Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.
2013-01-01
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
International Nuclear Information System (INIS)
Zhao, J.M.; Tan, J.Y.; Liu, L.H.
2012-01-01
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.
A Photon Free Method to Solve Radiation Transport Equations
International Nuclear Information System (INIS)
Chang, B
2006-01-01
The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-06-15
We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.
Radiative transport equation for the Mittag-Leffler path length distribution
Liemert, André; Kienle, Alwin
2017-05-01
In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.
Second order time evolution of the multigroup diffusion and P1 equations for radiation transport
International Nuclear Information System (INIS)
Olson, Gordon L.
2011-01-01
Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.
Equations of radiation hydrodynamics
International Nuclear Information System (INIS)
Mihalas, D.
1982-01-01
The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented
International Nuclear Information System (INIS)
Williams, M.M.R.
2005-01-01
The integral equation derived by Nieuwenhuizen and Luck for transmission of radiation through an optically thick diffusive medium is reconsidered in the light of radiative transfer theory and extended to slabs of arbitrary thickness. (author)
International Nuclear Information System (INIS)
Matthes, W.K.
1998-01-01
The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems
Flux-probability distributions from the master equation for radiation transport in stochastic media
International Nuclear Information System (INIS)
Franke, Brian C.; Prinja, Anil K.
2011-01-01
We present numerical investigations into the accuracy of approximations in the master equation for radiation transport in discrete binary random media. Our solutions of the master equation yield probability distributions of particle flux at each element of phase space. We employ the Levermore-Pomraning interface closure and evaluate the effectiveness of closures for the joint conditional flux distribution for estimating scattering integrals. We propose a parameterized model for this joint-pdf closure, varying between correlation neglect and a full-correlation model. The closure is evaluated for a variety of parameter settings. Comparisons are made with benchmark results obtained through suites of fixed-geometry realizations of random media in rod problems. All calculations are performed using Monte Carlo techniques. Accuracy of the approximations in the master equation is assessed by examining the probability distributions for reflection and transmission and by evaluating the moments of the pdfs. The results suggest the correlation-neglect setting in our model performs best and shows improved agreement in the atomic-mix limit. (author)
International Nuclear Information System (INIS)
Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.
2015-01-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light
International Nuclear Information System (INIS)
Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.
2011-01-01
Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
International Nuclear Information System (INIS)
FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations
International Nuclear Information System (INIS)
Feng Tinggui
2004-11-01
Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)
Czech Academy of Sciences Publication Activity Database
Holec, M.; Limpouch, J.; Liska, R.; Weber, Stefan A.
2017-01-01
Roč. 83, č. 10 (2017), s. 779-797 ISSN 0271-2091 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : radiation hydrodynamics * nonlocal transport * Knudsen number * multigroup diffusion * radiation coupling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.652, year: 2016
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
International Nuclear Information System (INIS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
Adaptive integral equation methods in transport theory
International Nuclear Information System (INIS)
Kelley, C.T.
1992-01-01
In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented
Saturation and linear transport equation
International Nuclear Information System (INIS)
Kutak, K.
2009-03-01
We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)
Radiation transport in numerical astrophysics
International Nuclear Information System (INIS)
Lund, C.M.
1983-02-01
In this article, we discuss some of the numerical techniques developed by Jim Wilson and co-workers for the calculation of time-dependent radiation flow. Difference equations for multifrequency transport are given for both a discrete-angle representation of radiation transport and a Fick's law-like representation. These methods have the important property that they correctly describe both the streaming and diffusion limits of transport theory in problems where the mean free path divided by characteristic distances varies from much less than one to much greater than one. They are also stable for timesteps comparable to the changes in physical variables, rather than being limited by stability requirements
Transport equation and shock waves
International Nuclear Information System (INIS)
Besnard, D.
1981-04-01
A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma
Introduction to radiation transport
International Nuclear Information System (INIS)
Olson, G.L.
1998-01-01
This lecture will present time-dependent radiation transport where the radiation is coupled to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the materials it propagates through and will accelerate the material in the direction of the radiation flow. This fully coupled problem with radiation transport and materials in motion is referred to as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of this lecture
Coupled electron-photon radiation transport
International Nuclear Information System (INIS)
Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.
2000-01-01
Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport
The Laplace transformation of adjoint transport equations
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1985-01-01
A clarification is given of the difference between the equation adjoint to the Laplace-transformed time-dependent transport equation and the Laplace-transformed time-dependent adjoint transport equation. Proper procedures are derived to obtain the Laplace transform of the instantaneous detector response. (author)
Transport and attenuation of radiations
Nimal, J C
2003-01-01
This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...
The 'generalized Balescu-Lenard' transport equations
International Nuclear Information System (INIS)
Mynick, H.E.
1990-01-01
The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs
International Nuclear Information System (INIS)
Mynick, H.E.
1989-05-01
The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs
Development of interfacial area transport equation
International Nuclear Information System (INIS)
Kim, Seung Jin; Ishii, Mamoru; Kelly, Joseph
2005-01-01
The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to churn-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical air-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired in vertical co-current downward air-water two-phase flow through round pipes of two different sizes
Simulation of transport equations with Monte Carlo
International Nuclear Information System (INIS)
Matthes, W.
1975-09-01
The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game
International Nuclear Information System (INIS)
Rose, S.J.; Evans, R.G.
1983-09-01
The transport of energy by X-ray photons has been included in the lD Lagrangian hydrodynamics code, MEDUSA. Calculations of the implosion by 0.53 μm laser irradiation of plastic and glass microballoons of current interest at the Central Laser Facility show that radiation preheats the fill gas and alters the temperature and density profiles during the implosion. A lower maximum gas temperature is obtained and this results, for a DT gas fill, in a greatly reduced neutron yield. (author)
Swarm analysis by using transport equations
International Nuclear Information System (INIS)
Dote, Toshihiko.
1985-01-01
As the basis of weak ionization plasma phenomena, the motion, i.e. swarm, of charged particles in the gas is analyzed by use of the transport equations, from which basic nature of the swarm is discussed. The present report is an overview of the studies made in the past several years. Described are principally the most basic aspects concerning behaviors of the electrons and positive ions, that is, the basic equations and their significance, characteristics of the behaviors of the electron and positive ion swarms as revealed by solving the equations, and various characteristics of the swarm parameters. Contents are: Maxwell-Boltzmann's transport equations, behavior of the electron swarm, energy loss of the electrons, and behavior of the positive ion swarm. (Mori, K.)
General particle transport equation. Final report
International Nuclear Information System (INIS)
Lafi, A.Y.; Reyes, J.N. Jr.
1994-12-01
The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence
International Nuclear Information System (INIS)
Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.
2004-01-01
The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization
Range of validity of transport equations
International Nuclear Information System (INIS)
Berges, Juergen; Borsanyi, Szabolcs
2006-01-01
Transport equations can be derived from quantum field theory assuming a loss of information about the details of the initial state and a gradient expansion. While the latter can be systematically improved, the assumption about a memory loss is not known to be controlled by a small expansion parameter. We determine the range of validity of transport equations for the example of a scalar g 2 Φ 4 theory. We solve the nonequilibrium time evolution using the three-loop 2PI effective action. The approximation includes off-shell and memory effects and assumes no gradient expansion. This is compared to transport equations to lowest order (LO) and beyond (NLO). We find that the earliest time for the validity of transport equations is set by the characteristic relaxation time scale t damp =-2ω/Σ ρ (eq) , where -Σ ρ (eq) /2 denotes the on-shell imaginary-part of the self-energy. This time scale agrees with the characteristic time for partial memory loss, but is much shorter than thermal equilibration times. For times larger than about t damp the gradient expansion to NLO is found to describe the full results rather well for g 2 (less-or-similar sign)1
A method for solving neutron transport equation
International Nuclear Information System (INIS)
Dimitrijevic, Z.
1993-01-01
The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)
Alternative formulation of the monokinetic transport equation
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1985-01-01
After recalling a technique already exploited in stationary neutron transport, the dynamic linear monokinetic equation for general geometry is cast into an integro-differential form where a second order space Laplace operator and both a second and first time derivatives appear. The introduced unknowns are given a physical interpretation for plane geometry and their relations with the total flux and current are derived
The transport equation in general geometry
International Nuclear Information System (INIS)
Pomraning, G.C.
1990-01-01
As stated in the introduction to the paper, the motivation for this work was to obtain an explicit form for the streaming operator in the transport equation, which could be used to compute curvature effects in an asymptotic analysis leading to diffusion theory. This sign error was discovered while performing this analysis
Aspheric surface testing by irradiance transport equation
Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir
2010-10-01
In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.
Swarm analysis by using transport equations, 1
International Nuclear Information System (INIS)
Dote, Toshihiko; Shimada, Masatoshi
1980-01-01
By evolving Maxwell-Boltzmann transport equations, various quantities on swarm of charged particles have been analyzed. Although this treatment is properly general, and common transport equations for charged particles ought to be given, in particular, equations only for electrons were presented here. The relation between the random energy and the drift energy was first derived and the general expression of the electron velocity was deduced too. For a simple example, one dimensional steady-state electron swarm in a uniform medium was treated. Electron swarm characteristics numerically calculated in He, Ne or Ar exhibited some interesting properties, which were physically clearly elucidated. These results were also compared with several data already published. Agreements between them were qualitatively rather well in detailed structures. (author)
Approximate radiative solutions of the Einstein equations
International Nuclear Information System (INIS)
Kuusk, P.; Unt, V.
1976-01-01
In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)
Diffusive limits for linear transport equations
International Nuclear Information System (INIS)
Pomraning, G.C.
1992-01-01
The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion
Some fundamental considerations of the equation of radiative transfer
International Nuclear Information System (INIS)
Kuriyan, J.G.; Sudarshan, E.C.G.
1978-10-01
The radiation transfer of the vector electromagnetic field was first formulated by Chandrasekhar while deriving the polarization characteristics of a sunlit sky. There are two subtle problems underlying this treatment. The first concerns the crucial identification of a Stokes parameter with the specific intensity of radiation. While both depend on position in 3-D space, the latter has, intrinsic to it, an additional angular dependence defining the flow of the radiation field. How can this inadequacy be remedied without damaging the results obtained heretofore from Chandrasekhar's formalism. The second problem arises from the fact that the radiative transfer equation describes the transport of an incoherent radiation field through space. This, however, seems to contradict the results of the Van Cittert-Zernike-Wolf theorem which implies that an incoherent field develops coherence as it passes through free space implying, of course, that the radiative transfer equation must involve not incoherent but partially coherent fields. The vector transfer equation of the direct beam (Beer's law) is derived from first principles. The analysis of this equation provides a satisfactory resolution of these two problems. The result also shows that the Beer's law will have to be modified to a matrix law to accommodate systems that are not spherically symmetric. 13 references
Deterministic methods in radiation transport
International Nuclear Information System (INIS)
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community
Moment equation approach to neoclassical transport theory
International Nuclear Information System (INIS)
Hirshman, S.P.
1978-01-01
The neoclassical cross-field fluxes for a toroidally confined, axisymmetric plasma are calculated in terms of the thermodynamic forces from the fluid continuity and momentum balance equations. This macroscopic formulation of neoclassical transport theory unifies the numerous complex expressions for the transport coefficients, previously obtained by solving the Fokker--Planck equation, and elucidates their physical basis. In the large aspect ratio limit, the continuous transition in the scaling of the diffusion coefficient throughout various collisionality regimes is shown to depend on the ratio of parallel viscosity coefficients of the plasma species. Comparison of the present results with the kinetic theory expressions for the neoclassical fluxes determines the parallel viscosity coefficients for a multispecies plasma in the long-mean-free-path regime
Exact solution of the neutron transport equation in spherical geometry
Energy Technology Data Exchange (ETDEWEB)
Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters
2017-03-15
Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.
A Green function of neutron transport equation
International Nuclear Information System (INIS)
Simovic, R.
1993-01-01
In this paper the angularly dependent Green function of the neutron transport equation is derived analytically and approximately. By applying the analytical FDPN approximation up to eighth order, numerical values of the Green functions are obtained with the accuracy of six significant figures in the whole range of parameter c, angle cosine μ and distances x up to the ten optical lengths from the neutron source. (author)
Solving the equation of neutron transport
International Nuclear Information System (INIS)
Nasfi, Rim
2009-01-01
This work is devoted to the study of some numerical methods of resolution of the problem of transport of the neutrons. We started by introducing the equation integro-differential transport of the neutrons. Then we applied the finite element method traditional for stationary and nonstationary linear problems in 2D. A great part is reserved for the presentation of the mixed numerical diagram and mixed hybrid with two types of uniform grids: triangular and rectangular. Thereafter we treated some numerical examples by implementations in Matlab in order to test the convergence of each method. To finish, we had results of simulation by the Monte Carlo method on a problem of two-dimensional transport with an aim of comparing them with the results resulting from the finite element method mixed hybrids. Some remarks and prospects conclude this work.
Transport of radioactivity and radiation
International Nuclear Information System (INIS)
De Beer, G.P.
1988-01-01
The movement of radioactivity and radiation is of prime importance in a wide variety of fields and the present advanced degree of knowledge of transport mechanisms is due largely to the application of sophisticated computer techniques
Neutron transport equation - indications on homogenization and neutron diffusion
International Nuclear Information System (INIS)
Argaud, J.P.
1992-06-01
In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks
Maximal stochastic transport in the Lorenz equations
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Sahil, E-mail: sahil.agarwal@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Wettlaufer, J.S., E-mail: john.wettlaufer@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Departments of Geology & Geophysics, Mathematics and Physics, Yale University, New Haven (United States); Mathematical Institute, University of Oxford, Oxford (United Kingdom); Nordita, Royal Institute of Technology and Stockholm University, Stockholm (Sweden)
2016-01-08
We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh–Bénard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.
Radiation transport calculation methods in BNCT
International Nuclear Information System (INIS)
Koivunoro, H.; Seppaelae, T.; Savolainen, S.
2000-01-01
Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles
Interference-exact radiative transfer equation
DEFF Research Database (Denmark)
Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani
2017-01-01
Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....
Numerical solution of the radionuclide transport equation
International Nuclear Information System (INIS)
Hadermann, J.; Roesel, F.
1983-11-01
A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)
Quantum-mechanical transport equation for atomic systems.
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Diffusion equation and spin drag in spin-polarized transport
DEFF Research Database (Denmark)
Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger
2001-01-01
We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...
The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit
Energy Technology Data Exchange (ETDEWEB)
Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-07-12
We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Modeling Blazar Spectra by Solving an Electron Transport Equation
Lewis, Tiffany; Finke, Justin; Becker, Peter A.
2018-01-01
Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.
bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT
International Nuclear Information System (INIS)
Ryan, B. R.; Gammie, C. F.; Dolence, J. C.
2015-01-01
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
International Nuclear Information System (INIS)
Sun, Wenjun; Jiang, Song; Xu, Kun
2015-01-01
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach
Fundaments of transport equation splitting and the eigenvalue problem
International Nuclear Information System (INIS)
Stancic, V.
2000-01-01
In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)
Hot electrons in superlattices: quantum transport versus Boltzmann equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.
1999-01-01
A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...
Symmetrized neutron transport equation and the fast Fourier transform method
International Nuclear Information System (INIS)
Sinh, N.Q.; Kisynski, J.; Mika, J.
1978-01-01
The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations
An integral equation arising in two group neutron transport theory
International Nuclear Information System (INIS)
Cassell, J S; Williams, M M R
2003-01-01
An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically
Liouville's equation and radiative acceleration in general relativity
International Nuclear Information System (INIS)
Keane, A.J.
1999-01-01
This thesis examines thoroughly the general motion of a material charged particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. Such a test particle will be pulled in by the gravitational attraction of the compact object and pushed out by the radiation pressure force, therefore the types of trajectory admitted will depend the gravitational field, the radiation field and the particle cross-section. The presence of a strong gravitational field demands a fully general relativistic treatment of the problem. This type of calculation is interesting not only as a formal problem in general relativity but also since it has important astrophysical implications, for example, application to astrophysical discs and jets. In chapter 1 we review the classical radiation force problem and outline the transition to a fully general relativistic scenario. We discuss the method for obtaining the radiation pressure force and calculating the particle trajectories. We review previous work in this area and outline the aims of the thesis. Then we consider some astrophysical applications and discuss how realistic our calculations are. In chapter 2 we give an introduction and overview of differential geometry as this is necessary for an accurate description of tensors on a curved manifold. Then we review the general theory of relativity and in particular obtain the Schwarzschild metric describing a static spherically symmetric vacuum spacetime. Chapter 3 deals with test particle motion through a curved spacetime. Liouville's equation describes the statistical distribution in phase space of a collection of test particles and is based upon a Hamiltonian formulation of the dynamical system - this material also relies heavily upon the concepts of differential geometry introduced in chapter 2. In particular we are interested in photon transport and find the general solutions for some symmetric
Time-dependent simplified PN approximation to the equations of radiative transfer
International Nuclear Information System (INIS)
Frank, Martin; Klar, Axel; Larsen, Edward W.; Yasuda, Shugo
2007-01-01
The steady-state simplified P N approximation to the radiative transport equation has been successfully applied to many problems involving radiation. This paper presents the derivation of time-dependent simplified P N (SP N ) equations (up to N = 3) via two different approaches. First, we use an asymptotic analysis, similar to the asymptotic derivation of the steady-state SP N equations. Second, we use an approach similar to the original derivation of the steady-state SP N equations and we show that both approaches lead to similar results. Special focus is put on the well-posedness of the equations and the question whether it can be guaranteed that the solution satisfies the correct physical bounds. Several numerical test cases are shown, including an analytical benchmark due to Su and Olson [B. Su, G.L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy 24 (1997) 1035-1055.
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2005-01-01
The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)
A modular spherical harmonics approach to the neutron transport equation
International Nuclear Information System (INIS)
Inanc, F.; Rohach, A.F.
1989-01-01
A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)
Relativistic transport equation for a discontinuity wave of multiplicity one
Energy Technology Data Exchange (ETDEWEB)
Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-04-14
In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.
The accuracy of time dependent transport equation ergodic approximation
International Nuclear Information System (INIS)
Stancic, V.
1995-01-01
In order to predict the accuracy of the ergodic approximation for solving the time dependent transport equation, a comparison with respect to multiple collision and time finite difference methods, has been considered. (author)
Analytical solution to the hybrid diffusion-transport equation
International Nuclear Information System (INIS)
Nanneh, M.M.; Williams, M.M.R.
1986-01-01
A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)
Quasi solution of radiation transport equation
International Nuclear Information System (INIS)
Pogosbekyan, L.R.; Lysov, D.A.
1995-01-01
There is uncertainty with experimental data as well as with input data of theoretical calculations. The neutron distribution from the variational principle, which takes into account both theoretical and experimental data, is obtained to increase the accuracy and speed of neutronic calculations. The neutron imbalance in mesh cells and the discrepancy between experimentally measured and calculated functional of the neutron distribution are simultaneously minimized. A fast-working and simple-programming iteration method is developed to minimize the objective functional. The method can be used in the core monitoring and control system for (a) power distribution calculations, (b) in- and ex-core detector calibration, (c) macro-cross sections or isotope distribution correction by experimental data, and (d) core and detector diagnostics
Unconditionally stable diffusion-acceleration of the transport equation
International Nuclear Information System (INIS)
Larson, E.W.
1982-01-01
The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically thick regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems, the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results
Unconditionally stable diffusion-acceleration of the transport equation
International Nuclear Information System (INIS)
Larsen, E.W.
1982-01-01
The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results
ipole: Semianalytic scheme for relativistic polarized radiative transport
Moscibrodzka, Monika; Gammie, Charles F.
2018-04-01
ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.
Energy Technology Data Exchange (ETDEWEB)
Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)
2011-04-08
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
International Nuclear Information System (INIS)
Uchaikin, V V; Sibatov, R T
2011-01-01
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
Path Toward a Unified Geometry for Radiation Transport
Lee, Kerry
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading
Deferred correction approach on generic transport equation
International Nuclear Information System (INIS)
Shah, I.A.; Ali, M.
2004-01-01
In this study, a two dimensional Steady Convection-Diffusion was solved, using Deferred correction approach, and results were compared with standard spatial discretization schemes. Numerical investigations were carried out based on the velocity and flow direction, for various diffusivity coefficients covering a range from diffusive to convective flows. The results show that the Deferred Ted Correction Approach gives more accurate and stable results in relation to UDS and CDs discretization of convective terms. Deferred Correction Approach caters for the wiggles for convective flows in case of central difference discretization of the equation and also caters for the dissipative error generated by the first order upwind discretization of convective fluxes. (author)
Directions in Radiation Transport Modelling
Directory of Open Access Journals (Sweden)
P Nicholas Smith
2016-12-01
More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2004-01-01
Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap
International Nuclear Information System (INIS)
Martin, William R.; Brown, Forrest B.
2001-01-01
We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)
A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING
International Nuclear Information System (INIS)
Gammie, Charles F.; Leung, Po Kin
2012-01-01
We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ (a α k a* β k ), where a k is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ ∇ μ N αβ = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.
Induced Compton scattering effects in radiation transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-01-01
In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-02-01
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Parallel processing Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
McKinney, G.W.
1994-01-01
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
International Nuclear Information System (INIS)
Kong, Rong; Spanier, Jerome
2013-01-01
In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems
Application of the Radiative Transfer Equation (RTE) to Scattering by ...
African Journals Online (AJOL)
Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Unified formulation of radiation conditions for the wave equation
DEFF Research Database (Denmark)
Krenk, Steen
2002-01-01
A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second......-order wave equations on the radiating surface. Several well-established radiation boundary conditions appear as special cases, corresponding to different choice of the coefficients in the rational approximation. The relation between these choices is established, and an explicit formulation in terms...
Homogenization of the critically spectral equation in neutron transport
Energy Technology Data Exchange (ETDEWEB)
Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches
1998-07-01
We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)
Homogenization of the critically spectral equation in neutron transport
International Nuclear Information System (INIS)
Allaire, G.; Paris-6 Univ., 75; Bal, G.
1998-01-01
We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)
Stable solutions of nonlocal electron heat transport equations
International Nuclear Information System (INIS)
Prasad, M.K.; Kershaw, D.S.
1991-01-01
Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution
Solution of the transport equation with account for inelastic collisions
International Nuclear Information System (INIS)
Kalashnikov, N.P.; Remizovich, V.S.; Ryazanov, M.I.
1980-01-01
The theory of charged particle scattering in a matter with account for inelastic collisions is considered. In ''directly-forward'' approximation the transport equation at the absence of elastic collisions is obtained. The solution of the transport equation is made without and with account for fluctuation of energy losses. Formulas for path-energy relation are given. Energy spectrum and distribution of fast charged particles with respect to paths are studied. The problem of quantum mechanical approach to the theory of multiple scattering of fast charged particles in a matter is discussed briefly
Quantum Non-Markovian Langevin Equations and Transport Coefficients
International Nuclear Information System (INIS)
Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.
2005-01-01
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed
Two-scale approach to oscillatory singularly perturbed transport equations
Frénod, Emmanuel
2017-01-01
This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.
Exactly averaged equations for flow and transport in random media
International Nuclear Information System (INIS)
Shvidler, Mark; Karasaki, Kenzi
2001-01-01
It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)
An Implementation of Interfacial Transport Equation into the CUPID code
Energy Technology Data Exchange (ETDEWEB)
Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun
2009-11-15
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region.
An Implementation of Interfacial Transport Equation into the CUPID code
International Nuclear Information System (INIS)
Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun
2009-11-01
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region
Energy Technology Data Exchange (ETDEWEB)
Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)
2013-01-01
In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.
Survey of radiation protection programmes for transport
International Nuclear Information System (INIS)
Lizot, M.T.; Perrin, M.L.; Sert, G.; Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R.; Shaw, K.B.; Hughes, J.S.; Gelder, R.
2001-07-01
The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)
Spatial discretizations for self-adjoint forms of the radiative transfer equations
International Nuclear Information System (INIS)
Morel, Jim E.; Adams, B. Todd; Noh, Taewan; McGhee, John M.; Evans, Thomas M.; Urbatsch, Todd J.
2006-01-01
There are three commonly recognized second-order self-adjoint forms of the neutron transport equation: the even-parity equations, the odd-parity equations, and the self-adjoint angular flux equations. Because all of these equations contain second-order spatial derivatives and are self-adjoint for the mono-energetic case, standard continuous finite-element discretization techniques have proved quite effective when applied to the spatial variables. We first derive analogs of these equations for the case of time-dependent radiative transfer. The primary unknowns for these equations are functions of the angular intensity rather than the angular flux, hence the analog of the self-adjoint angular flux equation is referred to as the self-adjoint angular intensity equation. Then we describe a general, arbitrary-order, continuous spatial finite-element approach that is applied to each of the three equations in conjunction with backward-Euler differencing in time. We refer to it as the 'standard' technique. We also introduce an alternative spatial discretization scheme for the self-adjoint angular intensity equation that requires far fewer unknowns than the standard method, but appears to give comparable accuracy. Computational results are given that demonstrate the validity of both of these discretization schemes
Correction of the wavefront using the irradiance transport equation
García, M.; Granados, F.; Cornejo, A.
2008-07-01
The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)
A multigroup treatment of radiation transport
International Nuclear Information System (INIS)
Tahir, N.A.; Laing, E.W.; Nicholas, D.J.
1980-12-01
A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)
From statistic mechanic outside equilibrium to transport equations
International Nuclear Information System (INIS)
Balian, R.
1995-01-01
This lecture notes give a synthetic view on the foundations of non-equilibrium statistical mechanics. The purpose is to establish the transport equations satisfied by the relevant variables, starting from the microscopic dynamics. The Liouville representation is introduced, and a projection associates with any density operator , for given choice of relevant observables, a reduced density operator. An exact integral-differential equation for the relevant variables is thereby derived. A short-memory approximation then yields the transport equations. A relevant entropy which characterizes the coarseness of the description is associated with each level of description. As an illustration, the classical gas, with its three levels of description and with the Chapman-Enskog method, is discussed. (author). 3 figs., 5 refs
Energy Technology Data Exchange (ETDEWEB)
Azevedo, Fabio Souto de, E-mail: fabio.azevedo@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Matematica; Sauter, Esequia, E-mail: esequia.sauter@canoas.ifrs.edu.b [Instituto Federal do Rio Grande do Sul (IFRS), Canoas, RS (Brazil); Thompson, Mark; Vilhena, Marco Tulio B., E-mail: mark.thompson@mat.ufrgs.b, E-mail: vilhena@mat.ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada
2011-07-01
In this work we apply the Green Function Decomposition Method the radiative transport equation in a slab. The method consists in converting the radiative transport equation into a integral equation and projecting the integral operators involved into a finite dimensional space. This methodology does not involve an a priori discretization on the angular variable {mu}, requiring only that the kernel is numerically integrated on {mu}. Numerical results are provided for isotropic, linearly anisotropic, and Rayleigh scattering near the unitary albedo. (author)
A stochastic solution of the advective transport equation with uncertainty
International Nuclear Information System (INIS)
Williams, M.M.R.
1991-01-01
A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs
On similarity and scaling of the radiative transfer equation
International Nuclear Information System (INIS)
Mitrescu, C.; Stephens, G.L.
2004-01-01
The present paper shows how the well-known similarity and scaling concepts are properties of the radiative transfer equation and not specifically of the degree of anisotropy of the phase function. It is shown that the key assumption regarding the angular dependence of the radiative field is essential in determining both the value for the parameter used to scale the radiative transfer, as well as the number of streams used in calculating the radiances for various atmospheric problems. Simulations performed on realistic type of cirrus clouds, characterized by strongly anisotropic functions, demonstrates the superior computational advantage for accurately simulating radiances. A new approach for determining the scaling parameter is introduced
Variable transformation of calibration equations for radiation dosimetry
International Nuclear Information System (INIS)
Watanabe, Yoichi
2005-01-01
For radiation dosimetry, dosimetric equipment must be calibrated by using known doses. The calibration is done to determine an equation that relates the absorbed dose to a physically measurable quantity. Since the calibration equation is accompanied by unavoidable uncertainties, the doses estimated with such equations suffer from inherent uncertainties. We presented mathematical formulation of the calibration when the calibration relation is either linear or nonlinear. We also derived equations for the uncertainty of the estimated dose as a function of the uncertainties of the parameters in the equations and the measured physical quantity. We showed that a dosimeter with a linear calibration equation with zero dose-offset enables us to perform relative dosimetry without calibration data. Furthermore, a linear equation justifies useful data manipulations such as rescaling the dose and changing the dose-offset for comparing dose distributions. Considering that some dosimeters exhibit linear response with a large dose-offset or often nonlinear response, we proposed variable transformations of the measured physical quantity, namely, linear- and log-transformation methods. The proposed methods were tested with Kodak X-Omat V radiographic film and BANG (registered) polymer gel dosimeter. We demonstrated that the variable transformation methods could lead to linear equations with zero dose-offset and could reduce the uncertainty of the estimated dose
Regulatory practices of radiation safety of SNF transportation in Russia
International Nuclear Information System (INIS)
Kuryndina, Lidia; Kuryndin, Anton; Stroganov, Anatoly
2008-01-01
This paper overviews current regulatory practices for the assurance of nuclear and radiation safety during railway transportation of SNF on the territory of Russian Federation from NPPs to longterm-storage of reprocessing sites. The legal and regulatory requirements (mostly compliant with IAEA ST-1), licensing procedure for NM transportation are discussed. The current procedure does not require a regulatory approval for each particular shipment if the SNF fully comply with the Rosatom's branch standard and is transported in approved casks. It has been demonstrated that SNF packages compliant with the branch standard, which is knowingly provide sufficient safety margin, will conform to the federal level regulations. The regulatory approval is required if a particular shipment does not comply with the branch standard. In this case, the shipment can be approved only after regulatory review of Applicant's documents to demonstrate that the shipment still conformant to the higher level (federal) regulations. The regulatory review frequently needs a full calculation test of the radiation safety assurance. This test can take a lot of time. That's why the special calculation tools were created in SEC NRS. These tools aimed for precision calculation of the radiation safety parameters by SNF transportation use preliminary calculated Green's functions. Such approach allows quickly simulate any source distribution and optimize spent fuel assemblies placement in cask due to the transport equation property of linearity relatively the source. The short description of calculation tools are presented. Also, the paper discusses foreseen implications related to transportation of mixed-oxide SNF. (author)
Dispersive effects in radiation transport and radiation hydrodynamics in matter at high density
International Nuclear Information System (INIS)
Crowley, B.J.B.
1983-01-01
In a recent research program (reported in AWRE 0 20/82) I have investigated the generalisation of the equations of radiation hydrodynamics when electromagnetic radiation is assumed to obey a linear-response dispersion relation of the form nω=kc where the refractive index n depends on the frequency ω and/or wave number k. From the application of the Boltzmann-Liouville transport theory to photons in the short-wavelength (geometrical optics) limit, I derive the energy and momentum equations which, when combined with a classical (Euler-Lagrange-Navier-Stokes) treatment of a fluid material medium in LTE, yield a complete dynamical theory of linear interactions (+ stimulated processes) between incoherent (thermal) radiation and dense, locally isotropic matter. The theory includes an account of pondero-motive forces and electro (magneto) striction. Moreover, it is apparently capable of being generalised to non-linear interactions in which the refractive index depends on the local specific intensity of the radiation field, and, to some extent, to the treatment of high-frequency coherent radiation. The generalisation of various approximated forms of radiation-transport theory (esp. diffusion) has been considered in detail. Some problems remain however. One such is the treatment of anomalous dispersion. Current research work is concentrating on the interesting atomic physics aspects of electromagnetic (esp. radiative) properties of a dispersive material medium
1D equation for toroidal momentum transport in a tokamak
International Nuclear Information System (INIS)
Rozhansky, V A; Senichenkov, I Yu
2010-01-01
A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.
Sn approach applied to the solution of transport equation
International Nuclear Information System (INIS)
Lopes, J.P.
1973-09-01
In this work the origin of the Transport Theory is considered and the Transport Equation for the movement of the neutron in a system is established in its more general form, using the laws of nuclear physics. This equation is used as the starting point for development, under adequate assumptions, of simpler models that render the problem suitable for numerical solution. Representation of this model in different geometries is presented. The different processes of nuclear physics are introduced briefly and discussed. In addition, the boundary conditions for the different cases and a general procedure for the application of the Conservation Law are stated. The last chapter deals specifically with the S n method, its development, definitions and generalities. Computational schemes for obtaining the S n solution in spherical and cylindrical geometry, and convergence acceleration methods are also developed. (author)
Transport equations in an enzymatic glucose fuel cell
Jariwala, Soham; Krishnamurthy, Balaji
2018-01-01
A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.
Finite element approximation to the even-parity transport equation
International Nuclear Information System (INIS)
Lewis, E.E.
1981-01-01
This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions
Numerical Integration of the Transport Equation For Infinite Homogeneous Media
Energy Technology Data Exchange (ETDEWEB)
Haakansson, Rune
1962-01-15
The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.
New numerical method for solving the solute transport equation
International Nuclear Information System (INIS)
Ross, B.; Koplik, C.M.
1978-01-01
The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste
Deterministic methods to solve the integral transport equation in neutronic
International Nuclear Information System (INIS)
Warin, X.
1993-11-01
We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs
Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1981-01-01
Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)
Comparison of neutronic transport equation resolution nodal methods
International Nuclear Information System (INIS)
Zamonsky, O.M.; Gho, C.J.
1990-01-01
In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es
International Nuclear Information System (INIS)
Savovic, S.; Djordjevich, A.; Ristic, G.
2012-01-01
A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)
IPOLE - semi-analytic scheme for relativistic polarized radiative transport
Mościbrodzka, M.; Gammie, C. F.
2018-03-01
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.
DIAPHANE: A portable radiation transport library for astrophysical applications
Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio
2018-05-01
One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.
Energy Technology Data Exchange (ETDEWEB)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)
2015-12-01
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP
Transport parameter estimation from lymph measurements and the Patlak equation.
Watson, P D; Wolf, M B
1992-01-01
Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.
Parallel thermal radiation transport in two dimensions
International Nuclear Information System (INIS)
Smedley-Stevenson, R.P.; Ball, S.R.
2003-01-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Parallel thermal radiation transport in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)
2003-07-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Fire Intensity Data for Validation of the Radiative Transfer Equation
Energy Technology Data Exchange (ETDEWEB)
Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.
Approximate solution to neutron transport equation with linear anisotropic scattering
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1983-01-01
A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)
Discontinuous nodal schemes applied to the bidimensional neutron transport equation
International Nuclear Information System (INIS)
Delfin L, A.; Valle G, E. Del; Hennart B, J.P.
1996-01-01
In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)
Trade and transport of radiation sources
International Nuclear Information System (INIS)
1996-01-01
The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)
LDRD Final Review: Radiation Transport Calculations
Energy Technology Data Exchange (ETDEWEB)
Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-22
Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.
Energy Technology Data Exchange (ETDEWEB)
Bal, G.
1995-07-01
To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.
Collapsing radiating stars with various equations of state
Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.
2017-06-01
We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.
Photonuclear Physics in Radiation Transport - II: Implementation
International Nuclear Information System (INIS)
White, M.C.; Little, R.C.; Chadwick, M.B.; Young, P.G.; MacFarlane, R.E.
2003-01-01
This is the second of two companion papers. The first paper describes model calculations and nuclear data evaluations of photonuclear reactions on isotopes of C, O, Al, Si, Ca, Fe, Cu, Ta, W, and Pb for incident photon energies up to 150 MeV. This paper describes the steps taken to process these files into transport libraries and to update the Monte Carlo N-Particle (MCNP) and MCNPX radiation transport codes to use tabular photonuclear reaction data. The evaluated photonuclear data files are created in the standard evaluated nuclear data file (ENDF) format. These files must be processed by the NJOY data processing system into A Compact ENDF (ACE) files suitable for radiation transport calculations. MCNP and MCNPX have been modified to use these new data in a self-consistent and fully integrated manner. Verification problems were used at each step along the path to check the integrity of the methodology. The resulting methodology and tools provide a comprehensive system for using photonuclear data in radiation transport calculations. Also described are initial validation simulations used to benchmark several of the photonuclear transport tables
Transport methods: general. 8. Formulation of Transport Equation in a Split Form
International Nuclear Information System (INIS)
Stancic, V.
2001-01-01
The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)
An inverse method for radiation transport
Energy Technology Data Exchange (ETDEWEB)
Favorite, J. A. (Jeffrey A.); Sanchez, R. (Richard)
2004-01-01
Adjoint functions have been used with forward functions to compute gradients in implicit (iterative) solution methods for inverse problems in optical tomography, geoscience, thermal science, and other fields, but only once has this approach been used for inverse solutions to the Boltzmann transport equation. In this paper, this approach is used to develop an inverse method that requires only angle-independent flux measurements, rather than angle-dependent measurements as was done previously. The method is applied to a simplified form of the transport equation that does not include scattering. The resulting procedure uses measured values of gamma-ray fluxes of discrete, characteristic energies to determine interface locations in a multilayer shield. The method was implemented with a Newton-Raphson optimization algorithm, and it worked very well in numerical one-dimensional spherical test cases. A more sophisticated optimization method would better exploit the potential of the inverse method.
Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system
International Nuclear Information System (INIS)
Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.
1992-01-01
Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs
International Nuclear Information System (INIS)
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-01-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Energy Technology Data Exchange (ETDEWEB)
Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
On standard forms for transport equations and fluxes: Part 2
International Nuclear Information System (INIS)
Ross, D.W.
1990-03-01
Quasilinear expressions for anomalous particle and energy fluxes arising from electrostatic plasma turbulence in a tokamak are reviewed yet again. Further clarifications are made, and the position taken in a previous report is modified. There, the total energy flux, Q j , and the conductive heat flux, q j , were correctly defined, and the anomalous Q j was correctly calculated. It was shown that the anomalous energy transport can be correctly described by ∇·Q* j , where Q* j = 3/5 Q j , with all remaining source terms such as left-angle p j ∇·Vj} cancelling. Here, a revised discussion is given of the identification of the anomalous conductive flux, q j , in which the distinction between Q j and Q* j is reconsidered. It is shown that there is more than one consistent way to define q j . Transport calculations involving only theoretical electrostatic turbulent fluxes are unaffected by these distinctions since Q j or Q* j , rather than q j , is the quantity naturally calculated in the theory. However, an ambiguity remains in experimental transport analysis if the measured particle flux Γ j = n j V j is to be used in the energy equation. This is because we cannot be sure how properly to treat the source terms p j ∇·V j or { p j ∇·V j }. 17 refs
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
Hybrid formulation of radiation transport in optically thick divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)
2016-08-15
Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)
Radiation transport: Progress report, July 1, 1987-September 30, 1987
International Nuclear Information System (INIS)
O'Dell, R.D.; Nagy, A.
1988-05-01
Research and development progress in radiation transport for the Los Alamos National Laboratory's Group S-6 for the fourth quarter of FY 87 is reported. Included are unclassified tasks in the areas of Deterministic Radiation Transport, Monte Carlo Radiation Transport, and Cross Sections and Physics. 23 refs., 9 figs
International Nuclear Information System (INIS)
Colonna, G.; Pietanza, L.D.; D’Ammando, G.
2012-01-01
Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.
Numerical method for solving integral equations of neutron transport. II
International Nuclear Information System (INIS)
Loyalka, S.K.; Tsai, R.W.
1975-01-01
In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)
Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation
International Nuclear Information System (INIS)
Dou, Nicholas G.; Minnich, Austin J.
2016-01-01
Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials
On the Solution of the Neutron Transport Equation
Energy Technology Data Exchange (ETDEWEB)
Depken, S
1962-12-15
The neutron transport equation has occupied the attention of many authors since Placzek, Wick and others made their first attempts to solve it, Even in the simple case of energy independent cross-sections, and disregarding the motion of the scattering nucleons, it is difficult to find a solution in an analytical form which is easily surveyable and fitted for numerical calculations. In Part I of this paper some new viewpoints will be introduced which enable the solution to be presented in its simplest possible form. Part II is devoted to an investigation of some functions introduced in Part I. In Part III the results are applied to the case of large energy lethargy, and the validity of derived formulas is discussed.
Fallout radiation protection provided by transportation vehicles
Energy Technology Data Exchange (ETDEWEB)
Burson, Z.G.
1972-10-20
Fallout radiation protection factors (PF's) were estimated for a variety of civilian transportation vehicles using measurements of the natural terrain radiation as a source. The PF values are below 2 in light vehicles, truck beds, or trailers; from 2.5 to 3 in the cabs of heavy trucks and in a railway guard car; and from 3.0 to 3.5 in the engineer's seat of heavy locomotives. This information can be useful in planning the possible movement of personnel from or through areas contaminated either by a wartime incident or a peacetime accident. The information may also be useful for studying the reduction of exposure to the natural terrestrial radiation environment provided by vehicles.
The use of symbolic computation in radiative, energy, and neutron transport calculations
Frankel, J. I.
This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.
NASA space radiation transport code development consortium
International Nuclear Information System (INIS)
Townsend, L. W.
2005-01-01
Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)
Numerical simulations for radiation hydrodynamics. 2: Transport limit
International Nuclear Information System (INIS)
Dai, W.W.; Woodward, P.R.
2000-01-01
A finite difference scheme is proposed for two-dimensional radiation hydrodynamical equations in the transport limit. The scheme is of Godunov-type, in which the set of time-averaged flux needed in the scheme is calculated through Riemann problems solved. In the scheme, flow signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and radiation fields are updated simultaneously. An iterative approach is proposed to solve the set of nonlinear algebraic equations arising from the implicitness of the scheme. The sweeping method used in the scheme significantly reduces the number of iterations or computer CPU time needed. A new approach to further accelerate the convergence is proposed, which further reduces the number of iterations needed by more than one order. No matter how many cells radiation signals propagate in one time step, only an extremely small number of iterations are needed in the scheme, and each iteration costs only about 0.8% of computer CPU time which is needed for one time step of a second order accurate and fully explicit scheme. Two-dimensional problems are treated through a dimensionally split technique. Therefore, iterations for solving the set of algebraic equations are carried out only in each one-dimensional sweep. Through numerical examples it is shown that the scheme keeps the principle advantages of Godunov schemes for flow motion. In the time scale of flow motion numerical results are the same as those obtained from a second order accurate and fully explicit scheme. The acceleration of the convergence proposed in this paper may be directly applied to other hyperbolic systems. This study is important for laser fusion and astrophysics
A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
International Nuclear Information System (INIS)
Maassen, Jesse; Lundstrom, Mark
2015-01-01
Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.S.
1985-01-01
A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime
Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport
International Nuclear Information System (INIS)
McKinley, M S; Brooks III, E D; Daffin, F
2004-01-01
Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations
Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation
International Nuclear Information System (INIS)
Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.
2012-01-01
This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.
Minimum entropy production closure of the photo-hydrodynamic equations for radiative heat transfer
International Nuclear Information System (INIS)
Christen, Thomas; Kassubek, Frank
2009-01-01
In the framework of a two-moment photo-hydrodynamic modelling of radiation transport, we introduce a concept for the determination of effective radiation transport coefficients based on the minimization of the local entropy production rate of radiation and (generally nongrey) matter. The method provides the nonequilibrium photon distribution from which the effective (variable) absorption coefficients and the variable Eddington factor (VEF) can be calculated. For a single band model, the photon distribution depends explicitly on the frequency dependence of the absorption coefficient. Without introducing artificial fit parameters, multi-group or multi-band concepts, our approach reproduces the exact results in both limits of optically thick (Rosseland mean) and optically thin (Planck mean) media, in contrast to the maximum entropy method. Also the results for general nonequilibrium radiation between the limits of diffusive and ballistic photons are reasonable. We conjecture that the reason for the success of our approach lies in the linearity of the underlying Boltzmann equation of the photon gas. The method is illustrated and discussed for grey matter and for a simple example of nongrey matter with a two-band absorption spectrum. The method is also briefly compared with the maximum entropy concept.
Basic equations of interfacial area transport in gas-liquid two-phase flow
International Nuclear Information System (INIS)
Kataoka, I.; Yoshida, K.; Naitoh, M.; Okada, H.; Morii, T.
2011-01-01
The rigorous and consistent formulations of basic equations of interfacial area transport were derived using correlation functions of characteristic function of each phase and velocities of each phase. Turbulent transport term of interfacial area concentration was consistently derived and related to the difference between interfacial velocity and averaged velocity of each phase. Constitutive equations of turbulent transport terms of interfacial area concentration were proposed for bubbly flow. New transport model and constitutive equations were developed for churn flow. These models and constitutive equations are validated by experimental data of radial distributions of interfacial area concentration in bubbly and churn flow. (author)
Approximate solution of the transport equation by methods of Galerkin type
International Nuclear Information System (INIS)
Pitkaranta, J.
1977-01-01
Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form
A new computational method for simulation of charge transport in semiconductor radiation detectors
International Nuclear Information System (INIS)
Holban, I.
1993-01-01
An effective computational method for simulation of charge transport in semiconductor radiation detectors is the purpose of the present work. Basic equations for analysis include (1) Poisson's equations, (2) continuity equation for electrons and holes, (3) rate equations for deep levels, (4) current equation for electrons and holes and (5) boundary conditions. The system of equations is discretized and equidistant space and time grids is brought. The nonlinearity of the problem is overcome by using Newton-Raphson iteration scheme. Instead of solving a nonlinear boundary problem we resolve a linear matrix equation. Our computation procedure becomes very efficient using a sparse matrix. The computed program allows to calculate the charge collection efficiency and transient response for arbitrary electric fields when trapping and detrapping effects are present. The earlier literature results are reproduced. (Author)
Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2
International Nuclear Information System (INIS)
Velarde, G.
1976-01-01
Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)
Parallel computing for homogeneous diffusion and transport equations in neutronics
International Nuclear Information System (INIS)
Pinchedez, K.
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Radiation transport. Progress report, April 1-December 31, 1983
International Nuclear Information System (INIS)
O'Dell, R.D.
1984-10-01
Research and development progress in radiation transport by the Los Alamos National Laboratory's Group X-6 for the last nine months of CY 83 is reported. Included are unclassified tasks in the areas of Fission Reactor Neutronics, Deterministic Transport Methods, Monte Carlo Radiation Transport, and Cross Sections and Physics
Transport of Terrestrial gamma-Radiation in Plane Semi-Infinite Geometry
DEFF Research Database (Denmark)
Kirkegaard, Peter; Løvborg, Leif
1980-01-01
The plane one-dimensional photon transport equation is solved for the scattered γ-radiation flux in the case of two adjacent media. One medium represents a natural ground with uniformly distributed potassium, uranium, and thorium γ-ray emitters. The other medium is air with no radioactive contami...
2D deterministic radiation transport with the discontinuous finite element method
International Nuclear Information System (INIS)
Kershaw, D.; Harte, J.
1993-01-01
This report provides a complete description of the analytic and discretized equations for 2D deterministic radiation transport. This computational model has been checked against a wide variety of analytic test problems and found to give excellent results. We make extensive use of the discontinuous finite element method
International Nuclear Information System (INIS)
Frankel, J.I.
1997-01-01
This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules
Rare event simulation in radiation transport
International Nuclear Information System (INIS)
Kollman, C.
1993-10-01
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ''learning'' algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution
Variational formulation and projectional methods for the second order transport equation
International Nuclear Information System (INIS)
Borysiewicz, M.; Stankiewicz, R.
1979-01-01
Herein the variational problem for a second-order boundary value problem for the neutron transport equation is formulated. The projectional methods solving the problem are examined. The approach is compared with that based on the original untransformed form of the neutron transport equation
Parallel computing solution of Boltzmann neutron transport equation
International Nuclear Information System (INIS)
Ansah-Narh, T.
2010-01-01
The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)
On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons
Directory of Open Access Journals (Sweden)
Amelia Carolina Sparavigna
2016-05-01
Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.
Available computer codes and data for radiation transport analysis
International Nuclear Information System (INIS)
Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.
1975-01-01
The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results
Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3
Sitchin, A.
1972-01-01
Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.
International Nuclear Information System (INIS)
Stancic, V.
2001-01-01
This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space
Validation of comprehensive space radiation transport code
International Nuclear Information System (INIS)
Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.
1998-01-01
The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation
Test plan for validation of the radiative transfer equation.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.
2010-09-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
Hartung, Lin C.; Hassan, H. A.
1992-01-01
A moment method for computing 3-D radiative transport is applied to axisymmetric flows in thermochemical nonequilibrium. Such flows are representative of proposed aerobrake missions. The method uses the P-1 approximation to reduce the governing system of integro-di erential equations to a coupled set of partial di erential equations. A numerical solution method for these equations given actual variations of the radiation properties in thermochemical nonequilibrium blunt body flows is developed. Initial results from the method are shown and compared to tangent slab calculations. The agreement between the transport methods is found to be about 10 percent in the stagnation region, with the difference increasing along the flank of the vehicle.
International Nuclear Information System (INIS)
Ching, J.; Oblow, E.M.; Goldstein, H.
1976-01-01
An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab
Rare Event Simulation in Radiation Transport
Kollman, Craig
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiplied by the likelihood ratio between the true and simulated probabilities so as to keep our estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive "learning" algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give, with probability one, a sequence of estimates converging exponentially fast to the true solution. In the final chapter, an attempt to generalize this algorithm to a continuous
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method
International Nuclear Information System (INIS)
Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de
2003-01-01
In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)
International Nuclear Information System (INIS)
Edenstrasser, J.W.
1995-01-01
A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics
International Nuclear Information System (INIS)
Smedley-Stevenson, Richard P.; McClarren, Ryan G.
2015-01-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)
2015-04-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.
Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed
2012-01-01
A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.
Sun, Shuyu
2012-06-02
A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.
International Nuclear Information System (INIS)
Olson, Gordon L.
2016-01-01
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. Authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order. - Highlights: • Gray and multigroup radiation transport is done through 2D stochastic media. • Approximate models for the mean radiation field are found for all test problems. • Effective opacities are adjusted to fit the means of stochastic media transport. • Test problems include temperature dependent opacities and heat capacities • Transport solutions are done with angle orders n=1 and 5.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Optical properties reconstruction using the adjoint method based on the radiative transfer equation
Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir
2018-01-01
An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.
Renormalization-group approach to nonlinear radiation-transport problems
International Nuclear Information System (INIS)
Chapline, G.F.
1980-01-01
A Monte Carlo method is derived for solving nonlinear radiation-transport problems that allows one to average over the effects of many photon absorptions and emissions at frequencies where the opacity is large. This method should allow one to treat radiation-transport problems with large optical depths, e.g., line-transport problems, with little increase in computational effort over that which is required for optically thin problems
Foucart, Francois
2018-04-01
General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
Radiation pressure and the Thomas-Fermi equation of state
International Nuclear Information System (INIS)
More, R.M.
1976-01-01
This paper studies the interaction of radiation with matter in a high-temperature environment. The radiation pressure is calculated carefully, including the coupling to the high density electron plasma. The calculation yields a correction to the expression for radiation pressure given by Inman (Astrophys. J.; 142: 201 (1965)). The results are applied to investigate whether radiation pressure can produce significant alterations of the electron density in atoms. (author)
Transport of infrared radiation in cuboidal clouds
Harshvardhan, MR.; Weinman, J. A.; Davies, R.
1981-01-01
The transport of infrared radiation in a single cuboidal cloud is modeled using a variable azimuth two-stream approximation. Computations are made at 10 microns for a Deirmendjian (1969) C-1 water cloud where the single scattering albedo is equal to 0.638 and the asymmetry parameter is 0.865. The results indicate that the emittance of the top face of the model cloud is always less than that for a plane parallel cloud of the same optical depth. The hemispheric flux escaping from the cloud top possesses a gradient from the center to the edges which are warmer when the cloud is over warmer ground. Cooling rate calculations in the 8-13.6 micron region demonstrate that there is cooling out of the sides of the cloud at all levels even when there is heating of the core from the ground below. The radiances exiting from model cuboidal clouds are computed by path integration over the source function obtained with the two-stream approximation. Results indicate that the brightness temperature measured from finite clouds will overestimate the cloud-top temperature.
Differential equation of exospheric lateral transport and its application to terrestrial hydrogen
Hodges, R. R., Jr.
1973-01-01
The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.
A variational solution of transport equation based on spherical geometry
International Nuclear Information System (INIS)
Liu Hui; Zhang Ben'ai
2002-01-01
A variational method with differential forms gives better precision for numerical solution of transport critical problem based on spherical geometry, and its computation seems simple than other approximate methods
Application of Trotter approximation for solving time dependent neutron transport equation
International Nuclear Information System (INIS)
Stancic, V.
1987-01-01
A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
An introduction to the Boltzmann equation and transport processes in gases
Kremer, Gilberto M; Colton, David
2010-01-01
This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.
General Eulerian formulation of the comoving-frame equation of radiative transfer
International Nuclear Information System (INIS)
Riffert, H.
1986-01-01
For a wide range of problems in radiation hydrodynamics the motion of the matter is best described in an Eulerian coordinate system, and here a comoving-frame equation of radiation transfer in such fixed coordinates is derived, using the radiation quantities measured in the comoving frame. The choice of coordinates is arbitrary, and the equation is given explicitly for an arbitrary diagonal metric, correct to all orders in v/c. All comoving frame equations derived earlier are included as special cases. An example is given for the case of a spherically symmetric flow in a Schwarzschild metric. 9 references
TLC scheme for numerical solution of the transport equation on equilateral triangular meshes
International Nuclear Information System (INIS)
Walters, W.F.
1983-01-01
A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.
New diffusion-like solutions of one-speed transport equations in spherical geometry
International Nuclear Information System (INIS)
Sahni, D.C.
1988-01-01
Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)
Implementation and testing of a multivariate inverse radiation transport solver
International Nuclear Information System (INIS)
Mattingly, John; Mitchell, Dean J.
2012-01-01
Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver's essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal. - Highlights: ► Inverse problems, specifically applied to identifying and characterizing radiation sources . ► Radiation transport. ► Analysis of gamma spectroscopy and neutron multiplicity counting measurements. ► Experimental testing of the inverse solver against measurements of plutonium.
Los Alamos radiation transport code system on desktop computing platforms
International Nuclear Information System (INIS)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.
1990-01-01
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
Adomian decomposition method for solving the telegraph equation in charged particle transport
International Nuclear Information System (INIS)
Abdou, M.A.
2005-01-01
In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
International Nuclear Information System (INIS)
Zabadal, J.; Vilhena, M.T.; Segatto, C.F.; Pazos, R.P.Ruben Panta.
2002-01-01
In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br
2002-07-01
In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.
The discontinuous finite element method for solving Eigenvalue problems of transport equations
International Nuclear Information System (INIS)
Yang, Shulin; Wang, Ruihong
2011-01-01
In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)
The H-N method for solving linear transport equation: theory and application
International Nuclear Information System (INIS)
Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.
2002-01-01
The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions
Two analytic transport equation solutions for particular cases of particle history
International Nuclear Information System (INIS)
Simovic, R.
1997-01-01
For anisotropic scattering and plane geometry, the linear transport equation of particles generated by a monodirectional unit source A(x,μ) = δ(x-0)δ(μ - μ 0 ) > 0, can be stated in the form of an integral equation
Optimal partial mass transportation and obstacle Monge-Kantorovich equation
Igbida, Noureddine; Nguyen, Van Thanh
2018-05-01
Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).
Directory of Open Access Journals (Sweden)
Ted W. Sammis
2013-09-01
Full Text Available Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET algorithms, the outgoing shortwave and longwave components of net radiation are obtained from remote sensing data, while the incoming shortwave (RS and longwave (RL components are typically estimated from weather data using empirical equations. This study evaluates the accuracy of empirical equations commonly used in remote sensing ET algorithms for estimating RS and RL radiation. Evaluation is carried out through comparison of estimates and observations at five sites that represent different climatic regions from humid to arid. Results reveal (1 both RS and RL estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92, (2 RS estimating equations tend to overestimate, especially at higher values, (3 RL estimating equations tend to give more biased values in arid and semi-arid regions, (4 a model that parameterizes the diffuse component of radiation using two clearness indices and a simple model that assumes a linear increase of atmospheric transmissivity with elevation give better RS estimates, and (5 mean relative absolute errors in the net radiation (Rn estimates caused by the use of RS and RL estimating equations varies from 10% to 22%. This study suggests that Rn estimates using recommended incoming radiation estimating equations could improve ET estimates.
Energy Technology Data Exchange (ETDEWEB)
Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.
Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation
Directory of Open Access Journals (Sweden)
Shujahadeen B. Aziz
2016-01-01
Full Text Available Solid and nanocomposite polymer electrolytes based on chitosan have been prepared by solution cast technique. The XRD results reveal the occurrence of complexation between chitosan (CS and the LiTf salt. The deconvolution of the diffractogram of nanocomposite solid polymer electrolytes demonstrates the increase of amorphous domain with increasing alumina content up to 4 wt.%. Further incorporation of alumina nanoparticles (6 to 10 wt.% Al2O3 results in crystallinity increase (large crystallite size. The morphological (SEM and EDX analysis well supported the XRD results. Similar trends of DC conductivity and dielectric constant with Al2O3 concentration were explained. The TEM images were used to explain the phenomena of space charge and blocking effects. The reformulated Arrhenius equation (σ(ε′,T=σoexp(-Ea/KBε′T was proposed from the smooth exponential behavior of DC conductivity versus dielectric constant at different temperatures. The more linear behavior of DC conductivity versus 1000/(ɛ′×T reveals the crucial role of dielectric constant in Arrhenius equation. The drawbacks of Arrhenius equation can be understood from the less linear behavior of DC conductivity versus 1000/T. The relaxation processes have been interpreted in terms of Argand plots.
dispersion equation parameters of solute transport in agricultural
African Journals Online (AJOL)
Jane
2011-08-31
Aug 31, 2011 ... fields for predicting soil quality property. Key words: ... The classical approach of modeling solute transport in porous media uses the deterministic ... concentration of the solution in the liquid phase, u0 is the mean velocity and ...
Radiation doses from the transport of radioactive materials
International Nuclear Information System (INIS)
Shaw, K.B.; Holyoak, B.
1983-01-01
A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)
Elliptic random-walk equation for suspension and tracer transport in porous media
DEFF Research Database (Denmark)
Shapiro, Alexander; Bedrikovetsky, P. G.
2008-01-01
. The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions......We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time...... of the CTRW theory. (C) 2008 Elsevier B.V. All rights reserved....
Global existence of a generalized solution for the radiative transfer equations
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1984-01-01
We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr
Resolution of the neutron transport equation by massively parallel computer in the Cronos code
International Nuclear Information System (INIS)
Zardini, D.M.
1996-01-01
The feasibility of neutron transport problems parallel resolution by CRONOS code's SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author)
Modified two-fluid model for the two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.
2003-01-01
This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
Radiation safety in sea transport of radioactive material in Japan
International Nuclear Information System (INIS)
Odano, N.; Yanagi, H.
2004-01-01
Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured
Radiation safety in sea transport of radioactive material in Japan
Energy Technology Data Exchange (ETDEWEB)
Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)
2004-07-01
Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.
Energy Technology Data Exchange (ETDEWEB)
Saha Ray, S., E-mail: santanusaharay@yahoo.com; Patra, A.
2014-10-15
Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet collocation method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: In this paper the numerical solution for the fractional order stationary neutron transport equation is presented using Haar wavelet Collocation Method (HWCM). Haar wavelet collocation method is efficient and powerful in solving wide class of linear and nonlinear differential equations. This paper intends to provide an application of Haar wavelets to nuclear science problems. This paper describes the application of Haar wavelets for the numerical solution of fractional order stationary neutron transport equation in homogeneous medium with isotropic scattering. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency and applicability of the method, two test problems are discussed.
Least-squares finite element discretizations of neutron transport equations in 3 dimensions
Energy Technology Data Exchange (ETDEWEB)
Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)
1996-12-31
The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.
Radiation transport phenomena and modeling - part A: Codes
International Nuclear Information System (INIS)
Lorence, L.J.
1997-01-01
The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped
Radiation transport code with adaptive Mesh Refinement: acceleration techniques and applications
International Nuclear Information System (INIS)
Velarde, Pedro; Garcia-Fernaandez, Carlos; Portillo, David; Barbas, Alfonso
2011-01-01
We present a study of acceleration techniques for solving Sn radiation transport equations with Adaptive Mesh Refinement (AMR). Both DSA and TSA are considered, taking into account the influence of the interaction between different levels of the mesh structure and the order of approximation in angle. A Hybrid method is proposed in order to obtain better convergence rate and lower computer times. Some examples are presented relevant to ICF and X ray secondary sources. (author)
Stability result for Navier-Stokes equations with entropy transport
Czech Academy of Sciences Publication Activity Database
Michálek, Martin
2015-01-01
Roč. 17, č. 2 (2015), s. 279-285 ISSN 1422-6928 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * entropy transport * effective viscous flux Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2015 http://link.springer.com/article/10.1007%2Fs00021-015-0205-x
Intense radiative heat transport across a nano-scale gap
International Nuclear Information System (INIS)
Budaev, Bair V.; Ghafari, Amin; Bogy, David B.
2016-01-01
In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Novel Parallel Numerical Methods for Radiation and Neutron Transport
International Nuclear Information System (INIS)
Brown, P N
2001-01-01
In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-01-01
A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)
The adaptive collision source method for discrete ordinates radiation transport
International Nuclear Information System (INIS)
Walters, William J.; Haghighat, Alireza
2017-01-01
Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.
Nonrelativistic grey Sn-transport radiative-shock solutions
International Nuclear Information System (INIS)
Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.
2017-01-01
We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.
Eu, Byung Chan
2008-09-07
In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.
A high-order Petrov-Galerkin method for the Boltzmann transport equation
International Nuclear Information System (INIS)
Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de
2005-01-01
We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov
Dirac equation of spin particles and tunneling radiation from a Kinnersly black hole
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Feng, Zhong-Wen [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China)
2017-04-15
In curved space-time, the Hamilton-Jacobi equation is a semi-classical particle equation of motion, which plays an important role in the research of black hole physics. In this paper, starting from the Dirac equation of spin 1/2 fermions and the Rarita-Schwinger equation of spin 3/2 fermions, respectively, we derive a Hamilton-Jacobi equation for the non-stationary spherically symmetric gravitational field background. Furthermore, the quantum tunneling of a charged spherically symmetric Kinnersly black hole is investigated by using the Hamilton-Jacobi equation. The result shows that the Hamilton-Jacobi equation is helpful to understand the thermodynamic properties and the radiation characteristics of a black hole. (orig.)
International Nuclear Information System (INIS)
Palta, J.R.
1981-01-01
A versatile computer program MORSE, based on neutron and photon transport theory has been utilzed to investigate radiation therapy treatment planning quantities and techniques. A multi-energy group representation of transport equation provides a concise approach in utilizing Monte Carlo numerical techniques to multiple radiation therapy treatment planning problems. Central axis total and scattered dose distributions for homogeneous and inhomogeneous water phantoms are calculated and the correction factor for lung and bone inhomogeneities are also evaluated. Results show that Monte Carlo calculations based on multi-energy group tansport theory predict the depth dose distributions that are in good agreement with available experimental data. Central axis depth dose distributions for a bremsstrahlung spectrum from a linear accelerator is also calculated to exhibit the versatility of the computer program in handling multiple radiation therapy problems. A novel approach is undertaken to study the dosimetric properties of brachytherapy sources
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres
García Muñoz, A.; Mills, F. P.
2017-08-01
PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.
Transition flow ion transport via integral Boltzmann equation
International Nuclear Information System (INIS)
Darcie, T.E.
1983-10-01
A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions
Non-classical radiation transport in random media with fluctuating densities
International Nuclear Information System (INIS)
Dyuldya, S.V.; Bratchenko, M.I.
2012-01-01
The ensemble averaged propagation kernels of the non-classical radiation transport are studied by means of the proposed application of the stochastic differential equation random medium generators. It is shown that the non-classical transport is favored in long-correlated weakly fluctuating media. The developed kernel models have been implemented in GEANT4 and validated against the d ouble Monte Carlo m odeling of absorptions curves of disperse neutron absorbers and γ-albedos from a scatterer/absorber random mix
Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation
International Nuclear Information System (INIS)
Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco
2002-01-01
In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)
Nature of complex time eigenvalues of the one speed transport equation in a homogeneous sphere
International Nuclear Information System (INIS)
Dahl, E.B.; Sahni, D.C.
1990-01-01
The complex time eigenvalues of the transport equation have been studied for one speed neutrons, scattered isotropically in a homogeneous sphere with vacuum boundary conditions. It is shown that the complex decay constants vary continuously with the radius of the sphere. Our earlier conjecture (Dahl and Sahni (1983-84)) regarding disjoint arcs is thus shown to be true. We also indicate that complex decay constants exist even for large assemblies, though with rapid oscillations in the corresponding eigenvectors. These modes cannot be predicted by the diffusion equation as this behaviour of the eigenvectors contradicts the assumption of 'slowly varying flux' needed to derive the diffusion approximation from the transport equation. For an infinite system, the existence of complex modes is related to the solution of a homogeneous equation. (author)
A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers
Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.
2016-10-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
Energy Technology Data Exchange (ETDEWEB)
Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)
2016-02-20
We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.
Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling
International Nuclear Information System (INIS)
Maitre, E.
2008-11-01
My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former
International Nuclear Information System (INIS)
Chen, G.S.
1997-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)
A general analytical approach to the one-group, one-dimensional transport equation
International Nuclear Information System (INIS)
Barichello, L.B.; Vilhena, M.T.
1993-01-01
The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Development and preliminary verification of 2-D transport module of radiation shielding code ARES
International Nuclear Information System (INIS)
Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng
2013-01-01
The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)
Radiation transport Part B: Applications with examples
International Nuclear Information System (INIS)
Beutler, D.E.
1997-01-01
In the previous sections Len Lorence has described the need, theory, and types of radiation codes that can be applied to model the results of radiation effects tests or working environments for electronics. For the rest of this segment, the author will concentrate on the specific ways the codes can be used to predict device response or analyze radiation test results. Regardless of whether one is predicting responses in a working or test environment, the procedures are virtually the same. The same can be said for the use of 1-, 2-, or 3-dimensional codes and Monte Carlo or discrete ordinates codes. No attempt is made to instruct the student on the specifics of the code. For example, the author will not discuss the details, such as the number of meshes, energy groups, etc. that are appropriate for a discrete ordinates code. For the sake of simplicity, he will restrict himself to the 1-dimensional code CEPXS/ONELD. This code along with a wide variety of other radiation codes can be obtained form the Radiation Safety Information Computational Center (RSICC) for a nominal handling fee
Variance estimates for transport in stochastic media by means of the master equation
International Nuclear Information System (INIS)
Pautz, S. D.; Franke, B. C.; Prinja, A. K.
2013-01-01
The master equation has been used to examine properties of transport in stochastic media. It has been shown previously that not only may the Levermore-Pomraning (LP) model be derived from the master equation for a description of ensemble-averaged transport quantities, but also that equations describing higher-order statistical moments may be obtained. We examine in greater detail the equations governing the second moments of the distribution of the angular fluxes, from which variances may be computed. We introduce a simple closure for these equations, as well as several models for estimating the variances of derived transport quantities. We revisit previous benchmarks for transport in stochastic media in order to examine the error of these new variance models. We find, not surprisingly, that the errors in these variance estimates are at least as large as the corresponding estimates of the average, and sometimes much larger. We also identify patterns in these variance estimates that may help guide the construction of more accurate models. (authors)
Advances in the solution of three-dimensional nodal neutron transport equation
International Nuclear Information System (INIS)
Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de
2003-01-01
In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)
On the steady equations for compressible radiative gas
Czech Academy of Sciences Publication Activity Database
Kreml, Ondřej; Nečasová, Šárka; Pokorný, M.
2013-01-01
Roč. 64, č. 3 (2013), s. 539-571 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : radiative gas * variational entropy solution * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://link.springer.com/article/10.1007%2Fs00033-012-0246-4
Overview. Department of Environmental and Radiation Transport Physics. Section 6
Energy Technology Data Exchange (ETDEWEB)
Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.
Overview. Department of Environmental and Radiation Transport Physics. Section 6
Energy Technology Data Exchange (ETDEWEB)
Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)
1996-12-31
Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.
Solving the transport equation with quadratic finite elements: Theory and applications
International Nuclear Information System (INIS)
Ferguson, J.M.
1997-01-01
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids
Development of a polynomial nodal model to the multigroup transport equation in one dimension
International Nuclear Information System (INIS)
Feiz, M.
1986-01-01
A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model
Coupled force-balance and particle-occupation rate equations for high-field electron transport
International Nuclear Information System (INIS)
Lei, X. L.
2008-01-01
It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field
Methods for the solution of the two-dimensional radiation-transfer equation
International Nuclear Information System (INIS)
Weaver, R.; Mihalas, D.; Olson, G.
1982-01-01
We use the variable Eddington factor (VEF) approximation to solve the time-dependent two-dimensional radiation transfer equation. The transfer equation and its moments are derived for an inertial frame of reference in cylindrical geometry. Using the VEF tensor to close the moment equations, we manipulate them into a combined moment equation that results in an energy equation, which is automatically flux limited. There are two separable facets in this method of solution. First, given the variable Eddington tensor, we discuss the efficient solution of the combined moment matrix equation. The second facet of the problem is the calculation of the variable Eddington tensor. Several options for this calculation, as well as physical limitations on the use of locally-calculated Eddington factors, are discussed
Radiological emergency: road map for radiation accident victim transport
International Nuclear Information System (INIS)
Costa, V.S.G.; Alcantara, Y.P.; Lima, C.M.A.; Silva, F. C. A. da
2017-01-01
During a radiological or nuclear emergency, a number of necessary actions are taken, both within the radiation protection of individuals and the environment, involving many institutions and highly specialized personnel. Among them it is possible to emphasize the air transportation of radiation accident victims.The procedures and measures for the safe transport of these radiation accident victims are generally the responsibility of the armed forces, specifically the Aeronautics, with the action denominated 'Aeromedical Military Evacuation of Radiation Accident Victims'. The experience with the Radiological Accident of Goiânia demonstrated the importance of adequate preparation and response during a radiological emergency and the need for procedures and measures with regard to the transport of radiation victims are clearly defined and clearly presented for the effectiveness of the actions. This work presents the necessary actions for the transport of radiation accident victim during a radiological emergency, through the road map technique, which has been widely used in scientific technical area to facilitate understanding and show the way to be followed to reach the proposed objectives
Transport of cobalt-60 industrial radiation sources
Kunstadt, Peter; Gibson, Wayne
This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.
Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems
International Nuclear Information System (INIS)
Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.
2001-01-01
Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed
Spectral element method for vector radiative transfer equation
International Nuclear Information System (INIS)
Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.
2010-01-01
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.
Assessment of Haar Wavelet-Quasilinearization Technique in Heat Convection-Radiation Equations
Directory of Open Access Journals (Sweden)
Umer Saeed
2014-01-01
Full Text Available We showed that solutions by the Haar wavelet-quasilinearization technique for the two problems, namely, (i temperature distribution equation in lumped system of combined convection-radiation in a slab made of materials with variable thermal conductivity and (ii cooling of a lumped system by combined convection and radiation are strongly reliable and also more accurate than the other numerical methods and are in good agreement with exact solution. According to the Haar wavelet-quasilinearization technique, we convert the nonlinear heat transfer equation to linear discretized equation with the help of quasilinearization technique and apply the Haar wavelet method at each iteration of quasilinearization technique to get the solution. The main aim of present work is to show the reliability of the Haar wavelet-quasilinearization technique for heat transfer equations.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Radiation transport in statistically inhomogeneous rocks
International Nuclear Information System (INIS)
Lukhminskij, B.E.
1975-01-01
A study has been made of radiation transfer in statistically inhomogeneous rocks. Account has been taken of the statistical character of rock composition through randomization of density. Formulas are summarized for sigma-distribution, homogeneous density, the Simpson and Cauchy distributions. Consideration is given to the statistics of mean square ranges in a medium, simulated by the jump Markov random function. A quantitative criterion of rock heterogeneity is proposed
The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect
França, H. M.; Kamimura, A.; Barreto, G. A.
2016-04-01
A Schrödinger type equation for a mathematical probability amplitude Ψ( x, t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V( x). The particle phase space probability density is denoted Q( x, p, t), and the entire system is immersed in the "vacuum" zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on hbar , and the zero-point electromagnetic spectral distribution, given by ρ 0{(ω )} = hbar ω 3/2 π 2 c3, also depends on hbar , it is interesting to verify the possible dynamical connection between ρ 0( ω) and the Schrödinger equation. We shall prove that the Planck's constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0( ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton's effect.
Zhang, Chuang; Guo, Zhaoli; Chen, Songze
2017-12-01
An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.
Study of the sensitivity of the radiation transport problem in a scattering medium
International Nuclear Information System (INIS)
Nunes, Rogerio Chaffin
2002-03-01
In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)
Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan
1999-01-01
the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport...
Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem
International Nuclear Information System (INIS)
Wei, J.; Yang, S.
2013-01-01
In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)
On the relativistic transport equation for a discontinuity wave of multiplicity one
International Nuclear Information System (INIS)
Giambo, Sebastiano; Palumbo, Annunziata
1980-01-01
In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity [fr
Measuring the contour of a wavefront using the Irradiance Transport Equation (ITE)
Castillo-Rodríguez, Luis; Granados-Agustín, Fermín; Fernández-Guasti, Manuel; Cornejo-Rodríguez, Alejandro
2006-01-01
The Irradiance Transport Equation (ITE), found by Teague, had been used in optics with different applications. One of the field where had been used is in optical testing, for example, with the method developed by Takeda. In this paper following the idea of using different optical and mathematical analysis method, theorical and experimental results are presented.
On the history of a stochastic ansatz for solving the transport equation
International Nuclear Information System (INIS)
Williams, M.M.R.
2010-01-01
A very useful approximate tool for understanding the role of random material properties on solutions of the transport equation is described and its historical derivation given. The development of this stochastic tool, from its introduction by Randall, to its use in describing current problems involving dichotomic or pseudo-dichotomic Markov processes is discussed.
FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation
International Nuclear Information System (INIS)
Taormina, A.
1978-05-01
FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)
Solving the two-dimensional stationary transport equation with the aid of the nodal method
International Nuclear Information System (INIS)
Mesina, M.
1976-07-01
In this document the two-dimensional stationary transport equation for the geometry of a fuel assembly or for a system of square boxes has been formulated as an algebraic eigenvalue problem, and the solution was achieved with the computer code NODE 2 which was developed for this purpose. (orig.) [de
International Nuclear Information System (INIS)
Goncalves, Glenio Aguiar
2003-01-01
In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)
Description of deeply inelastic collisions in terms of a transport equation
International Nuclear Information System (INIS)
Weidenmueller, H.A.
1977-01-01
A transport equation for deeply inelastic collisions is derived from a random-matrix model for the form factors for inelastic scattering and transfer reactions. The parametrization of these form factors is discussed. Results in one dimension indicate the importance of quantum fluctuations, and limitations of other approaches to the same problem. Results of three dimensions are compared with the data
Application of finite element method in the solution of transport equation
International Nuclear Information System (INIS)
Maiorino, J.R.; Vieira, W.J.
1985-01-01
It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt
Steady-state transport equation resolution by particle methods, and numerical results
International Nuclear Information System (INIS)
Mercier, B.
1985-10-01
A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr
Radiative transport-based frequency-domain fluorescence tomography
International Nuclear Information System (INIS)
Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John
2008-01-01
We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs
Resolution of the neutron transport equation by a three-dimensional least square method
International Nuclear Information System (INIS)
Varin, Elisabeth
2001-01-01
The knowledge of space and time distribution of neutrons with a certain energy or speed allows the exploitation and control of a nuclear reactor and the assessment of the irradiation dose about an irradiated nuclear fuel storage site. The neutron density is described by a transport equation. The objective of this research thesis is to develop a software for the resolution of this stationary equation in a three-dimensional Cartesian domain by means of a deterministic method. After a presentation of the transport equation, the author gives an overview of the different deterministic resolution approaches, identifies their benefits and drawbacks, and discusses the choice of the Ressel method. The least square method is precisely described and then applied. Numerical benchmarks are reported for validation purposes
A numerical solution of the coupled proton-H atom transport equations for the proton aurora
International Nuclear Information System (INIS)
Basu, B.; Jasperse, J.R.; Grossbard, N.J.
1990-01-01
A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates
Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems
Application of the finite element method to the neutron transport equation
International Nuclear Information System (INIS)
Martin, W.R.
1976-01-01
This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions
Radiation exposure during air and ground transportation
International Nuclear Information System (INIS)
Hsu, P.C.; Weng, P.S.
1976-01-01
The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO 4 :Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)
Boundary conditions for the diffusion equation in radiative transfer
International Nuclear Information System (INIS)
Haskell, R.C.; Svaasand, L.O.; Tsay, T.; Feng, T.; McAdams, M.S.; Tromberg, B.J.
1994-01-01
Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80--100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current--extrapolated boundary approach
Some results on the neutron transport and the coupling of equations
International Nuclear Information System (INIS)
Bal, G.
1997-01-01
Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author)
International Nuclear Information System (INIS)
Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.
2015-01-01
Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2016-01-01
A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....
Chemical and kinetic equilibrations via radiative parton transport
International Nuclear Information System (INIS)
Zhang Bin; Wortman, Warner A
2011-01-01
A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.
International Nuclear Information System (INIS)
Cho, Nam Zin; Park, Chang Je
2001-01-01
An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DP N and low-order S N re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results
Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
Signal Processing Model for Radiation Transport
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H
2008-07-28
This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.
International Nuclear Information System (INIS)
McNamara, D.J.
1977-01-01
The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated
Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields
International Nuclear Information System (INIS)
Volkov, N B; Chingina, E A; Yalovets, A P
2016-01-01
We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed. (paper)
Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport
International Nuclear Information System (INIS)
Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.
1999-01-01
Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization
Self-adjoint angular flux equation for coupled electron-photon transport
International Nuclear Information System (INIS)
Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.
1999-01-01
Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
Françoise Benz
2006-01-01
2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...
Equations of motion for a radiating charged particle in electromagnetic fields on curved spacetime
International Nuclear Information System (INIS)
Prasanna, A.R.
1982-11-01
In this note we present the equations of motion for a radiating charged particle in the framework of general relativity and give a formal procedure of solving the system numerically using iterations, when the motion is confined to the equatorial plane. (author)
Equation of Motion of an Interstellar Bussard Ramjet with Radiation and Mass Losses
Semay, Claude; Silvestre-Brac, Bernard
2008-01-01
An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly…
International Nuclear Information System (INIS)
Wang, Yaqi
2012-01-01
The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.
Some factors affecting radiative heat transport in PWR cores
International Nuclear Information System (INIS)
Hall, A.N.
1989-04-01
This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)
Analysis of an upstream weighted collocation approximation to the transport equation
International Nuclear Information System (INIS)
Shapiro, A.; Pinder, G.F.
1981-01-01
The numerical behavior of a modified orthogonal collocation method, as applied to the transport equations, can be examined through the use of a Fourier series analysis. The necessity of such a study becomes apparent in the analysis of several techniques which emulate classical upstream weighting schemes. These techniques are employed in orthogonal collocation and other numerical methods as a means of handling parabolic partial differential equations with significant first-order terms. Divergent behavior can be shown to exist in one upstream weighting method applied to orthogonal collocation
Resolution of the steady state transport equation for Lagrangian geometry with cylindrical symmetry
International Nuclear Information System (INIS)
Samba, G.
1983-05-01
The purpose of this work is to solve the steady state transport equation for (r, z) geometries given by hydrodynamics calculations. The discontinuous finite element method for the space variables (r, z) provides a stable scheme which satisfies the particle balance equation. We are able to sweep cells for each direction over the mesh to have an explicit scheme. The graph theory provides a very efficient algorithm to compute this ordering array. Previously, we must divide all the quadrilaterals into two triangles to get only convex cells. Thus, we get a fast, vectorized calculation which gives a good accuracy on very distorted meshes [fr
Normal scheme for solving the transport equation independently of spatial discretization
International Nuclear Information System (INIS)
Zamonsky, O.M.
1993-01-01
To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)
Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations
Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.
2012-12-01
The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.
Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei
2014-07-17
We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.
Electron and ion transport equations in computational weakly-ionized plasmadynamics
International Nuclear Information System (INIS)
Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.
2014-01-01
A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized
Master equations for degenerate systems: electron radiative cascade in a Coulomb potential
International Nuclear Information System (INIS)
Uskov, D B; Pratt, R H
2004-01-01
We examine the effects of degeneracy and its lifting for the problem of electron radiative cascade, described by master equations of the Lindblad form (quantum optical master equations). A weak external field approximation is used to study the resulting gradual transformation of cascade dynamics between degenerate and non-degenerate forms. Exploiting the spherical symmetry properties of the system we demonstrate significant difference between perturbations commuting with angular momentum and perturbations breaking the spherical symmetry, such as a homogeneous external field. We discuss the possibility and the general approach for reduction of the Lindblad master equations in the case of spectral degeneracy to the Pauli balance equations. This determines the appropriate choice of basis as, for example, spherical or parabolic
Exponentially-convergent Monte Carlo for the 1-D transport equation
International Nuclear Information System (INIS)
Peterson, J. R.; Morel, J. E.; Ragusa, J. C.
2013-01-01
We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)
The use of non-dimensional representation of the solute transport equations
International Nuclear Information System (INIS)
Laurens, J.-M.
1988-07-01
This report presents the results obtained in a pilot investigation into the use of non-dimensional representations of the solute transport equations, so as to improve the efficiency of the PRA codes used by the DoE and its contractors. A reduced set of parameters was obtained for a single layer transport model. As expected, the response was shown to be highly sensitive on the new parameters. A faster convergence of the system was observed when the sampling technique used was changed to take into account the properties of the new parameters, such that uniform coverage of the reduced parameter hyperspace was achieved. (author)
Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges
International Nuclear Information System (INIS)
Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.
1990-01-01
Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs
CACTUS, a characteristics solution to the neutron transport equations in complicated geometries
International Nuclear Information System (INIS)
Halsall, M.J.
1980-04-01
CACTUS has been written to solve the multigroup neutron transport equation in a general two-dimensional geometry. The method is based upon a characteristics formulation for the problem in which the transport equation is integrated explicitly along straight line tracks that are suitably distributed throughout the problem. Source distributions and scattering are assumed to be isotropic, but the only restriction on geometry is that the outer boundary should be rectangular. Within this rectangular boundary the user is free to build his problem geometry using any combination of intersecting straight lines and circular arcs. The theory of the method is described, followed by some details of a coding, a sensitivity study on the number of tracks required to integrate fluxes in a particular problem, a user's guide, and a few test cases. (author)
International Nuclear Information System (INIS)
Talamo, Alberto
2013-01-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry
International Nuclear Information System (INIS)
Valle, Edmundo del; Mund, Ernest H.
2004-01-01
This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature
International Nuclear Information System (INIS)
Kovac, D.; Otto, G.; Hobler, G.
2005-01-01
In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature
International Nuclear Information System (INIS)
Asadzadeh, M.; Thevenot, L.
2010-01-01
The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1977-01-01
A method of solution of a monoenergetic neutron transport equation in P sub(L) approximation is presented for x-y and x-y-z geometries using the finite Fourier transformation. A reactor system is assumed to consist of multiregions in each of which the nuclear cross sections are spatially constant. Since the unknown functions of this method are the spherical harmonics components of the neutron angular flux at the material boundaries alone, the three- and two-dimensional equations are reduced to two- and one-dimensional equations, respectively. The present approach therefore gives fewer unknowns than in the usual series expansion method or in the finite difference method. Some numerical examples are shown for the criticality problem. (auth.)
A multi scale approximation solution for the time dependent Boltzmann-transport equation
International Nuclear Information System (INIS)
Merk, B.
2004-03-01
The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is
Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.
2018-06-01
The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.
Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
International Nuclear Information System (INIS)
Shestakov, A.I.; Greenough, J.A.; Howell, L.H.
2005-01-01
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks
Transport of radioactive materials: the need for radiation protection programmes
International Nuclear Information System (INIS)
Masinza, S.A.
2004-01-01
The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it
A scalar flux - oriented method for the transport equation in slab geometry
International Nuclear Information System (INIS)
Budd, C.
1981-01-01
A new method for solving the neutron transport equation is described. An unusual feature of this method is that it deals principally with scalar fluxes rather than angular fluxes. An alternative approach in slab geometry promises to be cheaper to run and does not suffer from many of the problems of the discrete ordinates method. It also appears possible to extend the method to several dimensions and this is discussed. (U.K.)
A parallel version of a multigrid algorithm for isotropic transport equations
International Nuclear Information System (INIS)
Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.
1994-01-01
The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown
Application of radiation protection programmes to transport of radioactive material
International Nuclear Information System (INIS)
Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo
2008-01-01
Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part
Numerical solution of neutron transport equations in discrete ordinates and slab geometry
International Nuclear Information System (INIS)
Serrano Pedraza, F.
1985-01-01
An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used
Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation
Energy Technology Data Exchange (ETDEWEB)
Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1972-07-01
A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the
Approximate method for solving the velocity dependent transport equation in a slab lattice
International Nuclear Information System (INIS)
Ferrari, A.
1966-01-01
A method is described that is intended to provide an approximate solution of the transport equation in a medium simulating a water-moderated plate filled reactor core. This medium is constituted by a periodic array of water channels and absorbing plates. The velocity dependent transport equation in slab geometry is included. The computation is performed in a water channel: the absorbing plates are accounted for by the boundary conditions. The scattering of neutrons in water is assumed isotropic, which allows the use of a double Pn approximation to deal with the angular dependence. This method is able to represent the discontinuity of the angular distribution at the channel boundary. The set of equations thus obtained is dependent only on x and v and the coefficients are independent on x. This solution suggests to try solutions involving Legendre polynomials. This scheme leads to a set of equations v dependent only. To obtain an explicit solution, a thermalization model must now be chosen. Using the secondary model of Cadilhac a solution of this set is easy to get. The numerical computations were performed with a particular secondary model, the well-known model of Wigner and Wilkins. (author) [fr
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2016-08-01
In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.
International Nuclear Information System (INIS)
Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.
2009-01-01
This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)
Computer codes in nuclear safety, radiation transport and dosimetry
International Nuclear Information System (INIS)
Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.
2006-01-01
The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations
Radiation transport modelling for the interpretation of oblique ECE measurements
Directory of Open Access Journals (Sweden)
Denk Severin S.
2017-01-01
Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Li, Changping
2014-11-10
In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.
Li, Changping; Park, Ki-Hong; Alouini, Mohamed-Slim
2014-01-01
In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.
Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations
Watson, Michael D.; Jayroe, Robert, Jr.
1999-01-01
Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.
Recent developments in the Los Alamos radiation transport code system
International Nuclear Information System (INIS)
Forster, R.A.; Parsons, K.
1997-01-01
A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results
International Nuclear Information System (INIS)
Ignatovich, V.K.
1989-01-01
The equations. governing the transport of radiation in plane media of finite thickness are formulated and solved in terms reflection and extintion of radiation inthe case of semi infinite media. 13 refs
On the equation of transport for cosmic-ray particles in the interplanetary region
International Nuclear Information System (INIS)
Webb, G.M.; Gleeson, L.J.
1979-01-01
Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)
Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish
2018-05-01
We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
International Nuclear Information System (INIS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-01-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Molecular dynamics studies of transport properties and equation of state of supercritical fluids
Nwobi, Obika C.
Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the
International Nuclear Information System (INIS)
Cai, W.; Gayen, S.K.
2010-01-01
An analytical forward model and numerical algorithm for retrieving the parameters of water cloud of earth atmosphere from optical measurements carried out by satellite-based lidars is presented. The forward model, based on the analytical solution of the radiative transfer equation, is used to fit the temporal profile of the laser light pulses backscattered from the cloud layers. The cloud parameters extracted from the analysis at each position on earth include the transport mean free path, the average radius of water drops, the density of drops, the scattering length, the scattering cross section, the anisotropy factor, and the altitude of top level of major clouds. Also estimated is the possible thickness of cloud layers. The efficacy of the approach is demonstrated by generating parameters of water cloud using the data collected by NASA's cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) satellite when it passed through North America on August 7, 2007.
International Nuclear Information System (INIS)
Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.
2013-01-01
In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation
Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes
International Nuclear Information System (INIS)
Ortega J, R.; Valle G, E. del
2003-01-01
There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)
Direct Computation of Sound Radiation by Jet Flow Using Large-scale Equations
Mankbadi, R. R.; Shih, S. H.; Hixon, D. R.; Povinelli, L. A.
1995-01-01
Jet noise is directly predicted using large-scale equations. The computational domain is extended in order to directly capture the radiated field. As in conventional large-eddy-simulations, the effect of the unresolved scales on the resolved ones is accounted for. Special attention is given to boundary treatment to avoid spurious modes that can render the computed fluctuations totally unacceptable. Results are presented for a supersonic jet at Mach number 2.1.
Kylling, A.
1991-01-01
The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.
International Nuclear Information System (INIS)
Ben Jaffel, L.; Vidal-Madjar, A.
1989-01-01
The discrete ordinate method for the resolution of the radiative transfer equation is developed. We show that the construction of a quasi-analytical solution to the corresponding matrix diagonalization problem reduces the time calculation and allows the use of more dense discrete frequency and angle grids. Comparison with previous work is made, showing that the present method reduces by more than a factor of ten the computational time, and is more appropriate in all cases
Department of Environmental and Radiation Transport Physics - Overview
International Nuclear Information System (INIS)
Woznicka, U.
2001-01-01
Full text: We deal with environmental physics and the radiation transport physics, both theoretically and experimentally. Some results find their way to practical applications. Our environmental physics research encompasses hydrogeological problems as well as measurements of trace elements in the atmosphere and in the water. Theoretical (analytical and numerical) and experimental issues of the radiation transport and radiation fields are our main field of research. The interest in radiation transport phenomena is stimulated by their importance for the environmental physics, industrial and nuclear facilities and methods of geophysical. Environmental isotopes and noble gases are used in the investigation of water-bearing geological formations in order to determine the origin and age of groundwater. The papers listed below and three ''Reports on research'' present recent achievements in this field. The gas chromatography methods are used for monitoring the anthropogenic trace gases (SF 6 and freons), which participate in the Earth green-house effect. A very high detection level of SF 6 in water, 0.0028 fg/cm 3 H 2 0, has been reached as required for hydrogeological purposes. A preliminary verification of the SF 6 tracer method for dating young groundwaters by the tritium method has been carried out. We carried on the work on a method of radon measurement in soil in connection with geological conditions. The national seminar ''Radon in Environment'' organized at the INP aroused an interest of Polish scientific centres in that field. The seminar gathered 60 participants who presented 24 oral reports and 8 posters. Within the scope of the radiation transport physics we studied thermal neutron transport in finite hydrogenous media. Advantages and limitations of a Monte Carlo code (MCNP) in thermal neutron transport simulations have been examined by both the analytical solution and the experiment on the INP pulsed neutron generator. An interesting contribution to the
Radiation doses arising from the air transport of radioactive materials
International Nuclear Information System (INIS)
Gelder, R.; Shaw, K.B.; Wilson, C.K.
1989-01-01
There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)
International Nuclear Information System (INIS)
Wang, C.; Wang, F.; Cao, J. C.
2014-01-01
Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation
Wang, C; Wang, F; Cao, J C
2014-09-01
Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.
Energy Technology Data Exchange (ETDEWEB)
Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)
2014-09-01
Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.
International Nuclear Information System (INIS)
Gupta, N.K.
2002-01-01
The effects of radiation transport on hydrodynamic parameters of laser produced plasmas are studied. LTE and non-LTE atomic models are used to calculate multi group opacities and emissivities. Screened hydrogenic atom model is used to calculate the energy levels. The population densities of neutral to fully ionized ions are obtained by solving the steady state rate equations. Radiation transport is treated in multi-group diffusion or Sn method. A comparison is made between 1 and 100 group radiation transport and LTE and non-LTE models. For aluminium, multi group radiation transport leads to much higher mass ablation as compared to the 1 group and no radiation transport cases. This in turn leads to higher ablation pressures. However, for gold gray approximation gives higher mass ablation as compared to multi group simulations. LTE conversion efficiency of laser light into x-rays is more than the non-LTE estimates. For LTE as well as non-LTE cases, the one group approximation over-predicts the conversion efficiency Multi group non-LTE simulations predict that the conversion efficiency increases with laser intensity up to a maximum and then it decreases. (author)
International Nuclear Information System (INIS)
Frankel, J.I.
1995-01-01
This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research
Atmospheric transport, clouds and the Arctic longwave radiation paradox
Sedlar, Joseph
2016-04-01
Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are
The use of Monte Carlo radiation transport codes in radiation physics and dosimetry
CERN. Geneva; Ferrari, Alfredo; Silari, Marco
2006-01-01
Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...
Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state
International Nuclear Information System (INIS)
Thompson, S.L.; Lauson, H.S.
1974-03-01
A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic code is described. The information generated is thermodynamically complete and self-consistent. The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all types of phase mixtures are treated. Energy transport properties are calculated. The set of subroutines form a package which can easily be included in other hydrodynamic codes. (20 figures) (U.S.)
Development of comprehensive models for opacities and radiation transport for IFE systems
International Nuclear Information System (INIS)
Tolkach, V.; Morozov, V.; Hassanein, A.
2003-01-01
An ignition in an inertial confinement fusion (ICF) reactor results in X-ray spectra and ion fluxes moving toward the chamber wall with different velocities. During flight, parts of the energy will be deposited either in the residual and/or protective chamber gas or in the initial vapor cloud developed near the wall surface from vaporization. The deposited energy will be re-radiated to the chamber wall long after the ignition process. The exact amount of energy deposited/radiated and time of deposition are key issues in evaluating the chamber response and the economical feasibility of an ICF reactor. The radiation processes in the protective gas layer or in the vapor cloud developed above the first wall play an important role in the overall dynamics of the ICF chamber. A self-consistent field method has been developed to calculate ionization potentials, atom and ion energy levels, transition probabilities, and other atomic properties used to calculate thermodynamic and optical characteristics of the plasma by means of collisional-radiation equilibrium (CRE). The methodology of solving radiation transport equations in spherical geometry and the dependence of results on the chosen theoretical model are demonstrated using the method of inward/outward directions
Energy Technology Data Exchange (ETDEWEB)
Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China)
2013-01-01
A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.
Development of two-group interfacial area transport equation for confined flow-2. Model evaluation
International Nuclear Information System (INIS)
Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.
2003-01-01
The bubble interaction mechanisms have been analytically modeled in the first paper of this series to provide mechanistic constitutive relations for the two-group interfacial area transport equation (IATE), which was proposed to dynamically solve the interfacial area concentration in the two-fluid model. This paper presents the evaluation approach and results of the two-group IATE based on available experimental data obtained in confined flow, namely, 11 data sets in or near bubbly flow and 13 sets in cap-turbulent and churn-turbulent flow. The two-group IATE is evaluated in steady state, one-dimensional form. Also, since the experiments were performed under adiabatic, air-water two-phase flow conditions, the phase change effect is omitted in the evaluation. To account for the inter-group bubble transport, the void fraction transport equation for Group-2 bubbles is also used to predict the void fraction for Group-2 bubbles. Agreement between the data and the model predictions is reasonably good and the average relative difference for the total interfacial area concentration between the 24 data sets and predictions is within 7%. The model evaluation demonstrates the capability of the two-group IATE focused on the current confined flow to predict the interfacial area concentration over a wide range of flow regimes. (author)
Padrino, Juan C.; Sprittles, James; Lockerby, Duncan
2017-11-01
Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).
From the Dyson-Schwinger to the Transport Equation in the Background Field Gauge of QCD
Wang, Q; Stöcker, H; Greiner, W
2003-01-01
The non-equilibrium quantum field dynamics is usually described in the closed-time-path formalism. The initial state correlations are introduced into the generating functional by non-local source terms. We propose a functional approach to the Dyson-Schwinger equation, which treats the non-local and local source terms in the same way. In this approach, the generating functional is formulated for the connected Green functions and one-particle-irreducible vertices. The great advantages of our approach over the widely used two-particle-irreducible method are that it is much simpler and that it is easy to implement the procedure in a computer program to automatically generate the Feynman diagrams for a given process. The method is then applied to a pure gluon plasma to derive the gauge-covariant transport equation from the Dyson-Schwinger equation in the background covariant gauge. We discuss the structure of the kinetic equation and show its relationship with the classical one. We derive the gauge-covariant colli...
Kukushkin, A. B.; Sdvizhenskii, P. A.
2017-12-01
The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.
International Nuclear Information System (INIS)
Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins
2007-01-01
The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)
Exact solutions of Fisher and Burgers equations with finite transport memory
International Nuclear Information System (INIS)
Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect
Exact solutions of Fisher and Burgers equations with finite transport memory
Kar, S; Ray, D S
2003-01-01
The Fisher and Burgers equations with finite memory transport, describing reaction-diffusion and convection-diffusion processes, respectively have recently attracted a lot of attention in the context of chemical kinetics, mathematical biology and turbulence. We show here that they admit exact solutions. While the speed of the travelling wavefront is dependent on the relaxation time in the Fisher equation, memory effects significantly smoothen out the shock wave nature of the Burgers solution, without any influence on the corresponding wave speed. We numerically analyse the ansatz for the exact solution and show that for the reaction-diffusion system the strength of the reaction term must be moderate enough not to exceed a critical limit to allow a travelling wave solution to exist for appreciable finite memory effect.
International Nuclear Information System (INIS)
Cao Liangzhi; Wu Hongchun; Zheng Youqi
2008-01-01
Daubechies' wavelet expansion is introduced to discretize the angular variables of the neutron transport equation when the neutron angular flux varies very acutely with the angular directions. An improvement is made by coupling one-dimensional wavelet expansion and discrete ordinate method to make two-dimensional angular discretization efficient and stable. The angular domain is divided into several subdomains for treating the vacuum boundary condition exactly in the unstructured geometry. A set of wavelet equations coupled with each other is obtained in each subdomain. An iterative method is utilized to decouple the wavelet moments. The numerical results of several benchmark problems demonstrate that the wavelet expansion method can provide more accurate results by lower-order expansion than other angular discretization methods
Finite element analysis of the neutron transport equation in spherical geometry
International Nuclear Information System (INIS)
Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong
1992-01-01
The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)
The solution of the multigroup neutron transport equation using spherical harmonics
International Nuclear Information System (INIS)
Fletcher, K.
1981-01-01
A solution of the multi-group neutron transport equation in up to three space dimensions is presented. The flux is expanded in a series of unnormalised spherical harmonics. Using the various recurrence formulae a linked set of first order differential equations is obtained for the moments psisup(g)sub(lm)(r), γsup(g)sub(lm)(r). Terms with odd l are eliminated resulting in a second order system which is solved by two methods. The first is a finite difference formulation using an iterative procedure, secondly, in XYZ and XY geometry a finite element solution is given. Results for a test problem using both methods are exhibited and compared. (orig./RW) [de
International Nuclear Information System (INIS)
Sanchez G, J.
2007-01-01
A standard procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Several approximate expressions of the neutron density are used to render closed-form formulas for the densities which can then be analytically operated on to obtain expressions for extrapolation distances or angular densities or serve other purposes that require an analytical expression of the neutron density. (Author)
Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed
2012-01-01
In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like
International Nuclear Information System (INIS)
Chen, G.S.; Yang, D.Y.
1998-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination
International Nuclear Information System (INIS)
Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge
2002-01-01
In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)
Finite-element discretization of 3D energy-transport equations for semiconductors
Energy Technology Data Exchange (ETDEWEB)
Gadau, Stephan
2007-07-01
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due
Global existence of weak solutions to dissipative transport equations with nonlocal velocity
Bae, Hantaek; Granero-Belinchón, Rafael; Lazar, Omar
2018-04-01
We consider 1D dissipative transport equations with nonlocal velocity field: where is a nonlocal operator given by a Fourier multiplier. We especially consider two types of nonlocal operators: (1) , the Hilbert transform, (2) . In this paper, we show several global existence of weak solutions depending on the range of γ, δ and α. When , we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when .
Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation
International Nuclear Information System (INIS)
Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng
2016-01-01
We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.
Comparison of two Ssub(infinity) methods for solving the neutron transport equation
International Nuclear Information System (INIS)
Mennig, J.; Brandt, D.; Haelg, W.
1978-01-01
A semianalytic method (S 0 sub(infinity)) is presented for solving the monoenergetic multi-region transport equation. This method is compared with results from S 1 sub(infinity)-theory given in the literature. Application of S 1 sub(infinity)-theory to reactor shields may lead to negative neutron fluxes and to flux oscillations. These unphysical effects are completely avoided by the new method. Numerical results demonstrate the limitations of S 1 sub(infinity) and confirm the numerical stability of (S 0 sub(infinity)). (Auth.)
Solution of the neutron transport equation by means of Hermite-Ssub(infinity)-theory
International Nuclear Information System (INIS)
Brandt, D.; Haelg, W.; Mennig, J.
1979-01-01
A stable numerical approximation Hsub(α)-Ssub(infinity) is obtained through the use of Hermite's method of order α(Hsub(α)) in the spatial integration of the ID neutron transport equation. The theory for α = 1 is applied to a one-group shielding problem. Numerical calculations show the new method to converge much faster than earlier versions of Ssub(infinity)-theory. Comparison of H 1 - Ssub(infinity) with the well-known Ssub(N)-code ANISN indicates a large gain in computing time for the former. (Auth.)
Asymptotic formulae for solutions of the two-group integral neutron-transport equation
International Nuclear Information System (INIS)
Duracz, T.
1976-01-01
The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de
Transport equation theory of electron backscattering and x-ray production
International Nuclear Information System (INIS)
Fathers, D.J.; Rez, P.
1978-02-01
A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Advanced Monte Carlo methods for thermal radiation transport
Wollaber, Allan B.
During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more
International Nuclear Information System (INIS)
Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.
2011-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)
International Nuclear Information System (INIS)
Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.
2010-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
International Nuclear Information System (INIS)
Shafii, Mohammad Ali; Meidianti, Rahma; Wildian,; Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto
2014-01-01
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation
Energy Technology Data Exchange (ETDEWEB)
Shafii, Mohammad Ali, E-mail: mashafii@fmipa.unand.ac.id; Meidianti, Rahma, E-mail: mashafii@fmipa.unand.ac.id; Wildian,, E-mail: mashafii@fmipa.unand.ac.id; Fitriyani, Dian, E-mail: mashafii@fmipa.unand.ac.id [Department of Physics, Andalas University Padang West Sumatera Indonesia (Indonesia); Tongkukut, Seni H. J. [Department of Physics, Sam Ratulangi University Manado North Sulawesi Indonesia (Indonesia); Arkundato, Artoto [Department of Physics, Jember University Jember East Java Indonesia (Indonesia)
2014-09-30
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
International Nuclear Information System (INIS)
Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele
2013-01-01
This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)
Presentation of some methods for the solution of the monoenergetic neutrons transport equation
International Nuclear Information System (INIS)
Valle G, E. del.
1978-01-01
The neutrons transport theory problems whose solution has been reached were collected in order to show that the transport equation is so complicated that different techniques were developed so as to give approximative numerical solutions to problems concerning the practical application. Such a technique, which had not been investigated in the literature dealing with these problems, is described here. The results which were obtained through this technique in undimensional problems of criticity are satisfactory and speaking in a conceptual way this method is extremely simple because it times. There is no limitation to deal with problems related neutrons sources with an arbitrary distribution and in principle the application of this technique can be extended to unhomogeneous environments. (author)
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Aksenov, A. F.; Burnazyan, A. I.
1985-01-01
The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.
International Nuclear Information System (INIS)
Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.
1988-01-01
The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system
Energy Technology Data Exchange (ETDEWEB)
Pinchedez, K
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Solution of the Boltzmann equation for primary light ions and the transport of their fragments
Directory of Open Access Journals (Sweden)
J. Kempe
2010-10-01
Full Text Available The Boltzmann equation for the transport of pencil beams of light ions in semi-infinite uniform media has been calculated. The equation is solved for the practically important generalized 3D case of Gaussian incident primary light ion beams of arbitrary mean square radius, mean square angular spread, and covariance. The transport of the associated fragments in three dimensions is derived based on the known transport of the primary particles, taking the mean square angular spread of their production processes, as well as their energy loss and multiple scattering, into account. The analytical pencil and broad beam depth fluence and absorbed dose distributions are accurately expressed using recently derived analytical energy and range formulas. The contributions from low and high linear energy transfer (LET dose components were separately identified using analytical expressions. The analytical results are compared with SHIELD-HIT Monte Carlo (MC calculations and found to be in very good agreement. The pencil beam fluence and absorbed dose distributions of the primary particles are mainly influenced by an exponential loss of the primary ions combined with an increasing lateral spread due to multiple scattering and energy loss with increasing penetration depth. The associated fluence of heavy fragments is concentrated at small radii and so is the LET and absorbed dose distribution. Their transport is also characterized by the buildup of a slowing down spectrum which is quite similar to that of the primaries but with a wider energy and angular spread at increasing penetration depths. The range of the fragments is shorter or longer depending on their nuclear mass to charge ratio relative to that of the primary ions. The absorbed dose of the heavier fragments is fairly similar to that of the primary ions and also influenced by a rapidly increasing energy loss towards the end of their ranges. The present analytical solution of the Boltzmann equation
Fourier analysis of a new P1 synthetic acceleration for Sn transport equations
International Nuclear Information System (INIS)
Turcksin, B.; Ragusa, J. C.
2010-10-01
In this work, is derived a new P1 synthetic acceleration scheme (P1SA) for the S N transport equation and analyze its convergence properties through the means of a Fourier analysis. The Fourier analysis is carried out for both continuous (i.e., not spatially discretized) S N equations and linear discontinuous Fem discretization. We show, thanks to the continuous analysis, that the scheme is unstable when the anisotropy is important (μ - >0.5). However, the discrete analysis shows that when cells are large in comparison to the mean free path, the spectral radius decreases and the acceleration scheme becomes effective, even for highly anisotropic scattering. In charged particles transport, scattering is highly anisotropic and mean free paths are very small and, thus, this scheme could be of interest. To use the P1SA when cells are small and anisotropy is important, the scheme is modified by altering the update of the accelerated flux or by using either K transport sweeps before the application of P1SA. The update scheme performs well as long as μ - - ≥0.9, the modified update scheme is unstable. The multiple transport sweeps scheme is convergent with an arbitrary μ - but the spectral radius increases when scattering is isotropic. When anisotropic increases, the frequency of use of the acceleration scheme needs to be decreased. Even if the P1SA is used less often, the spectral radius is significantly smaller when compared with a method that does not use it for high anisotropy (μ - ≥0.5). It is interesting to notice that using P1SA every two iterations gives the same spectral radius than the update method when μ - ≥0.5 but it is much less efficient when μ - <0.5. (Author)
Application of preconditioned GMRES to the numerical solution of the neutron transport equation
International Nuclear Information System (INIS)
Patton, B.W.; Holloway, J.P.
2002-01-01
The generalized minimal residual (GMRES) method with right preconditioning is examined as an alternative to both standard and accelerated transport sweeps for the iterative solution of the diamond differenced discrete ordinates neutron transport equation. Incomplete factorization (ILU) type preconditioners are used to determine their effectiveness in accelerating GMRES for this application. ILU(τ), which requires the specification of a dropping criteria τ, proves to be a good choice for the types of problems examined in this paper. The combination of ILU(τ) and GMRES is compared with both DSA and unaccelerated transport sweeps for several model problems. It is found that the computational workload of the ILU(τ)-GMRES combination scales nonlinearly with the number of energy groups and quadrature order, making this technique most effective for problems with a small number of groups and discrete ordinates. However, the cost of preconditioner construction can be amortized over several calculations with different source and/or boundary values. Preconditioners built upon standard transport sweep algorithms are also evaluated as to their effectiveness in accelerating the convergence of GMRES. These preconditioners show better scaling with such problem parameters as the scattering ratio, the number of discrete ordinates, and the number of spatial meshes. These sweeps based preconditioners can also be cast in a matrix free form that greatly reduces storage requirements
Energy Technology Data Exchange (ETDEWEB)
Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)
2017-04-01
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.
Energy Technology Data Exchange (ETDEWEB)
Nunes, Rogerio Chaffin
2002-03-15
In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)
grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT
International Nuclear Information System (INIS)
Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika
2009-01-01
We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.
Radiation transport in high-level waste form
International Nuclear Information System (INIS)
Arakali, V.S.; Barnes, S.M.
1992-01-01
The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass
Compendium of Material Composition Data for Radiation Transport Modeling
International Nuclear Information System (INIS)
Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.
2006-01-01
Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.
Radiation transport methods for nuclear log assessment - an overview
International Nuclear Information System (INIS)
Badruzzaman, A.
1996-01-01
Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory
LOCFES-B: Solving the one-dimensional transport equation with user-selected spatial approximations
International Nuclear Information System (INIS)
Jarvis, R.D.; Nelson, P.
1993-01-01
Closed linear one-cell functional (CLOF) methods constitute an abstractly defined class of spatial approximations to the one-dimensional discrete ordinates equations of linear particle transport that encompass, as specific instances, the vast majority of the spatial approximations that have been either used or suggested in the computational solution of these equations. A specific instance of the class of CLOF methods is defined by a (typically small) number of functions of the cell width, total cross section, and direction cosine of particle motion. The LOCFES code takes advantage of the latter observation by permitting the use, within a more-or-less standard source iteration solution process, of an arbitrary CLOF method as defined by a user-supplied subroutine. The design objective of LOCFES was to provide automated determination of the order of accuracy (i.e., order of the discretization error) in the fine-mesh limit for an arbitrary user-selected CLOF method. This asymptotic order of accuracy is one widely used measure of the merit of a spatial approximation. This paper discusses LOCFES-B, which is a code that uses methods developed in LOCFES to solve one-dimensional linear particle transport problems with any user-selected CLOF method. LOCFES-B provides automatic solution of a given problem to within an accuracy specified by user input and provides comparison of the computational results against results from externally provided benchmark results
Energy Technology Data Exchange (ETDEWEB)
Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)
2011-07-01
This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)
International Nuclear Information System (INIS)
Tsujita, K.; Endo, T.; Yamamoto, A.
2013-01-01
An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
A numerical spectral approach to solve the dislocation density transport equation
International Nuclear Information System (INIS)
Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C
2015-01-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)
International Nuclear Information System (INIS)
Mugica R, C.A.; Valle G, E. del
2005-01-01
In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)
International Nuclear Information System (INIS)
Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.
2011-01-01
This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)
International Nuclear Information System (INIS)
Delfin L, A.
1996-01-01
The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)
An extended step characteristic method for solving the transport equation in general geometries
International Nuclear Information System (INIS)
DeHart, M.D.; Pevey, R.E.; Parish, T.A.
1994-01-01
A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs
Directory of Open Access Journals (Sweden)
Kovačić Nataša
2015-11-01
Full Text Available The paper addresses the effect of external integration (EI with transport suppliers on the efficiency of travel agencies in the tourism sector supply chains. The main aim is the comparison of different estimation methods used in the structural equation modeling (SEM, applied to discover possible relationships between EIs and efficiencies. The latter are calculated by the means of data envelopment analysis (DEA. While designing the structural equation model, the exploratory and confirmatory factor analyses are also used as preliminary statistical procedures. For the estimation of parameters of SEM model, three different methods are explained, analyzed and compared: maximum likelihood (ML method, Bayesian Markov Chain Monte Carlo (BMCMC method, and unweighted least squares (ULS method. The study reveals that all estimation methods calculate comparable estimated parameters. The results also give an evidence of good model fit performance. Besides, the research confirms that the amplified external integration with transport providers leads to increased efficiency of travel agencies, which might be a very interesting finding for the operational management.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
A linear multiple balance method for discrete ordinates neutron transport equations
International Nuclear Information System (INIS)
Park, Chang Je; Cho, Nam Zin
2000-01-01
A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient
International Nuclear Information System (INIS)
Suluksna, Keerati; Juntasaro, Ekachai
2008-01-01
The γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements] is a highly generalized transport equation model in which it has been developed based on the concept of local variables compatible with modern CFD methods where the unstructured grid and the parallel computing technique are usually integrated in. To perform the prediction with this model, two essential parameters, F length which is used to control the length of the transition region and Re θc which is used to control the onset of the transition location, must be specified to close the model. At present, both parameters are proprietary and their formulations are unpublished. For the first time here, the relations for both parameters are formulated by means of numerical experiments and analysis under the assumption of Re θc = Re θt corresponding with the bypass transition behavior. Based on this analysis, the optimized values of the parameters are found and their relations can be constructed as follows: Re θc = 803.73(Tu ∞ , le + 0.6067) -1.027 and F length = 163 ln(Tu ∞ , le ) + 3.625. The performance of this transition model is assessed by testing with the experimental cases of T3AM, T3A, and T3B. Detailed comparisons with the predicted results by the transition models of Suzen and Huang [Suzen, Y.B., Huang, P.G., 2000. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273-284] and Lodefier et al. [Lodefier, K., Merci, B., De Langhe, C., Dick, E., 2003. Transition modelling with the SST turbulence model and intermittency transport equation. ASME Turbo Expo, Atlanta, GA, USA, June 16-19], and also with the predicted results by the k-ε model of Launder and Sharma [Launder, B.E., Sharma, B., 1974. Application of the energy dissipation model of turbulence to the calculation of
Finite moments approach to the time-dependent neutron transport equation
International Nuclear Information System (INIS)
Kim, Sang Hyun
1994-02-01
Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the
Osetrin, Evgeny; Osetrin, Konstantin
2017-11-01
We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.
International Nuclear Information System (INIS)
Lavrent'ev, Yu.G.; Kuznetsova, A.I.
1976-01-01
A simplified method for x-ray fluorescence analysis is given. It is shown that the system of coupling equations with constant coefficients and with the number of equations equal to the number of unknown elements allows to obtain the same accuracy of the analysis as with the considerably more complex equations with variable coefficients which take into account the filtration of the primary radiation in a direct way. The system can even be more simplified by using linear equations with constant coefficients. In order to test these systems and to compare them with known coupling equations experimental data for the determination of zirconium and niobium from 16 artificial preparations with fillers of variable composition are presented. The calculation of the absorption of the secondary as well as the primary radiation by means of the proposed equations with constant coefficients is sufficiently good
Three-dimensional wave-induced current model equations and radiation stresses
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
International Nuclear Information System (INIS)
1986-05-01
The document provides guidance on one of the components of the system of dose limitation as it applies to the transport of radioactive material, namely the optimization of radiation protection. It focuses on the following parts of the transport system: design, maintenance, preparation for transport, transport, storage-in-transit and handling and it considers occupational and public exposures. The application is intended mainly for those transport situations within the regulatory requirements where potential radiation exposures could be beneficially reduced
Radiation protection programmes for the transport of radioactive material. Safety guide
International Nuclear Information System (INIS)
2007-01-01
This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators
Equation of motion of an interstellar Bussard ramjet with radiation and mass losses
International Nuclear Information System (INIS)
Semay, Claude; Silvestre-Brac, Bernard
2008-01-01
An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly reduced. However, the parametric equations in terms of the ramjet's speed for the position of the ramjet in the inertial frame of the interstellar medium, the time in this frame and the proper time indicated by the clocks on board the spaceship can still be obtained in an analytical form. The non-relativistic motion and the motion near the limit speed are studied
Equation of motion of an interstellar Bussard ramjet with radiation and mass losses
Energy Technology Data Exchange (ETDEWEB)
Semay, Claude [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium); Silvestre-Brac, Bernard [LPSC, Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France)], E-mail: claude.semay@umh.ac.be, E-mail: silvestre@lpsc.in2p3.fr
2008-11-15
An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly reduced. However, the parametric equations in terms of the ramjet's speed for the position of the ramjet in the inertial frame of the interstellar medium, the time in this frame and the proper time indicated by the clocks on board the spaceship can still be obtained in an analytical form. The non-relativistic motion and the motion near the limit speed are studied.
A modified two-fluid model for the application of two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun, X.; Ishii, M.; Kelly, J.
2003-01-01
This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes
2009-01-01
Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.
Analytical Radiation Transport Benchmarks for The Next Century
International Nuclear Information System (INIS)
Ganapol, B.D.
2005-01-01
Verification of large-scale computational algorithms used in nuclear engineering and radiological applications is an essential element of reliable code performance. For this reason, the development of a suite of multidimensional semi-analytical benchmarks has been undertaken to provide independent verification of proper operation of codes dealing with the transport of neutral particles. The benchmarks considered cover several one-dimensional, multidimensional, monoenergetic and multigroup, fixed source and critical transport scenarios. The first approach, called the Green's Function. In slab geometry, the Green's function is incorporated into a set of integral equations for the boundary fluxes. Through a numerical Fourier transform inversion and subsequent matrix inversion for the boundary fluxes, a semi-analytical benchmark emerges. Multidimensional solutions in a variety of infinite media are also based on the slab Green's function. In a second approach, a new converged SN method is developed. In this method, the SN solution is ''minded'' to bring out hidden high quality solutions. For this case multigroup fixed source and criticality transport problems are considered. Remarkably accurate solutions can be obtained with this new method called the Multigroup Converged SN (MGCSN) method as will be demonstrated
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
International Nuclear Information System (INIS)
Kraloua, B.; Hennad, A.
2008-01-01
The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.
Generalized solutions of the radiative transfer equations in a singular case
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1985-07-01
This paper is devoted to the study of the radiative transfer equations (TR). First, we prove a global existence theorem, which allows a blow-up of the opacity σsub(ν)(E) when E → 0. Thus, it extends Mercier's previous result. This proof relies mainly on a non linear version of Hille-Yosida theorem. Then, we prove the uniqueness of the semigroup solving (TR), and some regularity results (in the class of functions with bounded variation). Finally, we prove the convergence of some splitting algorithms associated to (TR)
Energy Technology Data Exchange (ETDEWEB)
Zou, X.L.; Giruzzi, A.G.; Bouquey, F.; Clary, J.; Darbos, C.; Lennholm, M.; Magne, R.; Segui, J.L. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Clemencon, A. [MIT, Electrochemical Energy Laboratory, Cambridge, MA (United States); Guivarch, C. [Ecole Nationale des Ponts et Chaussees, 77 - Marne-la-Vallee (France)
2004-07-01
An exact analytical solution of the electron heat diffusion equation in a cylinder has been found with a step-like diffusion coefficient, plus a monomial increase in the radial direction and a constant damping term. This model is sufficiently general to describe heat diffusion in the presence of a critical gradient threshold or a transport barrier, superimposed to the usual trend of increasing heat diffusivity from the plasma core to the edge. This type of representation allows us to see some well-known properties of heat transport phenomena in a different light. For instance, it has been shown that the contributions of the Eigenmodes to the time dependent solution grow at speeds that depend on the Eigenmode order i.e. at the beginning of the heating phase all the Eigenmodes are equally involved, whereas at the end only the lower order ones are left. This implies, e.g., that high frequency modulation experiments provide a characterization of transport phenomena that is intrinsically different with respect to power balance analysis of a stationary phase. It is particularly useful to analyse power switch on/off events and whenever high frequency modulations are not technically feasible. Low-frequency (1-2 Hz) ECRH modulation experiments have been performed on Tore Supra. A large jump (a factor of 8) in the heat diffusivity has been clearly identified at the ECRH power deposition layer. The amplitude and phase of several harmonics of the Fourier transform of the modulated temperature, as well as the time evolution of the modulated temperature have been reproduced by the analytical solution. The jump is found to be much weaker at lower ECRH power (one gyrotron)
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Study of Radiation Shielding Analysis for Low-Intermediate Level Waste Transport Ship
Energy Technology Data Exchange (ETDEWEB)
Kim, Dohyung; Lee, Unjang; Song, Yangsoo; Kim, Sukhoon; Ko, Jaehoon [Korea Nuclear Engineering and Service Corporation, Seoul (Korea, Republic of)
2007-07-01
In Korea, it is planed to transport Low-Intermediate Level Radioactive Waste (LILW) from each nuclear power plant site to Kyongju LILW repository after 2009. Transport through the sea using ship is one of the most prospective ways of LILW transport for current situation in Korea. There are domestic and international regulations for radiation dose limit for radioactive material transport. In this article, radiation shielding analysis for LILW transport ship is performed using 3-D computer simulation code, MCNP. As a result, the thickness and materials for radiation shielding walls next to cargo in the LILW transport ship are determined.
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert
2011-03-04
Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library
Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source
International Nuclear Information System (INIS)
Ganapol, B.D.
1986-01-01
Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared
Directory of Open Access Journals (Sweden)
Pawlasova Pavlina
2015-12-01
Full Text Available Satisfaction is one of the key factors which influences customer loyalty. We assume that the satisfied customer will be willing to use the ssame service provider again. The overall passengers´ satisfaction with public city transport may be affected by the overall service quality. Frequency, punctuality, cleanliness in the vehicle, proximity, speed, fare, accessibility and safety of transport, information and other factors can influence passengers´ satisfaction. The aim of this paper is to quantify factors and identify the most important factors influencing customer satisfaction with public city transport within conditions of the Czech Republic. Two methods of analysis are applied in order to fulfil the aim. The method of factor analysis and the method Varimax were used in order to categorize variables according to their mutual relations. The method of structural equation modelling was used to evaluate the factors and validate the model. Then, the optimal model was found. The logistic parameters, including service continuity and frequency, and service, including information rate, station proximity and vehicle cleanliness, are the factors influencing passengers´ satisfaction on a large scale.
Green's function method for the monoenergetic transport equation in heterogeneous plane geometry
International Nuclear Information System (INIS)
Ganapol, B.D.
1995-01-01
For the past several years, a series of papers by the transport group at the University of Arizona dealing with benchmark solutions of the monoenergetic transport equation has appeared. The approach has been to take advantage of highly successful numerical Laplace Fourier transform inversions to provide benchmark quality solutions in infinite media, half-space in one and two dimensions and in homogeneous slabs. This paper extends the set of solutions to include heterogeneous slab geometry by using the recently established Green's Function Method (GFM). Analytical benchmark solutions are an essential part of the quality control of computational algorithms developed for particle transport. In addition, benchmarking methods have applications in the classroom by providing examples of how computational mathematics is used to solve physical problems to obtain meaningful answers. In a structural context, monoenergetic solutions are directly applicable to the investigation of the microlight environment within a leaf. The leaf is considered to be a composition of alternating layers of highly absorbing pigments and water superimposed on a refractively scattering background
International Nuclear Information System (INIS)
Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio
2005-01-01
In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)
Directory of Open Access Journals (Sweden)
Yoshinobu Tanaka
2012-01-01
Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.
Global aerosol transport and consequences for the radiation budget
International Nuclear Information System (INIS)
Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.
1984-01-01
Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels
International Nuclear Information System (INIS)
Szoke, A; Brooks, E D; McKinley, M; Daffin, F
2005-01-01
The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media
The response matrix discrete ordinates solution to the 1D radiative transfer equation
International Nuclear Information System (INIS)
Ganapol, Barry D.
2015-01-01
The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2015-04-01
This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2014-11-01
This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include: homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.
Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin
2018-01-08
We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.
International Nuclear Information System (INIS)
Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R.
2017-01-01
One of the major goals in heavy-ion physics is to understand the properties of Quark Gluon Plasma (QGP), a deconfined hot and dense state of quarks and gluons existed shortly after the Big Bang. In the present scenario, the high-energy particle accelerators are able to reach energies where this extremely dense nuclear matter can be probed for a short time. Here, we follow our earlier works which use non-extensive statistics in Boltzmann Transport Equation (BTE). We represent the initial distribution of particles with the help of Tsallis power law distribution parameterized by the nonextensive parameter q and the Tsallis temperature T, remembering the fact that their origin is due to hard scatterings. We use the initial distribution (f in ) with Relaxation Time Approximation (RTA) of the BTE and calculate the final distribution (f fin ). Then we calculate ν 2 of the system using the final distribution in the definition of ν2
On the spectral analysis of iterative solutions of the discretized one-group transport equation
International Nuclear Information System (INIS)
Sanchez, Richard
2004-01-01
We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution
Solving the multigroup adjoint transport equations using the method of cyclic characteristics
Energy Technology Data Exchange (ETDEWEB)
Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Inst. de genie nucleaire, Montreal, Quebec (Canada)]. E-mail: monchai.assawar@polymtl.ca
2005-07-01
The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)
Solving the multigroup adjoint transport equations using the method of cyclic characteristics
International Nuclear Information System (INIS)
Assawaroongruengchot, M.; Marleau, G.
2005-01-01
The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)
Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry
International Nuclear Information System (INIS)
Lathrop, K.D.
1976-04-01
Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references
A non overlapping parallel domain decomposition method applied to the simplified transport equations
International Nuclear Information System (INIS)
Lathuiliere, B.; Barrault, M.; Ramet, P.; Roman, J.
2009-01-01
A reactivity computation requires to compute the highest eigenvalue of a generalized eigenvalue problem. An inverse power algorithm is used commonly. Very fine modelizations are difficult to tackle for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. So, we propose a non-overlapping domain decomposition method for the approximate resolution of the linear system to solve at each inverse power iteration. Our method brings to a low development effort as the inner multigroup solver can be re-use without modification, and allows us to adapt locally the numerical resolution (mesh, finite element order). Numerical results are obtained by a parallel implementation of the method on two different cases with a pin by pin discretization. This results are analyzed in terms of memory consumption and parallel efficiency. (authors)
Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu
2018-03-01
Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.
Energy Technology Data Exchange (ETDEWEB)
Liu Guoming [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: gmliusy@gmail.com; Wu Hongchun; Cao Liangzhi [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2008-09-15
This paper presents a transmission probability method (TPM) to solve the neutron transport equation in three-dimensional triangular-z geometry. The source within the mesh is assumed to be spatially uniform and isotropic. At the mesh surface, the constant and the simplified P{sub 1} approximation are invoked for the anisotropic angular flux distribution. Based on this model, a code TPMTDT is encoded. It was verified by three 3D Takeda benchmark problems, in which the first two problems are in XYZ geometry and the last one is in hexagonal-z geometry, and an unstructured geometry problem. The results of the present method agree well with those of Monte-Carlo calculation method and Spherical Harmonics (P{sub N}) method.
Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport
International Nuclear Information System (INIS)
Webb, G.M.; Gleeson, L.J.
1977-01-01
Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)
2001-07-01
The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)
International Nuclear Information System (INIS)
Sarkar, P.K.; Prasad, M.A.
1989-01-01
A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs
ATR, Radiation Transport Models in Atmosphere at Various Altitudes
International Nuclear Information System (INIS)
1981-01-01
1 - Description of problem or function: ATR is a user-oriented code for calculating quickly and simply radiation environment problems at all altitudes in the atmosphere. The code is based on parametric models of a comprehensive data base of air transport results which were generated using discrete ordinates transport techniques for infinite homogeneous air. The effects of air-ground interface and non-uniform air density are treated as perturbation corrections on homogeneous air results. ATR includes parametric models for neutrons and secondary gamma rays as a function of space, energy and source- target angle out to angles of 550 g/cm 2 of air. ATR contains parameterizations of infinite medium air transport of neutrons and secondary gamma rays and correction factors for the air-ground interface and high altitude exponential air. It responds to a series of user-oriented commands which specify the source, geometry and print options to output a variety of useful air transport information, including energy-angle dependent fluence, dose, current, and isodose ranges. 2 - Method of solution: The version 3 differs from earlier versions in that version 3 contains the parameterization of the new neutron and secondary gamma rays data base that was calculated using the latest DNA approved cross sections for air. Other improvements to the ATR code include: parameterization and inclusion into ATR of new air- over-ground correction factors, low energy x-rays calculations, new fission source, and new convenience options. 3 - Restrictions on the complexity of the problem: ATR takes approximately 36,000 decimal words of storage. This can be lessened by overlaying different parts of the code
Numerical solutions of the monoenergetic neutron transport equation with anisotropic scattering
International Nuclear Information System (INIS)
Dahl, B.
1985-01-01
The Boltzmann equation for monoenergetic neutrons has been solved numerically with high accuracy for homogeneous slabs and spheres with various degree of linear anisotropy. Vacuum boundary conditions are used. The numerical method is based on previous work by Carlvik. Benchmark values of the criticality factor and higher order eigenvalues are given for multiplying systems of thickness or diameter from 10 -5 to 20 mean free paths and with anisotropy coefficients from 0.0 to 0.3. For slab geometry, both even and odd mode eigenvalues are treated. With increasing anisotropy, an increasing number of complex eigenvalues is observer. The total flux is calculated from the eigenvector and tables of the fundamental mode flux are given. Accurate extrapolation distances are derived for various dimensions and anisotropy coefficients from our eigenvalue results on slabs and spheres and from the work by Sanchez on infinite cylinders.The time eigenvalue spectrum in subcritical systems has also been studied. First, the connection between the eigenvalues arising from the time dependent and stationary transport equation is established. Based on this, the spectrum of real time eigenvalues in slabs and spheres is calculated. For spheres, the existence of complex time eigenvalues in the region beyond the value corresponding to the Corngold limit is numerically established. The presence of such eigenvalues has earlier not been proved. It is further shown that the Boltzmann equation for a sphere is significantly simplified when the decay constant is at the Corngold limit. The spectrum of sphere diameters corresponding to this decay constant is calculated for various linear anisotropies, and detailed numerical results are given. (Author)
Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering
International Nuclear Information System (INIS)
Fleck, J.A. Jr.
1971-03-01
It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur
High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows, Phase I
National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code or...
International Nuclear Information System (INIS)
Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry
2014-01-01
To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study
Energy Technology Data Exchange (ETDEWEB)
Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)
2014-11-15
To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
X-radiation effect on water transport in ascite cells of Ehrlich carcinoma
International Nuclear Information System (INIS)
Barnov, V.A.; Ajvazishvili, M.A.; Kartvelishvili, I.I.; Tushishvili, D.I.
1988-01-01
Effect of local X radiation with doses 0.05 and 0.15 C/kg on water transport in ascitic cells of Erlich carcinoma is studied in rats. To study water transport through cell membranes, tritium mark was used. It is concluded that radiation effect on water transport in cells of Erlich carcinoma may be related to change in ionic permittivity of the membrane, because small changes in transmembrane ion transport affect immediately the osmotic motion of water. 5 refs
Acceleration of a Monte Carlo radiation transport code
International Nuclear Information System (INIS)
Hochstedler, R.D.; Smith, L.M.
1996-01-01
Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics
Charge transport properties of CdMnTe radiation detectors
Energy Technology Data Exchange (ETDEWEB)
Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.
2012-04-11
Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.
Charge transport properties of CdMnTe radiation detectors
Directory of Open Access Journals (Sweden)
Prokopovich D. A.
2012-10-01
Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.
Stationary neutrino radiation transport by maximum entropy closure
International Nuclear Information System (INIS)
Bludman, S.A.
1994-11-01
The authors obtain the angular distributions that maximize the entropy functional for Maxwell-Boltzmann (classical), Bose-Einstein, and Fermi-Dirac radiation. In the low and high occupancy limits, the maximum entropy closure is bounded by previously known variable Eddington factors that depend only on the flux. For intermediate occupancy, the maximum entropy closure depends on both the occupation density and the flux. The Fermi-Dirac maximum entropy variable Eddington factor shows a scale invariance, which leads to a simple, exact analytic closure for fermions. This two-dimensional variable Eddington factor gives results that agree well with exact (Monte Carlo) neutrino transport calculations out of a collapse residue during early phases of hydrostatic neutron star formation
International Nuclear Information System (INIS)
Masiello, E.
2006-01-01
The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)
HZETRN radiation transport validation using balloon-based experimental data
Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.
2018-05-01
The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that
International Nuclear Information System (INIS)
Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.
1993-01-01
Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry
2014-06-10
We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br
2003-07-01
In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)
Haisch, B. M.
1976-01-01
A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.
Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-08-01
Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.
International Nuclear Information System (INIS)
Jarvis, R.D.; Nelson, P.
1995-01-01
LOCFES-B solves the steady-state, monoenergetic and azimuthally symmetric neutral-particle transport equation in one-dimensional plane-parallel geometry. LOCFES-B is designed to facilitate testing and comparison of different spatial approximations in neutron transport. Accordingly, it permits performance of user-provided CLOF spatial approximations to be compared directly on successively refined mesh sizes and user-input physical problems with automatic comparison of results. if desired, to user-supplied benchmark results
Radiation tails of the scalar wave equation in a weak gravitational field
International Nuclear Information System (INIS)
Mankin, R.; Piir, I.
1974-01-01
A class of solutions of the linearized Einstein equations is found making use of the Newman-Penrose spin coefficient formalism. These solutions describe a weak retarded gravitational field with an arbitrary multipole structure. The study of the radial propagation of the scalar waves in this gravitational field shows that in the first approximation the tails of the scalar outgoing radiation appear either in the presence of a gravitational mass or in the case of a nonzero linear momentum of the gravitational source. The quadrupole moment and the higher multipole moments of the gravitational field as well as the constant dipole moment and the angular moment of the source do not contribute to the tail
Application of generalized estimating equations to a study in vitro of radiation sensitivity
International Nuclear Information System (INIS)
Cologne, J.B.; Carter, R.L.; Fujita, Shoichiro; Ban, Sadayuki.
1993-08-01
We describes an application of the generalized estimating equation (GEE) method (Liang K-Y, Zeger SL: Longitudinal data analysis using generalized linear models. Biometrika 73:13-22, 1986) for regression analyses of correlated Poisson data. As an alternative to the use of an arbitrarily chosen working correlation matrix, we demonstrate the use of GEE with a reasonable model for the true covariance structure among repeated observations within individuals. We show that, under such a split-plot design with large clusters, the asymptotic relative efficiency of GEE with simple (independence or exchangeable) working correlation matrices is rather low. We also illustrate the use of GEE with an empirically estimated model for overdispersion in a large study of radiation sensitivity where cluster size is small and a simple working correlation structure is sufficient. We conclude by summarizing issues and needs for further work concerning efficiency of the GEE parameter estimates in practice. (author)
Energy Technology Data Exchange (ETDEWEB)
Carella, Alfredo Raul
2012-09-15
Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)
International Nuclear Information System (INIS)
Kim, Hyun Keol; Hielscher, Andreas H
2009-01-01
It is well acknowledged that transport-theory-based reconstruction algorithm can provide the most accurate reconstruction results especially when small tissue volumes or high absorbing media are considered. However, these codes have a high computational burden and are often only slowly converging. Therefore, methods that accelerate the computation are highly desirable. To this end, we introduce in this work a partial-differential-equation (PDE) constrained approach to optical tomography that makes use of an all-at-once reduced Hessian sequential quadratic programming (rSQP) scheme. The proposed scheme treats the forward and inverse variables independently, which makes it possible to update the radiation intensities and the optical coefficients simultaneously by solving the forward and inverse problems, all at once. We evaluate the performance of the proposed scheme with numerical and experimental data, and find that the rSQP scheme can reduce the computation time by a factor of 10–25, as compared to the commonly employed limited memory BFGS method. At the same time accuracy and robustness even in the presence of noise are not compromised
A fast, parallel algorithm to solve the basic fluvial erosion/transport equations
Braun, J.
2012-04-01
Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on
Analysis and development of spatial hp-refinement methods for solving the neutron transport equation
International Nuclear Information System (INIS)
Fournier, D.
2011-01-01
The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the
International Nuclear Information System (INIS)
Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.
1992-01-01
In this paper we study solutions to the backward Boltzmann transport equation (BBTE) specialized to equations governing moments of the distribution of ions implanted into amorphous targets. A central moment integral equation set has been derived starting from the classical plane source BBTE for non-central moments. A full generator equation is provided to allow construction of equation sets of an arbitrary size, thus allowing computation of moments of arbitrary order. A BBTE solver program has been written that uses the residual correction technique proposed by Winterbon. A simple means is presented to allow direct incorporation of Biersack's two-parameter ''magic formula'' into a BBTE solver program. Results for non-central and central moment integral equation sets are compared with Monte Carlo simulations, using three different formulae for the mean free flight path between collisions. Comparisons are performed for the ions B and As, implanted into the target a-Si, over the energy range 1 keV-1 MeV. The central moment integral equation set is found to have superior convergence properties to the non-central moment equation set. For As ions implanted into a-Si, at energies below ∼ 30 keV, significant differences are observed, for third- and fourth-order moments, when using alternative versions for the mean free flight path. Third- and fourth-order moments derived using one- and two-parameter scattering mechanisms also show significant differences over the same energy range. (Author)
International Nuclear Information System (INIS)
Warsa, J. S.; Morel, J. E.
2007-01-01
Angular discretizations of the S N transport equation in curvilinear coordinate systems may result in a streaming-plus-removal operator that is dense in the angular variable or that is not lower-triangular. We investigate numerical solution algorithms for such angular discretizations using relationships given by Chandrasekhar to compute the angular derivatives in the one-dimensional S N transport equation in spherical coordinates with Gauss quadrature. This discretization makes the S N transport equation P N-1 - equivalent, but it also makes the sweep operator dense at every spatial point because the N angular derivatives are expressed in terms of the N angular fluxes. To avoid having to invert the sweep operator directly, we must work with the angular fluxes to solve the equations iteratively. We show how we can use approximations to the sweep operator to precondition the full P N-1 equivalent S N equations. We show that these pre-conditioners affect the operator enough such that convergence of a Krylov iterative method improves. (authors)
Energy Technology Data Exchange (ETDEWEB)
Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)
1990-01-01
The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S_{N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S_{N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S_{N} is well suited for by themselves. The fully coupled Monte Carlo/S_{N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S_{N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S_{N} region. The Monte Carlo and S_{N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S_{N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S_{N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S_{N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.
International Nuclear Information System (INIS)
Rozanov, Vladimir V.; Vountas, Marco
2014-01-01
Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented
Davit, Y.; Wood, B. D.; Debenest, G.; Quintard, M.
2012-01-01
In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time