of its associated electronics. Radiation measurements of gamma and X-rays beams were then possible. The results showed a linear response of the monitor for different dose rates. The stability test of the response also showed a good reproducibility within {+-} 1%. A low energy dependence for energies between 16 - 200keV was observed, and complied well with the IEC 60846 standard. However, for the energy range 200 - 1250keV, the discrepancies to the IEC standard are considerable, so that the interposition of filters is necessary and may improve the energy response curve to within acceptable limits. (author)

  3. The X-ray transition radiation; Le rayonnement de transition X

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch

    2000-07-01

    The interest of producing high-energy radiation using a small-size electron accelerator is growing since many years. It appeared that such accelerators should drive x-ray sources to produce a high flux of radiation. The range of photon-energy available when using electron linacs, for example, is between a few tens of eV and the maximum electron kinetic energy. The transition radiation, which is produced when a charged particle crosses the interface between two media of different permittivities, is a very promising way due to its high production rate. We present here a study of this physical process involving moderate-energy relativistic electrons (20 MeV). We recall the main characteristics of the radiation when the interface is crossed at normal incidence and derive the analytical production yields when the interaction takes place at grazing incidence. The results for both geometries are compared. Finally, the scale laws allowing the optimization of the spectral source brilliance are presented. (author)

  4. Radiation dose evaluation during X-ray examinations in human medicine, dentistry, veterinary medicine and border controls using ionizing radiation; Dosisermittlung bei der Anwendung von Roentgenstrahlung in der medizinischen Heilkunde, zahnmedizinischen Heilkunde, Tierheilkunde und bei Grenzkontrollen mit ionisierender Strahlung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ankerhold, U; Hupe, O. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2012-02-15

    The report on radiation dose evaluation during X-ray examinations includes the following chapters: (1) Scope of the project. (2) Measuring instruments. (3) Part I: Radiation dose evaluation during X-ray examinations in human medicine, dentistry, veterinary medicine. (4) Radiation dose evaluation during X-ray examinations during border controls using ionizing radiation. (5) Summary of results.

  5. Study of Lead as a Source X-ray Radiation Protection with an Analysis Grey Level Image

    Science.gov (United States)

    Susilo; Rahma, I. N.; Mosik; Masturi

    2017-04-01

    X-ray utilization in the medical field still has a potential danger for the human. This occurs when exposure to x-ray radiation received exceeds the dose limit value. It required a radiation shielding to prevent the hazard, and lead is one of the metals usually used as x-ray radiation shield. This work aims to determine the metallic lead properties to find out of the step wedge lead radiograph image. The instruments used are the plane x-ray, digital radiography system and personal computer installed by MATLAB, while the material is step wedge lead. The image of radiograph was analysed using GUI applications on MATLAB software to determine the values of grey level from the image and the optical density of the radiograph image. The results showed the greater optical density, the higher the image contrast, and the value of optical density in the image is inversely proportional to the voltage x-ray since the value of grey level at high voltage is smaller than that of at low voltage.

  6. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  8. Radiation diagnostics and x-ray output from 1213 mega-ampere plasma implosions

    Energy Technology Data Exchange (ETDEWEB)

    Oona, H.; Idzorek, G.C.; Goforth, J.H. [Los Alamos National Lab., NM (United States)

    1997-12-31

    The Procyon explosive pulsed power system has been used to drive 12--13 Ma, 2 {mu} second plasma implosions. These experiments have produced more than 1.5 MJ of soft x-rays in a 250 ns FWHM pulse. Data from bolometers, x-ray photodiodes, and curved crystal x-ray spectrometers are compared and analyzed for the fluence and the plasma temperature. Fitting of the x-ray continuum to a Planckian has suggested temperatures in the 90ev range. Images from high speed electronic cameras show a time sequence of instability growth that indicate effects on the x-ray output. X-ray images taken with filtered pinhole cameras show the location, shape, and size of the pinch. In this report the authors present details of this data from several Procyon experiments, point out methods for minimizing instability growth and discuss the diagnostics that are used in the harsh, explosive environment.

  9. Significant Radiation Dose Reduction in the Hybrid Operating Room Using a Novel X-ray Imaging Technology.

    Science.gov (United States)

    van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J

    2015-10-01

    To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and staff radiation dose without affecting procedure length, fluoroscopy time, or use of contrast. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of X-Ray Radiation Levels in Radiology Departments of Two Educational Hospitals in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    behzad foulady

    2017-06-01

    Full Text Available Introduction: The ionizing radiation is increasingly applied in various fields for industrial and medical purposes due to its benefits. The aim of this study was to measure the radiation levels in six radiology departments of two educational hospitals in Ahvaz, Iran. Materials and Methods: The radiation levels were measured at six locations of six radiology departments, including behind the patient observation window, staff rest room, office, patient waiting room, behind the door of the X-ray room, and outdoor. These measurements were carried out while the X-ray equipment was in on and off status, using the halogen-quenched Geiger-Mueller counter. Results: According to the results, the range of radiation levels inside the radiology departments at X-ray units with on/off status were0.36±0.12 to 0.09±0.02 µSv/h and 0.13±0.02 to 0.09±0.03 µSv/h, respectively. Furthermore, significant differences were observed between the indoor and outdoor radiation levels in all locations.  Conclusion: As the findings indicated, the surveyed X-ray equipment in the radiology departments of two educational hospitals was safe. The radiation dose levels were within the safe recommended limits in all locations except two points due to some structural problems, which were recognized and would be corrected as soon as possible.

  11. The effect of X-ray and heavy ions radiations on chemotherapy refractory tumor cells

    Directory of Open Access Journals (Sweden)

    Zhan eYu

    2016-03-01

    Full Text Available Purpose: To link both numeric and structural chromosomal aberrations to the effectiveness of radiotherapy in chemotherapy refractory tumor cells.Materials and methods: Neuroblastoma (LAN-1 and 79HF6 glioblastoma cells derived from patients and their chemoresistant sublines were artificially cultured as neurospheres and irradiated by x-rays and heavy ions sources. All the cell lines were irradiated by Carbon-SIS with LET of 100 keV/µm. 79HF6 cells were also irradiated by Carbon-UNILAC with LET of 168 keV/µm, while LAN-1 cells were irradiated by Nickel ions with LET of 174 keV/µm. The effect of radiation on the survival and proliferation of cells was addressed by standards clonogenic assays. In order to analyze cell karyotype standard giemsa-staining, multicolor fluorescence in situ hybridization technique and multicolor banding technique were applied.Results: Relative biological effectiveness (RBE values of heavy ions beam relative to X-rays at the D10-values were found between 2.3-2.6 with Carbon-SIS and Nickel for LAN-1, while that were 2.5-3.4 with Carbon-SIS and Carbon-UNILAC for 79HF6 cells. Chemorefractory LAN-1RETO cells were found more radioresistant than untreated LAN-1WT cells. 79HF6RETO glioblastoma cells were found more radiosensitive than cytostatic sensitive cells 79HF6WT. Sphere formation assay showed LAN-1RETO cells were able to form spheres in serum-free culture whereas 79HF6 cells could not. Most of 79HF6WT cells revealed to content 71-90 chromosomes while 79HF6RETO revealed a numeric of 52-83 chromosomes. The majority of LAN-1WT cells revealed a number of 40-44 chromosomes. mFISH analysis showed some stable aberrations especially on chromosome 10 with as judged by the impossibility to label this region with specific probes. This was corroborated using mBAND analysis.Conclusions: Heavy ion irradiation were more effective than X-ray in both cytostatic naive cancer and chemoresistant cell lines. LAN-1RETO chemoresistant

  12. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  13. X-ray backlighting of multiwire arrays using X-pinch radiation.

    Science.gov (United States)

    Pikuz, S. A.; Shelkovenko, T. A.; Lebedev, S. V.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Zakaullah, M.; Hammer, D. A.

    1999-11-01

    The advantages of X-ray backlighting using an X-pinch as a source of radiation [1] (high spatial and temporal resolution and high intensity) make it a promising technique for studying wire behavior and wires dense core structure in multiwire arrays. The simplest way to power an X-pinch and synchronize it with the process of the array implosion is to use the return current path of the array circuit to drive the X-pinch. Initial test experiments with 4-wire arrays have been performed on XP pulser (450 kA, 100 ns) in Cornell University. Two Mo X-pinch have been installed in the return current path and pairs of backlighting images with a 10--20 ns interval have been obtained. On MAGPIE pulser (1 MA, 240 ns) a single 2 or 4-wire X-pinch was installed in place of one of 4 return current post. It has been used to study wire explosion in different wire arrays. The x-ray burst from the X-pinch occurred at 120--250 ns after the start of arrays current pulse, depending on X-pinch wire material and the wire diameter. Structure of Al wire cores and the formation of RT instabilities have been observed. Fine foam-like structure was observed in Ti wire arrays. No obvious influence of the X-pinch on the main pinch implosion was observed. So it is possible to use multiframe system with two or even more X-pinches in the later experiments. 1. T.A. Shelkovenko, S.A. Pikuz, A.R. Mingaleev and D.A.Hammer, Rev. Sci. Instrum., 70, 667 (1999).

  14. Radiation protection for an intra-operative X-ray device

    Science.gov (United States)

    Eaton, D J; Gonzalez, R; Duck, S; Keshtgar, M

    2011-01-01

    Objectives Therapeutic partial breast irradiation can be delivered intra-operatively using the Intrabeam 50 kVp compact X-ray device. Spherical applicators are added to the source to give an isotropic radiation dose. The low energy of this unit leads to rapid attenuation with distance, but dose rates are much greater than for diagnostic procedures. Methods To investigate the shielding requirements for this unit, attenuation measurements were carried out with manufacturer-provided tungsten–rubber sheets, lead, plasterboard and bricks. A prospective environmental dose rate survey was also conducted in the designated theatre. Results As a result of isotropic geometry, the scattered dose around shielding can be 1% of primary and thus often dominates measured dose rates compared with transmission. The absorbed dose rate of the unshielded source at 1 m was 11.6 mGy h−1 but this was reduced by 95% with the shielding sheets. Measured values for the common shielding materials were similar to reference data for the attenuation of a 50 kVp diagnostic X-ray beam. Two lead screens were constructed to shield operators remaining in the theatre and an air vent into a service corridor. A lead apron would also provide suitable attenuation, although a screen allows greater flexibility for treatment operators. With these measures, staff doses were reduced to negligible quantities. Survey measurements taken during patient treatments confirmed no additional measures were required, but the theatre should be a controlled area and access restricted. Conclusion Results from this study and reference data can be used for planning other facilities. PMID:21304003

  15. Centrally Concentrated X-Ray Radiation from an Extended Accreting Corona in Active Galactic Nuclei

    Science.gov (United States)

    Liu, B. F.; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin

    2017-10-01

    The X-ray emission from bright active galactic nuclei (AGNs) is believed to originate in a hot corona lying above a cold, geometrically thin accretion disk. A highly concentrated corona located within ˜10 gravitational radii above the black hole is inferred from observations. Based on the accretion of interstellar medium/wind, a disk corona model has been proposed in which the corona is well coupled to the disk by radiation, thermal conduction, as well as by mass exchange. Such a model avoids artificial energy input to the corona and has been used to interpret the spectral features observed in AGN. In this work, it is shown that the bulk emission size of the corona is very small for the extended accretion flow in our model. More than 80% of the hard X-ray power is emitted from a small region confined within 10 Schwarzschild radii around a non-spinning black hole, which is expected to be even smaller accordingly for a spinning black hole. Here, the corona emission is more extended at higher Eddington ratios. The compactness parameter of the corona, l=\\tfrac{L}{R}\\tfrac{{σ }{{T}}}{{m}{{e}}{c}3}, is shown to be in the range of 1-33 for Eddington ratios of 0.02-0.1. Combined with the electron temperature in the corona, this indicates that electron-positron pair production is not dominant in this regime. A positive relation between the compactness parameter and photon index is also predicted. By comparing the above model predictions with observational features, we find that the model is in agreement with observations.

  16. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Science.gov (United States)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  17. Reducing the radiation dose during excretory urography: flat-panel silicon x-ray detector versus computed radiography.

    Science.gov (United States)

    Zähringer, M; Hesselmann, V; Schulte, O; Kamm, K F; Braun, W; Haupt, G; Krug, B; Lackner, K

    2003-10-01

    The purpose of the study was to examine the possibilities for reducing radiation exposure in uroradiology using digital flat-panel silicon X-ray detector radiography. We compared the subjectively determined image quality of abdominal radiographs and urograms obtained on a digital flat-panel detector radiography system with those obtained on a computed radiography system. SUBJECTS AND METHODS. Fifty patients who had a clinical indication for urography underwent unenhanced abdominal imaging that was alternately performed using flat-panel silicon X-ray detector radiography or computed radiography. For patients who required a second radiograph with contrast medium, the examination modality was changed to avoid exposing the patients to excess radiation. The images obtained on flat-panel X-ray detector radiography were obtained at half the radiation dose of the images obtained on computed radiography (800 speed vs 400 speed). The resulting 50 pairs of images were interpreted by four independent observers who rated the detectability of structures of bone and the efferent urinary tract relevant to diagnosis and compared the image quality. At half the radiation dose, digital flat-panel X-ray detector radiography provided equivalent image quality of the liver and spleen, lumbar vertebrae 2 and 5, pelvis, and psoas margin on abdominal radiographs. The image quality obtained with digital flat-panel X-ray detector radiography of the kidneys, the hollow cavities of the upper efferent urinary tract, and the urinary bladder was judged to be statistically better than those obtained with computed radiography. With half the exposure dose of computed radiography, the flat-panel X-ray detector produced urograms with an image quality equivalent to or better than computed radiography.

  18. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  19. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  20. Investigation on the Hard X-ray Radiations of the IR-T1 Tokamak Plasma: Electric and Magnetic Perspectives

    Science.gov (United States)

    Alipour, R.; Ghoranneviss, M.; Salar Elahi, A.

    2017-12-01

    In this experiment, the effect of magnetohydrodynamic (MHD) fluctuations in the hard X-ray radiation from the IR-T1 tokamak plasma is investigated. To reach this goal, the main parameters of plasma such as plasma current and loop voltage are measured. Also, the rake and poloidal Langmuir probes are used to calculate the radial and poloidal electric fields. To detect the hard X-ray radiation, a NaI-scintillator detector is used. To study on the MHD fluctuations, an array of 12 Mirnov coils is used. The obtained data are analyzed by using the singular value decomposition (SVD) algorithm. The wavelet spectrum of the dominant principal components of Mirnov coils is drawn. The results of wavelet and SVD analysis show that the hard X-ray radiation is increased with increasing the fluctuations of the dominant principal components (at the same time). It is also shown that the rate of hard X-ray radiation emitted from the tokamak plasma increased with increasing the MHD fluctuations. The energy of the system is wasted and reduced by these radiations. This an increase in the particle pressure of the plasma.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  5. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Bernt Lindtjorn

    Rare earth intensifying screens are derived from rare earth elements of lanthanide series. Their noteworthy character is their usually high x-ray absorption coefficient and high x- ray to light conversion effectiveness (2). Newlin described that the cost of rare earth screens is about double that of calcium tungstate screens and ...

  6. Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. M.; Bradley, D. K.; Kilkenny, J. D.; Conder, A.; Cerjan, C.; Hagmann, C.; Hey, D.; Izumi, N.; Moody, J.; Teruya, A.; Celeste, J.; Kimbrough, J.; Khater, H.; Eckart, M. J.; Ayers, J.

    2010-10-01

    The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10171017 neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.

  7. Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. M.; Bradley, D. K.; Conder, A.; Cerjan, C.; Hagmann, C.; Hey, D.; Izumi, N.; Moody, J.; Teruya, A.; Celeste, J.; Kimbrough, J.; Khater, H.; Eckart, M. J.; Ayers, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2010-10-15

    The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10{sup 17} neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.

  8. Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited).

    Science.gov (United States)

    Bell, P M; Bradley, D K; Kilkenny, J D; Conder, A; Cerjan, C; Hagmann, C; Hey, D; Izumi, N; Moody, J; Teruya, A; Celeste, J; Kimbrough, J; Khater, H; Eckart, M J; Ayers, J

    2010-10-01

    The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10(17) neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.

  9. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, Philip, E-mail: paheim@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); MacDonald, Michael [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); University of Michigan, 500 South State Street, Ann Arbor, MI 48109 (United States); Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-02-17

    A prefocusing compound refractive lens was implemented for the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated and observed at 5 keV. The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method.

  10. Practical X-ray diagnostics orthopedics and trauma surgery. Indication, adjustment technique and radiation protection; Praktische Roentgendiagnostik Orthopaedie und Unfallchirurgie. Indikation, Einstelltechnik, Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Flechtenmacher, Johannes [Ortho-Zentrum am Ludwigsplatz, Karlsruhe (Germany); Sabo, Desiderius [Klinik St. Elisabeth, Heidelberg (Germany). Sportopaedic Heidelberg

    2014-07-01

    The book on X-ray diagnostics in orthopedics and trauma surgery includes the following chapters: 1. Introduction: radiation protection, equipment technology radiological diagnostics of skeleton carcinomas, specific aspects of trauma surgery, special aspects of skeleton radiology for children. 2. X-ray diagnostics of different anatomical regions: ankle joint, knee, hips and pelvis, hand and wrist joint, elbow, shoulder, spinal cord. 3. Appendix: radiation protection according to the X-ray regulations.

  11. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  12. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    OpenAIRE

    Supán, L.; Guichón, S.; Milanese, Maria Magdalena; Niedbalski, Jorge Julio; Moroso, Roberto Luis; Acuña, H.; Malamud, Florencia

    2016-01-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates. Fil: Supán, L.. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Insti...

  13. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    Science.gov (United States)

    Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.

    2017-11-01

    The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.

  14. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  15. Environment-Dependent Radiation Damage in Atmospheric Pressure X-ray Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Wu, Cheng Hao; Escudero, Carlos; Pérez-Dieste, Virginia; Salmeron, Miquel B

    2017-09-18

    Atmospheric pressure X-ray spectroscopy techniques based on soft X-ray excitation can provide powerful interface-sensitive chemical information about a solid surface immersed in a gas or liquid environment. However, X-ray illumination of such dense phases can lead to the generation of considerable quantities of radical species by radiolysis. Soft X-ray absorption measurements of Cu films in both air and aqueous alkali halide solutions reveal that this can cause significant evolution of the Cu oxidation state. In air and NaOH (0.1 M) solutions, the Cu is oxidized toward CuO, while the addition of small amounts of CH3OH to the solution leads to reduction toward Cu2O. For Ni films in NaHCO3 solutions, the oxidation state of the surface is found to remain stable under X-ray illumination and can be electrochemically cycled between a reduced and oxidized state. We provide a consistent explanation for this behavior based on the products of X-ray-induced radiolysis in these different environments and highlight a number of general approaches that can mitigate radiolysis effects when performing operando X-ray measurements.

  16. Optimization of patient radiation protection in pelvic X-ray examination in Ghana.

    Science.gov (United States)

    Ofori, Eric K; Antwi, William K; Scutt, Diane N; Ward, Matt

    2012-07-05

    Pelvis X-ray examinations inevitably involve exposure of the gonads to ionizing radiation. In line with the principle of keeping doses as low as reasonably practicable (ALARP), accurate patient dose measurement is vital if we are to ascertain that these exposures are fully optimized. The study aimed to provide patient dose estimates for pelvis examination being undertaken at 10 separate hospitals in Ghana in order to provide an initial quantitative indication of each site's typically achievable radiation safety and quality standards. The method employed was adapted from established methods and peer reviewed literature, such as the International Atomic Energy Agency (IAEA) publications on optimization of the radiological protection of patients undergoing radiography, fluoroscopy, and computed tomography examinations in some countries in Africa, Asia, and Eastern Europe. Dose measurements were calculated on 323 patients (137 (42%) male, 186 (58%) female, ages, 38.56 yr ± 9.0; range 20-68). The entrance surface dose (ESD) was determined by an indirect method, using the patient's anatomical data and exposure parameters utilized for the specific examination. The Quality Assurance Dose Database software (QADDs) developed by Integrated Radiological Services Ltd. in Liverpool, UK was used to generate the ESD values. The study identified variations in the technique factors used compared with the recommendations in the European Commission (EC) quality criteria. Eighty percent of the hospitals recorded lower ESD values below IAEA recommended diagnostic reference levels (10 mGy) and 40% of the hospitals exceeded the UK national reference value (4 mGy). However, one hospital consistently recorded higher ESDs than the other hospitals. The variations in the data recorded demonstrate the importance of creating awareness by the radiographic staff on quality assurance and standardization of protocols to ensure satisfactory standards and optimized radiation dose to patients and

  17. Thyroid radiation dose during panoramic and cephalometric dental x-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Block, A.J.; Goepp, R.A.; Mason, E.W.

    1977-01-01

    Radiation exposure from panoramic equipment can be reduced significantly by use of smaller film, adjustment of the beam height to the height of the smaller film, and careful positioning of patients. These techniques have no adverse effect on the quality of the diagnostic information needed in dentistry. In addition to describing methods of reducing exposures from panoramic machines, this study demonstrates that the use of a barrier collar during static, cephalometric examinations can appreciably reduce thyroid exposure. Since the objective is to obtain diagnostic information from the film without irradiating the thyroid, the application of a lead-impregnated collar is a minor inconvenience, easily borne by the patient and operator. It should be noted that the use of the collar during panoramic examinations affords little or no protection since the relative motion of the panoramic machine places the axis of movement inside the head and neck of the patient. While the evolution of diagnostic radiology may have reached a high level of technical refinement of equipment and film, the clinician still must avoid unnecessary exposure for x-ray examinations and must carefully select the best type of examination to be used for each patient. For example, a complete panoramic examination to determine the position of a known unerupted third molar tooth is probably not an exercise of good judgment since other examinations, such as periapical, could yield the same information with less exposure. Decisions must be made with good judgment, value being placed on relative risks versus the benefits of diagnostic yield.

  18. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    CERN Document Server

    Watt, J; Campbell, M; Mathieson, K; Mikulec, B; O'Shea, V; Passmore, M S; Schwarz, C; Smith, K M; Whitehill, C

    2001-01-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 mu m thick SI-LEC GaAs detector patterned in a 64*64 array of 170 mu m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO/sub 3/ have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Omega 3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Omega 3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and...

  19. Radiation levels and image quality in patients undergoing chest X-ray examinations

    Science.gov (United States)

    de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto

    2017-11-01

    Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.

  20. Three dimensional distribution of surfactant in microspheres revealed by synchrotron radiation X-ray microcomputed tomography

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-07-01

    Full Text Available This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography (SR-µCT. The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional (3D distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.

  1. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    Science.gov (United States)

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 μm) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 μm precision. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  2. X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing

    Science.gov (United States)

    Barberie, Sean Richard Gopal

    In this thesis I present an analytical optimization of the Synchrotron Radiation X-Ray Fluorescence (SR-XRF) technique for applications in unmanned aircraft aerosol studies. In environmental and atmospheric science, there is a pressing need for aerosol measurements at various altitudes in the atmosphere and spanning large regions. This need is currently either ignored, or met to a limited degree by studies that employ manned aircraft. There is, however, a great deal of opportunity to improve and expand on these studies using the emerging technology of unmanned aircraft systems. A newly developed aerosol sampler makes this opportunity a near-reality by its ability to collect aerosol samples in-situ from unmanned aircraft platforms. The challenge lies in analyzing these samples for elemental composition. In airborne aerosol studies, the ability to resolve where a sample was collected both spatially and temporally is limited by the sensitivity of the analysis technique. In aircraft-based aerosol collection, the length of the aerosol sample spot corresponds to distance. Thus the spatial resolution of an airborne study is limited by the amount of mass that must be collected for analysis. The SR-XRF optimizations outlined in this thesis decrease the amount of sample mass required for detectable elemental concentrations, allowing aerosol samples to be analyzed in smaller areas corresponding to smaller time steps. Since, in a flight path, time steps are directly correlated with distance, analysis of smaller time steps results in the ability to measure aerosols at higher spatial resolution. Four SR-XRF analysis configurations were experimentally tested: monochromatic beam, white beam, filtered white beam, and filtered white beam-filtered detector to determine which configuration gave the highest elemental sensitivity and selectivity. Of these tested methods, the straight polychromatic white beam configuration resulted in the best sensitivity for elements across a large

  3. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  4. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.

    Energy Technology Data Exchange (ETDEWEB)

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin, M.; Michael, Barry, D.

    2007-01-23

    The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  6. X-ray Radiation Induces Deprotonation of the Bilin Chromophore in Crystalline D. Radiodurans Phytochrome

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feifei [Brookhaven National Lab. (BNL), Upton, NY (United States); New Mexico State Univ., Las Cruces, NM (United States); Burgie, E. Sethe [Univ. of Wisconsin, Madison, WI (United States); Yu, Tao [Northwestern Univ., Evanston, IL (United States); Heroux, Annie [Brookhaven National Lab. (BNL), Upton, NY (United States); Schatz, George C. [Northwestern Univ., Evanston, IL (United States); Vierstra, Richard D. [Univ. of Wisconsin, Madison, WI (United States); Orville, Allen M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-04

    We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. Furthermore, these results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.

  7. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  8. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  9. Level of compliance with the radiation protection regulation--a survey among Norwegian hospitals and X-ray institutes.

    Science.gov (United States)

    Friberg, E G; Widmark, A; Solberg, M; Wøhni, T

    2011-09-01

    To identify the level of compliance with the new radiation protection regulation among Norwegian health care enterprises (HCEs). Totally, 41 HCEs were authorised to use advanced X-ray equipment for medical purposes during 2005-07. Follow-up inspections with 14 HCEs were carried out during 2007-09. Main topics for the inspections were those requirements identified as most challenging to implement in the authorisation process. Totally, 192 non-conformities with the regulation were revealed during the authorisation process. The inspections revealed that 93 % of the inspected HCEs had non-conformities with the regulation. Most common non-conformities dealt with skills in radiation protection, establishment of local diagnostic reference levels, access to medical physicists and performance of quality control of X-ray equipment. Inspections are an effective tool for implementation of regulation the requirements at the HCEs, thus improving radiation protection awareness.

  10. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  11. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    Science.gov (United States)

    Calasans-Maia, M.; Sales, E.; Granjeiro, J. M.; Lopes, R. T.; Lima, I.

    2010-04-01

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2×6 mm) of both materials were produced according to the specification of the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (˜200 μm thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.

  12. DMF-T index in patients undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Department of Radiotherapy, Dr. Hasan Sadikin Hospital

    Directory of Open Access Journals (Sweden)

    S. Sabrina

    2007-11-01

    Full Text Available Radiation therapy for head and neck cancer frequently caused severe salivary gland dysfunction. The salivary gland dysfunction possibly decreased the protective function of saliva and caused dental caries. The purpose of this study was to obtain an illustration about DMF-T index in patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Department of Radiotherapy, Dr. Hasan Sadikin Hospital in January-February 2007. The study was a simple descriptive. The study was conducted on 7 males and 9 females undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer. The ages of patient are between 37 years and 77 years. The severity of caries was measured by DMF-T index. DMF-T index in 16 patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Dr. Hasan Sadikin Hospital is 10.6 as the result of this study. The conclusion of this study showed that the DMF-T index in 16 patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Dr. Hasan Sadikin Hospital had very high grade based on WHO classification, which the value was over 6.6.

  13. Evolution of the characteristics of Parametric X-ray Radiation from textured polycrystals under different observation angles

    Science.gov (United States)

    Alekseev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Klyuev, A. S.; Kubankin, A. S.; Nazhmudinov, R. M.; Zhukova, P. N.

    2018-02-01

    The Parametric X-Ray radiation (PXR) spectra and yield dependencies on the orientation angle are measured during the interaction of 7 MeV electrons with a tungsten textured polycrystalline foil for different observation angles. The effects of PXR spectral density increase and PXR yield orientation dependence broadening in the backward direction is shown experimentally for the first time. The experimental results are compared with PXR kinematical theories for both mosaic crystals and polycrystals.

  14. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ostorero, L.; /Turin U. /INFN, Turin; Moderski, R.; /Warsaw, Copernicus Astron. Ctr. /KIPAC, Menlo Park; Stawarz, L.; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Diaferio, A.; /Turin U. /INFN, Turin; Kowalska, I.; /Warsaw U. Observ.; Cheung, C.C.; /NASA, Goddard /Naval Research Lab, Wash., D.C.; Kataoka, J.; /Waseda U., RISE; Begelman, M.C.; /JILA, Boulder; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  15. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    Science.gov (United States)

    Umetani, K.; Fukushima, K.

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  16. Constraints on Thermal X-Ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    NARCIS (Netherlands)

    Heinke, C.O.; Jonker, P.G.; Wijnands, R.; Taam, R.E.

    2007-01-01

    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton

  17. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Science.gov (United States)

    Farinelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2012-02-01

    Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative equation according to the expected physical conditions of the systems under study. Aims: We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods: We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system τ using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results: We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth τ produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions: The algorithm has been implemented in the xspec package for X-ray spectral fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (≳ 1012 G). This latter case is expected to be typical of accreting systems such as X-ray

  18. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Science.gov (United States)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray

  19. The Radiative X-ray and Gamma-ray Efficiencies of Rotation-powered Pulsars

    NARCIS (Netherlands)

    Vink, J.|info:eu-repo/dai/nl/182880559; Bamba, A.; Yamazaki, R.

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov, and we complement this with an analysis of the γ -ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which

  20. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  1. Fracture of metals samples under conditions of fast heating by intensive X-ray radiation

    Directory of Open Access Journals (Sweden)

    Golubev V.K.

    2012-08-01

    Full Text Available Results on studying the fracture of metals samples in the form of thin disks under fast heating by the X-ray pulse with the complete spectrum are presented in the paper. The samples of such metals as iron, copper, AMg6 aluminum, VT14 titanium, molybdenum, tungsten, cadmium, lead and zinc were tested. The samples were fixed in the special cartridges equipped with the gauges of a mechanical recoil momentum. The cartridges with samples were placed at such distances from the X-ray irradiator where the energy fluxes were 1.38, 0.90 and 0.29kJ/cm2. The irradiating X-ray pulse was about 2 ns in duration. After testing, the depth of material ablation from a sample front surface and the degree and character of its spall damage were determined. The method of metallographic analysis was used for these purposes. Numerical calculations of loading conditions were made with the use of an equation of state taking into account the process of evaporation. The calculated value of maximum negative pressure in the sample at the coordinate corresponding to the formation of spallation zones or spall cracks was conventionally accepted as the material resistance to spall fracture. The comparison of obtained results with the data on the fracture of examined materials in the conditions of fast heating by the X-ray pulse with the hard spectrum and a high-current electron beam was conducted.

  2. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nimwegen, Frederika A. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Cutter, David J. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford (United Kingdom); Schaapveld, Michael [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Rutten, Annemarieke [Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kooijman, Karen [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Krol, Augustinus D.G. [Department of Radiation Oncology, Leiden University Medical Center, Leiden (Netherlands); Janus, Cécile P.M. [Department of Radiation Oncology, Erasmus MC Cancer Center, Rotterdam (Netherlands); Darby, Sarah C. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Leeuwen, Flora E. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Aleman, Berthe M.P., E-mail: b.aleman@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  3. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  4. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  5. Measurements of internal stresses in bond coating using high energy x-rays from synchrotron radiation source

    CERN Document Server

    Suzuki, K; Akiniwa, Y; Nishio, K; Kawamura, M; Okado, H

    2002-01-01

    Thermal barrier coating (TBC) techniques enable high temperature combustion of turbines made of Ni-base alloy. TBC is made of zirconia top coating on NiCoCrAlY bond coating. The internal stresses in the bond coating play essential role in the delamination or fracture of TBC in service. With the X-rays from laboratory equipments, it is impossible to measure nondestructively the internal stress in the bond coating under the top coating. synchrotron radiations with a high energy and high brightness have a large penetration depth as compared with laboratory X-rays. Using the high energy X-rays from the synchrotron radiation, it is possible to measure the internal stress in the bond coating through the top coating. In this study, the furnace, which can heat a specimen to 1473 K, was developed for the stress measurement of the thermal barrier coatings. The internal stresses in the bond coating were measured at the room temperature, 773 K, 1073 K and 1373 K by using the 311 diffraction from Ni sub 3 Al with about 73...

  6. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    Science.gov (United States)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  7. Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Masahiko; Faenov, Anatoly; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana; Inogamov, Nail; Zhakhovsky, Vasily; Skobelev, Igor; Fortov, Vladimir; Khohlov, Viktor; Shepelev, Vadim; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412 (Russian Federation); Graduate School of Humanities and Science, Nara Women' s University, Nara 630-8506 (Japan); Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432 (Russian Federation); Institute for Computer Aided Design, Russian Academy of Science, Moscow 123056 (Russian Federation)

    2012-07-11

    Interaction of soft x-ray laser radiation with material and caused modification of the exposed surface has both physical and practical interests. We irradiated the focusing soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm and the duration of 7 ps to aluminum (Al) surface. After the SXRL irradiation process, the irradiated Al surface was observed with a scanning electron microscope. The surface modifications caused by SXRL single pulse exposure were clearly seen. In addition, it was found that the conical structures having around 100 nm in diameters were formed in the shallow features. The nano-meter size modified structures at Al surface induced by SXRL pulse is interesting as the newly surface structure. Hence, the SXRL beam would be a candidate for a tool of micromachining. We also provide a thermomechanical modeling of SXRL interaction with Al briefly to explain the surface modification.

  8. Stable and polarized Betatron x-ray radiation from a laser plasma accelerator in ionization injection regime

    CERN Document Server

    Doepp, Andreas; Doche, Antoine; Thaury, Cedric; Guillaume, Emilien; Lifschitz, Agustin; Grittani, Gabriele; Lund, Olle; Hansson, Martin; Gautier, Julien; Kozlova, Michaela; Goddet, Jean Philippe; Rousseau, Pascal; Tafzi, Amar; Malka, Victor; Rousse, Antoine; Corde, Sebastien; Phuoc, Kim Ta

    2015-01-01

    Betatron x-ray source from laser plasma interaction combines high brightness, few femtosecond duration and broad band energy spectrum. However, despite these unique features the Betatron source has a crippling drawback preventing its use for applications. Its properties significantly vary shot-to-shot and none of the developments performed so far resolved this problem. In this letter we present a simple method that allows to produce stable and bright Betatron x-ray beams. In addition, we demonstrate that this scheme provides polarized and easily tunable radiation. Experimental results show that the pointing stability is better than 10% of the beam divergence, with flux fluctuation of the order of 20% and a polarization degree reaching up to 80%

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... radiation dose for this procedure varies. See the Safety page for more information about radiation dose. Women ...

  10. Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules.

    Science.gov (United States)

    Costa, Luca; Andriatis, Alexander; Brennich, Martha; Teulon, Jean-Marie; Chen, Shu-Wen W; Pellequer, Jean-Luc; Round, Adam

    2016-10-27

    Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage. By employing atomic force microscopy, another common technique to determine the shape of biological macromolecules when deposited on flat substrates, we present a protocol to evaluate and characterize consequences of radiation damage. It requires the acquisition of images of irradiated samples at the single molecule level in a timely manner while using minimal amounts of protein. The protocol has been tested on two different molecular systems: a large globular tetremeric enzyme (β-Amylase) and a rod-shape plant virus (tobacco mosaic virus). Radiation damage on the globular enzyme leads to an apparent increase in molecular sizes whereas the effect on the long virus is a breakage into smaller pieces resulting in a decrease of the average long-axis radius. These results show that radiation damage can appear in different forms and strongly support the need to check the effect of radiation damage at synchrotron sources using the presented protocol.

  11. Scanning X-ray fluorescent elemental microanalysis with synchrotron radiation in geochemical research

    Science.gov (United States)

    Darin, A.; Kalugin, I.; Zolotarev, K.

    2009-04-01

    The traditional XRF analysis with high limits of detection is limited in application for geochemical researches. Use of synchrotron radiation considerably expands its opportunities [1]. Since 1985 in BINP analytical works with syncrotron radiation from storage ring VEPP-3 are carried out. A plenty of methodical and research works with geochemical samples has been executed. The range of energy excitation 15 - 50 keV is now accessible, that allows to determine the following elements in geological samples weight from 1 mg: P, S, Cl, K, Ca, Ti (LD=50 ppm, St.dev.=5 ppm); V, Cr, Mn, Fe, Co, Ni (LD=5 ppm, St.dev.=0.5 ppm); Cu, Zn, Ga, Ge, As, Se (LD=0.5 ppm, St.dev.=0.05 ppm); Br, Rb, Sr, Y, Zr, Nb, Mo (LD=0.1 ppm, St.dev.=0.03 ppm); Ru, Rh, Pd, Ag (LD=0.05 ppm, St.dev.=0.01 ppm); Cd, In, Sn, Sb, Te, I (LD=0.1 ppm, St.dev.=0.03 ppm); Ba, La, Ce, Nd, Sm (LD=1.0 ppm, St.dev.=0.15 ppm); Pb, Bi, Th, U (LD=1 ppm, St.dev.=0.1 ppm). The analysis is carried out in some stages with use various energy of excitation (usually - 15-18, 22 - 25 and 40-45 keV). The first instrument of scanning X-ray fluorescent elemental microanalysis with synchrotron radiation from storage ring VEPP-3 (scan.XRFA-SR) was founded in BINP SB RAS in the 1988 and applied to study the spatial distribution of elements in geological samples [2]. Scan.XRFA-SR was used in paleoclimate reconstructions based on high-resolution sediments and tree-rings analysis [3, 4, 5]. Unique opportunities of XRF SR allow to carry out scanning microanalysis with spatial resolution ~ 10 micron. The set of analyzed elements and range of concentration are determined by selection of energy of excitation and time of measurement in a point. In recent years, has been studied many different geological samples: diamonds, xenolith, ferromanganese nodules, bottom sediments. Studies have demonstrated the unique ability of scanning XRFA-SR: a simultaneous analysis of more than 30 chemical elements with a spatial resolution of 10-50 microns

  12. Small-angle Thomson scattering of ultrafast laser pulses for bright, sub-100-fs x-ray radiation

    Directory of Open Access Journals (Sweden)

    Yuelin Li

    2002-04-01

    Full Text Available We propose a scheme for bright sub-100-fs x-ray radiation generation using small-angle Thomson scattering. Coupling high-brightness electron bunches with high-power ultrafast laser pulses, radiation with photon energies between 8 and 40 keV can be generated with pulse duration comparable to that of the incoming laser pulse and with peak spectral brightness close to that of the third-generation synchrotron light sources of ∼10^{20} photons s^{-1} mm^{-2} mrad^{-2} per 10^{-3} bandwidth. A preliminary dynamic calculation is performed to understand the property of this novel scattering scheme with relativistic laser intensities.

  13. Ultrafast molecular dynamics of dissociative ionization in OCS probed by soft x-ray synchrotron radiation

    Science.gov (United States)

    Ramadhan, Ali; Wales, Benji; Karimi, Reza; Gauthier, Isabelle; MacDonald, Michael; Zuin, Lucia; Sanderson, Joe

    2016-11-01

    Soft x-rays (90-173 eV) from the 3rd generation Canadian Light Source have been used in conjunction with a multi coincidence time and position sensitive detection apparatus to observe the dissociative ionization of OCS. By varying the x-ray energy we can compare dynamics from direct and Auger ionization processes, and access ionization channels which result in two or three body breakup, from 2+ to 4+ ionization states. We make several new observations for the 3+ state such as kinetic energy release limited by photon energy, and using Dalitz plots we can see evidence of timescale effects between the direct and Auger ionization process for the first time. Finally, using Dalitz plots for OCS4+ we observe for the first time that breakup involving an O2+ ion can only proceed from out of equilibrium nuclear arrangement for S(2p) Auger ionization.

  14. Rabi oscillations of X-ray radiation between two nuclear ensembles

    Science.gov (United States)

    Haber, Johann; Kong, Xiangjin; Strohm, Cornelius; Willing, Svenja; Gollwitzer, Jakob; Bocklage, Lars; Rüffer, Rudolf; Pálffy, Adriana; Röhlsberger, Ralf

    2017-11-01

    The realization of the strong coupling regime between a single cavity mode and an electromagnetic resonance is a centrepiece of quantum optics. In this regime, the reversible exchange of a photon between the two components of the system leads to so-called Rabi oscillations. Strong coupling is used in the optical and infrared regimes, for instance, to produce non-classical states of light, enhance optical nonlinearities and control quantum states. Here, we report the first observation of Rabi oscillations of an X-ray photon between two resonant 57Fe layers embedded in two coupled cavities. The system is described by an effective Hamiltonian, in which the two layers couple strongly. We observe sinusoidal beating as the signature of the Rabi oscillations in the system's temporal evolution, as well as the splitting of nuclear resonances in the reflected light spectrum. Our results significantly advance the development of the new field of X-ray quantum optics.

  15. Molecular dynamics of dissociative ionization in OCS probed by soft X-ray synchrotron radiation

    CERN Document Server

    Ramadhan, Ali; Gauthier, Isabelle; Karimi, Reza; MacDonald, Michael; Zuin, Lucia; Sanderson, Joe

    2016-01-01

    Soft X-rays (90-173 eV) from the 3rd generation Canadian Light Source have been used in conjunction with a multi coincidence time and position sensitive detection apparatus to observe the dissociative ionization of OCS. By varying the X-ray energy we can compare dynamics from direct and Auger ionization processes, and access ionization channels which result in two or three body breakup, from 2+ to 4+ ionization states. We make several new observations for the 3+ state such as kinetic energy release limited by photon energy, and using Dalitz plots we can see evidence of timescale effects between the direct and Auger ionization process for the first time. Finally, using Dalitz plots for OCS$^{4+}$ we observe for the first time that breakup involving an O$^{2+}$ ion can only proceed from out of equilibrium nuclear arrangement for S(2p) Auger ionization.

  16. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    Science.gov (United States)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  17. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  18. Enhanced radiation dose and DNA damage associated with iodinated contrast media in diagnostic X-ray imaging.

    Science.gov (United States)

    Harbron, Richard; Ainsbury, Elizabeth A; Bouffler, Simon D; Tanner, Rick J; Eakins, Jonathan S; Pearce, Mark S

    2017-11-01

    A review was undertaken of studies reporting increased DNA damage in circulating blood cells and increased organ doses, for X-ray exposures enhanced by iodinated contrast media (ICM), compared to unenhanced imaging. This effect may be due to ICM molecules acting as a source of secondary radiation (Auger/photoelectrons, fluorescence X-rays) following absorption of primary X-ray photons. It is unclear if the reported increase in DNA damage to blood cells necessarily implies an increased risk of developing cancer. Upon ICM-enhancement, the attenuation properties of blood differ substantially from surrounding tissues. Increased energy deposition is likely to occur within very close proximity to ICM molecules (within a few tens of micrometres). Consequently, in many situations, damage and dose enhancement may be restricted to the blood and vessel wall only. Increased cancer risks may be possible, in cases where ICM molecules are given sufficient time to reach the capillary network and interstitial fluid at the time of exposure. In all situations, the extrapolation of blood cell damage to other tissues requires caution where contrast media are involved. Future research is needed to determine the impact of ICM on dose to cells outside the blood itself and vessel walls, and to determine the concentration of ICM in blood vessels and interstitial fluid at the time of exposure.

  19. X-ray optics developments at the APS for the third generation of high-energy synchrotron radiation sources.

    Science.gov (United States)

    Mills, D M

    1997-05-01

    Third-generation hard-X-ray synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new short-wavelength optical components. The high power and power densities of the insertion-device-produced X-ray beams have forced researchers to consider what may seem like exotic approaches, such as cryogenically cooled silicon and highly perfect diamond crystals, to mitigate thermal distortions in the first optical components. Once the power has been successfully filtered while maintaining the high beam brilliance, additional specialized optical components can be inserted into the monochromatic beam that take advantage of that brilliance. This paper reviews the performance of such optical components that have been designed, fabricated and tested at the Advanced Photon Source, starting with high-heat-load components and followed by examples of several specialized devices, such as an meV resolution (in-line) monochromator, a high-energy X-ray phase retarder and a phase-zone plate with submicrometer focusing capability.

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  1. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares, Centro de Engenharia Nuclear / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rodrigues F, M. A. [Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Av. Prof. Montenegro s/n, Rubiao Junior, 18601-970 Botucatu (Brazil); Vivolo, V., E-mail: chancez@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares, Gerencia de Metrologia das Radiacoes / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with {sup 7}Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  2. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  4. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo

    2013-06-15

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO{sub 2} interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO{sub 2} to the Si-SiO{sub 2} interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An

  5. Resonant transition radiation in the X-ray region from a low emittance 855 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Backe, H. (Inst. fuer Physik, Univ. Mainz (Germany)); Gampert, S. (Inst. fuer Physik, Univ. Mainz (Germany)); Grendel, A. (Inst. fuer Physik, Univ. Mainz (Germany)); Hartmann, H.J. (Inst. fuer Physik, Univ. Mainz (Germany)); Lauth, W.; Weinheimer, C.; Zahn, R. (Inst. fuer Physik, Univ. Mainz (Germany)); Buskirk, F.R. (Inst. fuer Kernphysik, Univ. Mainz (Germany)); Euteneuer, H. (Inst. fuer Kernphysik, Univ. Mainz (Germany)); Kaiser, K.H. (Inst. fuer Kernphysik, Univ. Mainz (Germany)); Stephan, G. (Inst. fuer Kernphysik, Univ. Mainz (Germany)); Walcher, T. (Inst. fuer Kernphysik, Univ. Mainz (Germany))

    1994-07-01

    The interference of transition radiation coherently produced from a periodic stack of four polyimide foils of 7.2 [mu]m thickness and a separation of 162 [mu]m was investigated. This stack has been brought into the low emittance (3 [pi] nm rad) electron beam of the 855 MeV Mainz Microtron MAMI. Transition radiation was observed in the energy range from 2 to 15 keV with a LN[sub 2]-cooled pin photodiode. A good energy resolution of 0.8 keV and angular resolution of 0.15 mrad was achieved simultaneously allowing for the first time to quantitatively study the interference pattern. Good agreement with theoretical calculations is found. Prospects to exploit transition radiation in the x-ray region from a low emittance electron beam as a high brilliant radiation source are discussed. (orig.)

  6. Effect of ultraviolet and x-ray radiation on optical properties of epoxy polymers dyed with organic phosphors

    Science.gov (United States)

    Laurinas, V. CH; Kasymov, S. S.; Yurov, V. M.; Eremin, E. N.; Vedyashkin, M. V.

    2017-01-01

    Highly purified industrial bisphenol and cycloaliphatic epoxy oligomers of ED-24 and UP-612 brands were used to produce optically transparent products. UV radiation of a low-pressure mercury lamp with 80% of the light energy at 254 nm was used to study photodegradation. X-ray apparatus with 0.7BSV- Ag tube was used as an ionizing radiation source to investigate the effect of X-rays on the spectra of organic dyes in epoxy polymer. The threshold value of the energy generated by ruby laser which indicated the degradation in the test samples recorded by light scattering method was determined to study radiation resistance of epoxy polymers. Basically, all the dyes exhibited high resistance to UV light. The observation of the absorption spectra showed that on average, a third of the dye molecules in the matrix experienced photobleaching within 200 hour exposure. The exception was coumarin 1, which was completely decolourized after 40 hours of exposure. X-ray irradiation of the samples for two hours results in the change in the optical density equivalent to that caused by 40 hour exposure to UV irradiation. However, in the first case, the matrix optical density is proportional to the irradiation time, and in the second case, it remains stable upon further UV irradiation. The comparison of photoaging processes in dyed and undyed epoxy polymers showed that the investigated organic dyes do not have a sensitizing effect on the matrix. The stability of the optical properties of the epoxy matrices exposed to the effects of different factors was found to depend on the nature of epoxy polymer and the technique of its production. The results of these effects are significantly different in the character of the change in the optical density and mechanisms of chemical transformations in polymer.

  7. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Kristine Marie [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  8. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    OpenAIRE

    Sintonen, Sakari; Rudzinski, Mariusz; Suihkonen, Sami; Jussila, Henri; Knetzger, Michael; Meissner, Elke; Danilewsky, Andreas; Tuomi, Turkka O.; Lipsanen, Harri

    2014-01-01

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrat...

  9. Preliminary studies of radiation coupling between remote soft X-ray laser amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, G. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Lewis, C.L.S. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); MacPhee, A.G. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Neely, D. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Holden, M. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Krishnan, J. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Tallents, G.J. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Key, M.H. (Rutherford Appleton Lab., Chilton (United Kingdom). Central Laser Facility Oxford Univ. (United Kingdom). Clarendon Lab.); Norreys, P.N. (Rutherford Appleton Lab., Chilton (United Kingdom). Central Laser Facility); Smith, C.G. (Oxford Univ. (United Kingdom). Clarendon Lab.); Zhang, J. (Oxford Univ. (United Kingdom). Clarendon Lab.); Holden, P.B. (York Univ. (United Kingdom). Dept. of Comp

    1994-01-01

    Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface. (orig.)

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very small dose of ionizing radiation to produce pictures of any bone in the body. It is ... a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a form of radiation like light or radio waves. X-rays pass through most objects, including the ... individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing radiation to create diagnostic images, ...

  13. Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M. M. [Technological University PETRONAS, Chemical Engineering Program, Perak (Malaysia); Saidi, H. [Technological University of Malaysia, Membrane Research Unit, Kuala Lumpur (Malaysia)

    2002-07-01

    Post-mortem analysis of poly(tetrafluoroethylene-co-perfluorovinyl ether)-graft-polystyrene sulfonic acid (PFAS-g-PSSA) membrane was carried out at the end of a polymer electrolyte membrane (PEM) fuel cell test using X-ray photoelectron spectroscopy. The data obtained when the membrane was initially analyzed in its virgin state was used as a reference. Substantial structural changes were shown by the X-ray photoelectron spectroscopy, especially in terms of chemical composition and the concentration of its basic elemental components. The used membrane was found to have no sulfur and less oxygen compared to the virgin one, providing strong evidence for the complete elimination of the sulfonic acid groups from the membrane. Overall, the results suggests that membrane oxidative degradation during PEM fuel cell test is due to the decomposition of sulfonated polystyrene located in the hydrocarbon fraction. The chemical attack mostly occurs on the vulnerable tertiary hydrogen of the alpha-carbon causing a termination of the whole sulfonated polystyrene grafts. 22 refs., 7 figs.

  14. $YB_{66} a new soft X-ray monochromator for synchrotron radiation

    CERN Document Server

    Wong, J; Rowen, M; Schäfers, F; Müller, B R; Rek, Z U

    1999-01-01

    For pt.I see Nucl. Instrum. Methods Phys. Res., vol.A291, p.243-8, 1990. YB/sub 66/, a complex boron-rich man-made crystal, has been singled out as a potential monochromator material to disperse synchrotron soft X-rays in the 1-2 keV region. Results of a series of systematic property characterizations pertinent for this application are presented in this paper. These include Laue diffraction patterns and high-precision lattice-constant determination, etch rate, stoichiometry, thermal expansion, soft X-ray reflectivity and rocking-curve measurements, thermal load effects on monochromator performance, nature of intrinsic positive glitches and their reduction. The 004 reflection of YB/sub 66/ has a reflectance of ~3 in this spectral region. The width of the rocking curve varies from 0.25 eV at 1.1 keV to 1.0 eV at 2 keV, which is a factor of two better than that of beryl(1010) in the same energy range, and enables measurements of high-resolution XANES spectra at the Mg, Al and Si K- edges. The thermal bump on the...

  15. Numerical analysis of partially coherent radiation at soft x-ray beamline.

    Science.gov (United States)

    Meng, Xiangyu; Xue, Chaofan; Yu, Huaina; Wang, Yong; Wu, Yanqing; Tai, Renzhong

    2015-11-16

    A new model for numerical analysis of partially coherent x-ray at synchrotron beamlines is presented. The model is based on statistical optics. Four-dimensional coherence function, Mutual Optical Intensity (MOI), is applied to describe the wavefront of the partially coherent light. The propagation of MOI through optical elements in the beamline is deduced with numerical calculation. The coherence of x-ray through beamlines can be acquired. We applied the model to analyze the coherence in the STXM beamline at SSRF, and got the coherence length of the beam at the endstation. To verify the theoretical results, the diffraction experiment of a single slit was performed and the diffraction pattern was simulated to get the coherence length, (31 ± 3.0) µm × (25 ± 2.1) µm (H × V), which had a good agreement with the theoretical results, (30.7 ± 0.6) µm × (31 ± 5.3) µm (H × V). The model is applicable to analyze the coherence in synchrotron beamlines.

  16. XPS studies of structure-induced radiation effects at the Si/SiO2 interface. [X ray Photoelectron Spectroscopy

    Science.gov (United States)

    Grunthaner, F. J.; Lewis, B. F.; Zamini, N.; Maserjian, J.; Madhukar, A.

    1980-01-01

    The interfacial structures of radiation hard and soft oxides grown by dry and wet processes on silicon substrates have been examined by high-resolution X-ray photoelectron spectroscopy. It is found that the primary difference in the local atomic structure at the Si/SiO2 interface is the significantly higher concentration of strained 120 deg SiO2 bonds and SiO interfacial species in soft samples. Results of in situ radiation damage experiments using low energy electrons (0-20 eV) are reported which correlate with the presence of a strained layer of SiO2 (20 A) at the interface. The results are interpreted in terms of a structural model for hole and electron trap generation by ionizing radiation.

  17. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  18. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    Science.gov (United States)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  19. The effects of X-ray radiation on mandibular bone of low-calcium diet rats

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Akihiko (Nippon Dental Univ., Tokyo (Japan))

    1991-08-01

    In an attempt to examine the effects of X-ray on osteoporosis, a single dose of 30 Gy was delivered to the mandible in rats given low-calcium diet. Serum levels of calcium (Ca) and inorganic phosphorus (P) were measured; and changes in bone salt were determined by autoradiography, microradiography, and roentgenography using an electron probe microanalyzer. Body weight was lower in the irradiated group than the non-irradiated group, irrespective of types of diet. The serum Ca levels in the irradiated group given a normal diet were significantly decreased on Days 3, 7, and 14 days after irradiation. When given a low-Ca diet, these levels tended to be lower in the irradiated group than the non-irradiated group on Day 7 or later. The serum levels of inorganic P were significantly lower in the irradiated group given a normal diet than the non-irradiated group on Day 3. Rats given a low-Ca diet had the same levels, irrespective of irradiation. Autoradiography revealed that Ca-45 retention in the whole jaw was slightly greater in the irradiated group than the non-irradiated group On Days 7 and 21. Rats given a low-Ca diet in both irradiated and non-irradiated groups had a greater Ca-45 retention than those given a normal diet. Microradiography revealed that bone formation-like changes, such as flat surface of the periodontal membrane at the intra-alveolar septum, were slightly noticeable in the irradiated group of rats given a normal diet on Day 21. Thinning of the intra-alveolar septum and decrease of the trabecula at the diaphysis were also noticeable in the irradiated group of rats given a low-Ca diet. Variation of X-ray intensity was more marked on Day 7 than on Day 21 in the irradiated group given a normal diet. When given a low-Ca diet, both the irradiated and non-irradiated group had noticeable X-ray intensity variation. (N.K.).

  20. Reduced Patient Radiation Exposure during Neurodiagnostic and Interventional X-Ray Angiography with a New Imaging Platform.

    Science.gov (United States)

    van der Marel, K; Vedantham, S; van der Bom, I M J; Howk, M; Narain, T; Ty, K; Karellas, A; Gounis, M J; Puri, A S; Wakhloo, A K

    2017-03-01

    Advancements in medical device and imaging technology as well as accruing clinical evidence have accelerated the growth of the endovascular treatment of cerebrovascular diseases. However, the augmented role of these procedures raises concerns about the radiation dose to patients and operators. We evaluated patient doses from an x-ray imaging platform with radiation dose-reduction technology, which combined image noise reduction, motion correction, and contrast-dependent temporal averaging with optimized x-ray exposure settings. In this single-center, retrospective study, cumulative dose-area product inclusive of fluoroscopy, angiography, and 3D acquisitions for all neurovascular procedures performed during a 2-year period on the dose-reduction platform were compared with a reference platform. Key study features were the following: The neurointerventional radiologist could select the targeted dose reduction for each patient with the dose-reduction platform, and the statistical analyses included patient characteristics and the neurointerventional radiologist as covariates. The analyzed outcome measures were cumulative dose (kerma)-area product, fluoroscopy duration, and administered contrast volume. A total of 1238 neurointerventional cases were included, of which 914 and 324 were performed on the reference and dose-reduction platforms, respectively. Over all diagnostic and neurointerventional procedures, the cumulative dose-area product was significantly reduced by 53.2% (mean reduction, 160.3 Gy × cm2; P technology with a minimal impact on workflow. © 2017 by American Journal of Neuroradiology.

  1. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention.

    Science.gov (United States)

    Nakamura, Shigeru; Kobayashi, Tomoko; Funatsu, Atsushi; Okada, Tadahisa; Mauti, Maria; Waizumi, Yuki; Yamada, Shinichi

    2016-05-01

    Coronary angiography and intervention can expose patients to high radiation dose. This retrospective study quantifies the patient dose reduction due to the introduction of a novel X-ray imaging noise reduction technology using advanced real-time image noise reduction algorithms and optimized acquisition chain for fluoroscopy and exposure in interventional cardiology. Patient, procedure and radiation dose data were retrospectively collected in the period August 2012-August 2013 for 883 patients treated with the image noise reduction technology (referred as "new system"). The same data were collected for 1083 patients in the period April 2011-July 2012 with a system using state-of-the-art image processing and reference acquisition chain (referred as "reference system"). Procedures were divided into diagnostic (CAG) and intervention (PCI). Acquisition parameters such as fluoroscopy time, volume of contrast medium, number of exposure images and number of stored fluoroscopy images were collected to classify procedure complexity. The procedural dose reduction was investigated separately for three main cardiologists. The new system provides significant dose reduction compared to the reference system. Median DAP values decreased for all procedures (p X-ray imaging technology combining advanced real-time image noise reduction algorithms and anatomy-specific optimized fluoroscopy and cine acquisition chain provides 66 % patient dose reduction in interventional cardiology.

  2. Radiation shielding analysis for 50 kVp x-ray intra-operative radiotherapy (IORT) device using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhao Jun; Yeom, Yeon Soo; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of)

    2014-04-15

    The present study performed Monte Carlo simulations for the 50 kVp X-ray intra-operative radiotherapy (IORT) device for detailed radiation shielding analysis. The INTRABEAM system (Carl Zeiss Surgical, Oberkochen, Germany) is a compact 50 kVp X-ray device used for intra-operative radiotherapy (IORT) especially for breast cancer. The IORT system has the advantages of very rapid dose gradient and, due to the on/off switching system, no risk of contamination when compared to nuclear medicine procedure. In contrast to megavoltage radiotherapy system requiring a dedicated shielding bunker, the IORT system is generally performed in standard operating theatres and simply uses a thin shield on the treated area and lead screens for protection of staffs who stay in the theatre during treatment. For detailed radiation shielding analysis of the IORT system, the present study performed Monte Carlo simulations with the MCNPX code to calculate dose rate distributions and investigated effects of several shielding components generally considered in this system. It was shown that shielding with flat cover and lead screen generally used is sufficient to reduce occupational doses to a negligible level. The analysis results of this study can be referred to estimate shielding requirements for other IORT systems.

  3. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  4. Metal-binding proteins scanning and determination by combining gel electrophoresis, synchrotron radiation X-ray fluorescence and atomic spectrometry.

    Science.gov (United States)

    Verbi, F M; Arruda, S C C; Rodriguez, A P M; Pérez, C A; Arruda, M A Z

    2005-02-28

    In the present work, protein bands from in vitro embriogenic callus (Citrus sinensis L. Osbeck) were investigated using micro-synchrotron radiation X-ray fluorescence (muSR-XRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation. Metal-binding protein quantification was done after microwave oven decomposition of gel by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF), flame atomic absorption spectrometry (FAAS) and flame atomic emission spectrometry (FAES). According to the analysis of the protein bands, it is possible to observe that both 81 and ca. 14 kDa proteins present different Fe signal intensity at different positions. The analysis of 53 kDa protein, showed even more interesting results. Besides Fe, the muSR-XRF experiments indicate the presence of Ca, Cu, K and Zn. Chemical elements such as Cu, K, Fe and Zn were determined by SR-TXRF, Mg by FAAS and Na by FAES. Ca was determined by SR-TXRF and FAAS only for accuracy check. In the mineralised protein bands of 81 and around 14 kDa band, only Fe was determined (105 and 21.8 microg g(-1)). For those protein bands (86-ca. 14 kDa) were determined, Ca, K, Cu and Zn in a wide concentration range (42.4-283, 2.47-96.8, 0.91-15.9 and 3.39-29.7 microg g(-1), respectively).

  5. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  6. Radiation-driven evolution of low-mass x-ray binaries and the formation of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (Lawrence Livermore National Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Astronomy)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and millisecond pulsars (MSPs) pose a challenge to evolutionary theories which neglect the effects of disk and comparison irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, radiation from the accreting compact star in LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn off occurs. The main characteristics of the RD-evolution are: (1) lifetime of RD-LMXB's is of order 10{sup 7} years or less; (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degeneration companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) a class of recycled MSPs can continue to vaporize the low-mass companions by a strong pulsar wind even after the accretion turn-off; (5) the RD-evolutionary model resolves the apparent statistical descrepancy between the number of MSPs and their LMXB progenitors in the Galaxy. We discuss the implications of the discovery of single MSPs in low-density globular clusters and the recent measurements of short orbital timescales of four LMXBs. 34 refs., 3 figs., 2 tabs.

  7. Radiation by energetic electrons accelerated by wave-particle interaction: a plausible mechanism for X-ray emission from the Venus mantle

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, R. [STFC Rutherford Appleton Lab., Didcot, Oxon (United Kingdom). Space Science and Technology Dept.; Strathclyde Univ., Glasgow (United Kingdom). Physics Dept.; Quest, K.B. [California Univ., San Diego, La Jolla, CA (United States). ECE Dept.; Shapiro, V.D. [California Univ., San Diego, La Jolla, CA (United States). Physics Dept.; Kellett, B.J. [STFC Rutherford Appleton Lab., Didcot, Oxon (United Kingdom). Space Science and Technology Dept.

    2008-07-01

    In this paper it is argued that recently observed X-ray emission from non-magnetic planets (Dennerl et al., 2002) can be explained as a combination of bremsstrahlung and line K-shell radiation produced by the interaction of energetic electrons with the neutral atmosphere. Numerical simulations show that the modified two stream instability can generate energetic 100 eV electrons that are observed and these electrons can produce X-ray emission. (orig.)

  8. Radiation by energetic electrons accelerated by wave-particle interaction: a plausible mechanism for x-ray emission from the Venus mantle

    Directory of Open Access Journals (Sweden)

    R. Bingham

    2008-07-01

    Full Text Available In this paper it is argued that recently observed x-ray emission from non-magnetic planets (Dennerl et al., 2002 can be explained as a combination of bremsstrahlung and line K-shell radiation produced by the interaction of energetic electrons with the neutral atmosphere. Numerical simulations show that the modified two stream instability can generate energetic 100 eV electrons that are observed and these electrons can produce x-ray emission.

  9. Endohedral fullerenes: a concurrent characterization by means of synchrotron radiation X-ray and IR spectroscopy

    Science.gov (United States)

    Xu, Wei; Marcelli, Augusto; Liu, Lei; Wang, Chunru; Wu, Ziyu

    2013-04-01

    Endohedral Metal Fullerenes exhibit a great variety of physical and chemical properties depending on the metal inserted into the cage. These systems are molecular conductors, magnets, ferroelectrics and also superconductors representing extremely promising materials for advanced technologies such as nano-medicine. Here we present temperature-dependent XANES and FTIR investigations of two La@C82 EMF isomers. The combinatorial investigation shows that guest ions move inside the cage perturbing the vibrational states of the carbon cage due to the charge transfer dynamics. Moreover, the principal component analysis points out a discrepancy between temperature-dependent FTIR and XANES based on the occurrence of a non-equilibrium process between charge transfer and cage dynamics. We propose to perform simultaneous time-resolved X-ray and infrared spectroscopy studies to resolve the complex interplay among charge, structure and electric properties of these systems.

  10. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke

    2010-09-10

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  13. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  14. Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery.

    Science.gov (United States)

    Nelson, Elisha M; Monazzam, Shafagh M; Kim, Kee D; Seibert, J Anthony; Klineberg, Eric O

    2014-12-01

    Intraoperative imaging is essential in spinal surgery to both determine the correct level and place implants safely. Surgeons have a variety of options: C-arm fluoroscopy (C-arm), portable X-ray (XR) radiography, and portable cone-beam computed tomography (O-arm). Although these modalities have their respective advantages and disadvantages, direct comparison of radiation exposure to either the patient or the operating room (OR) staff has not been made. To determine the amount of radiation exposure to patients and OR staff during spine surgery with C-arm, XR, and O-arm. An experimental model to assess radiation exposure to OR staff and phantom patient during spine surgery. A plastic phantom was created to emulate patient volume and absorption scattering characteristics of a typical sized adult abdominal volume. Radiation exposure was measured with ion chamber dosimeters to determine entrance phantom and scatter exposures at common positions occupied by OR staff for C-arm, XR, and O-arm in typical image acquisition during spinal surgery. Single lateral (LAT)/posterior-anterior entrance patient radiation exposure for C-arm was on average 116/102 mR, single-exposure XR for LAT/anterior-posterior (AP) was 3,435/2,160 mR, and single-exposure O-arm for LAT/AP was 4,360/5,220 mR. O-arm surface exposure LAT/AP was equivalent to 38/41 C-arm and 1.5/2.4 XR exposures. The surgeon and surgeon assistant had higher levels of scatter radiation for C-arm, followed by O-arm and XR. For the LAT C-arm acquisition, a 7.7-fold increase in radiation exposure was measured on the X-ray tube side compared with the detector side. The anesthesiologist scatter radiation level for a single acquisition was highest for O-arm, followed by XR and C-arm. The radiologic technologist scatter radiation level was highest for XR, followed by O-arm and fluoroscopy. Overall radiation exposure to OR staff was less than 4.4 mR for a single acquisition in all modalities. Assessment of radiation risk to the

  15. Synchrotron radiation X-ray fluorescence microscopy reveals a spatial association of copper on elastic laminae in rat aortic media.

    Science.gov (United States)

    Qin, Zhenyu; Toursarkissian, Boulos; Lai, Barry

    2011-08-01

    Copper, an essential trace metal in humans, plays an important role in elastic formation. However, little is known about the spatial association between copper, elastin, and elastin producing cells. The aorta is the largest artery; the aortic media is primarily composed of the elastic lamellae and vascular smooth muscle cells, which makes it a good model to address this issue. Synchrotron radiation X-ray fluorescence microscopy (SRXRF) is a new generation technique to investigate the spatial topography of trace metals in biological samples. Recently, we utilized this technique to determine the topography of copper as well as other trace elements in aortic media of Sprague Dawley rats. A standard rat diet was used to feed Sprague Dawley rats, which contains the normal dietary requirements of copper and zinc. Paraffin embedded segments (4 μm of thickness) of thoracic aorta were analyzed using a 10 keV incident monochromatic X-ray beam focusing on a spot size of 0.3 μm × 0.2 μm (horizontal × vertical). The X-ray spectrum was measured using an energy-dispersive silicon drift detector for elemental topography. Our results showed that phosphorus, sulfur, and zinc are predominately distributed in the vascular smooth muscle cells, whereas copper is dramatically accumulated in elastic laminae, indicating a preferential spatial association of copper on elastic laminae in aortic media. This finding sheds new light on the role of copper in elastic formation. Our studies also demonstrate that SRXRF allows for the visualization of trace elements in tissues and cells of rodent aorta with high spatial resolution and provides an opportunity to study the role of trace elements in vasculature.

  16. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  17. Estimated radiation doses to different organs among patients treated for ankylosing spondylitis with a single course of X rays

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.A.; Smith, P.G.; Stratton, I.M.; Darby, S.C.; Doll, R.

    1988-03-01

    A follow-up study of over 14000 patients treated with a single course of X rays for ankylosing spondylitis demonstrated substantial excess risk of developing cancer. Previously the excess risk of leukaemia has been related to the estimated mean radiation dose to active bone marrow but detailed estimates were not made of the radiation doses to other organs. Data extracted from the original treatment records of a random sample of one in 15 patients have been used to make dose estimates, using Monte Carlo methods, for 30 specific organs or body regions and 12 bone marrow sites. Estimates of mean and median organ doses, standard deviations and ranges have been tabulated. Detailed distributions are presented for six organs (lung, bronchi, stomach, oesophagus, active bone marrow and total body). Comparison with the earlier bone marrow estimates and more recent theoretical estimates shows good agreement.

  18. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  19. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats.

    Directory of Open Access Journals (Sweden)

    Catherine M Davis

    Full Text Available The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal. One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min, while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.

  20. 3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament

    Science.gov (United States)

    Le Hardy, David; Badri, Mohd Afeef; Rousseau, Benoit; Chupin, Sylvain; Rochais, Denis; Favennec, Yann

    2017-06-01

    In order to explain the macroscopic radiative behaviour of an open-cell ceramic foam, knowledge of its solid phase distribution in space and the radiative contributions by this solid phase is required. The solid phase in an open-cell ceramic foam is arranged as a porous skeleton, which is itself composed of an interconnected network of ligament. Typically, ligaments being based on the assembly of grains more or less compacted, exhibit an anisotropic geometry with a concave cross section having a lateral size of one hundred microns. Therefore, ligaments are likely to emit, absorb and scatter thermal radiation. This framework explains why experimental investigations at this scale must be developed to extract accurate homogenized radiative properties regardless the shape and size of ligaments. To support this development, a 3D numerical investigation of the radiative intensity propagation through a real world ligament, beforehand scanned by X-Ray micro-tomography, is presented in this paper. The Radiative Transfer Equation (RTE), applied to the resulting meshed volume, is solved by combining Discrete Ordinate Method (DOM) and Streamline upwind Petrov-Garlekin (SUPG) numerical scheme. A particular attention is paid to propose an improved discretization procedure (spatial and angular) based on ordinate parallelization with the aim to reach fast convergence. Towards the end of this article, we present the effects played by the local radiative properties of three ceramic materials (silicon carbide, alumina and zirconia), which are often used for designing open-cell refractory ceramic foams.

  1. Carbon-Nitrogen-Oxygen Line Radiation and the X-ray Bowen Fluorescence Mechanism in Optically Thick, Highly Ionized Media

    Science.gov (United States)

    Sako, Masao

    2003-01-01

    Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.

  2. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  3. The effect of magnification on the image quality and the radiation dose in X-ray digital mammography: a Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Na; Kim, Hee-Joung; Park, Hye-Suk; Lee, Chang-Lae; Cho, Hyo-Min; Lee, Seung-Wan; Ryu, Hyun-Ju [Yonsei University, Wonju (Korea, Republic of)

    2010-09-15

    There have been many efforts to advance the technology of X-ray digital mammography in order to enhance the early detection of breast pathology. The purpose of this study was to evaluate image quality and the radiation dose after magnifying X-ray digital mammography using the Geant4 Application for Tomographic Emission (GATE). In this study, we simulated a Monte Carlo model of an X-ray digital mammographic system, and we present a technique for magnification and discuss how it affects the image quality. The simulated X-ray digital mammographic system with GATE consists of an X-ray source, a compression paddle, a supporting plate, and an imaging plate (IP) of computed radiography (CR). The degree of magnification ranged from 1.0 to 2.0. We designed a semi-cylindrical phantom with a thickness of 45-mm and a radius of 50-mm in order to evaluate the image quality after magnification. The phantom was made of poly methyl methacrylate (PMMA) and contained four spherical specks with diameters of 750, 500, 250, and 100-{mu}m to simulate microcalcifications. The simulation studies were performed with an X-ray energy spectrum calculated using the spectrum processor SRS-78. A combination of a molybdenum anode and a molybdenum filter (Mo/Mo) was used for the mammographic X-ray tubes. The effects of the degree of magnification were investigated in terms of both the contrast-to-noise ratio (CNR) and the average glandular dose (AGD). The results show that the CNR increased as the degree of magnification increased and decreased as breast glandularity increased. The AGD showed only a minor increase with magnification. Based on the results, magnification of mammographic images can be used to obtain high image quality with an increased CNR. Our X-ray digital mammographic system model with GATE may be used as a basis for future studies on X-ray imaging characteristics.

  4. Targets emitting transition radiation for performing X-ray lithography by the tabletop synchrotron MIRRORCLE-20SX

    Energy Technology Data Exchange (ETDEWEB)

    Minkov, D. [21st Century COE SLLS, East Wing Building, Room 3113-0, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan)], E-mail: minkov@se.ritsumei.ac.jp; Morita, M. [PPL Company, BKC Incubator, Room 209, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Nihira, H. [Ritsumeikan University, West Wing Building, Room 2337-0, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Yamada, H. [21st Century COE SLLS, East Wing Building, Room 3113-0, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); PPL Company, BKC Incubator, Room 209, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Ritsumeikan University, West Wing Building, Room 2337-0, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan)

    2008-06-01

    The tabletop storage ring synchrotron (SRS) MIRRORCLE-20SX is a powerful source of soft X-rays emitted from transition radiation (TR) targets. SRS can be used as a source for performing X-ray lithography (XRL) when it emits TR power P{sub XRL}{>=}50-100 mW of photons having energy in the range 490-1860 eV. One-foil targets in SRS can emit a high TR power, and the electron beam geometry of MIRRORCLE-20SX requires using TR strip targets with a width {approx_equal}3 mm. P{sub XRL} emitted by one-foil strip TR targets is estimated for several foil materials, and varying foil thickness d. These results show that a target containing one C foil with d{approx_equal}260 nm can be used for performing XRL. Target made of one collodion foil with d{approx_equal}290 nm, and target of one Al foil with d{approx_equal}200 nm emit less, but could also be used for XRL. We manufactured such targets by depositing layers of these materials on slide glass, using Teepol as a releasing agent, and subsequently floating them on a water surface. The C layer is prepared by a horizontal resistance thermal evaporation, and supported by a 270-300 nm thick collodion layer, formed onto the Teepol film. The Al layer is thermally evaporated.

  5. Testing CuO nanowires as a novel X-ray to electron converter for gas-filled radiation detectors

    Science.gov (United States)

    Zarei, H.; Saramad, S.; Razaghi, S.

    2017-10-01

    Nanowires, due to their special physical properties and also high surface to volume ratio, can have considerable applications in designing and development of novel nanodevices. For the radiation shielding, higher absorption coefficient of nanostructures in comparison to bulk ones is an advantage. In gas detectors, designing a proper converter that absorbs higher energy of gamma and X-rays and convert it to more free electrons is one of the major problems. Since the nanowires have higher surface to volume ratio in comparison to the bulk one, so it is expected that by optimizing the thickness, the generated electrons can have higher chance to escape from the surface. In this work, the random CuO nanowires with diameter of 40 nm are deposited on thin glass slide. This nanostructure with different thicknesses are tested by plastic and CsI scintillators by X-ray tube with HVs in the range of 16 to 25 kV. The results show that for the same thickness, the CuO nanowires can release electrons six times more than the bulk ones and for the same energy the optimum QE of nanoconverter can be three times greater than the bulk converter. This novel nanoconverter with higher detection efficiency can have applications in high energy physics, medical imaging and also astronomy.

  6. Study of radiation effects on the cell structure and evaluation of the dose delivered by x-ray and {alpha}-particles microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosior, Ewelina; Cloetens, Peter [European Synchrotron Radiation Facility, F-38000 Grenoble (France); Deves, Guillaume; Ortega, Richard [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bohic, Sylvain [European Synchrotron Radiation Facility, 38000 Grenoble (France); INSERM U-836 (Team 6: Synchrotron Radiation and Medical Research), Grenoble Institut of Neuroscience, F-38000 Grenoble (France)

    2012-12-24

    Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to study radiation effects on cells. Experiments were performed on freeze-dried cells at the nano-imaging station ID22NI of the European synchrotron radiation facility. Quantitative phase contrast imaging provides maps of the projected mass and is used to evaluate the structural changes due to irradiation during X-ray fluorescence experiments. Complementary to phase contrast imaging, scanning transmission ion microscopy is performed and doses of all the experiments are compared. We demonstrate the sensitivity of the proposed approach to study radiation-induced damage at the sub-cellular level.

  7. Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility.

    Science.gov (United States)

    Martínez-Criado, Gema; Tucoulou, Rémi; Cloetens, Peter; Bleuet, Pierre; Bohic, Sylvain; Cauzid, Jean; Kieffer, Isabelle; Kosior, Ewelina; Labouré, Sylvain; Petitgirard, Sylvain; Rack, Alexander; Sans, Juan Angel; Segura-Ruiz, Jaime; Suhonen, Heikki; Susini, Jean; Villanova, Julie

    2012-01-01

    The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.

  8. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. S.; Kim, D. H.; Kang, J. S.; Kim, P. [The Catholic University of Korea, Bucheon (Korea, Republic of); Kim, K. H. [Korea University, Jochiwon (Korea, Republic of); Baik, J. Y.; Shin, H. J. [POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    The electronic structures of molecule-based nanoparticles, such as biomineralized Helicobacter pylori ferritin (Hpf), Heme, and RbCo[Fe(CN){sub 6}]H{sub 2}O (RbCoFe) Prussian blue analogue, have been investigated by employing photoemission spectroscopy and soft X-ray absorption spectroscopy. Fe ions are found to be nearly trivalent in Hpf and Heme nanoparticles, which provides evidence that the amount of magnetite (Fe{sub 3}O{sub 4}) should be negligible in the Hpf core and that the biomineralization of Fe oxides in the high-Fe-bound-state Hpf core arises from a hematite-like formation. On the other hand, Fe ions are nearly divalent and Co ions are Co{sup 2+}-Co{sup 3+} mixed-valent in RbCoFe. Therefore this finding suggests that the mechanism of the photo-induced transition in RbCoFe Prussian blue analogue is not a simple spin-state transition of Fe{sup 2+}-Co{sup 3+} → Fe{sup 3+}-Co{sup 2+}. It is likely that Co{sup 2+} ions have the high-spin configuration while Fe{sup 2+} ions have the low-spin configuration.

  9. Electron transport with re-acceleration and radiation in the jets of X-ray binaries

    Science.gov (United States)

    Zhang, Jian-Fu; Li, Zhi-Ren; Xiang, Fu-Yuan; Lu, Ju-Fu

    2018-01-01

    This paper studies the acceleration processes of background thermal electrons in X-ray binary jets via turbulent stochastic interactions and shock collisions. By considering turbulent magnetized jets mixed with fluctuating magnetic fields and an ordered large-scale magnetic field, and numerically solving the transport equation along the jet axis, we explore the influence on acceleration efficiency of magnetic turbulence, electron injection, the location of the acceleration region and various cooling mechanisms. The results show the following: (1) Dominant turbulent magnetic fields in the jets are necessary to accelerate background thermal electrons to relativistic energies. (2) The acceleration of electrons depends on the type of magnetohydrodynamic turbulence and turbulence with a hard slope can accelerate electrons more effectively. (3) The effective acceleration region is located at a distance >103Rg away from the central black hole (Rg being the gravitational radius). As a result of acceleration mechanisms competing with various cooling mechanisms, background thermal electrons gain energy and their spectra are broadened beyond the initial distribution to form a thermal-like distribution. (4) The acceleration mechanisms explored in this work can reasonably provide the maximum electron energy required for interpreting high-energy γ-ray observations from microquasars; however, some extreme parameter values are needed for the possible very high-energy γ-ray signals.

  10. RELATION OF DAILY PERIODS OF VLF RADIATION WITH X-RAY SOURCES

    Directory of Open Access Journals (Sweden)

    Druzhin, G.I.

    2016-11-01

    Full Text Available Spectral analysis of electromagnetic noise radiation in the VLF range at three fixed frequencies for the period from 1997 to 2015 have been carried out. Periodograms with diurnal components associated with the periods of the Earth rotation relatively the Sun and the stars have been obtained. It has been shown that the Sun х-radiation and the galaxy х-radiation affect daily variations of VLF radiation.

  11. Study of atomic clusters in neutron irradiated reactor pressure vessel surveillance samples by extended X-ray absorption fine structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cammelli, S. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Fachbereich C - Physik, Bergische Universitaet Wuppertal, Gauss-Str. 20, 42097 Wuppertal (Germany)], E-mail: Sebastiano.cammelli@psi.ch; Degueldre, C.; Kuri, G.; Bertsch, J. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C - Physik, Bergische Universitaet Wuppertal, Gauss-Str. 20, 42097 Wuppertal (Germany)

    2009-03-31

    Copper and nickel impurities in nuclear reactor pressure vessel (RPV) steel can form nano-clusters, which have a strong impact on the ductile-brittle transition temperature of the material. Thus, for control purposes and simulation of long irradiation times, surveillance samples are submitted to enhanced neutron irradiation. In this work, surveillance samples from a Swiss nuclear power plant were investigated by extended X-ray absorption fine structure spectroscopy (EXAFS). The density of Cu and Ni atoms determined in the first and second shells around the absorber is affected by the irradiation and temperature. The comparison of the EXAFS data at Cu and Ni K-edges shows that these elements reside in arrangements similar to bcc Fe. However, the EXAFS analysis reveals local irradiation damage in the form of vacancy fractions, which can be determined with a precision of {approx}5%. There are indications that the formation of Cu and Ni clusters differs significantly.

  12. Expert knowledge as defined by the X-Ray Ordinance. Directive on competence and expert knowledge in radiation protection, required for operators of X-ray equipment in medicine, dentistry, and veterinary medicine, as defined by the X-Ray Ordinance of January 8, 1987. Fachkunde nach Roentgenverordnung. Richtlinie Fachkunde und Kenntnisse im Strahlenschutz fuer den Betrieb von Roentgeneinrichtungen in der Medizin, Zahnmedizin und Tiermedizin nach der Roentgenverordnung vom 8. Januar 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The radiation protection officer or any person responsible for radiation safety have to give proof of their expert knowledge in accordance with sections 3, 4 of the X-Ray Ordinance. Proof of expert knowledge has to be furnished within the procedure of appointment (sec. 13, sub-sec. (3) X-Ray Ordinance). The directive defines the scope of the expert knowledge required, and the scope of expert knowledge persons must have, or acquire, who are responsible for radiation protection within the preview of sec. 23, no. 2, 4 and sec. 29, sub-sec. 1, no. 3 of the X-Ray Ordinance.

  13. Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Tian, Shengke [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Lu, Lingli; Shohag, M.J.I.; Liao, Haibing [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Elsholtzia splendens had a good ability of lead tolerance and accumulation. Black-Right-Pointing-Pointer Pb was mostly restricted to the vascular bundles and epidermis tissues. Black-Right-Pointing-Pointer Pb and Ca shared most similar distribution patterns in E. splendens. - Abstract: Hydroponic experiments were conducted to investigate the tolerance and spatial distribution of lead (Pb) in Elsholtzia splendens-a copper (Cu) accumulator plant using synchrotron-based micro-X-ray fluorescence. According to chlorophyll concentration and chlorophyll fluorescence parameters, E. splendens displayed certain tolerance at 100 {mu}M Pb treatment. Lead concentration in roots, stems and leaves of E. splendens reached 45,183.6, 1657.6, and 380.9 mg kg{sup -1}, respectively. Pb was mostly accumulated in the roots, and there were also high concentrations of Pb been transported into stems and leaves. Micro-XRF analysis of the stem and leaf cross section revealed that Pb was mostly restricted in the vascular bundles and epidermis tissues of both stem and leaf of E. splendens. The correlation between distribution of K, Ca, Zn and Pb were analyzed. There were significant positive correlations (P < 0.01) among Pb and Ca, K, Zn distribution both in stem and leaf of E. splendens. However, among the three elements, Ca shared the most similar distribution pattern and the highest correlation coefficients with Pb in both stem and leaf cross section of E. splendens. This suggests that Ca may play an important role in Pb accumulation in stem and leaf of E. splendens.

  14. Small intestine biopsy of children with coeliac disease: Influence of X-ray equipment on radiation dosage

    Energy Technology Data Exchange (ETDEWEB)

    Persliden, J. [Dept. of Radiation Physics, Faculty of Health Sciences, Linkoeping Univ. (Sweden); Pettersson, H.B.L. [Dept. of Radiation Physics, Faculty of Health Sciences, Linkoeping Univ. (Sweden); Stenhammar, L. [Dept. of Paediatrics, Central Hospital, Linkoeping (Sweden); Faelth-Magnusson, K. [Dept. of Paediatrics, Faculty of Health Sciences, Linkoeping Univ. (Sweden)

    1994-10-01

    In paediatric radiology intestinal biopsies for the diagnosis of coeliac disease are performed using fluoroscopy. The radiation exposure to the child depends on the X-ray equipment. We report patient measurements from three different equipments (A, B and C) together with a phantom study simulating children of different thicknesses relative to age. The median values of the mean absorbed dose to the child in the irradiated volume were 1.2 mGy (A), 0.79 mGy (B) and 0.15 mGy (C). The results show that the increase in tube potential with increasing distance in one equipment decreases the dosage, and also that modern equipment should be employed. Particularly old image intensifiers should not be used. With an optimal choice of equipment the dosage to the child can be reduced fourfold. The combination of an optimal technique of sedation and an experienced operator can reduce the dosage tenfold. (orig.)

  15. Radiation dynamics in X-ray binaries. I - Type 1 bursts. II - Type 2 bursts. III - Extremely compact objects

    Science.gov (United States)

    Walker, Mark A.

    1992-01-01

    Equations describing the evolution of a thin, axisymmetric, viscous, relativistic, irradiated accretion disk are presented, as well as numerical solutions of these equations in the case where irradiation results from a thermonuclear flash on the surface of the accreting neutron star. These calculations verify the notion that the radiation torque induces a substantial increase in the accretion rate, during a type 1 X-ray burst, and provide insight into the factors which influence the dynamical response of the disk. A new model for the source XBT 1730-335, the rapid burster, is presented. Temporal and spectral properties are calculated. The rapid burster is found to be a nonmagnetic, 'critically compact', slowly rotating neutron star in a highly eccentric binary system with a period of 6 mo. The spectral modifications which arise from the scattering of photons by accretion disks around nonmagnetic neutron stars are calculated. The 'black hole candidates' are interpreted as extremely compact stars.

  16. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  17. Multielemental analysis in organic products and seed of linum by X-ray total reflection fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail: renata@lin.ufrj.br; Carmo, Maria da Graca T. do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Nutricao; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: silvana@fec.com.br

    2005-07-01

    The main goal of this study is to determining the trace and major elements levels in organic seeds samples, like soy, rice, bean and in Brazilian and Canadian linum seed by X-ray Total Reflection Fluorescence with Synchrotron Radiation (SR-TXRF). The measurements were carried out in the XRF beamline at the Light Synchrotron National Laboratory (Campinas, Brazil). The organic soy presented major concentrations of P, Ca, Ti, Fe, Ni, Cu, Zn, Br, Rb and Sr than organic bean and rice. Brazilian linum samples presented higher concentrations of S, P, Ca, Ni, Cu, Sr, Zr and Mo than Canadian one, even than organic samples. However potassium, iron and zinc were more pronounced in the Canadian seed of linum (author)

  18. Fish samples as bioindicator of environmental quality: synchrotron radiation total reflection X-ray fluorescence analysis (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Brienza, Sandra Maria Boscolo [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil). Faculdade de Ciencias Matematicas, da Natureza e de Tecnologia da Informacao]. E-mail: sbrienza@unimep.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: virgilio@cena.usp.br

    2005-07-01

    In this study fish were used as bioindicators of environmental contamination. The species were collected in Piracicaba River, Sao Paulo state, Brazil and the toxic elements concentrations were determined in muscle tissue and viscus (liver, intestine and stomach) by Synchrotron Radiation Total Reflection X-Ray Fluorescence Analysis (SR-TXRF). Were determined the elements Ti, Cr, Mn, Fe, Ni, Cu, Zn and Ba. The results were compared with values established by Brazilian Legislation for general food. The elements concentrations evidenced potential risk to human health and environmental quality alteration of the studied area. The measurements were realized at the 'Laboratorio Nacional de Luz Sincrotron' (LNLS) located in Campinas, Sao Paulo State, Brazil. (author)

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in evaluating the hips of children with congenital problems. top of page This page was reviewed on ... Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... abnormal bone growths and bony changes seen in metabolic conditions. assist in the detection and diagnosis of ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  12. The expert knowledge as defined by the X-ray Ordinance. Directive on competence and expert knowledge in radiation protection, required for the personnel applying X-ray equipment in medicine, dentistry, and veterinary medicine, as defined by the X-ray Ordinance/medicine. Fachkunde nach Roentgenverordnung. Richtlinie Fachkunde und Kenntnisse im Strahlenschutz fuer den Betrieb von Roentgeneinrichtungen in der Medizin, Zahnmedizin und bei der Anwendung von Roentgenstrahlen auf Tiere - Fachkunde nach Roentgenverordnung/Medizin

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Persons applying within their role responsibility X-rays in medicine or veterinary medicine, or persons with a responsibility as radiation protection officer or according to section 24, sub-sec. (3) Radiation Protection Ordinance have to give proof of the required expert knowledge (section 3, sub-sec. (2), no. 3, section 4, sub-sec. (1) no. 3, section 13, sub-sec. (4), section 23 no.s. 1 and 3 of the X-ray Ordinance). In addition, persons applying X-rays under the supervision and responsibility of a medical specialist or dentist, have to acquire the knowledge in radiation protection as defined by section 23, no. 2 and 4 X-ray Ordinance. As to the application of X-rays in veterinary medicine, the expert knowledge required is defined in section 3, sub-sec. (2) no. 3, section 4, sub-sec. 1 no. 3, section 13, sub-sec. (4), section 29 sub-sec. (1) no. 4 of the X-ray Ordinance. The knowledge to be acquired in radiation protection is given in section 29, sub-sec. (1) no. 3 of the X-ray Ordinance. The radiation protection officer or persons responsible for radiation protection have to give proof of their expert knowledge within the course of the licensing or notification procedure in accordance with sections 3 and 4 of the X-ray Ordinance, or in the course of the procedure for appointment of a radiation protection officier in accordance with section 13, sub-sec. (3) of the X-ray Ordinance. (orig.).

  13. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Björn De Samber

    Full Text Available High pressure frozen (HPF, cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1-2 h with phorbol myristate acetate (PMA, a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs, a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis.

  14. Radiation protection and the safe use of X-ray equipment: Laws ...

    African Journals Online (AJOL)

    Background. South Africa's regulatory framework for electromagnetic medical devices has come under considerable criticism. Here it is reviewed in terms of how it has given form to protective measures against ionising radiation. The Hazardous Substances Act provides for effective protection against radiation, but has been ...

  15. A Concept for z-Dependent Microbunching Measurements with Coherent X-ray Transition Radiation in a SASE FEL

    CERN Document Server

    Lumpkin, Alex H

    2004-01-01

    Previously, measurements in the visible to VUV regimes of z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) have provided important information about the fundamental mechanisms. In those experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed Linac Coherent Light Source (LCLS), the intense SASE emission is either too strongly transmitted at 1.5 angstroms or the needed foil thickness for blocking scatters the electron beam too much. Since coherent x-ray transition radiation (CXTR) is emitted in an annulus with opening angle 1/γ = 36 µrad for 14.09-GeV electrons, one could use a thin foil or foil stack to generate the XTR and CXTR and an annular crystal to wavelength sort the radiation. The combined selectivity will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER si...

  16. Radiation dose in radius bone mineral density measurements using dual energy X-ray absorptiometry. Dosimetric method on scan beam

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Ichiro; Ogata, Hiromitsu; Izumo, Yoshiro [Institute of Public Health, Tokyo (Japan); Ohkubo, Makoto; Kato, Akira

    2001-12-01

    Effective doses in radius bone mineral density measurements using dual energy X-ray absorptiometry (DEXA) were assessed with entrance beam intensity and X-ray absorption rate in organs. The X-ray entrance beam intensity was calculated from an energy fluence rate, and we demonstrated how to assess beam intensity by using thermoluminescent dosimeters (TLDs). The entrance beam energies were calculated from X-ray beam intensity in regard to beam sizes, scan areas, and scan times. The X-ray absorption rates were calculated by using X-ray absorption curves at bone mineral density measurements. The average tissue doses were determined by using reference female and men. Skin entrance intensity was 4 x 10{sup -4} [J/(m{sup 2}{center_dot}s)]. Skin entrance energies were 1-2 x 10{sup -3} [J] in proportion to wrist width. The effective dose was approximately 5 nSv. (author)

  17. Evaluation of scattered radiation emitted from X-ray security scanners on occupational dose to airport personnel

    Science.gov (United States)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-06-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  18. Reprint of 'Evaluation of Scattered Radiation Emitted From X-ray Security Scanners on Occupational Dose to Airport Personnel'

    Science.gov (United States)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-11-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  19. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  20. Copper Uptake, Intracellular Localization, and Speciation in Marine Microalgae Measured by Synchrotron Radiation X-ray Fluorescence and Absorption Microspectroscopy.

    Science.gov (United States)

    Adams, Merrin S; Dillon, Carolyn T; Vogt, Stefan; Lai, Barry; Stauber, Jennifer; Jolley, Dianne F

    2016-08-16

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8-47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5-3.2 × 10(-15) g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. This study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.

  1. Center for X-ray Optics, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  2. Radiation damage to bull sperm motility. III. Further x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Rikmenspoel, R.

    1975-08-01

    The results of previous radiation experiments, which indicated that the centriole serves as a control center for bull sperm motility, appear to be in conflict with experiments showing that the bull sperm flagellum is an autonomous oscillator. To resolve this conflict experiments were conducted to calibrate absolutely the dose-response curves for the radiation damage, and to measure the force production and the mechanochemical energy conversion after irradiation in bull sperm. The results indicate that the centriole acts as a mechanical anchor for the contractile fibers. (auth)

  3. Radiation protection for an intraoperative X-ray source compared to C-arm fluoroscopy.

    Science.gov (United States)

    Schneider, Frank; Clausen, Sven; Jahnke, Anika; Steil, Volker; Bludau, Frederic; Sütterlin, Marc; Obertacke, Udo; Wenz, Frederik

    2014-09-01

    Intraoperative radiotherapy (IORT) using the INTRABEAM(®) system promises a flexible use regarding radiation protection compared to other approaches such as electron treatment or HDR brachytherapy with (192)Ir or (60)Co. In this study we compared dose rate measurements of breast- and Kypho-IORT with C-arm fluoroscopy which is needed to estimate radiation protection areas. C-arm fluoroscopy, breast- and Kypho-IORTs were performed using phantoms (silicon breast or bucket of water). Dose rates were measured at the phantom's surface, at 30 cm, 100 cm and 200 cm distance. Those measurements were confirmed during 10 Kypho-IORT and 10 breast-IORT patient treatments. The measured dose rates were in the same magnitude for all three paradigms and ranges from 20 μSv/h during a simulated breast-IORT at two meter distance up to 64 mSv/h directly at the surface of a simulated Kypho-IORT. Those measurements result in a circle of controlled area (yearly doses >6 mSv) for each paradigm of about 4 m±2 m. All three paradigms show comparable dose rates which implies that the radiation protection is straight forward and confirms the flexible use of the INTRABEAM(®) system. Copyright © 2013. Published by Elsevier GmbH.

  4. Radiation protection for an intraoperative X-ray source compared to C-arm fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Frank; Clausen, Sven; Jahnke, Anika; Steil, Volker; Wenz, Frederik [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Radiation Oncology; Bludau, Frederic; Obertacke, Udo [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Trauma Surgery; Suetterlin, Marc [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Obstetrics and Gynaecology

    2014-10-01

    Background: Intraoperative radiotherapy (IORT) using the INTRABEAM {sup registered} system promises a flexible use regarding radiation protection compared to other approaches such as electron treatment or HDR brachytherapy with {sup 192}Ir or {sup 60}Co. In this study we compared dose rate measurements of breast- and Kypho-IORT with C-arm fluoroscopy which is needed to estimate radiation protection areas. Materials and Methods: C-arm fluoroscopy, breast- and Kypho-IORTs were performed using phantoms (silicon breast or bucket of water). Dose rates were measured at the phantom's surface, at 30 cm, 100 cm and 200 cm distance. Those measurements were confirmed during 10 Kypho-IORT and 10 breast-IORT patient treatments. Results: The measured dose rates were in the same magnitude for all three paradigms and ranges from 20 μSv/h during a simulated breast-IORT at two meter distance up to 64 mSv/h directly at the surface of a simulated Kypho-IORT. Those measurements result in a circle of controlled area (yearly doses > 6 mSv) for each paradigm of about 4 m ± 2 m. Discussion/Conclusions: All three paradigms show comparable dose rates which implies that the radiation protection is straight forward and confirms the flexible use of the INTRABEAM {sup registered} system. (orig.)

  5. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Cotte, Marine; Loredo-Portales, René

    2017-01-01

    For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy...

  6. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    Science.gov (United States)

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  7. Reduction in Radiation Dose in a Pediatric Cardiac Catheterization Lab Using the Philips AlluraClarity X-ray System.

    Science.gov (United States)

    Sullivan, Patrick M; Harrison, David; Badran, Sarah; Takao, Cheryl M; Ing, Frank F

    2017-08-02

    The objective of this study was to compare radiation doses and imaging quality using Philips AlluraClarity (Philips Healthcare, Best, The Netherlands) X-ray system and an older generation reference system. AlluraClarity is a new generation fluoroscopy system designed to reduce radiation without compromising image quality, but reports of its use in pediatric patients are limited. Dose area products (DAP, mGy cm(2)) and DAP/kg were compared in patients catheterized using Allura Xper and AlluraClarity systems over a year of use for each. Randomly selected studies from each system were assessed for image quality. The 430 patients imaged with Clarity were larger than the 332 imaged with Xper (median BSA: 0.74 vs. 0.64 m(2), p = 0.06), and median total fluoroscopic times (TFT) were similar (15.8 vs. 16.1 min, p = 0.37). Median DAPs were 8661 mGy cm(2) (IQR: 18,300 mGy cm(2)) and 4523 mGy cm(2) (IQR: 11,596 mGy cm(2)) with Xper and Clarity, respectively (p lab.

  8. Circular polarization of X-ray radiation emitted by longitudinally polarized electron impact excitation: Under a screened Coulomb interaction

    Science.gov (United States)

    Chen, Zhan-Bin

    2017-12-01

    Longitudinally polarized electron impact excitation from the ground state 1s2 to the excited state 1s2l (l =s,p) levels of highly charged He-like Fe24+ ions in weakly coupled hot-dense plasmas is investigated using a fully relativistic distorted-wave method. The Debye-Hückel potential is used to describe the plasma screening. Benchmark results such as the total cross sections, the magnetic sublevels cross sections, and the circular polarizations of corresponding X-ray radiations are presented. For the excitation process, results show that the plasma screening has an effect in reducing both the total and magnetic sublevels cross sections. For the de-excitation process, it is found that while the plasma screening as a slightly effect on the circular polarizations of radiations for the 1 s 2 s 3S1 → 1 s21S0,1 s 2 p 3P2 → 1 s21S0 , and 1 s 2 p 1P1 → 1 s21S0 transition lines, it gives a substantial contribution for the same properties of the 1 s 2 p 3P1 → 1 s21S0 line.

  9. Novel radiation sources using relativistic electrons from infrared to x-rays

    CERN Document Server

    Rullhusen, P; Dhez, P

    1998-01-01

    The purpose of this book is to give a description of the state of the art in theoretical and experimental work achieved in radiation source development. It summarizes clearly and comprehensibly, the basic physical aspects needed to understand the phenomena, and also provides the interested reader with sufficient literature to be able to follow the development in more detail. In addition, it contains a unified view of most theoretical effects and their common properties. The most recent developments as well as references to further work can be found in this volume. In many cases, review article

  10. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  11. Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations

    CERN Document Server

    Vyvenko, O F; Istratov, A A; Weber, E R; Kittler, M; Seifert, W

    2002-01-01

    In this study we report application of synchrotron-radiation-based x-ray microprobe techniques (the x-ray-beam-induced current (XBIC) and x-ray fluorescence (mu-XRF) methods) to the analysis of the recombination activity and space distribution of copper and iron in the vicinity of dislocations in silicon/silicon-germanium structures. A combination of these two techniques enables one to study the chemical nature of the defects and impurities and their recombination activity in situ and to map metal clusters with a micron-scale resolution. XRF analysis revealed that copper formed clearly distinguishable precipitates along the misfit dislocations. A proportional dependence between the XBIC contrast and the number of copper atoms in the precipitates was established. In hydrogen-passivated iron-contaminated samples we observed clusters of iron precipitates which had no recombination activity detectable by the XBIC technique as well as iron clusters which were not completely passivated.

  12. SU-E-I-107: Suitability of Various Radiation Detectors Used in Radiation Therapy for X-Ray Dosimetry in Computed Tomography.

    Science.gov (United States)

    Liebmann, M; Poppe, B; von Boetticher, H

    2012-06-01

    Assessment of suitability for X-ray dosimetry in computed tomography of various ionization chambers, diodes and two-dimensional detector arrays primarily used in radiation therapy. An Oldelft X-ray simulation unit was used to irradiate PTW 60008, 60012 dosimetry diodes, PTW 23332, 31013, 31010, 31006 axial symmetrical ionization chambers, PTW 23343, 34001 plane parallel ionization chambers and PTW Starcheck and 2D-Array seven29 as well as a prototype Farmer chamber with a copper wall. Peak potential was varied from 50 kV up to 125 kV and beam qualities were quantified through half-value-layer measurements. Energy response was investigated free in air as well as in 2 cm depth in a solid water phantom and refers to a manufacturer calibrated PTW 60004 diode for kV-dosimetry. The thimble ionization chambers PTW 31010, 31013, the uncapsuled diode PTW 60012 and the PTW 2D-Array seven29 exhibit an energy response deviation in the investigated energy region of approximately 10% or lower thus proving good usability in X-ray dosimetry if higher spatial resolution is needed or rotational irradiations occur. It could be shown that in radiation therapy routinely used detectors are usable in a much lower energy region. The rotational symmetry is of advantage in computed tomography dosimetry and enables dose profile as well as point dose measurements in a suitable phantom for estimation of organ doses. Additional the PTW 2D-Array seven29 can give a quick overview of radiation fields in non-rotating tasks. © 2012 American Association of Physicists in Medicine.

  13. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chenglin, Liu, E-mail: lclyctc@163.com [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Xiaohua, Wang; Hua, Xu [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Fang, Liu; Ruishan, Dang [Anatomy Department of Second Military Medical University, Shanghai 200433 (China); Dongming, Zhang; Xinyi, Zhang [Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Honglan, Xie; Tiqiao, Xiao [Shanghai Synchrotron Radiation Facility of Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2014-10-15

    In this paper, the morphology of the acupuncture point (abbreviated as acupoint hereafter) or tissue where there were no acupoints in the fractional rabbit hind limb was studied by in-line phase contrast CT imaging (PCI-CT) methods based on synchrotron radiation. The density of micro-vessels was calculated for tissues with acupoints or without acupoints. Differences between acupoints area and non-acupoint areas determined by the density of the micro-vessels propose a strong evidence of the existence of acupoints. Our results showed that there were two significantly higher densities of the micro-vessels, where two acupoints were located, respectively. In addition, there were large numbers of involutedly microvascular structure in the acupoint areas. Nevertheless, in non-acupoints area, the microvascular structure was relatively simple and flat.

  14. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Science.gov (United States)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  15. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd., Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M.; Edwards-Gau, Gregory R. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  16. Nonintercepting Electron Beam Diagnostics Based on Optical Diffraction Radiation for X-Ray FELs

    CERN Document Server

    Lumpkin, Alex H; Sereno, N S; Yang, B X; Yao, C

    2005-01-01

    The challenge of providing nonintercepting beam diagnostics that address transverse parameters such as beam size and divergence in a linear transport line has been met. We have successfully used near-field imaging of optical diffraction radiation (ODR) from a 7-GeV electron beam passing near a single edge of a conducting screen to obtain beam size for the first time [1]. In this case appreciable visible wavelength ODR is emitted for impact parameters of 1 to 2 mm, values that are close to gamma times the reduced observation wavelength. We have now upgraded our imaging system to include an intensified camera; selectable bandpass filters, neutral density filters, and polarizers; a steering mirror; and an optical lens setup that provides either near-field or far-field imaging. The ODR has been obtained in both the single-edge mode and aperture mode with a single pulse of 3.3 nC. Beam-size resolution in the 20-50 micron regime is projected while beam position resolution to 10 microns with a smaller beam and highe...

  17. Synchrotron Radiation X-Ray Phase-Contrast Tomography Visualizes Microvasculature Changes in Mice Brains after Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Peng Miao

    2016-01-01

    Full Text Available Imaging brain microvasculature is important in plasticity studies of cerebrovascular diseases. Applying contrast agents, traditional μCT and μMRI methods gain imaging contrast for vasculature. The aim of this study is to develop a synchrotron radiation X-ray inline phase-contrast tomography (SRXPCT method for imaging the intact mouse brain (microvasculature in high resolution (~3.7 μm without contrast agent. A specific preparation protocol was proposed to enhance the phase contrast of brain vasculature by using density difference over gas-tissue interface. The CT imaging system was developed and optimized to obtain 3D brain vasculature of adult male C57BL/6 mice. The SRXPCT method was further applied to investigate the microvasculature changes in mouse brains (n=14 after 14-day reperfusion from transient middle cerebral artery occlusion (tMCAO. 3D reconstructions of brain microvasculature demonstrated that the branching radius ratio (post- to preinjury of small vessels (radius < 7.4 μm in the injury group was significantly smaller than that in the sham group (p<0.05. This result revealed the active angiogenesis in the recovery brain after stroke. As a high-resolution and contrast-agent-free method, the SRXPCT method demonstrates higher potential in investigations of functional plasticity in cerebrovascular diseases.

  18. Quantification of single fluid inclusions by combining synchrotron radiation-induced micro-X-ray fluorescence and transmission.

    Science.gov (United States)

    Cauzid, J; Philippot, P; Somogyi, A; Simionovici, A; Bleuet, P

    2004-07-15

    Fluid inclusions represent the only direct samples of ancient fluids in many crustal rocks; precise knowledge of their chemical composition provides crucial information to model paleofluid-rock interactions and hydrothermal transport processes. Owing to its nondestructive character, micrometer-scale spatial resolution, and high sensitivity, synchrotron radiation-induced micro-X-ray fluorescence has received great interest for the in situ multielement analysis of individual fluid inclusions. Major uncertainties associated with the quantitative analysis of single fluid inclusions arise from the inclusion depth and the volume of fluid sampled by the incident beam. While the depth can be extracted directly from the fluorescence spectrum, its volume remains a major source of uncertainty. The present study performed on natural and synthetic inclusions shows that the inclusion thickness can be accurately evaluated from transmission line scans. Experimental data matched numerical simulations based on an elliptical inclusion geometry. However, for one nonelliptical inclusion, the experimental data were confirmed using a computed absorption tomography reconstruction. Good agreement between the imaging and scanning techniques implies that the latter provides reliable fluid thickness values independent of the shape of the inclusion. Taking into consideration the incident angle, the incident beam energy, the inclusion fluid salinity, and the transmission measurement stability resulted in errors of 0.3-2 microm on calculated fluid inclusion thicknesses.

  19. Synchrotron Radiation X-Ray Phase-Contrast Tomography Visualizes Microvasculature Changes in Mice Brains after Ischemic Injury.

    Science.gov (United States)

    Miao, Peng; Wu, Zhixia; Li, Miao; Ji, Yuanyuan; Xie, Bohua; Lin, Xiaojie; Yang, Guo-Yuan

    2016-01-01

    Imaging brain microvasculature is important in plasticity studies of cerebrovascular diseases. Applying contrast agents, traditional μCT and μMRI methods gain imaging contrast for vasculature. The aim of this study is to develop a synchrotron radiation X-ray inline phase-contrast tomography (SRXPCT) method for imaging the intact mouse brain (micro)vasculature in high resolution (~3.7 μm) without contrast agent. A specific preparation protocol was proposed to enhance the phase contrast of brain vasculature by using density difference over gas-tissue interface. The CT imaging system was developed and optimized to obtain 3D brain vasculature of adult male C57BL/6 mice. The SRXPCT method was further applied to investigate the microvasculature changes in mouse brains (n = 14) after 14-day reperfusion from transient middle cerebral artery occlusion (tMCAO). 3D reconstructions of brain microvasculature demonstrated that the branching radius ratio (post- to preinjury) of small vessels (radius < 7.4 μm) in the injury group was significantly smaller than that in the sham group (p < 0.05). This result revealed the active angiogenesis in the recovery brain after stroke. As a high-resolution and contrast-agent-free method, the SRXPCT method demonstrates higher potential in investigations of functional plasticity in cerebrovascular diseases.

  20. Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation

    Science.gov (United States)

    Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari

    2017-10-01

    The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.

  1. Measurement and Analysis of Output Radiation Dose on X-Ray Device over 10 Years at Hospitals in Medan City

    Directory of Open Access Journals (Sweden)

    Herty Afrina Sianturi

    2018-01-01

    Adhikari, Suraj Raj. 2012. Effect And Application      Of Ionization Radiation (X-Ray In Living  Organism. Kaski: Volume 3.The Himalaya  Physics. Badan Pengawas Tenaga Nuklir, Peraturan Kepala BAPETEN No. 8 Tahun 2011  tentang Keselamatan Radiasi dalam Penggunaan Pesawat Sinar-X Radiologi Diagnostik dan Intervensional, 2011. BAPETEN, 1999, Surat Keputusan Kepala Bapeten nomor 01/Ka-Bapeten/V-99 tentang Kesehatan terhadap radiasi pengion, Jakarta BATAN, 2005, Disain Penahan Ruang Sinar – X, Pusdiklat, BATAN, Jakarta Bushong, Steward C. 2013. Radologic Science for Technologists. 10th edition.United State of  America : CV. Mosby Company. Kramer, H. M., dan Selbach, H. J. 2008. Extension of the Range of Definition of the Practical Peak Voltage up to 300 kV. The British Journal of  Radiologhy (81:693-698. Rassad, S. dkk, Radiologi Diagnostik, Fakultas Kedokteran Universitas Indonesia Rumah Sakit Dr Cipto Mangunkusumo, Jakarta (2000. Suryanto, Sigit Bachtiar. 2011. Analisis Pembentukan Gambar Dan Batas Toleransi Uji Kesesuaian Pada Pesawat Sinar-X Diagnostik. Prosiding Seminar Penelitian Dan Pengelolaan Perangkat Nuklir. Trikasjono, T. dkk. 2009. Analisis Keselamatan Pesawat Sinar-X di Instalasi Radiologi Rumah Sakit Umum daerah Sleman Yogyakarta. Prosiding Seminar Nasional Sains dan Teknologi Nuklir PTNBR – BATAN. Vassileva, J. 2004. A Phantom for Dose Image Quality Optimization in Chest Radiography. The British Journal of Radiologhy 75:837-842. Wadianto, Azis Muslim. 2017. Uji Akurasi Tegangan Tinggi Alat Rontgen Radiography Mobile. INOVASI, Volume XIX Nomor 1,Januari 2017

  2. [Metallic Elemental Analysis of Tibetan Herbal Medicines and Tibetan Medicine Preparations by Synchrotron Radiation X-Ray Fluorescence].

    Science.gov (United States)

    Yang, Hong-xia; Li Cen; Du, Yu-zhi; Wei, Li-xin

    2015-06-01

    To discuss the relationship between metallic element and disease through determine the elementals in Tibetan Herbal Medicines and Tibetan Medicine Preparations that have obvious effect on hepatobiliary diseases by Synchrotron Radiation X-ray Source, then to reveal the substance foundation of pharmacological action. The results show that all the Tibetan Herbal Medicines used in the experiment have the 9 kinds of metallic elements of potassium(K), calcium(Ca), titanium(Ti), vanadium(V), chromium(Cr), manganese(Mn), ferrum(Fe), zinc(Zn) and lead(Pb), the content of the elements are in the ppb or ppm level though the element constitute and the content have obvious difference. Tibetan Medicine Preparations have another 6 kinds of metallic elements of nickel(Ni), copper(Cu), rubidium(Rb), mercury(Hg), cobalt(Co), gallium(Ga) and 1 kind of nonmetallic elements of arsenic(As) when compare with Herbal Medicines, and the element constitute and the content also have obvious difference. Take advantage of SR-XRF, the test gets the basic data of elements of Tibetan Herbal Medicines and Preparations, supply the scientific support to discuss the interaction of pharmacological mechanism and the metallic elements, and find the suitability of the technique for the metallic elements detection in Tibetan Medicines.

  3. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  4. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    OpenAIRE

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4...

  5. Visibility of microcalcification in cone beam breast CT − Effects of x-ray tube voltage and radiation dose

    Science.gov (United States)

    Lai, Chao-Jen; Shaw, Chris C.; Chen, Lingyun; Altunbas, Mustafa C.; Liu, Xinming; Han, Tao; Wang, Tianpeng; Yang, Wei T.; Whitman, Gary J.; Tu, Shu-Ju

    2010-01-01

    Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data-acquisition rate of 7.5 frames/s. 10.5- and 14.5cm-diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180–200 µm to 355–425 µm, were used to simulate MCs. MCs of the same size were arranged to form a 5×5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5×, 1×, and 2× mean glandular dose limit for 10.5-cm phantom and with 1×, 2×, and 4× for 14.5-cm phantom. Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs were computed and plotted as a

  6. One-Step Synthesis of Copper and Cupric Oxide Particles from the Liquid Phase by X-Ray Radiolysis Using Synchrotron Radiation

    Directory of Open Access Journals (Sweden)

    Akinobu Yamaguchi

    2016-01-01

    Full Text Available The deposition of copper (Cu and cupric oxide (Cu4O3, Cu2O, and CuO particles in an aqueous copper sulfate (CuSO4 solution with additive alcohol such as methanol, ethanol, 2-propanol, and ethylene glycol has been studied by X-ray exposure from synchrotron radiation. An attenuated X-ray radiation time of 5 min allows for the synthesis of Cu, Cu4O3, Cu2O, and CuO nano/microscale particles and their aggregation into clusters. The morphology and composition of the synthesized Cu/cupric oxide particle clusters were characterized by scanning electron microscopy, scanning transmission electron microscopy, and high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy. Micro-Raman spectroscopy revealed that the clusters comprised cupric oxide core particles covered with Cu particles. Neither Cu/cupric oxide particles nor their clusters were formed without any alcohol additives. The effect of alcohol additives is attributed to the following sequential steps: photochemical reaction due to X-ray irradiation induces nucleation of the particles accompanying redox reaction and forms a cluster or aggregates by LaMer process and DLVO interactions. The procedure offers a novel route to synthesize the Cu/cupric oxide particles and aggregates. It also provides a novel additive manufacturing process or lithography of composite materials such as metal, oxide, and resin.

  7. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    Science.gov (United States)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  8. Phase transformations in Ni/Ti multilayers investigated by synchrotron radiation-based x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaleiro, A.J., E-mail: andre.cavaleiro@dem.uc.pt [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal); Ramos, A.S. [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal); Martins, R.M.S. [CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, University Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LATR/IST/CTN – Campus Tecnológico e Nuclear, Estrada Nacional 10 ao km 139.7, 2695-066 Bobadela LRS (Portugal); Fernandes, F.M. Braz [CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, University Nova de Lisboa, 2829-516 Caparica (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf HZDR, Institute of Ion Beam Physics and Materials Research, D-01314 Dresden (Germany); Vieira, M.T. [CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-10-15

    X-ray diffraction using synchrotron radiation was used for real-time investigation of the phase evolution of Ni/Ti multilayer thin films during annealing. These multilayers were deposited onto Ti–6Al–4V substrates by dc magnetron sputtering from pure Ni and Ti targets. The deposition parameters were adjusted in order to obtain a near equiatomic chemical composition and modulation periods (Λ) below 25 nm. Along the entire thickness of the films, well-defined structures with alternate Ni- and Ti-rich layers are observed, even for Λ = 4 nm. In this case, a halo characteristic of an amorphous structure is obtained, while for Λ of 12 and 25 nm the as-deposited thin films are nanocrystalline being possible to identify the (111) Ni and (002) Ti diffraction peaks. The nanolayered structure vanishes during annealing due to interdiffusion followed by reaction. The reaction between Ni and Ti to produce NiTi in the cubic B2 structure occurs in a short delay of time and within a narrow temperature range. For Λ of 25, 12 and 4 nm, the reaction temperature is close to 320, 350 and 385 °C, respectively. For higher temperatures, in addition to the austenitic phase, the NiTi{sub 2} phase is identified. The diffusion of Ti from the substrate and Ni towards the substrate could favour the precipitation of NiTi{sub 2}. - Highlights: • Alternate Ni- and Ti-rich layers are observed, even for short periods. • Phase evolution was studied using synchrotron radiation XRD during annealing. • Ni and Ti reacted at ∼300–400 °C to form B2–NiTi in a single step. • The higher the period the lower the reaction temperature. • At higher temperatures NiTi{sub 2} was detected due to Ni diffusion towards Ti{sub 6}Al{sub 4}V.

  9. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    Directory of Open Access Journals (Sweden)

    Jingzi Wang

    Full Text Available Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR. Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays, and chronic exposure for 10 days (0.05Gy/d×10d. High-performance liquid chromatography (HPLC and MeDIP-quantitative polymerase chain reaction (qPCR were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15 were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  10. Optical molecular imaging-guided radiation therapy part 2: Integrated x-ray and fluorescence molecular tomography.

    Science.gov (United States)

    Shi, Junwei; Udayakumar, Thirupandiyur S; Wang, Zhiqun; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2017-09-01

    Differentiating tumor from its surrounding soft tissues is challenging for x-ray computed tomography (CT). Fluorescence molecular tomography (FMT) can directly localize the internal tumors targeted with specific fluorescent probes. A FMT system was developed and integrated onto a CT-guided irradiator to improve tumor localization for image-guided radiation. The FMT system was aligned orthogonal to the cone-beam CT onboard our previously developed image-guided small animal arc radiation treatment system (iSMAART). Through rigorous physical registration, the onboard CT provides accurate surface contour which is used to generate three-dimensional mesh for FMT reconstruction. During FMT experiments, a point laser source perpendicular to the rotating axis was used to excite the internal fluorophores. The normalized optical images from multiple projection angles were adopted for tomographic reconstruction. To investigate the accuracy of the FMT in locating the tumor and recovering its volume, in vivo experiments were conducted on two breast cancer models: MDA-MB-231 cancer xenograft on nude mice and 4T1 cancer xenograft on white mice. Both cancer cell lines overexpress the epidermal growth factor receptor (EGFR). A novel fluorescent poly(lactic-co-glycolic) acid (PLGA) nanoparticle conjugated with anti-EGFR was intravenously injected to specifically target the breast cancer cells. Another ex vivo experiment on a mouse bearing a surgically implanted Indocyanine Green-containing glass tube was conducted, to additionally validate the precision of FMT-guided radiation therapy. The FMT can accurately localize the single-nodule breast tumors actively targeted with fluorescent nanoparticles with localization error FMT and CT. The reconstructed tumor volume in FMT was significantly correlated with that in the iodinated contrast-enhanced CT (R2 = 0.94, P FMT was able to guide focal radiation delivery with submillimeter accuracy. Using the tumor-targeting fluorescent probes, the i

  11. X-ray Spectroscopy of Cooling Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  12. The EOS 2D/3D X-ray imaging system: A cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rita, E-mail: rita.nevesdefaria@york.ac.uk [Centre for Health Economics, University of York, York (United Kingdom); McKenna, Claire [Centre for Health Economics, University of York, York (United Kingdom); Wade, Ros; Yang, Huiqin; Woolacott, Nerys [Centre for Reviews and Dissemination, University of York, York (United Kingdom); Sculpher, Mark [Centre for Health Economics, University of York, York (United Kingdom)

    2013-08-15

    Objectives: To evaluate the cost-effectiveness of the EOS{sup ®} 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS{sup ®} to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS{sup ®} is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS{sup ®} is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS{sup ®} is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS{sup ®}. The health benefits from radiation dose reductions are very small. Unless EOS{sup ®} can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness.

  13. [The use of chest X-rays for surveillance of bacterial pneumonias in children in Latin America].

    Science.gov (United States)

    Lagos, Rosanna; di Fabio, José Luis; Moënne, Karla; Muñoz M, Alma; Wasserman, Steven; de Quadros, Ciro

    2003-05-01

    The Division of Vaccines and Immunization of the Pan American Health Organization (PAHO) is promoting epidemiological surveillance of bacterial pneumonias in children in Latin America in order to generate scientific evidence to support future decisions concerning using vaccines to control such pneumonias in the countries of the Region of the Americas. The diagnosis of these diseases rarely includes bacteriological documentation of the causative agent. Therefore, studies of this type that are carried out around the world accept radiological images of alveolar consolidation as a confirmatory criterion for a presumptively bacterial pneumonia. This piece examines the theoretical rationale and requirements for using thorax radiology as an instrument for epidemiological surveillance of bacterial pneumonias. The piece also summarizes the activities carried out during 2 years of joint efforts between the Center for Vaccine Development (Centro para Vacunas en Desarrollo) of Chile and PAHO's Division of Vaccines and Immunization. During those 2 years, the two groups encouraged the epidemiological study of bacterial pneumonias in Latin American children, using internationally accepted criteria and definitions as well as tools and practical solutions adapted to the reality of the Region of the America. The activities carried out so far show both the need for and the feasibility of standardizing the interpretation of chest radiographs so that they can be used in epidemiological studies.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... This ensures that those parts of a patient's body not being imaged receive minimal radiation ... x-ray images are among the clearest, most detailed views of ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... may be placed over your pelvic area or breasts when feasible to protect from ... chance of cancer from excessive exposure to radiation. However, the benefit ...

  16. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  17. Measurement of patient dose and the half value layer of X-ray in intraoral radiography. A report from the Radiation Protection Committee

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takehito; Kato, Tuguhisa; Iwai, Kazuo; Okano, Tomohiro; Sato, Kenji; Shimano, Tatuya; Hayami, Akimune; Wada, Shinichi [Japanese Society for Oral and Maxillofacial Radiology, Tokyo (Japan). Radiation Protection Committee; Juto, Norimichi

    2000-05-01

    To test the reliability and reproducibility of the measurements using glass dosimeter on both of the dose and the quality of X-ray used in intraoral radiography. Based on our preliminary experiment performed by the Radiation Protection Committee, Japanese Society for Oral and Maxillofacial Radiology, doses in air kerma and effective energies of X-ray measured by glass dosimeter (Toshiba Glass Corp) were compared with those measured by an ionization chamber calibrated to the national standard. Twenty-six of 29 departments of dental radiology joined in this study in Japan. The linear regression analysis of 20 paired data between doses in air kerma in air measured using glass dosimeter and doses obtained from measurements using an ionization chamber indicated a highly significant correlation. The result was highly reproducible compared to that obtained from our preliminary experiment. The back scatter factor estimated from the half value layer and the radius of radiation field was narrowly distributed, and the mean with the standard deviation was 1.269{+-}0.003. It was estimated from the present measurements that the guidance level expressed as air kerma at the skin surface was about 7 mGy for the radiography of the maxillary molar region in the dental radiology department of Japanese dental school hospitals. Although the correlation between effective energies obtained from the measurement using a glass dosimeter and those obtained from half value layers using an ionization chamber was statistically significant, the correlation coefficient was not high enough to detect a change of X-ray quality in intraoral radiography. The glass dosimeter method is highly reliable for measuring X-ray doses of air kerma in air but not for detecting a change of X-ray quality in intraoral radiography. (author)

  18. Radiation dose to adult patients in LS spine X-ray examinations of health centres in one central hospital district in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Innanmaa, L.; Petaejaejaervi, M. [Pirkanmaa Polytechnic, Tampere (Finland); Parviainen, T.; Servomaa, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2003-06-01

    According to the Medical Exposure Directive (97/43/Euratom), the radiation dose to the patient should be measured and the doses compared against to the national reference doses. The European Commission has issued quality criteria for x-ray examinations for adults. The criteria to be considered include clinical image quality, examination techniques and radiation dose. The radiation dose caused by x-ray examinations to adult patients should be measured or calculated for at least ten standard size patients (70 kg {+-} 15 kg). At every unit of the department, the radiation dose is determined, at regular intervals, for the most general examinations, at least in one projection. If the comparison dose levels are exceeded repeatedly, both the examination techniques and the radiological units in use must be checked and any corrective actions required must be carried out. The Nordic countries defined Nordic reference dose levels for some X-ray examinations in 1996. In Finland, dose reference levels for adults were given on 8 December 2000. (orig.)

  19. [Quantitative structure characteristics and fractal dimension of Chinese medicine granules measured by synchrotron radiation X-ray computed micro tomography].

    Science.gov (United States)

    Lu, Xiao-long; Zheng, Qin; Yin, Xian-zhen; Xiao, Guang-qing; Liao, Zu-hua; Yang, Ming; Zhang, Ji-wen

    2015-06-01

    The shape and structure of granules are controlled by the granulation process, which is one of the main factors to determine the nature of the solid dosage forms. In this article, three kinds of granules of a traditional Chinese medicine for improving appetite and promoting digestion, namely, Jianwei Granules, were prepared using granulation technologies as pendular granulation, high speed stirring granulation, and fluidized bed granulation and the powder properties of them were investigated. Meanwhile, synchrotron radiation X-ray computed micro tomography (SR-µCT) was applied to quantitatively determine the irregular internal structures of the granules. The three-dimensional (3D) structure models were obtained by 3D reconstruction, which were more accurately to characterize the three-dimensional structures of the particles through the quantitative data. The models were also used to quantitatively compare the structural differences of granules prepared by different granulation processes with the same formula, so as to characterize how the production process plays a role in the pharmaceutical behaviors of the granules. To focus on the irregularity of the particle structure, the box counting method was used to calculate the fractal dimensions of the granules. The results showed that the fractal dimension is more sensitive to reflect the minor differences in the structure features than the conventional parameters, and capable to specifically distinct granules in structure. It is proved that the fractal dimension could quantitatively characterize the structural information of irregular granules. It is the first time suggested by our research that the fractal dimension difference (Df,c) between two fractal dimension parameters, namely, the volume matrix fractal dimension and the surface matrix fractal dimension, is a new index to characterize granules with irregular structures and evaluate the effects of production processes on the structures of granules as a new

  20. Evaluation of heavy metals in atmospheric emissions from automotive industry by total reflection X-ray fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Weber Neto, Jose, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa Sirito de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    This study had as goal to determine heavy metals and other elements (Ba, Br, Ca, Pb, Cl, Cr, Sr, Fe, Mn, Ni, K, Si, Ti and Zn) in atmospheric pollutants generated by an automotive industry located in the city of Engenheiro Coelho, state of Sao Paulo, Brazil. The sampling and sample preparation procedures were based on methods established by the Company of Sanitation and Technology (CETESB L9.234) and also by the Environmental Protection Agency (EPA - Method 29). The analysis was performed at XRF Beamline (D09B-XRF) in the Synchrotron Light Source Laboratory (Campinas/SP). A white beam of synchrotron radiation was used for sample and standard excitation which were irradiated by 100 seconds. For X-ray lines detection, a Ge (HP) detector with 150 eV of resolution at 5.9 keV was employed. For zinc, iron, barium, calcium and potassium, the values obtained were in the range of 30 mg/Nm{sup 3} and, for other elements, the concentrations were approximately 1 mg/Nm{sup 3}. The sum of As, Be, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn concentration was compared with the limits established by CONAMA 264/1999 and SEMA 041/2002 resolutions (7.0 mg/Nm{sup 3}) and it was observed that, for all samples, sums are higher than the permissive value mainly due to the high concentration of zinc. Detection limits for SR-TXRF technique were 0.10 mug/Nm{sup 3} for Pb and 0.02 mug/Nm{sup 3} for Zn. (author)

  1. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  2. Nanometer x-ray lithography

    Science.gov (United States)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  3. Comparative study of scattered radiation levels from 80-kVp and 240-kVp x rays in the surgical intensive care unit

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.W.; Patrick, J.; Tabrisky, J.

    1980-11-01

    The levels of scattered radiation from 80-kVp and 240-kVp mobile x-ray units were measured in the surgical intensive care unit (ICU). The intensity of scatter of the 240-kVp x rays does not decrease with distance as rapidly as with the 80-kVp beam. In an ICU with four beds, the weekly radiation exposure at the nurses's station approximated 0.05 mR (0.13 x 10/sup -7/ C/kg) for the 80-kVp beam and 0.2 mR (0.52 x 10/sup -7/ C/kg) for the 240-kVp beam. Thus, the annual exposure from either unit would be well below the Maximum Permissible Exposure for nonoccupational workers.

  4. The interaction between atoms of Au and Cu with clean Si(111) surface: a study combining synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations.

    Science.gov (United States)

    de Carvalho, Hudson W P; Batista, Ana P L; Ramalho, Teodorico C; Pérez, Carlos A; Gobbi, Angelo Luiz

    2009-09-15

    In order to evaluate the interactions between Au/Cu atoms and clean Si(111) surface, we used synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Optimized geometries and energies on different adsorption sites indicate that the binding energies at different adsorption sites are high, suggesting a strong interaction between metal atom and silicon surface. The Au atom showed higher interaction than Cu atom. The theoretical and experimental data showed good agreement.

  5. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    Energy Technology Data Exchange (ETDEWEB)

    De la Mora, Eugenio [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico); Lovett, Janet E. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland (United Kingdom); Blanford, Christopher F. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN (United Kingdom); Garman, Elspeth F. [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Valderrama, Brenda; Rudino-Pinera, Enrique, E-mail: rudino@ibt.unam.mx [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico)

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  6. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  7. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  8. Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons

    Directory of Open Access Journals (Sweden)

    J. Qiang

    2014-03-01

    Full Text Available In this paper we report on start-to-end simulation of a next generation light source based on a high repetition rate free electron laser (FEL driven by a CW superconducting linac. The simulation integrated the entire system in a seamless start-to-end model, including birth of photoelectrons, transport of electron beam through 600 m of the accelerator beam delivery system, and generation of coherent x-ray radiation in a two-stage self-seeding undulator beam line. The entire simulation used the real number of electrons (∼2 billion electrons/bunch to capture the details of the physical shot noise without resorting to artificial filtering to suppress numerical noise. The simulation results shed light on several issues including the importance of space-charge effects near the laser heater and the reliability of x-ray radiation power predictions when using a smaller number of simulation particles. The results show that the microbunching instability in the linac can be controlled with 15 keV uncorrelated energy spread induced by a laser heater and demonstrate that high brightness and flux 1 nm x-ray radiation (∼10^{12}  photons/pulse with fully spatial and temporal coherence is achievable.

  9. WE-G-303-01: Physical Bases for Gold Nanoparticle Applications in Radiation Oncology and X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. [UT MD Anderson Cancer Center (United States)

    2015-06-15

    Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)

  10. [X-ray hardening correction for ICT in testing workpiece].

    Science.gov (United States)

    Peng, Guang-han; Cai, Xin-hua; Han, Zhong; Yang, Xue-heng

    2008-06-01

    Since energy spectrum of X-ray is polychromatic source in X-ray industrial computerized tomography, the variation of attenuation coefficient with energy leads to the lower energy of X-ray radiation being absorbed preferentially when X-ray is transmitting the materials. And the higher the energy of X-ray, the lower the attenuation coefficient of X-ray. With the increase in the X-ray transmission thickness, it becomes easier for the X-ray to transmit the matter. Thus, the phenomenon of energy spectrum hardening of X-ray takes place, resulting from the interaction between X-ray and the materials. This results in false images in the reconstruction of X-ray industrial computerized tomography. Therefore, hardening correction of energy spectrum of X-ray has to be done. In the present paper, not only is the hardening phenomenon of X-ray transmitting the materials analyzed, but also the relation between the X-ray beam sum and the transmission thickness of X-ray is discussed. And according to the Beer law and the characteristics of interaction when X-ray is transmitting material, and by getting the data of X-ray beam sum, the relation equation is fitted between the X-ray beam sum and X-ray transmission thickness. Then, the relation and the method of equivalence are carried out for X-ray beam sum being corrected. Finally, the equivalent and monochromatic attenuation coefficient fitted value for X-ray transmitting the material is reasoned out. The attenuation coefficient fitted value is used for product back-projection image reconstruction in X-ray industrial computerized tomography. Thus, the effect caused by X-ray beam hardening is wiped off effectively in X-ray industrial computerized tomography.

  11. Radiation Hard Sensors for Surveillance.

    Science.gov (United States)

    1988-03-11

    magnitude higher count rate and better spatial resolution. Table 2: Comparison of diverse 2-D detectors of X-rays. Gas( MWPC ) TV CCD SXD Size: [cm] 20...of various 2-D detectors of neutrons. Gas( MWPC ) Scintillators SIND* Diameter [cm] 20 100 100 Resolution 512 x 512 256 x 256 4096 x 4096 QDE: Thermal 85

  12. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  13. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector

    Science.gov (United States)

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-01

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  14. Qualitative detection of Mg content in a leaf of Hedera helix by using X-ray radiation from a laser plasma source.

    Science.gov (United States)

    Reale, Lucia; Lai, Antonia; Sighicelli, Maria; Faenov, Anatoly; Pikuz, Tatiana; Flora, Francesco; Zuppella, Paola; Limongi, Tania; Palladino, Libero; Poma, Anna; Kaiser, Josef; Galiova, Michaela; Balerna, Antonella; Cinque, Gianfelice

    2008-06-01

    In this article, a method to reveal the presence of Mg content inside the different parts of leaves of Hedera helix is presented. In fact a sample of a Hedera helix's leaf, commonly characterized by a green and a white side, is analyzed under X-ray radiation. The presence of two zones with different colors in the Hedera helix's leaf has not been explained. In this connection, there are presently three hypotheses to explain the characteristic double-color appearance of the leaf. The first hypothesis suggests a different cytoplasmic inheritance of chloroplasts at the cell division, the second a different allelic composition, homozygote and heterozygote, between the two zones, and finally the third the action of a virus which changes the color properties in the Hedera's leaves. The resulting effect is a different content of "something" between the green and the white side. We utilized X-ray radiation, obtained from a plasma source with a Mg target, to image Hedera helix leaves and we found that the green side of the leaf is highlighted. We may suppose that the reason why the X-rays from a Mg plasma source, allow us to pick up the green side is probably due to the greater presence of the amount of Mg (from chlorophyll or other complexes and/or salts) in the two sides, green and white, of the leaf. (c) 2008 Wiley-Liss, Inc.

  15. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility.

    Science.gov (United States)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi; Sun, Xuepeng; Zheng, Lirong; An, Pengfei; Zhu, Jian; Wu, Shurong; Du, Yonghua; Zhang, Jing

    2017-09-01

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368-1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function and flexibility of general XAS beamlines, and extend their capabilities to a wider user community.

  16. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi; Sun, Xuepeng; Zheng, Lirong; An, Pengfei; Zhu, Jian; Wu, Shurong; Du, Yonghua; Zhang, Jing

    2017-08-10

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function and flexibility of general XAS beamlines, and extend their capabilities to a wider user community.

  17. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  18. Characterizing the luminescence properties of LiF crystal imaging detectors using femtosecond soft X-ray monochromatic free electron laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, Tatiana; Faenov, Anatoly [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Fukuda, Yuji; Kando, Masaki; Bolton, Paul [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Mitrofanov, Alexander [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Vinogradov, Alexander [P.N. Lebedev Physical Institute, Russian Academy of Science, Moscow 119991 (Russian Federation); Nagasono, Mitsuru; Tono, Kensuke; Ishikawa, Tetsuya [XFEL RIKEN, SPring-8, Hyogo 679-5198 (Japan); Ohashi, Haruhiko; Yabashi, Makina [XFEL RIKEN, SPring-8, Hyogo 679-5198 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Senba, Yashinori; Togashi, Tadashi [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan)

    2012-12-15

    The monochromatic soft X-ray femtosecond pulses of the Free Electron Laser (FEL) with wavelengths of 17.2-61.5 nm were applied for measurements of optical features of point defects photoluminescence in LiF crystals. It was observed that peak of photoluminescence spectra appears near 530 nm and is associated with emission of F{sub 3}{sup +} centers. Our results suggest that a shortening of the applied laser pulses down to pico - or femtosecond duration causes redistribution of photolumi-nescence peak intensity from the red to the green part of the spectra and does not depend on the energy of EUV or X-ray photons. Dependence of peak intensity of photoluminescence spectra on the fluence of FEL radiation was measured. Even for relatively high fluencies a quenching phenomenon was not observed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells

    Science.gov (United States)

    Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi

    2018-03-01

    Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.

  20. X-ray diffraction analysis of KY3F10 nanoparticles doped with Nd and preliminary studies for its use in high-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Rodrigo U.; Linhares, Horacio M.S.M.D.; Silva, Andre S.B. da; Teixeira, Maria I.; Ranieri, Izilda M.; Turrillas, Xavier; Martinez, G., E-mail: ichikawa@usp.br, E-mail: andre.santos.silva@usp.br, E-mail: miteixeira@ipen.br, E-mail: iranieri@ipen.br, E-mail: lgallego@ipen.br, E-mail: horaciolinhares@id.uff.br, E-mail: xturrillas@icmab.es [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal Fluminense (INFES/ UFF), Niteroi, RJ (Brazil); Institut de Ciència de Materials de Barcelona (ICMAB / CSIC) (Spain)

    2017-07-01

    In this work, the structure and microstructure of Nd:KY{sub 3}F{sub 10} nanoparticles was probed using X-ray synchrotron diffraction analysis. Rietveld refinement was applied to obtain cell parameters, atomic positions and atomic displacement factors to be compared with the ones found in literature. X-ray line profile methods were applied to determine mean crystallite size and crystallite size distribution. Thermoluminescent (TL) emission curves were measured for different radiation doses, from 0.10kGy up to 10.0kGy. Dose-response curves were obtained by area integration beneath the peaks from TL. The reproducibility of the results in this work has shown that this material can be considered a good dosimetric material. (author)

  1. Chromium mapping in male mice reproductive glands exposed to CrCl{sub 3} using proton and X-ray synchrotron radiation microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, R. E-mail: ortega@cenbg.in2p3.fr; Deves, G.; Bonnin-Mosbah, M.; Salome, M.; Susini, J.; Anderson, L.M.; Kasprzak, K.S

    2001-07-01

    Preconception exposure to certain chemicals may increase risk of tumors in offspring, especially with regard to occupational metals such as chromium. However, the mechanism of chromium trans-generation carcinogenicity remains unknown. Using scanning proton X-ray microanalysis we have been able to detect chromium in testicular tissue sections from mice treated by intraperitoneal injection of 1 mmol/kg CrCl{sub 3}. Chromium concentration was about 5 {mu}g/g dry mass in average, but higher concentrations were found within the limiting membrane of the testes, the tunica albuginea. In addition, synchrotron radiation X-ray fluorescence measurements, with microscopic resolution, clearly demonstrated the presence of chromium in the tunica albuginea but also within isolated cells from the interstitial connective tissue.

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... bear denotes child-specific content. Related Articles and Media ... Images related to X-ray (Radiography) - Bone Sponsored by ...

  3. Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4-3.5 billion years ago

    OpenAIRE

    Cnossen, I.; Sanz-Forcada, J.; Favata, F.; Witasse, O.; Zegers, T.; Arnold, N. F.

    2007-01-01

    Solar X-ray and UV radiation (0.1-320 nm) received at Earth's surface is an important aspect of the circumstances under which life formed on Earth. The quantity that is received depends on two main variables: the emission of radiation by the young Sun and its extinction through absorption and scattering by the Earth's early atmosphere. The spectrum emitted by the Sun when life formed, between 4 and 3.5 Ga, was modeled here, including the effects of flares and activity cycles, using a solar-li...

  4. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  5. Novel X-Ray Imaging Technology Allows Substantial Patient Radiation Reduction without Image Quality Impairment in Repetitive Transarterial Chemoembolization for Hepatocellular Carcinoma.

    Science.gov (United States)

    Wen, Xiaofei; Jiang, Xianxian; Li, Renfei; Zhang, Junya; Yang, Po; Shen, Baozhong

    2015-11-01

    To assess patient radiation dose reduction and the image quality of a new X-ray imaging technology during repetitive transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). Fifty HCC patients (36 men; 57 ± 11 years) undergoing repetitive TACE were first randomly assigned to receive a TACE treatment on a reference X-ray system or a low-dose system with advanced real-time image processing. The alternate system was used for a repeated TACE (treatment interval, 0.5-6 months). Fluoroscopy time, number of digital subtraction angiography (DSA), air kerma (AK), and dose area product (DAP) were compared between the two systems and between the two repetitive TACE. Three interventional radiologists independently rated the image quality in blinded offline readings. Fluoroscopy time (8.7 ± 5.9 minutes vs. 8.7 ± 7.9 minutes, P = .981), numbers of DSA runs (6 ± 4 vs. 6 ± 4, P = .735), and exposure images (173 ± 86 vs. 168 ± 91, P = .916) were equivalent between the two systems. No statistical difference in X-ray usage was found between repeated treatments. Compared to the reference system, the technology significantly reduced AK and DAP by 48.6% (0.17 ± 0.13 Gy vs. 0.41 ± 0.36 Gy, P Image quality was rated comparable between the new system and the reference, with average scores of 3.9 ± 0.3 versus 4.4 ± 0.3 in fluoroscopy and 4.5 ± 0.2 versus 4.3 ± 0.3 in DSA. Patient radiation exposure can be substantially reduced by a factor of approximately two with the novel X-ray imaging technology while maintaining image quality. Copyright © 2015. Published by Elsevier Inc.

  6. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    Science.gov (United States)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  7. The response of silicon PNCCD sensors with aluminium on-chip filter to visible light, UV- and X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Granato, Stefanie

    2012-10-18

    There are various scientific applications, from astronomical observations to free electron lasers, that make use of X-ray semiconductor detectors like PNCCDs. The PNCCD is a pixelized semiconductor detector for simultaneous X-ray imaging and spectroscopy. For the seven PNCCD cameras of the eROSITA space telescope, a radiation entrance window including an on-chip optical blocking filter has been designed. The blocking filter is a necessity to minimize electron generation by visible light and UV radiation affecting X-ray spectroscopy. A PNCCD with such a blocking filter has not been used so far in astronomy. The following work deals with the analysis of the response of PNCCDs with on-chip filter. This includes the study of photon absorption and emission processes as well as the transport of electrons inside the detector entrance window. Furthermore it comprises the experimental characterization of the detector properties regarding the attenuation of light as well as their X-ray spectral redistribution function and quantum efficiency. With the ability to reveal the involved physical processes, the PNCCD is subject of analysis and measurement device at the same time. In addition to the results of the measurements, simulations of the solid state physics inside the detector are presented. A Geant4 Monte-Carlo code is extended by the treatment of charge loss in the entrance window and is verified by comparison with experimental data. Reproducing the chain of processes from photon absorption to charge collection, this work provides a detailed understanding of the formation of PNCCD spectra. The spectral features observed in the measurements are attributed to their point of origin inside the detector volume and explained by the model. The findings of this work allow high precision analysis of spectra of silicon detectors, e.g. of the eROSITA data, based on the presented detailed spectral response model.

  8. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  9. Applications and measurements of polycapillary x-ray optics.

    Science.gov (United States)

    Macdonald, C A

    1996-01-01

    The recent invention of Kumakhov polycapillary x-ray and neutron optics has expanded the ways x-ray beams can be controlled. X rays incident on the interior of glass tubes at small angles can be guided down the tubes by total external reflection. Now, arrays of curved tapered capillaries can be used to focus, collimate, and filter x-ray radiation. Extensive research is being conducted on the performance and potential applications of these optics. Potential medical applications include mammography, digital energy subtraction angiography, and focused beam therapy. Other applications are x-ray lithography, x-ray astronomy, crystal diffraction, x-ray fluorescence, and neutron prompt gamma analysis.

  10. Exposure to low level chronic radiation leads to adaptation to a subsequent acute X-ray dose and communication of modified acute X-ray induced bystander signals in medaka (Japanese rice fish, Oryzias latipes).

    Science.gov (United States)

    Smith, Richard W; Mothersill, Carmel; Hinton, Thomas; Seymour, Colin B

    2011-10-01

    To determine the effect of acute high dose X-rays on the direct and bystander response of chronically exposed medaka in vivo using the fish communication model. Medaka were obtained from the Low Dose Rate Irradiation Facility (LoDIF) located at the Savannah River Ecology Laboratory (SREL), University of Georgia, Aiken, South Carolina, USA where they had been exposed over 264 days to cumulative total doses of 0, 0.03, 0.66 and 5.88 Gy. They were exposed to the acute dose at McMaster University and then allowed to swim with unexposed medaka. All groups were sacrificed and fins were cultured as explants and assayed using an established technique and reporter assay. Directly irradiated medaka with no chronic exposure showed a classic in vivo bystander response. Chronic pre-exposure resulted in a chronic dose-dependent increase in reporter cell survival in directly exposed fish. A 'pro-survival' response was also seen in the bystander fish. The proteins bcl-2 (b cell lymphoma 2) and c-Myc (myelocytomatosis oncogene cellular) in tissue explants were good predictors of pro-life or pro-death signals. Environmentally relevant chronic exposure to medaka in vivo results in adaptive responses in fish subsequently irradiated with high acute doses and in communication of protective signals to fish swimming with exposed fish. The data have implications for interpretation of radiation effects in biota.

  11. Do the outflow properties in the most luminous quasars correlate with X-ray radiative output and host dynamical state?

    Science.gov (United States)

    Zappacosta, Luca

    2017-08-01

    We are following up the multiwavelength properties of the WISSH sample of hyperluminous MIR-selected Type 1 quasars at z 2-3. In these objects we expect both powerful AGN feedback and galaxy mergers to manifest themselves in full force. We are finding in LBT/LUCI near infrared data that they are composed by two populations showing powerful mutually exclusive outflows in [OIII] and CIV. Interestingly they seem to show a dichotomy in their X-ray luminosities. Furthermore a HST-WFC3 follow-up of a WISSH quasar with [OIII] outflows show no sign of galaxy mergers. We propose here Chandra (280 ks) and HST (6 orbits) observations of WISSH quasars with the aim of establishing whether the two populations are linked to: (i) different quasar X-ray output and (ii) distinct host dynamical state.

  12. Self-regeneration mechanism of a perovskite-based catalyst studied with synchrotron radiation X-rays

    CERN Document Server

    Nishihata, Y

    2003-01-01

    A perovskite-based catalyst, LaFe sub 0 sub . sub 5 sub 7 Co sub 0 sub . sub 3 sub 8 Pd sub 0 sub . sub 0 sub 5 O sub 3 , maintains its high level of activity with high metal dispersion to control automotive emissions, such as nitrogen oxides (NO sub x), carbon monoxide (CO) and unburned hydrocarbons (HC). It has been demonstrated using X-ray anomalous diffraction (XAD) and X-ray absorption fine structure (XAFS) techniques that palladium reversibly moves between the inside and outside of the perovskite lattice, and that the agglomeration and growth of the metal particles is suppressed as a result of structural responses to the redox fluctuation in the exhaust-gas composition of current gasoline engines. (author)

  13. Search for X-ray induced decay of the 31-yr isomer of 178Hf using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I; Banar, J C; Becker, J A; Bredeweg, T A; Cooper, J R; Gemmell, D S; Kraemer, A; Mashayekhi, A; McNabb, D P; Miller, G G; Moore, E F; Palmer, P; Pangault, L N; Rundberg, R S; Schiffer, J P; Shastri, S D; Wang, T F; Wilhelmy, J B

    2004-09-13

    Isomeric {sup 178}Hf (t{sub 1/2} = 31 yr, E{sub x} = 2.446 MeV, J{sup {pi}} = 16{sup +}) was bombarded by a white beam of x-rays from the Advanced Photon Source at Argonne National Laboratory. A search was made for x-ray induced decay of the isomer by detecting prompt and delayed {gamma} rays associated with the decay. No induced decay was observed. Upper limits for such a process for x-ray energies between 7-100 keV were set. The limits between 7 and 30 keV are below {approx} 3 x 10{sup -27} cm{sup 2}-keV for induced decay that bypasses the 4-s isomer and {approx} 5 x 10{sup -27} cm{sup 2}-keV for induced decay that is delayed through this isomer, orders of magnitude below values at which induced decay was reported previously. These limits are consistent with what is known about the properties of atomic nuclei.

  14. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  15. A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature

    CERN Document Server

    Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

    2014-01-01

    An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

  16. Characterization of ion-bombardment induced modifications of periodic La/B{sub 4}C-multilayer-mirrors for the reflection of soft X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merschjohann, Fabian; Lass, Maike; Gorholt, Lennart; Sacher, Marc D.; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Schaefers, Franz [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II (Germany)

    2010-07-01

    The applicability of reflective optical components for the soft X-Ray region depends on the existence of multilayer-optics. Therefore stacks of alternating layers of two materials with different refractive index are applied. For the photon energy range of 100-190 eV Lanthanum (La) is favoured as the absorber material and Boroncarbide (B{sub 4}C) as the spacer material. Thin periodic layer systems of those materials with double layer periods of 5.6 nm have been produced by UHV Electron Beam Evaporation. The layer thickness is controlled by in-situ X-Ray Reflectometry. The purity and the stoichiometry of the layers has been analyzed by electron beam induced in-situ Auger Spectroscopy. Ion Polishing of each interface should diminish the interface roughness and thus enhance the reflectivity. The modification of the La- and B{sub 4}C-layers due to ion bombardment has been investigated by the in-situ Auger Spectroscopy, ex-situ X-Ray Diffraction and at-wavelength reflectivity measurements by use of Synchrotron radiation at the BESSY II facility. Effects of compaction, mixing, sputter-etching and smoothing have been found. The modifications can be influenced by varying the kinetic energy of the ions and/or the duration of the treatment.

  17. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  18. Surveillance system for radiation monitoring in HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takashi; Yasu, Katsuji; Yoshino, Toshiaki; Ashikagaya, Yoshinobu; Kikuchi, Toshiki; Minowa, Yuuji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Kouichi; Nomura, Toshibumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The High Temperature Engineering Test Reactor (HTTR: thermal output of 30 MW) went critical for the first time on November 10, 1998. Radiation monitoring in the HTTR Rise-to-Power Test was carried out using the surveillance system. This report will be used in radiation monitoring in Rise-to-Power Tests and also in periodic inspection work etc. in HTTR. This report describes the design and specification of the surveillance system for the radiation monitoring which consists of radiation monitors, radiation measuring instruments and personal computers in HTTR. The outline of HTTR is also described. (author)

  19. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  20. Radiation exposure and radiation risk of chest X-rays performed on an intensive care unit; Strahlenexposition und Strahlenrisiko von Roentgen-Thorax-Aufnahmen auf der Intensivstation

    Energy Technology Data Exchange (ETDEWEB)

    Keske, U.; Hierholzer, J.; Ehrenstein, T.; Zippler, A.; Hidajat, N.; Paust, E.; Cordes, M.; Matschke, S.; Felix, R. [Strahlenklinik und Poliklinik, Virchow-Klinikum, Medizinische Fakultaet, Humboldt Universitaet, Berlin (Germany); Pappert, D. [Abt. fuer Anaesthesie und Operative Intensivmedizin, Virchow-Klinikum, Medizinische Fakultaet, Humboldt Universitaet, Berlin (Germany)

    1996-12-31

    Aim of this study was to evaluate the radiation exposure of chest X-rays (CXR) performed on an intensive care unit (ICU) and quantify the resulting radiation risk. Data of 44 patients from an ICU were analyzed. An average of 52 CXRs were performed per patient. With the help of conversion factor charts based on a mathematical human phantom, organ doses were calculated for every patient. Effective dose (E) was calculated with the weighting factors of the ICRP 60. The resulting, age-corrected loss of life expectancy (LLE) was calculated. The average effective dose was 0.053 mSv for a single CXR and 2.73 mSv for all CXRs per patient. The average LLE was 0.026 days per CXR and 1.45 days for all CXRs per patient. It is concluded that radiation exposure and radiation risk of daily CXRs on an ICU are low and neglectable in most clinical situations. (orig.) [Deutsch] Ziel dieser Studie war es, die Strahlenexposition und das Strahlenrisiko von auf einer Intensivstation durchgefuehrten Roentgen-Thorax-Aufnahmen abzuschaetzen. Daten von 44 Intensivstations-Patienten wurden analysiert. Durchschnittlich wurden 52 Aufnahmen pro Patient angefertigt. Mit Hilfe von Konversionsfaktor-Tabellen, welche auf einem mathematischen menschlichen Phantom basieren, wurden fuer jeden Patienten die Organdosen ermittelt und daraus mit den Wichtungsfaktoren der ICRP 60 die effektive Dosis (E) berechnet. Das daraus resultierende durchschnittliche, bezueglich des Patientenalters korrigierte Lebenszeitrisiko (LZV{sub 0}) wurde kalkuliert. Die effektive Dosis betrug durchschnittlich 0,053 mSv pro Aufnahme und 2,73 mSv fuer alle Aufnahmen eines Patienten. Der Lebenszeitverlust betrug durschnittlich 0,026 Tage pro Aufnahme und 1,45 Tage fuer alle Aufnahmen eines Patienten. Die Strahlenexposition und auch das Strahlenrisiko von taeglich durchgefuehrten Roentgen-Thorax-Aufnahmen auf Intensivstationen ist somit als gering einzuschaetzen und duerfte in den meisten klinischen Situationen zu vernachlaessigen

  1. Improved intensifying screen reduces X-ray exposure

    Science.gov (United States)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  2. Lattice dynamics of Al-based quasicrystals studied by high-resolution inelastic X-ray scattering with synchrotron radiation

    CERN Document Server

    Burkel, E; Ponkratz, U; Sinn, H; Alatas, A; Alp, E E

    2003-01-01

    Quasicrystals are aperiodic long-range ordered solids expected to exhibit peculiar dynamical properties. For these new intermetallic phases, previous theoretical work predicted the existence of phason dynamics and a highly structured vibrational density of states. We used the high-resolution inelastic X-ray scattering method to investigate the lattice dynamics of Al-Cu-Fe and Al-Pd-Mn quasicrystals, near the (18,29) diffraction peak situated on the fivefold axis. Phonon dispersion relations were determined for both quasicrystals. In addition to propagating acoustic modes, dispersionless ('optic') low-energy modes were observed.

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  4. Study of Radiation Shielding Properties of selected Tropical Wood Species for X-rays in the 50-150 keV Range

    Directory of Open Access Journals (Sweden)

    S. Aggrey-Smith

    2016-03-01

    Full Text Available This paper compares the attenuation coefficients of 20 tropical hard wood species based on their linear and mass attenuation and half value layer (HVL properties for X-rays of energy 50–150 keV using a narrow collimated beam from a Cs-137 source. The narrow collimated beam method made corrections from multiple and small-angle scatterings of photons unnecessary. The attenuation depended on the chemical composition and densities of the wood species. The linear attenuation coefficients of wood species at 50–150 keV were highest for Pterygota macrocarpa (4.53 m−1 and lowest for Antiaris africana (1.24 m−1; the mass attenuation coefficient was highest for Triplochiton scleroxylon (17.62 m2/kg and lowest for Nesogordonia papaverifera (2.27 m2/kg.The HVL was highest for Antiaris africana (0.27 m and lowest for Pterygota macrocarpa (0.149 m. Pterygota macrocarpa of about 0.36 m thickness could serve as a more affordable radiation shielding material against secondary scatter and leakage radiations in place of lead, copper or concrete for low X-ray radiations up to 150 keV.

  5. Applied radiation physics: The use of x-rays for the structural characterization of aqueous emulsions and the development of new insect sterilization protocols

    Science.gov (United States)

    Brar, Ramaninder K.

    significant complications arise, such as an inability to compete with non-irradiated males and high mortality rates. To improve mosquito SIT, we have developed new radiation protocols for insect sterilization using long wavelength x-rays. Our results have demonstrated that longer wavelength x-rays have a significant effect on the outcome of the sterile males' longevity as well as on the efficacy of sterilization while employing a substantially lower dose.

  6. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T., E-mail: kjose@nuclear.ufrj.br, E-mail: marcelin@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: roberta@lin.ufrj.br, E-mail: eligouveab@gmail.com, E-mail: maria_aparecida_ufrj@yahoo.com.br, E-mail: luiz.nasciutti@histo.ufrj.br, E-mail: roberta.leitao@uerj.br, E-mail: marcelin@uerj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica

    2017-11-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  7. Structural changes of polymer-coated microgranules and excipients on tableting investigated by microtomography using synchrotron X-ray radiation.

    Science.gov (United States)

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Itai, Shigeru

    2015-03-15

    Multiple-unit tablets consisting of polymer-coated microgranules and excipients have a number of advantageous pharmaceutical properties. Polymer-coated microgranules are known to often lose their functionality because of damage to the polymer coating caused by tableting, and the mechanism of polymer coating damage as well as the structural changes of excipients upon tableting had been investigated but without in-situ visualization and quantitative analysis. To elucidate the mechanism of coating damage, the internal structures of multiple-unit tablets were investigated by X-ray computed microtomography using synchrotron X-rays. Cross sectional images of the tablets with sub-micron spatial resolution clearly revealed that void spaces remained around the compressed excipient particles in the tablets containing an excipient composed of cellulose and lactose (Cellactose(®) 80), whereas much smaller void spaces remained in the tablets containing an excipient made of sorbitol (Parteck(®) SI 150). The relationships between the void spaces and the physical properties of the tablets such as hardness and disintegration were investigated. Damage to the polymer coating in tablets was found mainly where polymer-coated microgranules were in direct contact with each other in both types of tablets, which could be attributed to the difference in hardness of excipient particles and the core of the polymer-coated microgranules. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Study of imperfect natural diamonds with the application of the X-ray synchrotron radiation (the 'Laue-SR' method)

    CERN Document Server

    Rylov, G M; Sobolev, N V; Kulipanov, G N; Kondratyev, V I; Tolochko, B P; Sharafutdinov, M R

    2001-01-01

    The 'Laue-SR' method has been realised for fast gathering experimental data in the study of imperfect natural and synthesised diamonds which are hard to investigate with the conventional X-ray methods. Time to obtain a diffraction pattern with the use of the polychromatic SR is shorter by several orders; the resolution of the image of substructure defects of a crystal lattice (as compared to the conventional Laue method) is improved by an order and does not vanish even at large disorientation or other non-coherent disturbances of the crystal lattice. The 'Laue-SR' method is especially appropriate for the study of intact, sufficiently large diamond crystals (up to 5 mm), since the diamond has a small coefficient of the X-ray absorption and is practically transparent in the operational range of the SR waves, lambda=0.5-1.5 A. This method was shown to be applied successfully for an accelerated study of a large bulk of imperfect natural diamond crystals without any preliminary preparation and without their destru...

  9. Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces.

    Science.gov (United States)

    Regulla, D F; Hieber, L B; Seidenbusch, M

    1998-07-01

    Dose enhancement up to more than a factor of 100 was found in an environment of tissue-equivalent polymethylmethacrylate (PMMA) close to the surface of a thin metallic gold foil. The enhancement factors were determined for heavily filtered X rays (40 to 120 kV tube potential) under backscatter conditions, using thin-film radiation detectors with sub-micrometer resolution. The secondary electrons were found to range up to some 10 microm in tissue-equivalent material. Correspondingly, enhanced biological effects could be shown in vitro, using monolayers of C3H 10T1/2 mouse embryo fibroblasts exposed in intimate contact with the gold surface. The decay of the survival curves of cells irradiated on gold was significantly steeper than for those obtained from irradiation between PMMA disks with the same dose, also giving biological evidence for significantly enhanced doses at the gold interface. The shape of the inactivation curves resembled those for high-LET radiation, lacking a pronounced shoulder at the lower doses. Quantitatively, doses of e.g. 50 mGy (80 kV X rays) in homogeneous PMMA caused about 35% cell killing and 200 mGy about 80% when the cells were irradiated at the gold surface. From a comparison of these inactivation numbers with those found for irradiation between PMMA disks, biological dose enhancement factors for the cell system considered ranged up to about a factor of 50. In addition to cell inactivation, the in vitro irradiations of C3H 10T1/2 cells adjacent to the gold surface resulted in increased rates of oncogenic transformation. A dose of 100 mGy 80 kV X rays (measured in homogeneous PMMA) caused a frequency at an inserted gold surface comparable to that obtained with a dose of about 4.5 Gy of 60Co gamma rays in homogeneous PMMA.

  10. Radiation Protection Clothing in X-Ray Diagnostics - Influence of the Different Methods of Measurement on the Lead Equivalent and the Required Mass.

    Science.gov (United States)

    Schöpf, T; Pichler, T

    2016-08-01

    The determination of attenuation compared to lead for lead-free and lead-reduced protective clothing depends strongly on the different methods of measurement. The standards EN 61331-1 (2002), DIN 6857-1 und IEC 61331-1 (2014) are now available for the testing of protective clothing. These standards define methods in the narrow beam and in the inverse broad beam geometry with partially different radiation qualities. In the narrow beam the scattered radiation and fluorescence are not considered due to the arrangement. Therefore, the protective effect of lead-free materials will be incorrectly estimated compared to lead material. The influence of the different methods of measurement on the lead equivalent and the required mass of radiation protection clothing was examined. The lead equivalents for material samples for commercially available protective clothing were determined. These samples were made of lead and lead-reduced and lead-free materials. For determination of the attenuation equivalents, certified lead foils with high purity and a precise thickness of 0.05 to 1.25 mm were used. The measurements indicate that the lead equivalent depends on the method of measurement and the radiation quality. For X-ray tube voltages below 110 kV, lead-free or lead-reduced materials show a higher lead equivalent compared to lead material in some cases. Significant mass reductions of more than 10 % compared to lead material are only achievable with a limited range of use up to 100 kV. The implementation of an internationally accepted measuring standard for radiation protection clothing is reasonable and necessary. If standard IEC 61331-1 (2014) can fill this role is unknown. Key points • The attenuation factor and the lead equivalent depend strongly on the method of measurement.• The used X-ray spectra are only partially comparable with the spectra of scattered radiation.• Mass reductions for protective clothing are only achievable with a limited range of

  11. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Lung tissue absorbs little radiation and will appear dark on the image. Until recently, x-ray images ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  12. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  13. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    Science.gov (United States)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  14. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Tobias J.; Pfirrmann, Christian W.A.; Pankalla, Katja; Buck, Florian M. [Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Schwab, Alexander [University of Zurich, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Finances, Zurich (Switzerland)

    2013-07-15

    To compare the radiation dose, workflow, patient comfort, and financial break-even of a standard digital radiography and a biplanar low-dose X-ray system. A standard digital radiography system (Ysio, Siemens Healthcare, Erlangen, Germany) was compared with a biplanar X-ray unit (EOS, EOS imaging, Paris, France) consisting of two X-ray tubes and slot-scanning detectors, arranged at an angle of 90 allowing simultaneous vertical biplanar linear scanning in the upright patient position. We compared data of standing full-length lower limb radiographs and whole spine radiographs of both X-ray systems. Dose-area product was significantly lower for radiographs of the biplanar X-ray system than for the standard digital radiography system (e.g. whole spine radiographs; standard digital radiography system: 392.2 {+-} 231.7 cGy*cm{sup 2} versus biplanar X-ray system: 158.4 {+-} 103.8 cGy*cm{sup 2}). The mean examination time was significantly shorter for biplanar radiographs compared with standard digital radiographs (e.g. whole spine radiographs: 449 s vs 248 s). Patients' comfort regarding noise was significantly higher for the standard digital radiography system. The financial break-even point was 2,602 radiographs/year for the standard digital radiography system compared with 4,077 radiographs/year for the biplanar X-ray unit. The biplanar X-ray unit reduces radiation exposure and increases subjective noise exposure to patients. The biplanar X-ray unit demands a higher number of examinations per year for the financial break-even point, despite the lower labour cost per examination due to the shorter examination time. (orig.)

  15. The PASERO Project: parallel and serial readout systems for gas proportional synchrotron radiation X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.H.J. E-mail: koch@embl-hamburg.de; Boulin, C.; Briquet-Laugier, F.; Epstein, A.; Sheldon, S.; Beloeuvre, E.; Gabriel, A.; Herve, C.; Kocsis, M.; Koschuch, A.; Laggner, P.; Leingartner, W.; Raad Iseli, C. de; Reimann, T.; Golding, F.; Torki, K

    2001-07-21

    A project aiming at producing more efficient position sensitive gas proportional detectors and readout systems is presented. An area detector with reduced electrode spacing and a spatial resolution of 0.5 mm and two time to digital convertors (TDC) based on ASICs were produced. The first TDC, intended for use with linear detectors, relies on time to space conversion, whereas the second one, for area detectors, uses a ring oscillator with a phase locked loop. A parallel readout system for multi-anode detectors aiming at a maximum count rate extensively uses RISC microcontrollers. An electronic simulator of linear detectors built for test purposes and a mechanical chopper used for attenuation of the X-ray beam are also briefly described.

  16. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  17. Using Local Radiation MHD Simulations to Attempt to Understand the Very High/Steep Power Law State of Black Hole X-ray Binaries

    Science.gov (United States)

    Blaes, Omer

    Stellar mass black holes in certain types of binary systems accrete matter from their companion stars through rotating, turbulent flows known as accretion disks. These disks are observed by space X-ray missions to have a number of distinct spectral/variability states, the most mysterious one being the very high/steep power law state that generally occurs at very high luminosities. This state is particularly interesting as it exhibits unique quasi-periodic oscillations observed in the X-rays that, if understood, might help us directly measure the properties of the black hole spacetime. Radiation pressure is an important physical process at such high luminosities, and modifies the character of the accretion disk in a number of unique ways. One of the ways that it does this is that it enables turbulent speeds in the disk to exceed thermal speeds of electrons, thereby introducing a completely new radiation process - turbulent Comptonization. This radiation process is promising for explaining the unique spectral characteristics of the very high/steep power law state. We will test this hypothesis by making detailed calculations of the emergent radiation spectrum from numerical simulation data of the turbulence in local patches of the disk at high levels of radiation pressure. These will be the first detailed theoretical calculations of turbulent Comptonization, which should be an important process for modeling NASA data from high luminosity black hole accretion. We hope that this will shed light on the nature of the mysterious very high/steep power law state. The research will form the basis of the PhD thesis of a graduate student, in line with NASA's educational and training objectives.

  18. The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae

    Science.gov (United States)

    Leuko, Stefan; Rettberg, Petra

    2017-02-01

    Three halophilic archaea, Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae, have been exposed to different regimes of simulated outer space ionizing radiation. Strains were exposed to high-energy heavy ion (HZE) particles, namely iron and argon ions, as well as to γ radiation (60Co) and X-rays, and the survival and the genetic integrity of the 16S rRNA gene were evaluated. Exposure to 1 kGy of argon or iron ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Japan did not lead to a detectable loss in viability; only after exposure to 2 kGy of iron ions a decline in survival was observed. Furthermore, a delay in growth was manifested following exposure to 2 kGy iron ions. DNA integrity of the 16S rRNA was not compromised up to 1 kGy, with the exception of Hcc. hamelinensis following exposure to argon particles. All three strains showed a high resistance toward X-rays (exposed at the DLR in Cologne, Germany), where Hcc. hamelinensis and Hcc. morrhuae displayed better survival compared to Hbt. salinarum NRC-1. In all three organisms the DNA damage increased in a dose-dependent manner. To determine a biological endpoint for survival following exposure to γ radiation, strains were exposed to up to 112 kGy at the Beta-Gamma-Service GmbH (BGS) in Germany. Although all strains were incubated for up to 4 months, only Hcc. hamelinensis and Hcc. morrhuae recovered from 6 kGy of γ radiation. In comparison, Hbt. salinarum NRC-1 did not recover. The 16S rRNA gene integrity stayed remarkably well preserved up to 48 kGy for both halococci. This research presents novel data on the survival and genetic stability of three halophilic archaea following exposure to simulated outer space radiation.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  1. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  2. Radiosensitization to X-ray radiation by telomerase inhibitor MST-312 in human hepatoma HepG2 cells.

    Science.gov (United States)

    Wang, Yali; Sun, Chao; Mao, Aihong; Zhang, Xin; Zhou, Xin; Wang, Zhenhua; Zhang, Hong

    2015-02-15

    Previous studies in malignant cells have shown that irradiation-induced upregulation of telomerase activity, not only protected damaged telomeres, but also contributed to DNA damage repair by chromosomal healing and increased resistance to irradiation. The purpose of the present study was to investigate the radiosensitizing effect of telomerase inhibitor MST-312 and the corresponding mechanism in the human hepatoma cell line HepG2. Cell proliferation, telomerase activity, cell cycle distribution, DNA damage and repair, expression of p53, mitochondrial membrane potential, and cell apoptosis were measured with the MTT assay, real-time fluorescent quantitative PCR, flow cytometry, immunofluorescence, western blots, JC-1 staining, and Hoechst 33258 staining, respectively. MST-312 effectively inhibited telomerase activity and showed relative weak toxicity to HepG2 cells at 4 μM. Compared with irradiation alone, 4 μM MST-312 pretreatment, followed by X-ray treatment, significantly reduced clonogenic potential. Aggravated DNA damage and increased sub-G1 cell fractions were observed. Further investigation found that homologous recombination (HR) repair protein Rad51 foci nuclear formation was blocked, and expression of p53 was elevated. These led to the collapse of mitochondrial membrane potential, and enhanced the apoptotic rate. These data demonstrated that disturbances of telomerase function could enhance the radiosensitivity of HepG2 cells to X-ray irradiation by impairing HR repair processes. In addition, telomerase inhibitor MST-312 may be useful as an adjuvant treatment in combination with irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Preparation and imaging performance of nanoparticulated LuPO4:Eu semitransparent films under x-ray radiation

    Science.gov (United States)

    Seferis, I. E.; Zeler, J.; Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Panayiotakis, G. S.; Zych, E.

    2015-12-01

    The aim of the present work was to demonstrate the fabrication technique for semitransparent layers of nanoparticulated (~50 nm) LuPO4:15%Eu phosphors. Furthermore, to present their basic luminescent properties and provide results regarding their performance in a planar imaging system incorporating a CMOS photodetector. Parameters such as the Detective Quantum Efficiency (DQE), the Normalized Noise Power Spectrum (NNPS) and the Modulation Transfer Function (MTF), were investigated. The NNPS was found to present significantly higher values near the zero frequency for the 67 μm, 100 μm films, pointing on their higher non uniformities compared to the 220 and 460 μm films For the two thickest films (460 μm and 220 μm) the MTF curves practically do not differ, while MTFs for the thinner layers of 100 μm and 67 μm are higher as the layer's thickness decreases. The higher DQE values observed for the 220 μm and 460 μm films up to medium frequencies, while at high frequencies the DQE values are comparable. Although the MTF values of these films are much lower than the thinner screens, the capability of the higher x-ray absorption, in conjunction with the low noise properties, lead to higher DQE values. The LuPO4:Eu semitransparent films seems to be a very promising scintillator for stationary x-ray imaging. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains, and thus without sacrificing their translucent character.

  4. Vertical beam size measurement in the CESR-TA e{sup +}e{sup −} storage ring using x-rays from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P.; Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Hopkins, W.; Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Savino, J.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2GeV. At such beam energies the xBSM images X-rays of ϵ≈1–10keV (λ≈0.1–1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×10{sup 9} particles) per bunch and inter-bunch spacing of as little as 4 ns. At E{sub b}=2.1GeV, systematic precision of ∼1μm is achieved for a beam size of ∼12μm; this is expected to scale as ∝1/σ{sub b} and ∝1/E{sub b}. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  5. Antero-posterior (AP) pelvis x-ray imaging on a trolley: Impact of trolley design, mattress design and radiographer practice on image quality and radiation dose.

    Science.gov (United States)

    Tugwell, J R; England, A; Hogg, P

    2017-08-01

    Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application

    Science.gov (United States)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Baca, Tomas; Daniel, Vladimir; Hudec, Rene

    2017-11-01

    In the upcoming generation of small satellites there is a great potential for testing new sensors, processes and technologies for space and also for the creation of large in situ sensor networks. It plays a significant role in the more detailed examination, modelling and evaluation of the orbital environment. Scientific payloads based on the CubeSat technology are also feasible and the miniature X-ray telescope described in this paper may serve as an example. One of these small satellites from CubeSat family is a Czech CubeSat VZLUSAT-1, which is going to be launched during QB50 mission in 2017. This satellite has dimensions of 100 mm × 100 mm × 230 mm. The VZLUSAT-1 has three main payloads. The tested Radiation Hardened Composites Housing (RHCH) has ambitions to be used as a structural and shielding material to protect electronic devices in space or for constructions of future manned and unmanned spacecraft as well as Moon or Martian habitats. The novel miniaturized X-ray telescope with a Lobster Eye (LE) optics represents an example of CubeSat's scientific payload. The telescope has a wide field of view and such systems may be essential in detecting the X-ray sources of various physical origin. VZLUSAT-1 also carries the FIPEX payload which measures the molecular and atomic oxygen density among part of the satellite group in QB50 mission. The VZLUSAT-1 is one of the constellation in the QB50 mission that create a measuring network around the Earth and provide multipoint, in-situ measurements of the atmosphere.

  7. Studies of crystalline CdZnTe radiation detectors and polycrystalline thin film CdTe for X-ray imaging applications

    CERN Document Server

    Ede, A

    2001-01-01

    The development of a replacement to the conventional film based X-ray imaging technique is required for many reasons. One possible route for this is the use of a large area film of a suitable semiconductor overlaid on an amorphous silicon readout array. A suitable semiconductor exists in cadmium telluride and its tertiary alloy cadmium zinc telluride. In this thesis the spectroscopic characteristics of commercially available CZT X- and gamma-radiation detectors are established. The electronic, optical, electro-optic, structural and compositional properties of these detectors are then investigated. The attained data is used to infer a greater understanding for the carrier transport in a CZT radiation detector following the interaction of a high energy photon. Following this a method used to fabricate large area films of CdTe on a commercial scale is described. This is cathodic electrodeposition from an aqueous electrolyte. The theory and experimental arrangement for this technique are described in detail with ...

  8. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter

    Science.gov (United States)

    Alqathami, M.; Blencowe, A.; Yeo, U. J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M.

    2013-06-01

    The aim of this study is to present the first experimental validation and quantification of the dose enhancement capability of bismuth oxide nanoparticles (Bi2O3-Nps). A recently introduced multi-compartment 3D radiochromic dosimeter for measuring radiation dose enhancement produced from the interaction of X-rays with metal nanoparticles was employed to investigate the 3D spatial distribution of ionizing radiation dose deposition. Dose-enhancement factor for the dosimeters doped with Bi2O3-NPs was ~1.9 for both spectrophotometry and optical CT analyses. Our results suggest that bismuth-based nanomaterials are efficient dose enhancing agents and have great potential for application in clinical radiotherapy.

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  15. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  3. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  4. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, University of Jena, 07743 Jena (Germany); Weber, G.; Märtin, R. [Helmholtz Institute Jena, 07743 Jena (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, University of Jena, 07743 Jena (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2016-04-15

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  5. Relativistic effects on the linear polarization and angular distribution of x-ray radiation emitted by inner-shell photoionization of atoms

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong; Qu, Yi-Zhi

    2017-11-01

    We present a theoretical study of relativistic effects on the linear polarization and angular distribution of x-ray radiation for the L {α }2 (3{d}3/2\\to 2{p}3/2) characteristic line following inner-shell single photoionization of Cd, Ba, Yb and Ra atoms. The analysis is performed based on the multi-configuration Dirac–Fock method and the density matrix theory. To explore the nature of these effects, calculations are carried out based on detailed analyses of the total and magnetic sublevel cross sections, the linear polarization, and the angular distribution of the x-ray photoemission, as well as on corresponding data calculated in the nonrelativistic limit. Our results show a significant difference in the above parameters compared to the nonrelativistic treatment, which is mainly due to the relativistic treatment of the target. Higher multipole contributions are also estimated, and found to be generally weaker. The importance of inclusion of the relativistic effects grows with increasing atomic number and the incoming photon energy.

  6. Polyglycolic acid-polylactic acid scaffold response to different progenitor cell in vitro cultures: a demonstrative and comparative X-ray synchrotron radiation phase-contrast microtomography study.

    Science.gov (United States)

    Giuliani, Alessandra; Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-04-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid-polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold.

  7. Polyglycolic Acid–Polylactic Acid Scaffold Response to Different Progenitor Cell In Vitro Cultures: A Demonstrative and Comparative X-Ray Synchrotron Radiation Phase-Contrast Microtomography Study

    Science.gov (United States)

    Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-01-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid–polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738

  8. Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry.

    Science.gov (United States)

    Nishiwaki, Yoshinori; Watanabe, Seiya; Shimoda, Osamu; Saito, Yasuhiro; Nakanishi, Toshio; Terada, Yasuko; Ninomiya, Toshio; Nakai, Izumi

    2009-05-01

    High-energy synchrotron radiation x-ray fluorescence spectrometry (SR-XRF) utilizing 116 keV x-rays was used to characterize titanium dioxide pigments (rutile) and automotive white paint fragments for forensic examination. The technique allowed analysis of K lines of 9 trace elements in 18 titanium dioxide pigments (rutile), and 10 trace elements in finish coat layers of seven automotive white paint fragments. High-field strength elements (HFSE) were found to strongly reflect the origin of the titanium dioxide (TiO(2)) pigments, and could be used as effective parameters for discrimination and classification of the pigments and paint fragments. A pairwise comparison of the finish coat layers of seven automotive white paint fragments was performed. The trace elements in the finish coat layers detected by the high-energy SR-XRF were especially effective for identification. By introducing the trace element information of primer and electrocoat layers, all the automotive white paint fragments could be discriminated by this technique.

  9. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Sirito de Vives, Ana Elisa [School of Civil Engineering, Architecture and Urban Design Methodist University of Piracicaba, Rodovia Santa Barbara D' Oeste/Iracemapolis, km 01, 13450-000 Santa Barbara D' Oeste, SP (Brazil)]. E-mail: aesvives@unimep.br; Moreira, Silvana [State University of Campinas - UNICAMP/FEC (Brazil); Brienza, Sandra Maria Boscolo [School of Civil Engineering, Architecture and Urban Design Methodist University of Piracicaba, Rodovia Santa Barbara D' Oeste/Iracemapolis, km 01, 13450-000 Santa Barbara D' Oeste, SP (Brazil); Silva Medeiros, Jean Gabriel [University of Sao Paulo - USP/ ESALQ (Brazil); Tomazello Filho, Mario Tomazello [University of Sao Paulo - USP/ ESALQ (Brazil); Araujo Domingues Zucchi, Orgheda Luiza [University of Sao Paulo - USP/FCFRP (Brazil); Nascimento Filho, Virgilio Franco do [University of Sao Paulo - USP/CENA (Brazil)

    2006-11-15

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, Sao Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ('Sibipiruna') was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.

  10. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence

    Science.gov (United States)

    Mantuano, Andrea; Pickler, Arissa; Barroso, Regina C.; de Almeida, André P.; Braz, Delson; Cardoso, Simone C.; Gonzalez, Marcelo S.; Figueiredo, Marcela B.; Garcia, Eloi S.; Azambuja, Patricia

    2012-05-01

    In recent years, the effects of pollution on the health of humans and other vertebrates were extensively studied. However, the effects on some invertebrates are comparatively unknown. Recent studies have demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Some environmental conditions including pollution produce chronic and acute effects on different animal's organs and systems. In this work, we investigated changes in the concentrations of Cl, K, Ca, Fe and Zn in Rhodnius prolixus as insect model. The elements were quantified using urine and hemolymph samples collected on different days after feeding the insects with blood containing HgCl2. The synchrotron radiation total reflection X-ray fluorescence measurements were carried at the X-ray fluorescence beamline facility in Brazilian Synchrotron Light Laboratory. The observation reveals that the calcium level was higher in the hemolymph than in urine. On the other hand, the urine collected from insects treated with HgCl2 showed higher level of Cl than hemolymph samples. Ca, Fe and Zn concentrations decrease drastically in urine samples collected after 2 days of HgCl2 treatment. The regulation of triatomines excretion was discussed pointing out the importance of trace elements.

  11. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    Science.gov (United States)

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-01

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  12. X-ray spectra determination applied to establishment of radiation primary qualities at mammography; Determinacao de espectros de raios X visando a implementacao de qualidades primarias de radiacao em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Tomal, A.; Lopes, M.R.; Cunha, D.M.; Poletti, M.E., E-mail: alessandra_tomal@yahoo.com.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-07-01

    An accurate determination of X-ray spectra is essential for studying the image quality and the absorbed dose in mammography. X-ray spectroscopy is usually performed using semiconductor detectors and a proper stripping procedure. In this work, an Si(Li) detector was used to measure mammographic x-ray spectra produces by a metrological tube with Molybdenum (Mo) target, operating at constant tube potentials between 22 and 35 kV. At the tube exit were inserted filters of Mo and/or Al with 99.9% of purity, in order to reproduce the radiation qualities produced by X-ray mammographic equipment. The detector response functions used in the stripping procedure were determined using a Monte Carlo method and validated through comparisons with experimental results obtained for radioactive sources ({sup 55}Fe, {sup 137}Cs, {sup 137}Ba and 2{sup 41}Am). The results of this work show that a Si(Li) detector exhibits good response function in low energy. The measured X-ray spectra corrected using the stripping procedure, showed a good agreement with the reference clinical spectra. Besides, from the HVL values achieved in this work, it can conclude that the radiation qualities implemented in this work are consistent with that obtained for clinical X-ray beams and can be applied to calibration of the diagnostic radiology measurements instruments (e.g. ionization chambers. (author)

  13. Radiation dose and cancer risk in patients undergoing multiple radiographs in intravenous urography X-ray examinations

    Science.gov (United States)

    Suliman, I. I.; Al-Jabri, Amna J.; Badawi, A. A.; Halato, M. A.; Alzimami, K.; Sulieman, A.

    2014-11-01

    The purpose of the this study was to measure the entrance surface air kerma (ESAK) and body organs, and the effective doses in intravenous urography (IVU) X-ray examinations in Sudanese hospitals. Seventy-two patients who underwent IVU multiple radiographs from five hospitals (six rooms) were examined. ESAK was calculated from incident air kerma (Ki) using patient exposure parameters and tube output Y(d). Dose calculations were performed using CALDOSE X 5.1 Monte Carlo-based software. Risk of cancer induction (4-8) and mortality per million (2-4) varied. The gallbladder, colon, stomach, gonads and uterus received organ doses of 5.3, 3.6, 3.2, 0.61, and 0.8 mGy, respectively. ESAK values ranged from 6.6 to 15.3 mGy (effective doses: 0.70-1.6 mSv). Mean ESAK fall slightly above the diagnostic reference level. Several optimization strategies to improve dose performance were discussed. Reducing the number of radiographs and the use of technique charts according to patient sizes and anatomic areas are among the most important dose optimization tools in IVU.

  14. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters.

    Science.gov (United States)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-12-01

    The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.

  15. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays.

    Science.gov (United States)

    Gapeyev, Andrew B; Aripovsky, Alexander V; Kulagina, Tatiana P

    2015-03-01

    The effects of extremely high-frequency electromagnetic radiation (EHF EMR) on thymus weight and its fatty acids (FA) content and FA composition in X-irradiated mice were studied to test the involvement of FA in possible protective effects of EHF EMR against ionizing radiation. Mice were exposed to low-intensity pulse-modulated EHF EMR (42.2 GHz, 0.1 mW/cm(2), 20 min exposure, 1 Hz modulation) and/or X-rays at a dose of 4 Gy with different sequences of the treatments. In 4-5 hours, 10, 30, and 40 days after the last exposure, the thymuses were weighed; total FA content and FA composition of the thymuses were determined on days 1, 10, and 30 using a gas chromatography. It was shown that after X-irradiation of mice the total FA content per mg of thymic tissue was significantly increased in 4-5 h and decreased in 10 and 30 days after the treatment. On days 30 and 40 after X-irradiation, the thymus weight remained significantly reduced. The first and tenth days after X-rays injury independently of the presence and sequence of EHF EMR exposure were characterized by an increased content of polyunsaturated FA (PUFA) and a decreased content of monounsaturated FA (MUFA) with unchanged content of saturated FA (SFA). Exposure of mice to EHF EMR before or after X-irradiation prevented changes in the total FA content in thymic tissue, returned the summary content of PUFA and MUFA to the control level and decreased the summary content of SFA on the 30th day after the treatments, and promoted the restoration of the thymus weight of X-irradiated mice to the 40th day of the observations. Changes in the content and composition of PUFA in the early period after treatments as well as at the restoration of the thymus weight under the combined action of EHF EMR and X-rays indicate to an active participation of FA in the acceleration of post-radiation recovery of the thymus by EHF EMR exposure.

  16. X-ray Emission from Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav

    2006-01-01

    Isolated (solitary or non-accreting) millisecond pulsars with observed X-ray emission can be divided in two distinct groups: those emitting nonthermal (magnetospheric) radiation and pulsars with the bulk of X-rays of a thermal origin, presumably emitted from small hot spots around the magnetic poles on the neutron star surface (polar caps). I will discuss properties of X-ray emission detected with Chandra and XMM-Newton from a number of millisecond pulsars, with emphasis on those of the thermal component, and compare them with predictions of radio pulsar models.

  17. Radiation safety and quality assurance in diagnostic x-ray imaging 1999; Saeteilyturvallisuus ja laadunvarmistus roentgendiagnostiikassa 1999

    Energy Technology Data Exchange (ETDEWEB)

    Servonmaa, A. [ed.

    1999-04-01

    In the European Union, the Directive 97/43/Euratom concerning the medical use of radiation brings many new tasks to radiation users. Quality assurance, patient dose measurement, staff training and clinical audit are among the most essential of these tasks. The Finnish radiation legislation has been modified to comply with the Directive. Much work is still required for practical implementation of these rules. This report deals with applications of the medical radiation Directive. Most applications are still at the planning stage, and clear guidance is lacking. However, the users have to know in time about these plans and future duties concerning them. Experience on quality assurance and clinical audit in hospitals are especially valuable in providing practical information on benefits and problems of these practices. Other radiation related topics, such as radiation risks, radioactivity in foods, and use of radiation in other European countries, are also included in the report. (orig.)

  18. Radiological surveillance of formerly asbestos-exposed power industry workers: rates and risk factors of benign changes on chest X-ray and MDCT

    OpenAIRE

    Eisenhawer, Christian; Felten, Michael K.; Tamm, Miriam; Das, Marco; Kraus, Thomas

    2014-01-01

    Background To determine the prevalence of asbestos-related changes on chest X-ray (CXR) and low-dose multidetector-row CT (MDCT) of the thorax in a cohort of formerly asbestos-exposed power industry workers and to assess the importance of common risk factors associated with specific radiological changes. Methods To assess the influence of selected risk factors (age, time since first exposure, exposure duration, cumulative exposure and pack years) on typical asbestos-related radiographic chang...

  19. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  20. Zinc mapping in bone tissues by histochemistry and synchrotron radiation-induced X-ray emission: correlation with the distribution of alkaline phosphatase.

    Science.gov (United States)

    Gomez, S; Rizzo, R; Pozzi-Mucelli, M; Bonucci, E; Vittur, F

    1999-07-01

    Zinc distribution in osteons was mapped by synchrotron radiation-induced X-ray emission analysis in both human and porcine adult bone, as well as in porcine bone by histochemistry using Timm's method. Both procedures showed that zinc is not uniformly distributed, being in its highest concentration on haversian bone surfaces. When Timm's method was applied in conjunction with a procedure leading to partial zinc extraction, three zinc pools were specifically detected: a loose one, found in the mineralizable osteoid; a mineral one, bound to the bone mineral; and a tenacious one, firmly bound to an organic component located in the osteoid and mineralizing organic matrix. The alkaline phosphatase distribution was also mapped in porcine adult bone by histochemistry and immunohistochemistry and it was found codistributed with tenacious zinc mainly at the calcification front. The data suggest that alkaline phosphatase is buried as a bone matrix protein during initial mineralization.

  1. Evidence for Degradation of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques.

    Science.gov (United States)

    Monico, Letizia; Janssens, Koen; Hendriks, Ella; Vanmeert, Frederik; Van der Snickt, Geert; Cotte, Marine; Falkenberg, Gerald; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2015-11-16

    This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-x Sx O4 (x≈0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr(III) compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of image receptor change on radiation exposure to patients in the intensive care of chest X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Polytechnic, Oulu (Finland); Servomaa, A. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2003-06-01

    Digital imaging is becoming increasingly popular in radiology. The use of imaging plates is now common even in small X-ray departments and health centers. The effect of the imaging plates on dose and image quality has been studied and compared with the conventional film-screen system. In the beginning, the change in image receptor may cause many problems with regard to the radiation dose to patients. With a film-screen system, the optical density of the film effectively limits the dose to the patient, but in digital imaging this limitation does not exist. When a film-screen system is changed to a digital imaging plate system, there is no evidence indicating whether the dose is increasing or decreasing. In this study, the dose to the patient in bedside chest examinations was studied over a five-year period. (orig.)

  3. Structural transition induced by charge-transfer in RbMn[Fe(CN) sub 6]. Investigation by synchrotron-radiation X-ray powder analysis

    CERN Document Server

    Moritomo, Y; Sakata, M; Kato, K; Kuriki, A; Tokoro, H; Ohkoshi, S I; Hashimoto, K

    2002-01-01

    Temperature dependence of atomic coordinates is determined for RbMn[Fe(CN) sub 6] by means of synchrotron-radiation (SR) X-ray powder structural analysis. We observed a structural transition from the cubic (F4-bar3m; Z=4) to the tetragonal (I4-barm2; Z=2) phase at approx. =210K in the cooling run and at approx. =300K in the warming run. In the low-temperature tetragonal phase, we found Jahn-Tellar type distortion of the MnN sub 6 octahedra and compression of the averaged Fe-C bond distance. These structural data suggest that the structural transition is triggered by the inter-metallic charge-transfer from the Mn(II) site to the Fe(III) site.

  4. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.

    Science.gov (United States)

    Nakashima, Yoshito; Nakano, Tsukasa; Nakamura, Koichi; Uesugi, Kentaro; Tsuchiyama, Akira; Ikeda, Susumu

    2004-10-01

    The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional

  5. The role of a space patrol of solar X-ray radiation in the provisioning of the safety of orbital and interplanetary manned space flights

    Science.gov (United States)

    Avakyan, S. V.; Kovalenok, V. V.; Savinykh, V. P.; Ivanchenkov, A. S.; Voronin, N. A.; Trchounian, A.; Baranova, L. A.

    2015-04-01

    In interplanetary flight, after large solar flares, cosmonauts are subjected to the action of energetic solar protons and electrons. These energetic particles have an especially strong effect during extravehicular activity or (in the future) during residence on the surface of Mars, when they spend an extended time there. Such particles reach the orbits of the Earth and of Mars with a delay of several hours relative to solar X-rays and UV radiation. Therefore, there is always time to predict their appearance, in particular, by means of an X-ray-UV radiometer from the apparatus complex of the Space Solar Patrol (SSP) that is being developed by the co-authors of this paper. The paper discusses the far unexplored biophysical problem of manned flight to Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut" Soviet cosmonaut crews from three of the co-authors (cosmonauts V.V. Kovalenok, A.S. Ivanchenkov, and V.P. Savinykh) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects coincide with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that during all of these periods, most of the geomagnetic pulsations were completely absent. Possible ways to study the synergistic effects of the simultaneous absence of the geomagnetic field, the magnetic pulsations and the microwave radiation of the terrestrial ionosphere are considered for a flight to Mars.

  6. An attempt of in vivo X-ray diffraction analysis of kidney stones with the use of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ancharov, A.I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str.18, Novosibirsk 630218 (Russian Federation)]. E-mail: ancharov@mail.ru; Nizovskii, A.I. [Boreskov institute of catalysis SB RAS, Novosibirsk (Russian Federation); Gridnev, S.A. [Central city hospital, Berdsk (Russian Federation); Feofilov, I.V. [State regional clinical hospital, Novosibirsk (Russian Federation); Vichkanov, A.N. [State regional clinical hospital, Omsk (Russian Federation)

    2005-05-01

    Estimation of opportunities of the direct analysis of phase structure kidney stones directly in an organism of the patient with the use of synchrotron radiations (SR). Carrying out of experiments on special modelled object 'phantom'. Estimation of the radiation dose.

  7. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  9. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  11. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  13. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  14. Radiolytic yield of ozone in air for low dose neutron and x-ray/gamma-ray radiation

    Science.gov (United States)

    Cole, J.; Su, S.; Blakeley, R. E.; Koonath, P.; Hecht, A. A.

    2015-01-01

    Radiation ionizes surrounding air and produces molecular species, and these localized effects may be used as a signature of, and for quantification of, radiation. Low-level ozone production measurements from radioactive sources have been performed in this work to understand radiation chemical yields at low doses. The University of New Mexico AGN-201 M reactor was used as a tunable radiation source. Ozone levels were compared between reactor-on and reactor-off conditions, and differences (0.61 to 0.73 ppb) well below background levels were measured. Simulations were performed to determine the dose rate distribution and average dose rate to the air sample within the reactor, giving 35 mGy of mixed photon and neutron dose. A radiation chemical yield for ozone of 6.5±0.8 molecules/100 eV was found by a variance weighted average of the data. The different contributions of photons and neutrons to radiolytic ozone production are discussed.

  15. Evaluation of Fe and Zn/Cu ratio in serum of patients with sickle cell anemia by total reflection X-ray fluorescence using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, Catarine G.L.; Leitao, Roberta G.; Lopes, Ricardo T., E-mail: catarine@lin.ufrj.b, E-mail: ricardo@lin.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear. Lab. de Instrumentaco Nuclear; Carvalho, Silvia M.F., E-mail: silvia@hemorio.rj.gov.b [State Institute of Hematology Arthur de Siqueira Cavalcanti (HEMORIO), Rio de Janeiro, RJ (Brazil); Bellido, Alfredo Victor B., E-mail: alfredo@ien.gov.b [Federal Fluminense University (UFF), Niteroi, RJ (Brazil). Chemistry Inst.; Anjos, Marcelino J., E-mail: marcelin@lin.ufrj.b [State University of Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.

    2011-07-01

    Sickle cell anemia (SCA) is a blood disorder that affects hemoglobin, the protein found in red blood cells that help carry oxygen throughout the body. In this work we have analyzed serum samples from patients with SCA by using total reflection X-ray fluorescence using synchrotron radiation (SRTXRF). The SRTXRF measurements were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo using a polychromatic beam. We have studied forty-three patients aged 18-50 years old, suffering from SCA and Sixty healthy volunteers aged 18-60 years old. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Student's t-test was applied in order to check whether the two populations (CG x SCA) had the same mean values. It was observed that elemental concentration of P, Cl, K, Fe, Cu, Zn and Br differed significantly ({alpha} = 0.05) between groups of healthy subjects and SCA. The concentrations of K, Fe and Cu in the serum samples of patients with SCA were larger 15%, 120 % and 20 %, respectively, when compared with the CG. On the other hand, the concentrations of P (-20 %), Cl (-6 %), Zn (-25 %) and Br (-22 %) were smaller than the values determined for the control group. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples of patients with SCA group than the CG. So, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. (author)

  16. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, Andrea, E-mail: mantuanoandrea@gmail.com [Physics Institute, State University of Rio de Janeiro (Brazil); Pickler, Arissa; Barroso, Regina C. [Physics Institute, State University of Rio de Janeiro (Brazil); Almeida, Andre P. de; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Cardoso, Simone C. [Physics Institute, Federal University of Rio de Janeiro (Brazil); Gonzalez, Marcelo S. [Department of General Biology, Fluminense Federal University (Brazil); Figueiredo, Marcela B.; Garcia, Eloi S.; Azambuja, Patricia [Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Foundation (Brazil)

    2012-05-15

    In recent years, the effects of pollution on the health of humans and other vertebrates were extensively studied. However, the effects on some invertebrates are comparatively unknown. Recent studies have demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Some environmental conditions including pollution produce chronic and acute effects on different animal's organs and systems. In this work, we investigated changes in the concentrations of Cl, K, Ca, Fe and Zn in Rhodnius prolixus as insect model. The elements were quantified using urine and hemolymph samples collected on different days after feeding the insects with blood containing HgCl{sub 2}. The synchrotron radiation total reflection X-ray fluorescence measurements were carried at the X-ray fluorescence beamline facility in Brazilian Synchrotron Light Laboratory. The observation reveals that the calcium level was higher in the hemolymph than in urine. On the other hand, the urine collected from insects treated with HgCl{sub 2} showed higher level of Cl than hemolymph samples. Ca, Fe and Zn concentrations decrease drastically in urine samples collected after 2 days of HgCl{sub 2} treatment. The regulation of triatomines excretion was discussed pointing out the importance of trace elements. - Highlights: Black-Right-Pointing-Pointer Changes in Cl, K, Ca, Fe and Zn contents in Rhodnius prolixus were evaluated. Black-Right-Pointing-Pointer In triatomines these elements have not been previously described. Black-Right-Pointing-Pointer Cl, Ca, Zn levels were lower than control in hemolymph after 5 days of HgCl{sub 2} fed. Black-Right-Pointing-Pointer Cl, Ca, Zn levels were higher than control in urine after 2 days of HgCl{sub 2} fed.

  17. Evaluation of growth tree rings of Tipuana Tipu as biomonitoring of environmental pollution by synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Geraldo, Simoni Michetti; Canteras, Felippe Benavente, E-mail: silvana@fec.unicamp.br, E-mail: felippe.canteras@gmail.com [Universidade Estadual de Campinas (FEC/UNICAMP), Campinas, SP (Brazil). Dept. de Saneamento e Ambiente

    2013-07-01

    The bioindicators, plants or animals capable to present qualitative and/or quantitative answers, when exposed to pollutant substances. Trees record and incorporate in their log, developed year after year, the impressions of the environment, becoming possible the study of the different environmental changes, including contamination, that have occurred over the life of these trees. The selected species, Tipuana Tipu, of the Leguminosae family, is native of Argentina and Bolivia and was introduced in Brazil as an ornamental plant. It is one of the most common trees in the urban landscaping in Sao Paulo city. The present project has as main objective the determination of the content of potentially toxic elements in samples of growth the tree rings of Tipuana Tipu, previously dated, collected in strategically locations of Sao Paulo, using Synchrotron Radiation Total Reflection X-Ray Fluorescence. Samples were also collected in the Piracicaba (SP), local of little access and small flow traffic. The SR-TXRF analysis was carried out in the X-ray Fluorescence Beamline at the Brazilian Synchrotron Light Source Laboratory, located in Campinas city, Sao Paulo State, Brazil. Some trace elements present concentrations higher than considered as normal in some periods. In this paper the highest value for Pb was 123.54 μg.g{sup -1} considered as threshold value was observed for the period 1998 to 2000 for University of Sao Paulo, Butanta site. For the same period excessive level was also observed for samples collected in Piracicaba city. In Sao Paulo city, sample collected in the campus of University of Sao Paulo (Butanta), showed the highest toxicity, with concentration above the tolerable limit for Ti, Cr and Cu. For the samples collected in Piracicaba city the concentrations of Cr, Ni, Cu, and Pb exceeding the toxicity limits. (author)

  18. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  19. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  20. Experimental X-Ray Ghost Imaging.

    Science.gov (United States)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-09-09

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.