WorldWideScience

Sample records for radiation tracking detectors

  1. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  2. Status and trends of solid state track detector use in radiation protection monitoring

    International Nuclear Information System (INIS)

    Doerschel, B.

    1980-01-01

    The characteristic properties of solid state track detectors allow them to be used for determining the radiation fields of charged and uncharged particles and, consequently, for solving some problems involved in radiation protection monitoring. Aptitude of various detector materials is investigated on the basis of the track formation mechanism taking into account the properties of the particles to be detected. Use of these detectors in radiation protection monitoring presumes appropriate methods of intensifying the latent tracks, which are discussed as a function of various physical parameters. Readout methods of solid state track detectors are based on variations in detector properties determined by number and size of particle tracks in the detector. The choice of a special readout method, among other things, depends on the purpose, detector material, and pretreatment of the detectors. The most prospective methods are described and investigated with respect to their possible use in various fields of radiation protection monitoring. The trends of development of the application of solid state track detectors in radiation protection monitoring are discussed, using some typical applications as examples. (author)

  3. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.; Mishra, U.C.

    1989-01-01

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  4. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  5. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    Shank, J.T.; Whitaker, J.S.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  6. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  7. A transition radiation detector which features accurate tracking and dE/dx particle identification

    International Nuclear Information System (INIS)

    O'Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-01-01

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x l0 2 . The single-wire, track-position resolution for the TRD is ∼230μm

  8. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  9. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  10. Using track detectors in neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    1977-01-01

    The usage of track detectors of charged particles provides a new possibility of neutron dosimetry. Presented is a comparison of the main dosimetric characteristics of three various types of track detectots of fast neutrons, i.e. glass in the contact with 232 Th; KODAK LR115 cellulose nitrate; MAKROFOL E polycarbonate. Results of studing energy dependences of detectors are presented. Results obtained using phantoms under radiation fields of various sources of complex gamma-neutron radiation are discussed [ru

  11. Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdesselam, A.; Andy, T.N.; Böhm, Jan; Šťastný, Jan

    2008-01-01

    Roč. 3, - (2008), P08003/1-P08003/67 ISSN 1748-0221 R&D Projects: GA MŠk LA08032; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : solid state detectors * particle tracking detectors * large detector systems for particle and astroparticle physics * transition radiation detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  12. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  13. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  14. Progress in the development of a tracking transition radiation detector

    International Nuclear Information System (INIS)

    Whitaker, J.S.; Beatty, J.; Shank, J.T.; Wilson, R.J.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Maiburov, S.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    The purpose of the TRD/Tracker is to provide charged particle tracking in the r-z plane and to provide particle identification capabilities that are independent of and complementary to calorimetric methods. The tracking goals include observation of the charged particle multiplicity and topology, reconstruction of the primary vertex or vertices, and assignment of charged particles to the correct vertex. Particle identification goals include the independent validation of electron candidates selected by calorimetric signatures, the rejection of false electron candidates that rise from accidental overlaps of low momentum charged particles with photon-induced electromagnetic showers in the calorimeter, and the identification of electrons arising from Dalitz decays or from photon conversions. The authors report on progress towards the development of an integrated transition radiation detector and charged particle tracker. Mechanical design and simulation of a detector has been pursued; a prototype device with 240 channels has been constructed and tested. Innovative construction techniques have been developed

  15. Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator

    International Nuclear Information System (INIS)

    Castillo, F.; Espinosa, G.; Golzarri, J.I.; Osorio, D.; Rangel, J.; Reyes, P.G.; Herrera, J.J.E.

    2013-01-01

    The chemical etching parameters (etching time, temperature, normality of etchant, etc.) for the use of CR-39 (allyl diglycol carbonate – Lantrack ® ) as a fast neutron dosimeter have been optimized. The CR-39 chips, placed under a 1.5 mm polyethylene radiator, were exposed for calibration to an 241 Am-Be source at different time intervals for a given neutron fluence. After several chemical etching processes of the detectors with different conditions, the optimum characteristics for the chemical etching were found at 6N KOH solution, 60 ± 1 °C, for 12 h. An accurate relationship between the dose and fluence calculations was obtained as a function of the track density. - Highlights: ► Optimum etching time for fast neutron irradiated CR-39 track detectors is found. ► Relationship between dose and fluence obtained as a function of the track density. ► Results are consistent with those reported elsewhere, and extend the dose range

  16. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Kubančák, Ján; Šlegl, Jakub; Tolochek, R. V.; Ivanova, O. A.; Shurshakov, V. A.

    2017-01-01

    Roč. 106, č. 12 (2017), s. 262-266 ISSN 1350-4487 R&D Projects: GA ČR GJ15-16622Y Institutional support: RVO:61389005 Keywords : BION-M1 * cosmic radiation * low earth orbit * passive detector * thermoluminescent detector * plastic nuclear track detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  17. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030 (United States); Ferreira, Felisberto A. [Department of Nuclear Physics, University of Sao Paulo, SP 05508-090 (Brazil); McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Hallacy, Timothy M. [Biophysics Program, Harvard University, Cambridge, Massachusetts 02138 (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc., Stillwater, Oklahoma 74074 (United States)

    2016-05-15

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.

  18. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  19. Future developments in etched track detectors for neutron dosimetry

    International Nuclear Information System (INIS)

    Tommasino, L.

    1987-01-01

    Many laboratories engaged in the field of personal neutron dosimetry are interested in developing better etching processes and improving the CR-39 detecting materials. To know how much effort must still be devoted to the development of etch track dosimetry, it is necessary to understand the advantages. limitations and degree of exploitation of the currently available techniques. So much has been learned about the chemical and electrochemical etching processes that an optimised combination of etching processes could make possible the elimination of many of the existing shortcomings. Limitations of etched track detectors for neutron dosimetry arise mainly because the registration occurs only on the detector surface. These damage type detectors are based on radiation induced chain scission processes in polymers, which result in hole-type tracks in solids. The converse approach, yet to be discovered, would be the development of cure-track detectors, where radiation induced cross linking between organic polymer chains could result in solid tracks in liquids. (author)

  20. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  1. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  2. Tracking and vertexing with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Hirsch, F.

    2011-01-01

    The Inner Detector of the ATLAS experiment at the Large Hadron Collider at CERN contains three tracking systems: The silicon Pixel Detector, the Silicon Microstrip Tracker and the Transition Radiation Tracker. In combination these detectors provide excellent track and vertex reconstruction efficiencies and resolutions. This paper describes studies which show the performance of track and vertex reconstruction on data collected at 7 TeV center-of-mass energy.

  3. Study of a Tracking/Preshower Detector for the LHC

    CERN Multimedia

    2002-01-01

    % RD-2 Study of a Tracking/Preshower Detector for the LHC \\\\ \\\\An important goal in the design of a detector to operate with high machine luminosity at the LHC is the detection of electrons at either the trigger or analysis level as a signature of rare physics processes. The purpose of this R~\\&~D activity is the study of track-stub/preshower techniques in electron identification. Activities include the study of radiation tolerance for silicon pad counters of the preshower detector, with the associated development of fast, low-noise, radiation hard and low-power electronics readout for the counters. The final aim is the construction of a prototype detector capable of operating at LHC.

  4. The ZEUS central tracking detector. Der zentrale Spuren-Detektor von ZEUS

    Energy Technology Data Exchange (ETDEWEB)

    Saxon, D H

    1989-12-01

    The Central Tracking Detector (CTD) of ZEUS covers a wide angular range, whilst the Forward Detector - comprising the Forward Tracking Detector (FTD) and electron identification by transition radiation - concentrates on the important forward cone. The RTD (Rear Tracking Detector) provides accurate angle measurement of the recoil electron and the vertex detector (VXD) aims to find particles from heavy flavour decay. To measure momentum accurately the CTD sits in a high magnetic field (B=1,8 T) within the ZEUS calorimeter. (orig./HSI).

  5. CONTRIBUTION OF DIFFERENT PARTICLES MEASURED WITH TRACK ETCHED DETECTORS ONBOARD ISS.

    Science.gov (United States)

    Ambrožová, I; Davídková, M; Brabcová, K Pachnerová; Tolochek, R V; Shurshakov, V A

    2017-09-29

    Cosmic radiation consists of primary high-energy galactic and solar particles. When passing through spacecraft walls and astronauts' bodies, the spectrum becomes even more complex due to generating of secondary particles through fragmentation and nuclear interactions. Total radiation exposure is contributed by both these components. With an advantage, space research uses track etched detectors from the group of passive detectors visualizing the tracks of particles, in this case by etching. The detectors can discriminate between various components of cosmic radiation. A method is introduced for the separation of the different types of particles according to their range using track etched detectors. The method is demonstrated using detectors placed in Russian segment of the International Space Station in 2009. It is shown that the primary high-energy heavy ions with long range contribute up to 56% of the absorbed dose and up to 50% to the dose equivalent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Application of solid state track detector to neutron dosimetry

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1979-01-01

    Though solid state track detectors (SSTD) are radiation measuring instrument for heavy charged particles by itself, it can be used as radiation measuring instrument for neutrons, if nuclear reactions such as (n, f) or (n, α) reaction are utilized. Since the means was found, which permits to observe the tracks of heavy charged particles in a solid with an optical microscope by chemically etching the tracks to enlarge them to etch pits, various types of detectors have been developed for the purpose of measuring neutron dose. The paper is described on the materials and construction of the SSTDs for neutron dosimetry, and the sensitivity is explained with mathematical equations. The features of neutron dosimetry with SSTDs are as follows: They are compact, and scarcely disturb neutron field, thus delicate dose distribution can be known; integration measurement is possible regardless of dose rate values because of integrating type detectors; it is not influenced by β-ray or γ-ray except the case when there is high energy radiation such as causing photonuclear reactions or high dose such as degrading solids, it has pretty high sensitivity; track fading is negligible during the normal measuring time around room temperature; and the etching images of tracks are relatively clear, and various automatic counting systems can be employed. (Wakatsuki, Y.)

  7. Thermal neutron detection by means of an organic solid-state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1979-01-01

    Thermal neutrons can be detected by means of organic solid-state track detectors if they are combined with radiators in which charged secondary particles are produced in neutron interaction processes. The secondary particles can produce etchable tracks in the detector material. For thermal neutron fluence determination from the track densities, the thermal neutron sensitivity was calculated for cellulose triacetate detectors with LiF radiators, taking into account energy and angular distribution of the alpha particles produced in the LiF radiator. This value is in good agreement with the sensitivity measured during irradiation in different neutron fields if corrections are considered the production of etchable or visuable tracks. Measuring range and measuring accuracy meet the requirements of thermal neutron detection in personnel dosimetry. Possibilities of extending the measuring range are discussed. (author)

  8. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    Science.gov (United States)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  9. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  10. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  11. Study of threshold energy registration of alpha particles on lexan nuclear track detector (passive) by Kr F laser pre-radiation

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Hashemi, M. M.; Katoozi, M.; Amiri Rad, N.; Zamanipour, Z.; Zarea, A.

    2002-01-01

    The effect of Kr F laser pre-radiation has been investigated on both alpha track density and threshold energy of track registration. While no significant difference was observed on track density an nevertheless ∼100 keV shift of threshold energy occurred due to UV superficial hardening of Lexan detector

  12. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  13. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1978-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations and to energetic heavily ionizing particles, results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The theory uses a calculation of the radial distribution of local dose deposited by secondary electrons (delta-rays) from an energetic heavy ion as a transfer function, relating the dose-response relation measured (or postulated) for a particular detector in a uniform radiation field (gamma-rays) to obtain the radial distribution in response about the ion's path, and thus the structure of the track of a particle. Subsequent calculations yield the response of the detector to radiation fields of arbitrary quality. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed end-point. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, it can be shown that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a mixture of 1-hit and 2-hit response, perhaps of different trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (author)

  14. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  15. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  16. Radon measurements by etched track detectors applications in radiation protection, earth sciences and the environment

    CERN Document Server

    Durrani, Saeed A

    1997-01-01

    Exposure to radon gas, which is present in the environment naturally, constitutes over half the radiation dose received by the general public annually. At present, the most widely used method of measuring radon concentration levels throughout the world, both in dwellings and in the field, is by etched track detectors - also known as Solid State Nuclear Detectors (SSNTDs). Although this is not only the most widely used method but is also the simplest and the cheapest, yet there is at present no book available on the market globally, devoted exclusively or largely to the methodology of, and deal

  17. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  18. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: Sabine.Mayer@psi.ch; Boschung, M.; Fiechtner, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Fuerstner, M. [CERN, CH-1211 Geneva 23 (Switzerland); Wernli, C. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-15

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement.

  19. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    International Nuclear Information System (INIS)

    Mayer, S.; Boschung, M.; Fiechtner, A.; Fuerstner, M.; Wernli, C.

    2008-01-01

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement

  20. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    Talpalariu, Corneliu; Talpalariu, Jeni; Matei, Corina; Lita, Ioan; Popescu, Oana

    2010-01-01

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  1. Plastic nuclear track detectors as high x-ray and gamma dosimeters

    International Nuclear Information System (INIS)

    Chong Chon Sing

    1995-01-01

    A brief review of recent studies on the effects of high doses of x-ray and gamma ray on the track registration properties of several plastic track detectors is presented. The bulk etching rates and the etched track sizes have been found to increase with the dose in the range up to 100 Mrad. These results suggest that the changes in track registration characteristics can be employed as an index of the radiation dose in the megarad region. In particular, recent results on the effect of X-ray irradiation on two types of cellulose nitrate track detectors obtained in our laboratory are reported in this paper. (author)

  2. Diamond detector time resolution for large angle tracks

    Energy Technology Data Exchange (ETDEWEB)

    Chiodini, G., E-mail: chiodini@le.infn.it [INFN - Sezione di Lecce (Italy); Fiore, G.; Perrino, R. [INFN - Sezione di Lecce (Italy); Pinto, C.; Spagnolo, S. [INFN - Sezione di Lecce (Italy); Dip. di Matematica e Fisica “Ennio De Giorgi”, Uni. del Salento (Italy)

    2015-10-01

    The applications which have stimulated greater interest in diamond sensors are related to detectors close to particle beams, therefore in an environment with high radiation level (beam monitor, luminosity measurement, detection of primary and secondary-interaction vertices). Our aims is to extend the studies performed so far by developing the technical advances needed to prove the competitiveness of this technology in terms of time resolution, with respect to more usual ones, which does not guarantee the required tolerance to a high level of radiation doses. In virtue of these goals, measurements of diamond detector time resolution with tracks incident at different angles are discussed. In particular, preliminary testbeam results obtained with 5 GeV electrons and polycrystalline diamond strip detectors are shown.

  3. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  4. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1976-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations, and to energetic heavily ionizing particles results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed endpoint. Physically, a hit is interpreted as a 'registered event' caused by an electron passing through the sensitive site, with an efficiency which depends on the electron's speed. Some knowledge of size of the sensitive volume and of the sensitive target is required to make the transition from gamma-ray response to heavy ion response. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, we are able to show that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (orig./ORU) [de

  5. Applications of nuclear track detectors

    International Nuclear Information System (INIS)

    Medveczky, L.

    1980-01-01

    The results of a scientific research-work are summarized. Nuclear track detectors were used for new applications or in unusual ways. Photographic films, nuclear emulsions and dielectric track detectors were investigated. The tracks were detected by optical microscopy. Empirical formulation has been derived for the neutron sensitivity of certain dielectric materials. Methods were developed for leak testing of closed alpha emitting sources. New procedures were found for the application and evaluation of track detector materials. The results were applied in the education, personnel dosimetry, radon dosimetry etc. (R.J.)

  6. Effect of track etch rate on geometric track characteristics for polymeric track detectors

    International Nuclear Information System (INIS)

    Abdel-Naby, A.A.; El-Akkad, F.A.

    2001-01-01

    Analysis of the variable track etch rate on geometric track characteristic for polymeric track detectors has been applied to the case of LR-155 II SSNTD. Spectrometric characteristics of low energy alpha particles response by the polymeric detector have been obtained. The track etching kinematics theory of development of minor diameter of the etched tracks has been applied. The calculations show that, for this type of detector, the energy dependence of the minor track diameter d is linear for small-etched removal layer h. The energy resolution gets better for higher etched removal layer

  7. CR-39 as induced track detector in reactor: irradiation effect

    International Nuclear Information System (INIS)

    Zylberberg, H.

    1989-07-01

    A systematic study about reactor's neutrons radiation effect and gamma radiation effect on the properties of CR-39 that are significant for its use as induced fission track detector is showed. The following studies deserved attention: kinetics of the fission track chemical development; efficiency to register and to develop fission track; losses of developable tracks; variation in the number of developable tracks and variation in the visible and ultraviolet radiation spectrum. The dissertation is organized in seven specific chapters: solid state nuclear tracks (SSNT); CR-39 as SSNT; objectives and problems presentation; preparation and characterization of CR-39 as SSNT; gamma irradiation effect on the properties of CR-39 as SSNT; reactor neutron irradiation effect on the properties of CR-39 as SSNT and, results discussions and conclusions. The main work contributions are the use of CR-39 in the determination of fissionable nuclide as thorium and uranium in solid and liquid samples; gamma radiation damage on CR-39 as well as the reactor's neutron damage on CR-39. (B.C.A.) 62 refs, 53 figs, 21 tabs

  8. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  9. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    International Nuclear Information System (INIS)

    Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R.; Nelson, L.; Nolan, P.J.; Rigby, S.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector

  10. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajboston@liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Rigby, S. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-08-15

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  11. Tracking in Dense Environments for the HL-LHC ATLAS Detector

    CERN Document Server

    Cormier, Felix; The ATLAS collaboration

    2018-01-01

    Tracking in dense environments, such as in the cores of high-energy jets, will be key for new physics searches as well as measurements of the Standard Model at the High Luminosity LHC (HL-LHC). The HL-LHC will operate in challenging conditions with large radiation doses and high pile-up (up to $\\mu=200$). The current tracking detector will be replaced with a new all-silicon Inner Tracker for the Phase II upgrade of the ATLAS detector. In this talk, characterization of the HL-LHC tracker performance for collimated, high-density charged particles arising from high-momentum decays is presented. In such decays the charged-particle separations are of the order of the tracking detector granularity, leading to challenging reconstruction. The ability of the HL-LHC ATLAS tracker to reconstruct the tracks in such dense environments is discussed and compared to ATLAS Run-2 performance for a variety of relevant physics processes.

  12. Development of radiation hard microstrip detectors for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, Sudeep [GSI, Darmstadt (Germany)

    2010-07-01

    Radiation damage in Silicon microstrip detectors is of the one main concerns for the development of the Silicon Tracking System (STS) in the planned Compressed Baryonic Matter (CBM) experiment at FAIR. The STS will consist of Double Sided Silicon Strip Detectors (DSSD) having pitch around 60 {mu}m, width 20 {mu}m, stereo angle of {+-}7.5{sup 0} on n and p sides with double metallization on either side making it challenging to fabricate.We are using 3-dimensional TCAD simulation tools from SYNOPSYS to carry out process (using Sentaurus Process) and device (using Sentaurus Device) simulations.We have simulated the impact of radiation damage in DSSDs by changing the effective carrier concentration (N{sub eff}) with fluence using the Hamburg model. The change in minority carrier life time has been taken into account using the Kraners model and the Perugia trap model has been used to simulate the traps. We have also extracted macroscopic parameters like Coupling Capacitance, Interstrip Capacitance (both DC and AC), Interstrip Resistance of DSSDs using Mixed Mode simulation (using SPICE with Sentaurus Device) and studied the variation of these parameters with fluence. The simulation results have been compared to the experimental results. We also simulated transients by passing a Heavy Ion through a DSSD and studied the charge collection performance.

  13. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  14. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  15. Tracking detectors for the sLHC, the LHC upgrade

    CERN Document Server

    Sadrozinski, Hartmut F W

    2005-01-01

    The plans for an upgrade of the Large Hadron Collider (LHC) to the Super-LHC (sLHC) are reviewed with special consideration of the environment for the inner tracking system. A straw-man detector upgrade for ATLAS is presented, which is motivated by the varying radiation levels as a function of radius, and choices for detector geometries and technologies are proposed, based on the environmental constraints. A few promising technologies for detectors are discussed, both for sensors and for the associated front-end electronics. On-going research in silicon detectors and in ASIC technologies will be crucial for the success of the upgrade.

  16. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  17. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  18. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  19. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  20. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  1. Calibration of Nuclear Track Detectors

    International Nuclear Information System (INIS)

    Vukovic, J.B; Antanasijevic, R.; Novakovic, V.; Tasic, M.

    1998-01-01

    In this work we compare some of our preliminary results relating to the calibration Nuclear Track Detectors (NTD) with corresponding results obtained from other participants at the First International Intercomparison of Image Analyzers (III 97/98). Thirteen laboratories from Algeria, China, Czech Rep., France. Germany, Greece, Hungary, India, Italy, Mexico, Saudi Arabia, Slovenia and Yugoslavia participated in the III A 97/98. The NTD was 'Tustrack', Bristol. This type of CR-39 detector was etched by the organizer (J.Paltarey of al, Atomic Energy Research Institute, HPD, Budapest, Hungary). Etching condition was: 6N NaOH, 70 0C . Seven series detectors were exposed with the sources: B(n,a)Li, Am-241, Pu-Be(n,p), Radon and Am-Cm-Pu. Following parameters of exposed detectors were measured: track density of different sorts of tracks (circular, elliptical, track overlapping, their diameters, major and minor axis and other). (authors)

  2. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    Science.gov (United States)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  3. Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    CERN Document Server

    Barth, C; Bloch, I.; Bögelspacher, F.; de Boer, W.; Daniels, M.; Dierlamm, A.; Eber, R.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Erfle, J.; Feld, L.; Garutti, E.; Gregor, I. -M.; Guthoff, M.; Hartmann, F.; Hauser, M.; Husemann, U.; Jakobs, K.; Junkes, A.; Karpinski, W.; Klein, K.; Kuehn, S.; Lacker, H.; Mahboubi, K.; Müller, Th.; Mussgiller, A.; Nürnberg, A.; Parzefall, U.; Poehlsen, T.; Poley, L.; Preuten, M.; Rehnisch, L.; Sammet, J.; Schleper, P.; Schuwalow, S.; Sperlich, D.; Stanitzki, M.; Steinbrück, G.; Wlochal, M.

    2016-01-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Phys...

  4. Enabling technologies for silicon microstrip tracking detectors at the HL-LHC

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.

    2016-04-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative ''Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC'' (PETTL), which was supported by the Helmholtz Alliance ''Physics at the Terascale'' during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R and D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.

  5. Enabling technologies for silicon microstrip tracking detectors at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Feld, L.; Karpinski, W.; Klein, K. [RWTH Aachen Univ. (Germany). 1. Physikalisches Institut B; Collaboration: The PETTL Collaboration; and others

    2016-04-15

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative ''Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC'' (PETTL), which was supported by the Helmholtz Alliance ''Physics at the Terascale'' during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R and D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.

  6. RD50 Collaboration overview: Development of new radiation hard detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S., E-mail: susanne.kuehn@cern.ch

    2016-07-11

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors. - Highlights: • The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for high luminosity collider experiments. • The collaboration investigates defect, material and detector characterization, the development of new structures and full detector systems. • Results of measured data of n-in-p type sensors allow recommendations for silicon tracking detectors at the HL-LHC. • The charge multiplication effect was investigated to allow its exploitation and resulted in new structures like LGAD sensors. • New sensor types like slim and active edge sensors, 3D detectors, and lately HVCMOS devices were developed in the active collaboration.

  7. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, Giorgio

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2 s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes of the other mentioned exotic particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  8. Particularisation of Alpha Contamination using CR-39 Track Detectors

    International Nuclear Information System (INIS)

    Zakia, M.F.; El-Shaer, Y.H.

    2008-01-01

    Solid-state nuclear track detectors have found wide use in various domains of science and technology, e.g. in environmental experiments. The measurement of alpha activity on sources in an environment, such as air is not easy because of short penetration range of the alpha particles. Furthermore, the measurement of alpha activity by most gas ionization detectors suffers from the high background induced by the accompanying gamma radiation. Solid State Nuclear Track Detectors (SSNTDs) have been used successfully as detecting devices as passive system to detect the alpha contamination different surfaces. This work presents the response of CR-39 (for two types) to alpha particles from two sources, 238 Pu with energy 5 MeV and 241 Am with energy 5.4 MeV. The methods of etching and counting are investigated, along with the achievable linearity, efficiency and reproducibility. The sensitivity to low activity and energy resolution are studied

  9. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    International Nuclear Information System (INIS)

    Szabó, J.; Pálfalvi, J.K.

    2012-01-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008–2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  10. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  11. Solid state nuclear track detectors and their application in industrial health, radiological and environmental protection

    International Nuclear Information System (INIS)

    Urban, M.

    1993-09-01

    Passive Solid State Nuclear Track Detectors are electrically non conductive solids, mainly used for the registration of α-particles and neutron induced recoils. The stability of the particle tracks in the solid allow longer integration periods, what is essential for the measurement of small, time variant radiation exposures. This report gives an overview on non-photographic track detectors, their processing, dosimetric properties and examples for their application in industrial health, radiological and environmental protection. (orig.) [de

  12. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Casagrande, L.; Barnett, B.M.; Bartalina, P.

    1999-01-01

    In this work, the authors show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of ∼4 x 10 14 p/cm 2 , no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T < 120 K. Besides confirming the previously observed Lazarus effect in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments

  13. Modifications in track registration response of PADC detector by energetic protons

    CERN Document Server

    Dwivedi, K K; Fink, D; Mishra, R; Tripathy, S P; Kulshreshtha, A; Khathing, D T

    1999-01-01

    It has been well established that different ionising radiations modify the track registration properties of dielectric solids. In an effort to study the response of Polyallyl diglycol carbonate (PADC Homalite) detector towards fission fragment, PADC detectors were exposed to 10 sup 4 Gy dose of 62 MeV protons and then one set of samples were exposed to fission fragments from a sup 2 sup 5 sup 2 Cf source. Two of these detectors were containing a thin layer of Buckminsterfullerene (C sub 6 sub 0). The study of the etched tracks by Leitz Optical Microscope reveals that the track diameters are enhanced by more than 70% in the proton irradiated zone as compared to that in the unirradiated zone. Scanning Electron Microscopy was performed after etching the sample in 6 N NaOH at 55 deg. C for different etching times, to study the details of the surface modifications due to proton irradiation of PADC detectors with and without C sub 6 sub 0 layer. Our observations revealed that the diameters and density of proton tra...

  14. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  15. Development of Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  16. Development of hybrid track detector using CR39 and photographic plate

    International Nuclear Information System (INIS)

    Kuge, Kenichi; Endo, Yusuke; Hayashi, Kentaro; Hasegawa, Akira; Kumagai, Hiroshi

    2004-01-01

    Hybrid track detector using CR39 and color photography was prepared by coating multi-layered color photographic emulsions on one side of CR39. Etch pits and color tracks were observed at the same time. Photographic plate with different sensitivity emulsions and couplers were exposed to light, α-, β- and γ-rays. We observed sensitivity difference to the radiation by color changes on one plate. (authors)

  17. Study of the characteristics of ionizing particles record of CR-39 track detectors

    International Nuclear Information System (INIS)

    Brandao, Luis Eduardo Barreira

    1983-01-01

    The bulk and track etching proprieties of a new Solid State Nuclear Track Detector CR-39 were investigated under different etching conditions. The discussion is based on results obtained using aqueous solutions of KOH with addition of alcoholic solvent to aqueous solutions. It was found that track registration sensitivity can be dramatically changed by using the proper chemical treatment. A method to enlarge and dye etch tracks to be viewed by simple projection on a screen is discussed. The applications of CR-39 in neutron fluence measurements are shown. Graphs are presented of the densities of the registered traces by the detector as a function of etch time both for samples with and without a polycarbonate radiator. (author)

  18. Development of nuclear track detectors

    International Nuclear Information System (INIS)

    Somogyi, Gyoergy

    1985-01-01

    The birth and development of two decades of a new nuclear detection method is briefly summarized by one of the first inventors. The main steps of the development and broadening application of nuclear solid state track detectors are described underlying the contribution and main results of the research group of ATOMKI, Hungary (i.e. the finding of the proper plastic materials for track detectors, the discovery of correlations between the track diameter and the particle energy, the increasing of energy resolution, explanation of the track developing process, elaboration of new electrochemical track analyzing methods and automatic track analyzers). Recently, this detecting technique has grown to the phase of the industrial mass production and broad application in radiogeochemistry, mining, radioecology, personal monitoring in nuclear power plants, etc. (D.Gy.)

  19. Fast neutron detection by means of an organic solid state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1980-01-01

    Solid state track detectors consisting of cellulose triacetate foils are appropriate for measuring the fast neutron fluence without applying external radiators. Detector sensitivity has been determined as a function of neutron energy by performing irradiations with various neutron sources and monoenergetic neutrons of different energies. A comparison with theoretical results given in the literature for a simple model of track recording has shown sufficient agreement. The measuring errors and the influence of spectral changes in the neutron field on detector response are discussed for the studied method of fluence measurement. By means of these errors the measuring range has been determined for well defined irradiation conditions, taking into account spectral changes in the neutron field. (author)

  20. Calibration and alignment of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Stoye, M.

    2007-07-01

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  1. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  2. A review of advances in pixel detectors for experiments with high rate and radiation

    Science.gov (United States)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  3. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix

    Czech Academy of Sciences Publication Activity Database

    Granja, C.; Krist, Pavel; Chvátil, David; Šolc, J.; Pospíšil, S.; Jakubek, J.; Opalka, L.

    2013-01-01

    Roč. 59, DEC (2013), s. 245-261 ISSN 1350-4487 Institutional support: RVO:61389005 Keywords : interaction of radiation with matter * dE/dx detectors * particle tracking detectors * hybrid pixel detectors * active nuclear emulsion * energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.140, year: 2013

  4. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  5. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  6. Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

    Directory of Open Access Journals (Sweden)

    Malinowska Aneta

    2015-09-01

    Full Text Available To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

  7. Measurements of radon in dwellings with CR-39 track detectors

    DEFF Research Database (Denmark)

    Majborn, Benny

    1986-01-01

    A passive integrating dosemeter has been designed for measuring natural radiation in dwellings. The dosemeter contains one or two CR-39 track detectors to measure radon and three thermoluminescence dosemeters to measure external radiation. The dosemeter was investigated in a pilot study in 1983....../84, and it is now used in a nationwide survey of natural radiation in Danish dwellings. The characteristics of the dosemeter with respect to radon measurements are presented, and the radon monitoring results obtained in the pilot study are summarized...

  8. The transition radiation detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano [Institut fuer Kernphysik, WWU Muenster (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment is a fixed target heavy-ion experiment at the future FAIR accelerator facility. The CBM Transition Radiation Detector (TRD) is one of the key detectors to provide electron identification above momenta of 1 GeV/c and charged particle tracking. Due its capability to identify charged particles via their specific energy loss, the TRD in addition will provide valuable information for the measurement of fragments. These requirements can be fulfilled with a XeCO{sub 2} based Multi-Wire Proportional Counter (MWPC) detector in combination with an adequate radiator. The default MWPC is composed of a symmetric amplification area of 7 mm thickness, followed by a 5 mm drift region to enhance the TR-photon absorption probability in the active gas volume. This geometry provides also efficient and fast signal creation, as well as read-out, of the order of 200 μs per charged particle track. The performance of this detector is maximized by reducing the material budget between the radiator and gas volume to a minimum. The full detector at SIS100 will be composed of 200 modules in 2 sizes. To limit cost and production time the number of various module types is limited to 6 types and 4 types of Front End Board (FEB) flavors are required. An overview of the design and performance of the TRD detector is given.

  9. Radiation hard diamond sensors for future tracking applications

    International Nuclear Information System (INIS)

    Adam, W.; Boer, W. de; Borchi, E.

    2006-01-01

    Progress in experimental particle physics in the coming decade depends crucially upon the ability to carry out experiments in high-radiation areas. In order to perform these complex and expensive experiments, new radiation hard technologies must be developed. This paper discusses the use of diamond detectors in future tracking applications and their survivability in the highest radiation environments. We present results of devices constructed with the newest polycrystalline and single crystal Chemical Vapor Deposition diamond and their tolerance to radiation

  10. The ALICE Transition Radiation Detector: Construction, operation, and performance

    Science.gov (United States)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  11. The ALICE Transition Radiation Detector: status and perspectives for Run II

    CERN Document Server

    Klein, Jochen

    2016-01-01

    The ALICE Transition Radiation Detector contributes to the tracking, particle identification, and triggering capabilities of the experiment. It is composed of six layers of multi-wire proportional chambers, each of which is preceded by a radiator and a Xe/CO$_2$-filled drift volume. The signal is sampled in timebins of 100~ns over the drift length which allows for the reconstruction of chamber-wise track segments, both online and offline. The particle identification is based on the specific energy loss of charged particles and additional transition radiation photons, the latter being a signature for electrons. The detector is segmented into 18 sectors, of which 13 were installed in Run I. The TRD was included in data taking since the LHC start-up and was successfully used for electron identification and triggering. During the Long Shutdown 1, the detector was completed and now covers the full azimuthal acceptance. Furthermore, the readout and trigger components were upgraded. When data taking was started for ...

  12. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  13. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  14. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    International Nuclear Information System (INIS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-01-01

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  15. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lalwani, Kavita, E-mail: kavita.phy@mnit.ac.in [Malaviya National Institute of Technology (MNIT) Jaipur, Jaipur-302017 (India); Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh [University of Delhi (DU), Delhi-110007 (India)

    2016-07-15

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  16. Radon Measurements in Egypt using passive etched track detectors. A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A [National Network of Radiation Physics. Atomic Energy Authority (Egypt); Hussein, A S [Radiation Protection Department, Nuclear Power Plants Authority, (Egypt); El-Arabi, A M [Physics Department, Faculty of Science, South Valley University, Qena, (Egypt)

    2005-04-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water.

  17. Radon Measurements in Egypt using passive etched track detectors. A Review

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Hussein, A.S.; El-Arabi, A.M.

    2005-01-01

    Radon and its progeny may cause serious radiation harm to human health such as lung cancer and other types. Radon measurements based on alpha particles etched track detectors (LR-115, CR-39) are very attractive for assessment of radon exposure. This is due to their high sensitivity, low cost, easy to handle and retain a permanent record of data. Also these detectors can incorporate the effects of seasonal and diurnal fluctuation of radon activity concentrations due to physical, geological and meteorological factors. The present review is based mainly on the topic of passive etched track detectors for the measurements of radon in Egypt in the recent years. Published papers includes the measurements of radon in dwellings, working places, Cairo Metro stations, ancient Pharaonic places and uranium exploration galleries as well as assessment of radon in drinking water

  18. HZE dosimetry in space using plastic track detectors

    CERN Document Server

    Kopp, J; Reitz, G; Enge, W

    1999-01-01

    Plastic nuclear track detectors were used to measure the contribution of High charge Z and energy E (HZE) particles to the radiation exposure of manned space missions. Results from numerous space missions in the orbit planned for the International Space Station are compared. The measurements cover the declining phase of the last solar cycle during the past 7 years and various shielding conditions inside the US Space Shuttle and the Russian MIR-station.

  19. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  20. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  1. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Vacavant, L.

    1997-06-01

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c 2 . A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (m H = 100 GeV/c 2 ), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: R g =39±5 R u = 60 ± 9 R s = 38 ± 5 R c = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  2. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  3. The ALICE Transition Radiation Detector: construction, operation, and performance

    OpenAIRE

    Acharya, Shreyasi; Adam, Jaroslav; Ahmad, Nazeer; Bhattacharjee, Buddhadeb; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Bhom, Jihyun

    2018-01-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 G...

  4. Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Osinga, J-M; Jäkel, O; Ambrožová, I; Brabcová, K Pachnerová; Davídková, M; Akselrod, M S; Greilich, S

    2014-01-01

    In this paper we present a method for single track coincidence measurements using two different track detector materials. We employed plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) in the entrance channel of a monoenergetic carbon ion beam covering the therapeutic energy range from 80 to 425 MeV/u. About 99% of all primary particle tracks detected by both detectors were successfully matched, while 1% of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82% and 99.83% respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. The investigated method can be adapted to other nuclear track detectors and offers the possibility to characterize new track detector materials against well-known detectors. Further, by combining two detectors with a restricted working range in the presented way a hybrid-detector system can be created with an extended and optimized working range

  5. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  6. Diamond and silicon pixel detectors in high radiation environments

    International Nuclear Information System (INIS)

    Tsung, Jieh-Wen

    2012-10-01

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10 16 particles per cm 2 , which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10 15 particles per cm 2 .

  7. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    1996-01-01

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF 2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  8. Performance And Radiation Hardness Of The Atlas/sct Detector Module

    CERN Document Server

    Eklund, L

    2003-01-01

    The ATLAS experiment is a general purpose experiment being constructed at the Large Hadron Collider (LHC) at FERN, Geneva. ATLAS is designed to exploit the full physics potential of LHC, in particular to study topics concerning the Higgs mechanism, Super-symmetry and CP violation. The cross sections for the processes under study are extremely small, requiring very high luminosity colliding beams. The Semiconductor Tracker (SCT) is an essential part of the Inner Detector tracking system of ATLAS. The active elements of the SCT is 4088 detector modules, tiled on four barrel cylinders and eighteen endcap disks. As a consequence of the high luminosity, the detector modules will operate in a harsh radiation environment. This thesis describes work concerning radiation hardness, beam test performance and methods for production testing of detector modules. The radiation hardness studies have been focused on the electrical performance of the front-end ASIC and the detector module. The results have identified features ...

  9. Some aspects of solid track detector usage in ecological research

    International Nuclear Information System (INIS)

    Berzina, I.G.; Gusev, E.B.; Ivanov, V.A.

    1991-01-01

    The ability of plants to accumulate large quantities of uranium in areas with unfavorable environmental conditions caused by the open working of various deposits and the mining of uranium containing minerals is discussed. The experimental data show the need for qualitative and quantitative revisions of radiation safety levels. Aspects of the use of solid state track detectors in this research are presented. (author)

  10. Detector independent cellular automaton algorithm for track reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kisel, Ivan; Kulakov, Igor; Zyzak, Maksym [Goethe Univ. Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    Track reconstruction is one of the most challenging problems of data analysis in modern high energy physics (HEP) experiments, which have to process per second of the order of 10{sup 7} events with high track multiplicity and density, registered by detectors of different types and, in many cases, located in non-homogeneous magnetic field. Creation of reconstruction package common for all experiments is considered to be important in order to consolidate efforts. The cellular automaton (CA) track reconstruction approach has been used successfully in many HEP experiments. It is very simple, efficient, local and parallel. Meanwhile it is intrinsically independent of detector geometry and good candidate for common track reconstruction. The CA implementation for the CBM experiment has been generalized and applied to the ALICE ITS and STAR HFT detectors. Tests with simulated collisions have been performed. The track reconstruction efficiencies are at the level of 95% for majority of the signal tracks for all detectors.

  11. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  12. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    International Nuclear Information System (INIS)

    Johansen, Lars Gimmestad

    2005-06-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  13. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  14. The former tests realized to a personal neutron dosemeter based on solid nuclear tracks detector

    International Nuclear Information System (INIS)

    Camacho, M.E.; Tavera, L.; Balcazar, M.

    1997-01-01

    Due to the increase in the use of neutron radiation a personal neutron dosemeter based on solid nuclear tracks detector (DSTN) was designed and constructed. The personal dosemeter design consists of three arrangements. The first one consists of a plastic nuclear tracks detector (LR115 or CR39) in contact with a LiF pellet. The second one is the same that above but it placed among two cadmium pellets and, the third one is formed by the alone detector without converter neither neutron absorber. The three arrangements are placed inside a plastic porta detector hermetically closed to avoid the bottom produced by environmental radon whichever both detectors (LR115 and CR39) are sensitive. In this work the former tests realized to that dosemeter are presented. (Author)

  15. Device for glass detector tracks processing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Mikheev, V.P.; Pis'mennyj, G.V.; Pribytov, V.I.; Rozov, B.S.

    1974-01-01

    The authors describe a semi-automatic installation for measuring angular distribution of tracks from nuclear fission fragments. The measurements were performed on glass detectors represented by a cylinder surface section with central angle 110-120 deg, height 20 mm and radius 45 mm. The tracks were in the form of lunes, 10/25 mm deep. Treatment of one detector lasted 10-15 min. The installation affords the possibility of finding the angular distribution of tracks by counting them in zones, whose sizes may vary from 1 to 90 deg. Data output was performed on a digitizer [ru

  16. Tracking Detectors in the STAR Experiment at RHIC

    Science.gov (United States)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  17. The ATLAS Inner Detector operation,data quality and tracking performance.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector comprises silicon and gas based detectors. The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking silicon devices in the Inner Detector of the ATLAS experiment at CERN LHC. And the the Transition Radiation Tracker (TRT), the outermost of the three subsystems of the ATLAS Inner Detector is made of thin-walled proportional-mode drift tubes (straws). The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The TRT is made...

  18. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  19. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  20. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1977-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track-etching technique, mainly the etching situations related to detector geometry, and the relationship between registration sensitivity and the etching parameters are considered. Special attention is paid to the behaviour of track-revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization are discussed. (author)

  1. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1976-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track etching technique mainly the etching situations related to detector geometry and the relationship of registration sensitivity and the etching parameters are considered. A special attention is paid to the behaviour of track revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization is discussed. (orig.) [de

  2. A ''quick DYECET'' method for ECE particle tracks in polymer detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Mahdi, S.

    1993-01-01

    The new dyed electrochemically etched track (DEYCET) method recently developed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) using sensitization and dyeing steps is a useful and powerful method for dyeing charged particle and neutron-induced-recoil tracks in polymer detectors. This original DYECET method is effective but time consuming due to the steps for sensitization and dyeing which usually takes several hours. A ''Quick DYECET'' method, also recently developed in our laboratory, is introduced in this paper which dyes ECE tracks effectively in different colours within a few minutes. This new method can dye ECE tracks, cracks, fractures and fractals with different water and/or alcohol soluble dyes using cold or hot dyebaths. The method provides a high contrast and a high resolution of ECE tracks for visual track counting especially at high track densities. Some preliminary results are reported and discussed. (author)

  3. Incident-angle dependency found in track formation sensitivity of a plastic nuclear track detector (TD-1)

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1999-01-01

    The present study was done since data are hardly available on the incident-angle dependency of track formation sensitivity (S) of the plastic nuclear track detector. Chips of a TD-1 plate, an antioxidant-doped CR-39 (diethyleglycol-bis-allylcarbonate, HARZLAS, Fukuvi Chem. Ind.), were used as a high-LET radiation detector and were exposed to heavy ion beams of C, Ne, and Si under different incident angles in Heavy Ion Medical Accelerator in Chiba of National Institute of Radiological Sciences. After exposed and etched, the chips were observed with an optical microscope and a program for image analysis to calculate S. The S values calculated were found smaller for the beams having lower incident angles. Thus the estimated LET values from the S-LET relationship for vertical incident beams showed large reduction for low-angle particles. Those potential errors should be quantified and corrected in determination of LET spectra in space. (K.H.)

  4. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  5. tkLayout: a Design Tool for Innovative Silicon Tracking Detectors

    CERN Document Server

    Bianchi, Giovanni

    2014-01-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly ad...

  6. The use of detectors based on ionisation recombination in radiation protection

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1984-01-01

    Intitial recombination of ionisation in a gas depends on the ionisation density and hence on the linear energy transfer along the tracks of charged particles. This effect can be used as a basis for instruments that respond to different types of ionising radiation approximately in the way required by the quality factor-linear energy transfer relation recommended by the ICRP for use in radiation protection. Empirical instruments based on ionisation recombination that have been used for radiation protection measurements are reviewed, and relations are derived from recombination theory that show that the response of such detectors can be readily predicted. The usefulness of recombination instruments in radiation protection is discussed and their advantages and limitations assessed. It is shown that their main application will be as reference instruments against which other detectors can be calibrated. As an extension to using recombination detectors as reference instruments, the feasibility of specifying radiation quality in terms of ionisation recombination is investigated. (author)

  7. Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector

    International Nuclear Information System (INIS)

    DeWitt, J.M.; Benton, E.R.; Uchihori, Y.; Yasuda, N.; Benton, E.V.; Frank, A.L.

    2009-01-01

    A significant obstacle to long duration human space exploration such as the establishment of a permanent base on the surface of the Moon or a human mission to Mars is the risk posed by prolonged exposure to space radiation. In order to keep mission costs at acceptable levels while simultaneously minimizing the risk from radiation to space crew health and safety, a judicious use of optimized shielding materials will be required. We have undertaken a comprehensive study using CR-39 plastic nuclear track detector (PNTD) to characterize the radiation shielding properties of a range of materials-both common baseline materials such as Al and polyethylene, and novel multifunctional materials such as carbon composites-at heavy ion accelerators. The study consists of analyzing CR-39 PNTD exposed in front of and behind shielding targets of varying composition and at a number of depths (target thicknesses) relevant to the development and testing of materials for space radiation shielding. Most targets consist of 10 cm x 10 cm slabs of solid materials ranging in thickness from 1 to >30 g/cm 2 . Exposures have been made to beams of C, O, Ne, Si, Ar, and Fe at energies ranging from 290 MeV/amu to 1 GeV/amu at the National Institute of Radiological Sciences HIMAC and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. Analysis of the exposed detectors yields LET spectrum, dose, and dose equivalent as functions of target depth and composition, and incident heavy ion charge, energy, and fluence. Efforts are currently underway to properly weigh and combine these results into a single quantitative estimate of a material's ability to shield space crews from the interplanetary galactic cosmic ray flux.

  8. Fragmentation cross section measurements of iron projectiles using CR-39 plastic nuclear track detectors

    CERN Document Server

    Flesch, F; Huentrup, G; Roecher, H; Streibel, T; Winkel, E; Heinrich, W

    1999-01-01

    For long term space missions in which larger radiation doses are accumulated it is necessary to improve the precision of models predicting the space radiation environment. Different models are available to determine the flux of cosmic ray heavy ions behind shielding material. The accuracy of these predictions depends on the knowledge of the fragmentation cross sections, especially at energies of several hundred MeV/nucleon, where the particle flux is at a maximum and especially for those particles with high LET, i.e. iron nuclei. We have measured fragmentation cross sections of sup 5 sup 6 Fe projectiles at beam energies of 700 and 1700 A MeV using experimental set-ups with plastic nuclear track detectors. In this paper we describe the experimental technique to study the fragmentation reactions of sup 5 sup 6 Fe projectiles using CR-39 plastic nuclear track detectors. Results for different targets are presented.

  9. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations. (authors)

  10. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  11. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Turek, Karel

    2004-01-01

    Roč. 109, č. 4 (2004), s. 375-381 ISSN 0144-8420 R&D Projects: GA AV ČR KSK4055109 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : track-etched detectors * cosmic rays * aircraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  12. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  13. Expected performance of tracking and vertexing with the HL-LHC ATLAS detector

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of $7.5 \\cdot 10^{34} cm^{-2}s^{-1}$ which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  14. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  15. The RASNIK real-time relative alignment monitor for the CDF inner tracking detectors

    International Nuclear Information System (INIS)

    Goldstein, David; Saltzberg, David

    2003-01-01

    We describe the design and operation of the RASNIK optical relative alignment system designed for and installed on the CDF inner tracking detectors. The system provides low-cost minute-by-minute alignment monitoring with submicron precision. To reduce ambiguities, we modified the original three-element RASNIK design to a two-element one. Since the RASNIKs are located within 10-40 cm of the beam line, the systems were built from low-mass and radiation-hard components and are operated in a mode which reduces damage from radiation. We describe the data-acquisition system, which has been running without interruption since before the CDF detector was rolled into its collision hall in March 2001. We evaluate what has been learned about sources of detector motion from almost 2 years of RASNIK data and discuss possible improvements to the system

  16. A gamma-ray tracking detector for molecular imaging

    International Nuclear Information System (INIS)

    Hall, C.J.; Lewis, R.A.; Helsby, W.I.; Nolan, P.; Boston, A.

    2003-01-01

    A design for a gamma-ray detector for molecular imaging is presented. The system is based on solid-state strip detector technology. The advantages of position sensitivity coupled with fine spectral resolution are exploited to produce a tracking detector for use with a variety of isotopes in nuclear medicine. Current design concepts employ both silicon and germanium layers to provide an energy range from 60 keV to >1 MeV. This allows a reference X-ray image to be collected simultaneously with the gamma-ray image providing accurate anatomical registration. The tracking ability of the gamma-ray detector allows ambiguities in the data set to be resolved which would otherwise cause events to be rejected in standard non-tracking system. Efficiency improvements that high solid angle coverage and the use of a higher proportion of events make time resolved imaging and multi-isotope work possible. A modular detector system, designed for viewing small animals has been accepted for funding

  17. 4D tracking with ultra-fast silicon detectors

    Science.gov (United States)

    F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò

    2018-02-01

    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.

  18. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, D.; Imme, G.; Catalano, R. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Catania, via S. Sofia, 64- 95123 Catania (Italy); Aranzulla, M. [Istituto Nazionale Geofisica e Vulcanologia - Sezione di Catania, piazza Roma, 2- 95127 Catania (Italy); Tazzer, A. L. Rosselli; Mangano, G. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy)

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  19. Nuclear track detector kit for use in teaching

    Energy Technology Data Exchange (ETDEWEB)

    Medveczky, L.; Somogyi, G.; Nagy, M.

    1986-01-01

    By the use of solid state nuclear track detectors (SSNTDs) one may carry out several useful and impressive educational experiments and demonstrations to illustrate different phenomena when teaching of nuclear physics. Realizing this situation the authors have published, since 1970, reports on several experiments for teaching demonstrations. Based on the authors instructions, a factory in Hungary (TANFRT, National Manufacturers and Suppliers of School Equipment, Budapest) constructed a kit for the use of nuclear track detectors in teaching. The portable kit contains the following items: alpha-emitting weak sources, solid state nuclear track detectors (unirradiated, irradiated, unetched and etched sheets), simple tools for carrying out experiments (facilities for irradiation and etching, etc.), slides showing photos of typical etch-tracks of light and heavy nuclei, user manual. By the help of the kit both pupils and teachers can perform various useful experiments and/or demonstrations.

  20. Solid state nuclear track detectors in the measurement of alpha to fission branching ratios of heavy actinides

    International Nuclear Information System (INIS)

    Pandey, A.K.; Sharma, R.C.; Padalkar, S.K.; Kalsi, P.C.; Iyer, R.H.

    1992-01-01

    A sequential etching procedure for revelation of alpha and fission tracks in CR-39 was developed and optimized. Using this technique alpha and fission tracks can be differentiated unambiguously because of significant differences in their sizes and etching times. This registration and revelation procedure for alpha and fission tracks may be used for the studies of half lives, alpha to fission branching ratios and identification of radionuclides based on their decay schemes. It has the added advantage that both alpha decay and fission events can be studied using one detector and hence uncertainties related to efficiency, registration geometry, registration times, amount of radionuclides etc can be eliminated or minimized. The effects of neutron, gamma and alpha radiations on the alpha and fission fragment tracks registration and revelation properties of CR-39 detectors [CR-39, CR-39 (DOP)] were also studied. The IR spectra were also studied to find out the nature of chemical changes produced by these radiations on CR-39. (author). 32 refs., 7 figs., 4 tabs

  1. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  2. Performance of ATLAS tracking detector

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  3. The ALICE Transition Radiation Detector: Construction, operation, and performance

    Czech Academy of Sciences Publication Activity Database

    Acharya, S.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Lavička, R.; Mareš, Jiří A.; Petráček, V.; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2018-01-01

    Roč. 881, č. 2 (2018), s. 88-127 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fibre/foam sendwich radiator * transition radiation detector * multi-wire proportional drift chamber * Xenon-based gas micture * tracking * lonisation energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) OBOR OECD: Nuclear physics ; Particles and field physics (FZU-D) Impact factor: 1.362, year: 2016

  4. A novel generic framework for track fitting in complex detector systems

    International Nuclear Information System (INIS)

    Hoeppner, C.; Neubert, S.; Ketzer, B.; Paul, S.

    2010-01-01

    This paper presents a novel framework for track fitting which is usable in a wide range of experiments, independent of the specific event topology, detector setup, or magnetic field arrangement. This goal is achieved through a completely modular design. Fitting algorithms are implemented as interchangeable modules. At present, the framework contains a validated Kalman filter. Track parameterizations and the routines required to extrapolate the track parameters and their covariance matrices through the experiment are also implemented as interchangeable modules. Different track parameterizations and extrapolation routines can be used simultaneously for fitting of the same physical track. Representations of detector hits are the third modular ingredient to the framework. The hit dimensionality and orientation of planar tracking detectors are not restricted. Tracking information from detectors which do not measure the passage of particles in a fixed physical detector plane, e.g. drift chambers or TPCs, is used without any simplification. The concept is implemented in a light-weight C++ library called GENFIT, which is available as free software.

  5. A novel generic framework for track fitting in complex detector systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, C., E-mail: christian.hoeppner@cern.c [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany); Neubert, S.; Ketzer, B.; Paul, S. [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany)

    2010-08-21

    This paper presents a novel framework for track fitting which is usable in a wide range of experiments, independent of the specific event topology, detector setup, or magnetic field arrangement. This goal is achieved through a completely modular design. Fitting algorithms are implemented as interchangeable modules. At present, the framework contains a validated Kalman filter. Track parameterizations and the routines required to extrapolate the track parameters and their covariance matrices through the experiment are also implemented as interchangeable modules. Different track parameterizations and extrapolation routines can be used simultaneously for fitting of the same physical track. Representations of detector hits are the third modular ingredient to the framework. The hit dimensionality and orientation of planar tracking detectors are not restricted. Tracking information from detectors which do not measure the passage of particles in a fixed physical detector plane, e.g. drift chambers or TPCs, is used without any simplification. The concept is implemented in a light-weight C++ library called GENFIT, which is available as free software.

  6. Kit with track detectors aiming at didactic

    International Nuclear Information System (INIS)

    Cesar, M.F.; Koskinas, M.F.

    1988-01-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics Laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and uneteched sheets; an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  7. Mechanical integration of the detector components for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Vasylyev, Oleg; Niebur, Wolfgang [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter experiment (CBM) at FAIR is designed to explore the QCD phase diagram in the region of high net-baryon densities. The central detector component, the Silicon Tracking System (STS) is based on double-sided micro-strip sensors. In order to achieve the physics performance, the detector mechanical structures should be developed taking into account the requirements of the CBM experiments: low material budget, high radiation environment, interaction rates, aperture for the silicon tracking, detector segmentation and mounting precision. A functional plan of the STS and its surrounding structural components is being worked out from which the STS system shape is derived and the power and cooling needs, the connector space requirements, life span of components and installation/repair aspects are determined. The mechanical integration is at the point of finalizing the design stage and moving towards production readiness. This contribution shows the current processing state of the following engineering tasks: construction space definition, carbon ladder shape and manufacturability, beam-pipe feedthrough structure, prototype construction, cable routing and modeling of the electronic components.

  8. Air alpha monitoring device and system for the calibration of the track detectors

    International Nuclear Information System (INIS)

    Danis, A; Oncescu, M.; Ciubotariu, M.

    2001-01-01

    density). After the etching of the detectors and study of the tracks, using these two track densities, it is possible to determine : - the activity concentrations of the radon in air; - the equilibrium factor for radon and its decay products in air, using the ratio ρ tot /ρ Rn and the Planinic and Faj equation, for the case when the values of the ratio are 1 tot /ρ Rn tot is the track density in the detector mounted in the device without the filter and ρ Rn is the track density in the detector mounted in the device with filter. The system for the calibration of the track detectors and charcoal detectors used in radon measurements ensures: - a constant volume concentration of radon activity, by a continuous generation of the radon, at a constant rate. The radon is generated by a calibrated 226 Ra source of 236 ± 19 kBq activity, which is in radioactive equilibrium with all its decay products; - the radioprotection against the alpha particles of radon and its decay products, the system being an airtight one. For gamma and beta radiations, the radioprotection is ensured by the 5 cm Pb shielding of the source flat bottom flask; - for radon measurements, for the specified etching conditions, the calibration constant is expressed in (tracks cm -2 /kBq m -3 h). Both the air alpha monitoring device and the system for track detector calibration will be used by authors for the radon monitoring in dwelling and working places. For this, we try at present to meet all the requirements for Testing and Approval of Processing Laboratories in compliance with International Radon Metrology Programme. (authors)

  9. Nuclear track detector kit for use in teaching

    International Nuclear Information System (INIS)

    Medveczky, L.; Somogyi, G.

    1986-01-01

    By the use of solid state nuclear track detectors (SSNTDs) one may carry out several useful and impressive educational experiments and demonstrations to illustrate different phenomena when teaching of nuclear physics. Realizing this situation the authors have published, since 1970, reports on several experiments for teaching demonstrations. Based on the authors instructions, a factory in Hungary (TANFRT, National Manufacturers and Suppliers of School Equipment, Budapest) constructed a kit for the use of nuclear track detectors in teaching. The portable kit contains the following items: alpha-emitting weak sources, solid state nuclear track detectors (unirradiated, irradiated, unetched and etched sheets), simple tools for carrying out experiments (facilities for irradiation and etching, etc.), slides showing photos of typical etch-tracks of light and heavy nuclei, user manual. By the help of the kit both pupils and teachers can perform various useful experiments and/or demonstrations. (author)

  10. Foam radiators for transition radiation detectors

    International Nuclear Information System (INIS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-01-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a 'traditional' radiator, which is a periodic structure of plastic foils. (orig.)

  11. Proposal for a semiconductor high resolution tracking detector

    International Nuclear Information System (INIS)

    Rehak, P.

    1983-01-01

    A 'new' concept for detection and tracking of charged particles in high energy physics experiments is proposed. It combines a well known high purity semiconductor diode detector (HPSDD) with a heterojunction structure (HJ) and a negative electron affinity (NEA) surface. The detector should be capable of providing a two dimensional view (few cm 2 ) of multi-track events with the following properties: a) position resolution down to a few μm (10 8 position elements); b) high density of information (10 2 -10 3 dots per mm of minimum ionizing track); c) high rate capabilities (few MHz); d) live operation with options to be triggered and/or the information from the detector can be used as an input for the decision to record an event. (orig.)

  12. The track finding algorithm of the Belle II vertex detectors

    Directory of Open Access Journals (Sweden)

    Bilka Tadeas

    2017-01-01

    Full Text Available The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e− - collider SuperKEKB in Tsukuba (Japan. In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated ϒ(4S → BB̄ events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum.

  13. Low-level radon measurements by nuclear track detectors

    International Nuclear Information System (INIS)

    Koksal, E. M.; Goksel, S. A.; Alkan, H.

    1985-01-01

    In the work to be described here we have developed a passive nuclear track dosimeter to measure the integrated value of indoor radon (Rn-222) over a long period of time. Passive radon dosimeter which we have developed in our laboratories makes use of two small pieces of CR-39 plastic (Allyl diglycol carbonate) as detectors for registering tracks of alpha particles emitted by radon. These CR-39 plastic detectors are fixed on the inside bottom of a cup-shaped polystrene enclosure which is closed at the top by a tissue permeable for gases only. CR-39 detectors exposed to radon gas in the indoor air for a period of six months then are removed and chemically etched to make the alpha particle tracks visible under the microscope. The counts of tracks are evaluated to determine the radon concentration in the air in comparison with the number of tracks produced by a known concentration of radon gas. By using the passive dosimeters developed and the chemical etching procedure descriped here, measurements of indoor radon concentrations were carried out in 45 houses in different districts of the city of Istanbul. In this pilot experiment mean radon concentrations between 0.7 and 3.5 pCi/l have been found in these houses. In order to improve the counting of alpha tracks produced on the detectors a prototype electrochemical etching system in addition to chemical etching, is being developed. (author)

  14. The calibration of the solid state nuclear track detector LR 115 for radon measurements

    CERN Document Server

    Gericke, C; Jönsson, G; Freyer, K; Treutler, H C; Enge, W

    1999-01-01

    An experimental calibration of indoor room and outdoor soil detector devices which are based on LR 115 as sensitive element has taken place at the Swedish Radiation Protection Institute in Stockholm (Sweden) in 1994 and 1996, at the Physikalisch-Technischen Bundesanstalt in Braunschweig (Germany) in 1997 and at the Umweltforschungszentrum Leipzig-Halle (Germany) in 1997. Special properties of the used solid state nuclear track detector (SSNTD) material LR 115 have been measured to define the application of the experimental calibration.

  15. Development of the ZEUS central tracking detector

    Science.gov (United States)

    Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration

    1989-11-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.

  16. Study of the behavior of automatic track detectors for radon determination

    International Nuclear Information System (INIS)

    Moreno C, A.

    1997-01-01

    Both the alpha decay and the alpha and beta emitting radon daughters, may affect the living cells. In this thesis, experiments have been performed to study the response of environmental radon using different alpha particle detectors. A study was performed both in the laboratory and in the field of two kinds of detectors: a) Passive solid state nuclear track detectors, LR 115 type II, capable to integrate the alpha particles in a given period of time and, b) an automatic active detector, Clipperton, that continuously accumulate the alpha counting from radon decay. LR-115 track detectors were exposed in the laboratory to alpha particles from a radioactive source and a controlled radon atmosphere. The detectors were also exposed to electrons from an electron accelerator. The number of alpha tracks in the detectors were evaluated with two kinds of spark counters. The response of the track detectors as a function of the number of alpha tracks showed a reproducibility of 92%, and the effect of electron doses showed that the bulk etching velocity varied as a function of the electron dose. Additionally some changes were introduced in an SSNTD exchanger, exposed to the radon chamber in order to reduce the background in the non exposed positions. A conversion factor of 0.016 tracks/cm 2 . 10h per Bq/m 3 was obtained. The response of the two spark counters was similar. Field soil radon determinations were performed with track detectors during 11 months and with the active detector during 5 months with exposures each month and each hour respectively. When calculated for the same time periods exposure the response of both systems was similar. However differences were quite striking in the patterns of short and long term exposure periods since short term fluctuations are explicitly shown with the active detector while integrated within the passive one. (Author)

  17. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  18. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Heller, C; The ATLAS collaboration

    2011-01-01

    ATLAS is one of the multipurpose experiments that records the products of the LHC proton-proton and heavy ion collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built using two different technologies, silicon planar sensors (pixel and microstrips) and drift-tube based detectors. Together they constitute the ATLAS Inner Detector, which is embedded in a 2 T axial field. Efficiently reconstructing tracks from charged particles traversing the detector, and precisely measure their momenta is of crucial importance for physics analyses. In order to achieve its scientific goals, an alignment of the ATLAS Inner Detector is required to accurately determine its more than 700,000 degrees of freedom. The goal of the alignment is set such that the limited knowledge of the sensor locations should not deteriorate the resolution of track parameters by more than 20% with respect to the intrinsic tracker resolution. The implementation of t...

  19. Automatic measurement for solid state track detectors

    International Nuclear Information System (INIS)

    Ogura, Koichi

    1982-01-01

    Since in solid state track detectors, their tracks are measured with a microscope, observers are forced to do hard works that consume time and labour. This causes to obtain poor statistic accuracy or to produce personal error. Therefore, many researches have been done to aim at simplifying and automating track measurement. There are two categories in automating the measurement: simple counting of the number of tracks and the requirements to know geometrical elements such as the size of tracks or their coordinates as well as the number of tracks. The former is called automatic counting and the latter automatic analysis. The method to generally evaluate the number of tracks in automatic counting is the estimation of the total number of tracks in the total detector area or in a field of view of a microscope. It is suitable for counting when the track density is higher. The method to count tracks one by one includes the spark counting and the scanning microdensitometer. Automatic analysis includes video image analysis in which the high quality images obtained with a high resolution video camera are processed with a micro-computer, and the tracks are automatically recognized and measured by feature extraction. This method is described in detail. In many kinds of automatic measurements reported so far, frequently used ones are ''spark counting'' and ''video image analysis''. (Wakatsuki, Y.)

  20. Surprising radiation detectors

    CERN Document Server

    Fleischer, Robert

    2003-01-01

    Radiation doses received by the human body can be measured indirectly and retrospectively by counting the tracks left by particles in ordinary objects like pair of spectacles, glassware, compact disks...This method has been successfully applied to determine neutron radiation doses received 50 years ago on the Hiroshima site. Neutrons themselves do not leave tracks in bulk matter but glass contains atoms of uranium that may fission when hurt by a neutron, the recoil of the fission fragments generates a track that is detectable. The most difficult is to find adequate glass items and to evaluate the radiation shield they benefited at their initial place. The same method has been used to determine the radiation dose due to the pile-up of radon in houses. In that case the tracks left by alpha particles due to the radioactive decay of polonium-210 have been counted on the superficial layer of the window panes. Other materials like polycarbonate plastics have been used to determine the radiation dose due to heavy io...

  1. tkLayout: a design tool for innovative silicon tracking detectors

    Science.gov (United States)

    Bianchi, G.

    2014-03-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly added, thanks to its modular structure. Besides, the software executes very quickly (about two minutes), so that many possible architectural variations can be rapidly modeled and compared, to help in the choice of a viable detector layout and then to optimize it. A tracker geometry is generated from simple configuration files, defining the module types, layout and materials. Support structures are automatically added and services routed to provide a realistic tracker description. The tracker geometries thus generated can be exported to the standard CMS simulation framework (CMSSW) for full Monte Carlo studies. tkLayout has proven essential in giving guidance to CMS in studying different detector layouts and exploring the feasibility of innovative solutions for tracking detectors, in terms of design, performance and projected costs. This tool has been one of the keys to making important design decisions for over five years now and has also enabled project engineers

  2. Development of the ZEUS central tracking detector

    International Nuclear Information System (INIS)

    Brooks, C.B.; Cashmore, R.J.; Gingrich, D.; Harnew, N.; Heath, G.P.; Holmes, A.R.; Martin, N.C.; McArthur, I.; Nash, J.; Salmon, G.; Shield, P.D.; Silvester, I.; Smith, S.; Wastie, R.; Wells, J.; Jamdagni, A.K.; McQuillan, D.; Miller, D.B.; Mobayyen, M.M.; Shulman, J.; Toudup, L.W.

    1989-01-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment. (orig.)

  3. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  4. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  5. Track finding and fitting in the H1 Forward Track Detector

    International Nuclear Information System (INIS)

    Burke, S.; Henderson, R.C.W.; Maxfield, S.J.; Patel, G.D.; Morris, J.V.; Sankey, D.P.C.; Skillicorn, I.O.

    1995-07-01

    The tracking environment in the H1 Forward Tracker Detector, where the hit multiplicity from proton fragments is high, is parituclarly hostile. The techniques and software which have been developed for pattern recognition and Kalman fitting of charged particle tracks in this region are described in detail. (orig.)

  6. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS tracking system is equipped with silicon planar sensors and drift‐tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determine accurately its almost 36000 degrees of freedom. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of ...

  7. Inner Detector Track Reconstruction and Alignment at the ATLAS Experiment

    CERN Document Server

    Danninger, Matthias; The ATLAS collaboration

    2017-01-01

    The Inner Detector of the ATLAS experiment at the LHC is responsible for reconstructing the trajectories of charged particles (‘tracks’) with high efficiency and accuracy. It consists of three subdetectors, each using a different technology to provide measurements points. An overview of the use of each of these subdetectors in track reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking will be summarised. Of crucial importance for optimal tracking performance is precise knowledge of the relative positions of the detector elements. ATLAS uses a sophisticated, highly granular software alignment procedure to determine and correct for the positions of the sensors, including time-dependent effects appearing within single data runs. This alignment procedure will be discussed in detail, and its effect on Inner Detector tracking for LHC Run 2 proton-proton collision data highlighted.

  8. The in-beam tracking detectors for R3B

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, Stefanos; Johansen, Jacob; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); Heil, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, Thomas [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Krivshich, Anatoly [PNPI St. Petersburg, 188300 Gatchina (Russian Federation); Collaboration: R3B-Collaboration

    2015-07-01

    The R3B experiment is part of the NUSTAR pillar at FAIR. One of the great strengths of the R3B experiment is the kinematically complete measurement of reactions with exotic ions with energies of up to 1 AGeV. Key components of the R3B experiment are the neutron detector NeuLAND, the γ and charge-particle calorimeter CALIFA, the Si Tracker and the in-beam tracking detectors. A cornerstone instrument of the setup is the new dipole magnet (GLAD) which bends and momentum analyses the high-rigidity beams. A precise tracking of the charged particles through the magnetic field is crucial to resolve the masses of heavy ions and measure the momentum of the fragments with high resolution. In this contribution we present the technical design details of the in-beam tracking detectors that will be used in the R3B experiment together with recent results obtained from in-beam prototype testing. In particular, we discuss Si detectors, detectors based on plastic-scintillator fibers and paddles, straw-tube gas detectors and the overall performance of the system.

  9. Technologies for Future Vertex and Tracking Detectors at CLIC

    CERN Document Server

    Spannagel, Simon

    2018-01-01

    CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...

  10. Earthquake prediction research with plastic nuclear track detectors

    International Nuclear Information System (INIS)

    Woith, H.; Enge, W.; Beaujean, R.; Oschlies, K.

    1988-01-01

    Since 1984 a German-Turkish project on earthquake prediction research has been operating at the North Anatolian fault zone in Turkey. Among many other parameters changes in Radon emission have also been investigated. Plastic nuclear track detectors (Kodak cellulose nitrate LR 115) are used to record alpha-particles emitted from Radon and Thoron atoms and their daughter isotopes. The detectors are replaced and analyzed every 3 weeks. Thus a quasi-continuous time sequence of the Radon soil gas emission is recorded. We present a comparison between measurements made with electronic counters and plastic track detectors. (author)

  11. Electronics for very high rate tracking detectors

    International Nuclear Information System (INIS)

    Williams, H.H.; Dressnandt, N.; Ekenberg, T.; Gerds, E.J.; Newcomer, F.M.; Tedja, S.; Van Berg, R.; Van der Speigel, J.

    1995-01-01

    Results are presented on a system of electronics designed for very high rate tracking detectors at the SSC and LHC. The primary goal was a system for signal detection, time measurement, and readout for the straw tracker for SDC. An integrated circuit incorporating eight channels of amplifier-shaper-discriminator (including detector tail cancellation), and two different integrated circuits for time measurement are described. The performance of tracking measurements up to counting rates of 8 MHz per wire is reported, as well as preliminary results from a baseline restoration circuit. (orig.)

  12. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  13. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František

    2008-01-01

    Roč. 43, 2-6 (2008), s. 683-687 ISSN 1350-4487. [International Conference on Dosimetry /15./. Delft, 08.07.-13.07.2007] R&D Projects: GA ČR GA202/04/0795; GA ČR(CZ) GD202/05/H031; GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : track detector * linear energy transfer * CERF Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2008

  14. THE ATLAS INNER DETECTOR TRACK BASED ALIGNMENT

    CERN Document Server

    Marti i Garcia, Salvador; The ATLAS collaboration

    2018-01-01

    The alignment of the ATLAS Inner Detector is performed with a track-based alignment algorithm. Its goal is to provide an accurate description of the detector geometry such that track parameters are accurately determined and free from biases. Its software implementation is modular and configurable, with a clear separation of the alignment algorithm from the detector system specifics and the database handling. The alignment must cope with the rapid movements of the detector as well as with the slow drift of the different mechanical units. Prompt alignment constants are derived for every run at the calibration stage. These sets of constants are then dynamically split from the beginning of the run in many chunks, allowing to describe the tracker geometry as it evolves with time. The alignment of the Inner Detector is validated and improved by studying resonance decays (Z and J/psi to mu+mu-), as well as using information from the calorimeter system with the E/p method with electrons. A detailed study of these res...

  15. A computer program TRACK_P for studying proton tracks in PADC detectors

    Directory of Open Access Journals (Sweden)

    D. Nikezic

    2016-01-01

    Full Text Available A computer program for studying proton tracks in solid state nuclear track detectors was developed and described in this paper. The program was written in Fortran 90, with an additional tool for visualizing the track appearance as seen under the optical microscope in the transmission mode, which was written in the Python programming language. Measurable track parameters were determined and displayed in the application window and written in a data file. Three-dimensional representation of tracks was enabled. Examples of calculated tracks were also given in the present paper.

  16. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  17. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    Czech Academy of Sciences Publication Activity Database

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurný, František; Yukihara, E.; Gaza, R.; McKeever, S.

    2006-01-01

    Roč. 120, 1- 4 (2006), s. 433-437 ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : bacteria l experiments * space flight * etched track detectors * thermoluminescent detectors Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.446, year: 2006

  18. Radiation hard silicon particle detectors for HL-LHC—RD50 status report

    Energy Technology Data Exchange (ETDEWEB)

    Terzo, S., E-mail: Stefano.Terzo@mpp.mpg.de

    2017-02-11

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors. - Highlights: • The RD50 collaboration investigates the radiation hardness of silicon sensors. • Different approaches to simulate the detector response after irradiation are shown. • HV-CMOS are cost-effective solution for the outer pixel layers at HL-LHC. • 3D and thin planar sensors with slim edges are solutions for innermost layers at HL-LHC. • Sensors with intrinsic gain are investigated to develop ultra-fast silicon detectors.

  19. Application of solid state nuclear track detectors in measurement of natural alpha- radioactivity in environment

    Energy Technology Data Exchange (ETDEWEB)

    Maged, A F; El-Behay, A Z; Borham, E [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The use of solid state nuclear track detectors (SSNTDs) is one of the most convenient techniques to assess the average radiation levels of alpha activities in the environment. This technique has been used to assess radon gas and its daughters in buildings. Exposed SSNTD films are chemically etched in an alkali solution and alpha tracks are evaluated by using the image analyzer system. The detailed procedure for this study and the etched films for conversion of alpha track density to radon concentration in Bq m{sup -}3 are given and discussed in the text.1 fig., 3 tabs.

  20. Range measurements and track kinetics in Dielectric Nuclear Track Detectors (DNTDs)

    Energy Technology Data Exchange (ETDEWEB)

    Aframian, A

    1981-01-01

    Observations of nuclear track development profiles and the kinetics of etched tracks in sensitive dielectric nuclear track detectors indicate three separate phases: the inception phase or the cone phase, the transition phase and the sphere phase. Continued etching of the sphere phase to through-tracks yields accurate range data for particles of different masses and energies and minimum critical angles of registration for each particle. The present results show an energy resolution of 40 keV (fwhm) for 5.48 MeV alpha-particles emitted from Am-241.

  1. Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC, HL-LHC and Beyond

    CERN Document Server

    Kagan, Harris (Ohio State)

    2018-01-01

    The RD42 collaboration at CERN is leading the effort to develop radiation tolerant devices based on polycrystalline Chemical Vapor Deposition (pCVD) diamond as a material for tracking detectors operating in harsh radiation environments. Diamond has properties that make it suitable for such detector applications. During the last few years the RD42 group has succeeded in producing and characterising a number of devices to address specific issues related to their use at the LHC and HL-LHC. Herein we present the status of the RD42 project with emphasis on recent beam test results and our proposed three year research plan. In particular, we review recent results on the stability of signal size on incident particle rate in diamond detectors over a range of particle fluxes up to 20 MHz/cm2, on the radiation tolerance of CVD diamond, on the diamond work with ATLAS and CMS, on the results of 3D diamond detectors fabricated in pCVD diamond and on the work with diamond manufacturers. In addition, we present the details ...

  2. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  3. International comparison of radon measurement using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hu Dan; Yang Weigen; Song Jianfeng

    2011-01-01

    It introduces the radon measurements international comparison using solid state track detectors among Zhejiang Environmental Radiation Monitoring Center (RMTC), Japan Chemical Analysis Center (JCAC) and National Institute for Radiological Protection of China CDC (NIRP). The results of the international comparison show that: Compared to the reference values, the measurements' relative deviations of detectors from 3 labs were 2%∼22%, which were exposed in radon chambers with different radon concentration, while the measurements' relative deviations were 0.5%∼13% when exposed in the environment. The measurement's relative deviations of RMTC were 5%∼3% in radon chambers and 0.5%∼9% in the environment, the results met requirements of the relative standards both at home and abroad. (authors)

  4. The Siegen automatic measuring system for nuclear track detectors: new developments

    International Nuclear Information System (INIS)

    Noll, A.; Rusch, G.; Roecher, H.; Dreute, J.; Heinrich, W.

    1988-01-01

    Starting ten years ago we developed completely automatic scanning and measuring systems for nuclear track detectors. In this paper we describe some new developments. Our autofocus systems based on the contrast of the video picture and on a laser autofocus have been improved in speed and in reliability. Based on new algorithms, faster programs have been developed to scan for nuclear tracks in plastic detectors. Methods for separation of overlapping tracks have been improved. Interactive programs for track measurements have been developed which are very helpful for space bio-physics experiments. Finally new methods for track measurements in nuclear emulsions irradiated with a beam perpendicular to the detector surface are described in this paper. (author)

  5. A New Transition Radiation Detector for the CREAM experiment

    CERN Document Server

    Malinin, A; Angelaszek, D

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to investigate the source, propagation and acceleration mechanism of high energy cosmic-ray nuclei, by directly measuring their energy and charge. Incorporating a Transition Radiation Detector (TRD) provides a model independent energy measurement complementary to the calorimeter, as well as additional track reconstruction capability. A new TRD design provides a compact, robust, reliable, low density detector to measure incident nucleus energy for 3 < Z < 26 nuclei in the Lorentz gamma factor range of 10 2 -10 5. The TRD design, R&D;, construction milestones, beam test results and a progress of the final TRD integration in the CREAM instrument are reported.

  6. Influence of tracks densities in solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Guedes O, S.; Hadler N.; Lunes, P.; Saenz T, C.

    1996-01-01

    When Solid State Nuclear Track Detectors (SSNTD) is employed to measure nuclear tracks produced mainly by fission fragments and alpha particles, it is considered that the tracks observation work is performed under an efficiency, ε 0 , which is independent of the track density (number of tracks/area unit). There are not published results or experimental data supporting such an assumption. In this work the dependence of ε 0 with track density is studied basing on experimental data. To perform this, pieces of CR-39 cut from a sole 'mother sheet' were coupled to thin uranium films for different exposition times and the resulting ratios between track density and exposition time were compared. Our results indicate that ε 0 is constant for track densities between 10 3 and 10 5 cm -2 . At our etching conditions track overlapping makes impossible the counting for densities around 1.7 x 10 5 cm -2 . For track densities less than 10 3 cm -2 , ε 0 , was not observed to be constant. (authors). 4 refs., 2 figs

  7. The former tests realized to a personal neutron dosemeter based on solid nuclear tracks detector; Primeras pruebas realizadas a un dosimetro personal de neutrones basado en detectores solidos de trazas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, M.E.; Tavera, L.; Balcazar, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Due to the increase in the use of neutron radiation a personal neutron dosemeter based on solid nuclear tracks detector (DSTN) was designed and constructed. The personal dosemeter design consists of three arrangements. The first one consists of a plastic nuclear tracks detector (LR115 or CR39) in contact with a LiF pellet. The second one is the same that above but it placed among two cadmium pellets and, the third one is formed by the alone detector without converter neither neutron absorber. The three arrangements are placed inside a plastic porta detector hermetically closed to avoid the bottom produced by environmental radon whichever both detectors (LR115 and CR39) are sensitive. In this work the former tests realized to that dosemeter are presented. (Author)

  8. Studies on nitrogen mapping by various CR-39 track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Varga, Zs.; Hunyadi, I.; Freyer, K.; Treutler, H.Ch.

    1986-01-01

    The use of CR-39 track detectors for nitrogen distribution measurements via the /sup 14/N(n,p)/sup 14/C reaction is studied. The proton detection properties of different CR-39 products have been analyzed. The variation of background track density induced in the bulk of detectors is examined under different conditions of neutron irradiation. Analysis of our experimental data has led to the conclusion that the sources of proton background tracks are the fast neutron component of the neutron source, chlorine impurities in the detector and nitrogen diffused from the air into the upper layer of the detector. Efforts have been made to decrease the nitrogen content of diffusion origin by removing the upper detector layer and by outgassing the CR-39 sheet in vacuum before irradiation. Finally the ''signal/noise'' ratio for a steel specimen and the sensitivity of nitrogen determination are given.

  9. Completely automated measurement facility (PAVICOM) for track-detector data processing

    CERN Document Server

    Aleksandrov, A B; Feinberg, E L; Goncharova, L A; Konovalova, N S; Martynov, A G; Polukhina, N G; Roussetski, A S; Starkov, NI; Tsarev, V A

    2004-01-01

    A review of technical capabilities and investigations performed using the completely automated measuring facility (PAVICOM) is presented. This very efficient facility for track-detector data processing in the field of nuclear and high-energy particle physics has been constructed in the Lebedev physical institute. PAVICOM is widely used in Russia for treatment of experimental data from track detectors (emulsion and solid-state trackers) in high- and low-energy physics, cosmic ray physics, etc. PAVICOM provides an essential improvement of the efficiency of experimental studies. In contrast to semi-automated microscopes widely used until now, PAVICOM is capable of performing completely automated measurements of charged particle tracks in nuclear emulsions and track detectors without employing hard visual work. In this case, track images are recorded by CCD cameras and then are digitized and converted into files. Thus, experimental data processing is accelerated by approximately a thousand times. Completely autom...

  10. Tracking the NOvA Detectors' Performance

    Science.gov (United States)

    Psihas, Fernanda; NOvA Collaboration

    2016-03-01

    The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.

  11. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  12. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  13. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  14. Image formation in track-etch detectors: Pt. 4

    International Nuclear Information System (INIS)

    Ilic, Radomir; Najzer, Mitja

    1990-01-01

    The radiographic performance of solid state nuclear track detectors was analysed with respect to image quality. Image quality is expressed in terms of three image quality factors: contrast or gradient of the detector, image unsharpness and detail discernment. Equations for the image quality factors were derived from the radiographic transfer function, taking into account image inhomogeneity caused by statistical fluctuations of track density. To find optimal radiographic conditions for a given application, a single quantity called the figure of radiographic merit was defined. It is expressed as the weighted product of the image quality factors. It was found that optimum image quality of a balanced image, characterized by equal importance of all three image quality factors, is obtained at an exposure value (defined as the product of the average visible track area and track density) of unity. (author)

  15. A TPC-like readout method for high precision muon-tracking using GEM-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)

    2016-07-01

    Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.

  16. Integrated High-Rate Transition Radiation Detector and Tracking Chamber for the LHC

    CERN Multimedia

    2002-01-01

    % RD-6 \\\\ \\\\Over the past five years, RD-6 has developed a transition radiation detector and charged particle tracker for high rate operation at LHC. The detector elements are based on C-fibre reinforced kapton straw tubes of 4~mm diameter filled with a Xenon gas mixture. Detailed measurements with and without magnetic field have been performed in test beams, and in particular have demonstrated the possibility of operating straw tubes at very high rate (up to 20~MHz) with accurate drift-time measurement accuracy. A full-scale engineering prototype containing 10~000 straws is presently under assembly and will be accurately measured with a powerful X-ray tube. Integrated front-end electronics with fast readout have been designed and successfully operated in test beam. \\\\ \\\\Finally extensive simulations performed for ATLAS have shown that such a detector will provide powerful pattern recognition, accurate momentum measurements, efficient level-2 triggering and excellent electron identification, even at the highe...

  17. Development of the dyed-track method for Kodak CN-85 detector

    International Nuclear Information System (INIS)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Z.; Monnin, M.; Lferde, M.

    1984-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, colouration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In our previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work we have studied the influence of track processing parameters on the dyed-track formation in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particle irradiation. For sensitization a treatment with 15% HCl at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be the best. For better understanding the track dyeing phenomenon we have studied the colouration behaviour of electron-irradiated CN-85 detectors. (author)

  18. Development of the dyed-track method for Kodak CN-85 detector

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Z. (Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete); Monnin, M.; Lferde, M. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire)

    1984-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, colouration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In our previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work we have studied the influence of track processing parameters on the dyed-track formation in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particle irradiation. For sensitization a treatment with 15% HCl at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be the best. For better understanding the track dyeing phenomenon we have studied the colouration behaviour of electron-irradiated CN-85 detectors.

  19. Method of plastic track detector electrochemical etching

    International Nuclear Information System (INIS)

    D'yakov, A.A.

    1984-01-01

    The review of studies dealing with the development of the method for the electro-chemical etching (ECE) of the plastic track detectors on the base of polyethy-leneterephthalate (PET) and polycarbonate (PC) is given. Physical essence of the method, basic parameters of the processes, applied equipment and methods of measurement automation are considered. The advantages of the method over the traditional chemical etching are pointed out. Recommendations on the detector operation modes when detecting fission fragments, α-particles and fast neutrons are given. The ECE method is based on the condition that during chemical etching the high-voltage sound frequency alternating electric field is applied to the detector. In this case the detector serves as an isolating layer betWeen two vessels with etching solution in which high-voltage electrode are submerged. At a fixed electric field potential higher (over than the threshold value) at the end of the etching track cone atree-like discharge spot arises. It is shown that when PET is used for fast neutron detection it is advisable to apply for ECE the PEW solution (15g KOH+40 g C 2 H 2 OH + 45g H 2 O) the field potential should constitute 30 kVxcm -1 at the freqUency of 9 kHz. In the case of fission fragment detection Using ECE and PC the following ECE conditions are recommended: 30% KOH etcher, field potential of 10 kVxcm -1 , 2-4 kHz frequency. It is concluded that the ECE method permits considerably eXtend the sphere of plastic track detector application for detecting ionizing particles,

  20. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  1. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  2. Secondary electrons detectors for beam tracking: micromegas and wire chamber

    International Nuclear Information System (INIS)

    Pancin, J; Chaminade, T; Drouart, A; Kebbiri, M; Riallot, M; Fernandez, B; Naqvi, F

    2009-01-01

    SPIRAL2 or FAIR will be able to deliver beams of radioactive isotopes of low energy (less than 10 MeV/n). The emittance of these new beams will impose the use of beam tracking detectors to reconstruct the exact impact position of the nuclei on the experimental target. However, due to their thickness, the classical detectors will generate a lot of energy and angular straggling. A possible alternative is the SED principle (Secondary Electron Detector). It consists of an emissive foil placed in beam and a detector for the secondary electrons ejected by the passing of the nuclei through the foil. An R and D program has been initiated at CEA Saclay to study the possibility to use low pressure gaseous detectors as SED for beam tracking. Some SED have been already used on the VAMOS spectrometer at GANIL since 2004. We have constructed new detectors on this model to measure their performances in time and spatial resolution, and counting rate. Other detector types are also under study. For the first time, a test with different micromegas detectors at 4 Torr has been realized. A comparison on the time resolution has been performed between wire chamber and micromegas at very low pressure. The use of micromegas could be promising to improve the counting rate capability and the robustness of beam tracking detectors.

  3. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads mg -1 h -1 +- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads mg -1 h -1 . These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  4. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads micrograms-1 h-1 +/- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads micrograms-1 h-1. These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  5. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  6. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  7. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  8. Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349845; The ATLAS collaboration

    2017-01-01

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS Inner Detector (ID) are described for different data taking conditions in proton-proton collisions at the Large Hadron Collider (LHC). These studies are performed using data collected during the first (Run 1) and the second (Run 2) periods of LHC operation and are compared with Monte Carlo simulations. The performance of the TRT, operating with Xe-based (Xe-based) and Argon-based (Ar-based) gas mixtures and its dependence on the TRT occupancy is presented. No significant degradation of position measurement accuracy was found up to occupancies of about 20\\% in Run 1. The relative number of reconstructed tracks in ID that also have a extension in the TRT was observed to be almost constant with the increase of occupancies up to 50\\%. Even in configurations where tracks are close to each other, the reconstruction algorithm is still able to find the correct TRT hits and properly reconstruct the tracks.

  9. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  10. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  11. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  12. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  13. Tracking performance of the ATLAS inner detector and observation of known hadrons

    NARCIS (Netherlands)

    Kayl, M.; Trischuk, W.

    2010-01-01

    The inner detector is the central tracking device of the ATLAS detector. In these proceedings the tracking performance of the inner detector is presented on collision data recorded at $\\sqrt{s}$ = 900 GeV and 7 TeV. The identification of resonances like $\\Xi$ and $\\Omega$ baryons in cascade decays

  14. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  15. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  16. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  17. PHENIX central arm tracking detectors

    International Nuclear Information System (INIS)

    Adcox, K.; Ajitanand, N.N.; Alexander, J.; Autrey, D.; Averbeck, R.; Azmoun, B.; Barish, K.N.; Baublis, V.V.; Belkin, R.; Bhaganatula, S.; Biggs, J.C.; Borland, D.; Botelho, S.; Bryan, W.L.; Burward-Hoy, J.; Butsyk, S.A.; Chang, W.C.; Christ, T.; Dietzsch, O.; Drees, A.; Rietz, R. du; El Chenawi, K.; Evseev, V.A.; Fellenstein, J.; Ferdousi, T.; Fraenkel, Z.; Franz, A.; Fung, S.Y.; Gannon, J.; Garpman, S.; Godoi, A.L.; Greene, S.V.; Gustafsson, H.-A.; Harder, J.; Hemmick, T.K.; Heuser, J.M.; Holzmann, W.; Hutter, R.; Issah, M.; Ivanov, V.I.; Jacak, B.V.; Jagadish, U.; Jia, J.; Johnson, S.C.; Kandasamy, A.; Kann, M.R.; Kelley, M.A.; Khanzadeev, A.V.; Khomutnikov, A.; Komkov, B.G.; Kopytine, M.L.; Kotchenda, L.; Kotchetkov, D.; Kozlov, V.S.; Kravtsov, P.A.; Kudin, L.G.; Kuriatkov, V.V.; Lacey, R.; Lauret, J.; Lebedev, A.; Lebedev, V.D.; Li, X.H.; Libby, B.; Liccardi, W.; Machnowski, R.; Mahon, J.; Markushin, D.G.; Matathias, F.; Marx, M.D.; Messer, F.; Miftakhov, N.M.; Milan, J.; Miller, T.E.; Milov, A.; Minuzzo, K.; Mioduszewski, S.; Mitchell, J.T.; Muniruzzamann, M.; Nandi, B.K.; Negrin, J.; Nilsson, P.; Nystrand, J.; O'Brien, E.; O'Connor, P.; Oskarsson, A.; Oesterman, L.; Otterlund, I.; Pancake, C.E.; Pantuev, V.S.; Petersen, R.; Pinkenburg, C.H.; Pisani, R.P.; Purwar, A.K.; Rankowitz, S.; Ravinovich, I.; Riabov, V.G.; Riabov, Yu.G.; Rosati, M.; Rose, A.A.; Roschin, E.V.; Samsonov, V.M.; Sangster, T.C.; Seto, R.; Silvermyr, D.; Sivertz, M.; Smith, M.; Solodov, G.P.; Stenlund, E.; Takagui, E.M.; Tarakanov, V.I.; Tarasenkova, O.P.; Thomas, J.L.; Trofimov, V.A.; Tserruya, I.; Tydesjoe, H.; Velkovska, J.; Velkovsky, M.; Vishnevskii, V.I.; Vorobyov, A.A.; Vznuzdaev, E.A.; Vznuzdaev, M.; Wang, H.Q.; Weimer, T.; Wolniewicz, K.; Wu, J.; Xie, W.; Young, G.R.

    2003-01-01

    The PHENIX tracking system consists of Drift Chambers (DC), Pad Chambers (PC) and the Time Expansion Chamber (TEC). PC1/DC and PC2/TEC/PC3 form the inner and outer tracking units, respectively. These units link the track segments that transverse the RICH and extend to the EMCal. The DC measures charged particle trajectories in the r-phi direction to determine p T of the particles and the invariant mass of particle pairs. The PCs perform 3D spatial point measurements for pattern recognition and longitudinal momentum reconstruction and provide spatial resolution of a few mm in both r-phi and z. The TEC tracks particles passing through the region between the RICH and the EMCal. The design and operational parameters of the detectors are presented and running experience during the first year of data taking with PHENIX is discussed. The observed spatial and momentum resolution is given which imposes a limitation on the identification and characterization of charged particles in various momentum ranges

  18. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  19. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  20. Vehicle tracking based technique for radiation monitoring during nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Otari, Anil D.; Suri, M.M.K.; Patil, S.S.; Pradeepkumar, K.S.; Sharma, D.N.

    2010-01-01

    Radiation Safety Systems Division, BARC has developed an advanced online radiation measurement cum vehicle tracking system for use. For the preparedness for response to any nuclear/radiological emergency scenario which may occur anywhere, the system designed is a Global System for Mobile (GSM) based Radiation Monitoring System (GRaMS) along with a Global Positioning System (GPS). It uses an energy compensated GM detector for radiation monitoring and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time, and GSM modem for online data transfer to a remote control centre. The equipment can be operated continuously while the vehicle is moving

  1. The solid state track detectors for α-particles angular distribution measurements

    International Nuclear Information System (INIS)

    Bakr, M.H.S.

    1978-01-01

    The solid state track detectors technique is described in details from the point of view of applying them in nuclear reactions research. Using an optimum developing solution, the etching rate of polycarbonate detector was found to be 10.5 μ/hour. The energy resolution of this detector was estimated using 241 Am α-source at α-energies between 1 and 3 Mev. The scattering chamber designed for angular distribution measurements using solid state track detectors is described. A special schematic normograph for range-energy-degrading foils relation is given

  2. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  3. Calibration of a solid state nuclear track detector for the measurements of volumic activity of Radon

    International Nuclear Information System (INIS)

    HAKAM, O.K.; LFERDE, M.; BERRADA, M.

    1994-01-01

    Time - integrated measurements of environmental radiation activity are commonly carried out using solid state nuclear track detectors ( SSNTD ). These detectors should be calibrated of volumic activity of radon. This paper reports the results of experiments conducted to calibrate cellulose nitrate films LR - 115 type II used for measurements of volumic activity of radon in indoor air in dwellings and enclosed work areas in Morocco. Calibration measurements were made in laboratory using a calibration chamber and a radon source. The calibration chamber is a cylindric box ( 2613,6 cm sup 3)which we have manufactured of aluminium. The radon source is a natural sample rich of aluminium (17,29 + 0 ,12) Bq/g. The films are placed in detector holder with membrane and exposed inside the calibration chamber to varying concentrations of radon. Following the exposure, the films were chemically etched in sodium hydroxide (2,5 N) at 60 C for 120 minutes. The number of registered alpha particle tracks were counted with an optical microscope. In the used etching conditions, the removed mean thickness is in the order of 6 micro m. Therefore, we have normalized the track density to this value . We obtained a calibration factor of 0, 58 tracks . cm sup -2/ K Bq . h . m sup -3 . 1 tab.; 1 fig.; 2 refs. (author)

  4. Radiation energy detector and analyzer

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1981-01-01

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done

  5. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  6. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  7. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  8. Automatic methods for processing track-detector data at the PAVICOM facility

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Goncharova, L.A.; Polukhina, N.G.; Fejnberg, E.L.; Davydov, D.A.; Publichenko, P.A.; Roganova, T.M.

    2007-01-01

    New automatic methods essentially simplify and hasten the data treatment of tracking detectors. It allows handling big data files and appreciably improves their statistics; this fact predetermines an elaboration of new experiments, which suppose to use large volume targets, emulsive and solid-state large square tracking detectors. Thereupon the problem of training competent physicists able to work on modern automatic equipment is very relevant. About ten Moscow students working in LPI at PAVICOM facility master new methods every year. Most of the students working in high-energy physics take the print only about archaic hand methods of data handling from tracking detectors. In 2005 on the base of the PAVICOM facility and physics training of the MSU a new educational work for determination of the energy of neutrons passing through nuclear emulsion, which lets students acquire a base habit of data handling from tracking detectors using an automatic facility, was prepared; it can be included in the training process for students of any physical faculty. Specialists mastering methods of an automatic handling by the simple and obvious example of tracking detectors will be able to use their knowledge in various areas of science and techniques. The organization of upper division courses is a new additional aspect of using the PAVICOM facility described in an earlier paper [4

  9. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  10. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  11. Front-end Intelligence for triggering and local track recognition in Gas Pixel Detectors

    CERN Document Server

    Hessey, NP; The ATLAS collaboration; van der Graaf, H; Vermeulen, J; Jansweijer, P; Romaniouk, A

    2012-01-01

    The combination of gaseous detectors with pixel readout chips gives unprecedented hit resolution (improving from O(100 um) for wire chambers to 10 um), as well as high-rate capability, low radiation length and giving in addition angular information on the local track. These devices measure individually every electron liberated by the passage of a charged particle, leading to a large quantity of data to be read out. Typically an external trigger is used to start the read-out. We are investigating the addition of local intelligence to the pixel read-out chip. A first level of processing detects the passage of a particle through the gas volume, and accurately determines the time of passage. A second level measures in an approximate but fast way the tilt-angle of the track. This can be used to trigger a third stage in which all hits associated to the track are processed locally to give a least-squares-fit to the track. The chip can then send out just the fitted track parameters instead of the individual electron ...

  12. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  13. The Siegen automatic measuring system for track detectors: new developments

    International Nuclear Information System (INIS)

    Rusch, G.; Winkel, E.; Noll, A.; Heinrich, W.

    1991-01-01

    Starting twelve years ago we have developed completely automatic scanning and measuring systems for nuclear track detectors. The hardware and software of these systems have continuously been improved. They were used in different heavy ion and cosmic ray experiments. In this paper we describe methods for high resolution REL measurements in plastic nuclear track detectors and methods to scan and measure nuclear disintegration stars in AgCl detectors using an automatic measuring technique. The system uses a stepping motor driven microscope stage, a video camera and an image analysis computer based on a MC68020 microprocessor. (author)

  14. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    International Nuclear Information System (INIS)

    Dwaikat, N.

    2015-10-01

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  15. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, N., E-mail: ndwaikat@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Sciences, Department of Physics, Dhahran 31261 (Saudi Arabia)

    2015-10-15

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  16. Measurement of radon and thoron present in the environment using nuclear track etch detector technique

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1986-01-01

    The use of solid state nuclear track detectors (SSNTD) is one of the most convenient techniques to assess the average radiation levels of alpha activities in the environment. This technique has been used to assess the radon and thoron concentrations in some high background areas of South India and underground non-uranium mines in Bihar State. Exposed SSNTD films are chemically etched in an alkali solution and the alpha tracks are evaluated under an optical microscope. The detailed procedure for this study and the calibration of the etched films for conversion of alpha track density to radon and thoron concentrations in pCi l -1 are given in this paper. It was found that 1.9 tracks cm -2 day -1 and 6.2 tracks cm -2 day -1 were produced by exposing the LR-115 foils to 1 pCi l -1 of thoron and radon respectively. (author)

  17. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  18. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  19. Calculation of track and vertex errors for detector design studies

    International Nuclear Information System (INIS)

    Harr, R.

    1995-01-01

    The Kalman Filter technique has come into wide use for charged track reconstruction in high-energy physics experiments. It is also well suited for detector design studies, allowing for the efficient estimation of optimal track covariance matrices without the need of a hit level Monte Carlo simulation. Although much has been published about the Kalman filter equations, there is a lack of previous literature explaining how to implement the equations. In this paper, the operators necessary to implement the Kalman filter equations for two common detector configurations are worked out: a central detector in a uniform solenoidal magnetic field, and a fixed-target detector with no magnetic field in the region of the interactions. With the track covariance matrices in hand, vertex and invariant mass errors are readily calculable. These quantities are particularly interesting for evaluating experiments designed to study weakly decaying particles which give rise to displaced vertices. The optimal vertex errors are obtained via a constrained vertex fit. Solutions are presented to the constrained vertex problem with and without kinematic constraints. Invariant mass errors are obtained via propagation of errors; the use of vertex constrained track parameters is discussed. Many of the derivations are new or previously unpublished

  20. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  1. A proposal to study a tracking/preshower detector for the LHC

    CERN Document Server

    Munday, D J; Anghinolfi, Francis; Bonino, R; Campbell, M; Fassò, A; Gildemeister, O; Heijne, Erik H M; Jarron, Pierre; Mapelli, Livio P; Pentney, J M; Poppleton, Alan; Stevenson, Graham Roger; Gössling, C; Pollmann, D; Sondermann, V; Tsesmelis, E; Clark, A G; Kienzle-Focacci, M N; Martin, M; Rosselet, L; Fretwurst, E; Lindström, G; Reich, V; Bardos, R A; Gorfine, G W; Taylor, G; Tovey, Stuart N; Stapnes, Steinar; Weidberg, A R; Lubrano, P; Pepé, M; Grayer, Geoffrey H; Sharp, P; Bakich, A M; Peak, L S; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We describe a program of studies aimed at determining whether the track stub/preshower technique of electron identification can be used at the highest operating luminosities of the proposed LHC collider. The proposal covers detector and electronics developments required for the construction of a track-stub and preshower detector preceding the electromagnetic calorimeter of an LHC experiment.

  2. Pulse shape analysis for the gamma-ray tracking detector Agata

    International Nuclear Information System (INIS)

    Olariu, A.

    2007-10-01

    Agata is the European project for a 4π gamma-ray tracking array of 180 Ge detectors and is expected to have a detection sensitivity higher by 3 orders of magnitude than that of the present generation of gamma spectrometers. The trajectories of the photons inside a Ge crystal are reconstituted, which allows the determination of the initial energy of the incident photons as the total energy deposited along the track. The sequence of a γ-ray scattering process is too fast compared with the time resolution of the detector to be measured electronically, so tracking algorithms are necessary. Gamma-ray tracking detectors are operating in position sensitive mode it means that Ge crystal are segmented in order to facilitate the localization of the gamma interactions. It is possible to improve the position resolution by using the information conveyed by the shape of the detector signal. The task of the PSA (Pulse Shape Analysis) algorithm is to analyze this signal and extract the number of interactions, the position and the energy of each interaction. PSA algorithms rely on a basis of reference signals given by single interactions and that are obtained through an experimental characterization of the detector with scanning systems. The matrix method is a new PSA algorithm that consists in fitting linearly the detector signal with a set of calculated signals. We have tested this method with both simulated and measured signals. In the case of simulated single interactions the position resolution is 1.4 mm which is within Agata's specifications. For measured signals we have obtained mean positional errors of 3.2 mm at the front end of the detector an 4.8 mm at the back end

  3. Thermal stability of dyed tracks and electrochemical etching sensitivity of some polymeric detectors

    International Nuclear Information System (INIS)

    Monnin, M.; Gourcy, J.; Somogyi, G.; Dajko, D.

    1980-01-01

    Recent results on the mechanism of the formation of tracks obtained by the dyed tracks technique are given and the thermal annealing of the detectors is used to demonstrate their ability to retain tracks under more severe conditions than by the etching technique. Electrochemical etching of polycarbonate and polyethylene terephthalate detectors is investigated both from the background and sensitivity points of view. The polyethylene terephthalate detector is shown to be well suited for low neutron flux measurements. (author)

  4. R&D studies of a RICH detector using pressurized C$_{4}$F$_{8}$O radiator gas and a CsI-based gaseous photon detector

    CERN Document Server

    Agócs, A.G; Barnaföldi, G.G; Bellwied, R; Bencédi, G; Bencze, G; Berényi, D; Boldizsár, L; Chattopadhyay, S; Chinellato, D.D; Cindolo, F; Das-Bose, L; Das, D; Das, K; De Cataldo, G; Di Bari, D; Di Mauro, A; Futó, E; Garcia, E; Hamar, G; Harton, A; Jimenez, R.T; Kim, D.W; Kim, J.S; Knospe, A; Kovacs, L; Lévai, P; Markert, C; Martinengo, P; Molnar, L; Nappi, E; Olah, L; Paic, G; Pastore, C; Patino, M.E; Peskov, V; Pinsky, L; Piuz, F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Timmins, A; Van Beelen, J.B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I.-K

    2013-01-01

    We report on studies of layout and performance of a new Ring Imaging Cherenkov detector using for the fi rst time pressurized C 4 F 8 O radiator gas and a photon detector consisting of a MWPC equipped with a CsI photocathode. In particular, we present here the results of beam tests of a MWPC having an adjustable anode – cathode gap, aiming at the optimization of single photoelectron detection and Cherenkov angle resolution. This system was proposed as a Very High Momentum Particle Identi fi cation (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identi fi cation in the momentum range 5 – 25 GeV/c.

  5. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  6. Fast and high-energy neutron detection with nuclear track detectors: Results of the European joint experiments 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    Schraube, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany); Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Weeks, A.R. [comps.] [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1997-12-31

    Under the auspices of EURADOS, the European radiation dosimetry group, seventeen recognised laboratories engaged in the field of individual neutron dosimetry with passive track detectors participated in an international comparative experiment. A number of twenty-seven detector systems, predominantly etched track detectors with the material PADC (poly allyl diglycol carbonate), were employed by the participating laboratories. Quasi-monoenergetic neutrons were provided for irradiations free-in-air and on front of a PMMA phantom by the GSF (Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Germany) and by the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany). High energy irradiations were conducted by the PSI (Paul-Scherrer Institut, Villigen, Switzerland). The results of the on-phantom irradiations were used to derive energy and angular responses of the track detectors, those of the free-in-air irradiations to obtain data for the linearity characteristics of the response with dose. The report contains a short description and the original data of the participating laboratories, displays the irradiation and reference conditions, and provides an over-all evaluation. Emphasis is placed on the quantitative evaluation of the background characteristics and of the non-linearity observed with most of the systems employed which limits their useful dose-range of application. (orig.)

  7. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  8. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  9. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  10. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  11. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    Science.gov (United States)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-09-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  12. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    International Nuclear Information System (INIS)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-01-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n"+"+–p"+–p structure, where the doping profile of the p"+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  13. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, G.; Baselga, M.; Carulla, M. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Fadeyev, V. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Fernández-Martínez, P. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); García, M. Fernández [Instituto de Física de Cantabria IFCA-CSIC-UC, Santander (Spain); Flores, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Galloway, Z. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Gallrapp, C. [CERN, Geneva (Switzerland); Hidalgo, S. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Liang, Z. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Merlos, A. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Moll, M. [CERN, Geneva (Switzerland); Quirion, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Sadrozinski, H. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Stricker, M. [CERN, Geneva (Switzerland); Vila, I. [Instituto de Física de Cantabria IFCA-CSIC-UC, Santander (Spain)

    2016-09-21

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n{sup ++}–p{sup +}–p structure, where the doping profile of the p{sup +} layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  14. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  15. The status of the ATLAS inner detector

    CERN Document Server

    Moser, H G

    2004-01-01

    The ATLAS inner detector uses three subdetectors for tracking of charged particles from r = 5 cm to r = 107 cm inside a solenoid magnet of 2 T. The innermost detector is a high resolution silicon pixel detector. It provides precise 3D tracking information close to the interaction point allowing secondary vertex reconstruction and hence b identification. It is followed by the SCT, a large area tracking device based on silicon strip detectors. The TRT, based on straw tubes, provides continuous tracking and improves electron identification due to its ability to detect transition radiation. These detectors are presently under construction. This report presents a brief report on the design, construction status and expected performance of the inner detector.

  16. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  17. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  18. VHMPID RICH prototype using pressurized C{sub 4}F{sub 8}O radiator gas and VUV photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Acconcia, T.V. [UNICAMP, University of Campinas, Campinas (Brazil); Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G. [Wigner RCP of the HAS, Budapest (Hungary); Bencze, G., E-mail: Gyorgy.Bencze@cern.ch [Wigner RCP of the HAS, Budapest (Hungary); Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute, Kolkata (India); Dash, A.K. [UNICAMP, University of Campinas, Campinas (Brazil); D' Ambrosio, S. [University of Salerno, Salerno (Italy); De Cataldo, G. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); De Pasquale, S. [University of Salerno, Salerno (Italy); and others

    2014-12-11

    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown.

  19. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  20. Detector for atomic particles and ionizing radiations

    International Nuclear Information System (INIS)

    Mallet, Georges; Ythier, Christian.

    1976-01-01

    The aim of this invention is to provide improved detectors of atomic particles and of ionising radiations, having maximum sensitivity, by virtually suppressing all absorption of the radiation scattered by the main detector, so that these detectors are particularly suitable for fitting to anti-Compton spectrometers. Reference is particularly made to detectors of the Ge(Li) type, lithium compensated germanium, which are the most used. It is however made clear that this choice is not restrictive and that this invention not only applies to all known types of detectors and particularly to scintillator detectors, for instance to detectors such as NaI (Tl), composed of a monocrystal of a thallium activated alkaline halogenide, but also to gas, ionisation chamber and luminescent chamber type detectors and in general to all the known devices that convert the energy of particles into electric signals. Owing to the fact that the walls of the enclosure containing the main detector are composed, in the part around this detector, of an auxiliary detector, the latter detects virtually all the radiations scattered by the main detector. It does so without any loss due to the absorption of these radiations (a) by the metal walls of the enclosure usually containing the main detector and (b) by the walls of the auxiliary detector casing. It results from this that the detectors of the invention enable coincidence or anti-coincidence spectrometers with a very high performance to be made [fr

  1. PixTrig: a Level 2 track finding algorithm based on pixel detector

    CERN Document Server

    Baratella, A; Morettini, P; Parodi, F

    2000-01-01

    This note describes an algorithm for track search at Level 2 based on pixel detector. Using three pixel clusters we can produce a reconstruction of the track parameter in both z and R-phi plane. These track segments can be used as seed for more sophisticated track finding algorithms or used directly, especially when impact parameter resolution is crucial. The algorithm efficiency is close to 90% for pt > 1 GeV/c and the processing time is small enough to allow a complete detector reconstruction (non RoI guided) within the Level 2 processing.

  2. LHCb: Alignment of the LHCb Detector with Kalman Filter Fitted Tracks

    CERN Multimedia

    Amoraal, J; Hulsbergen, W; Needham, M; Nicolas, L; Pozzi, S; Raven, G; Vecchi, S

    2009-01-01

    We report on an implementation of a global chisquare algorithm for the simultaneous alignment of all tracking systems in the LHCb detector. Our algorithm uses hit residuals from the standard LHCb track fit which is based on a Kalman filter. The algorithm is implemented in the LHCb reconstruction framework and exploits the fact that all sensitive detector elements have the same geometry interface. A vertex constraint is implemented by fitting tracks to a common point and propagating the change in track parameters to the hit residuals. To remove unconstrained or poorly constrained degrees of freedom (so-called weak modes) the average movements of (subsets of) alignable detector elements can be fixed with Lagrange constraints. Alternatively, weak modes can be removed with a cutoff in the eigenvalue spectrum of the second derivative of the chisquare. As for all LHCb reconstruction and analysis software the configuration of the algorithm is done in python and gives detailed control over the selection of alignable ...

  3. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  4. Development of leak detector by radiation. 2

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  5. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  6. Experimental data from irradiation of physical detectors disclose weaknesses in basic assumptions of the δ ray theory of track structure

    DEFF Research Database (Denmark)

    Olsen, K. J.; Hansen, Jørgen-Walther

    1985-01-01

    The applicability of track structure theory has been tested by comparing predictions based on the theory with experimental high-LET dose-response data for an amino acid alanine and a nylon based radiochromic dye film radiation detector. The linear energy transfer LET, has been varied from 28...

  7. Feasibility studies for a wireless 60 GHz tracking detector readout

    CERN Document Server

    Dittmeier, Sebastian; Soltveit, Hans Kristian; Wiedner, Dirk

    2016-01-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the in...

  8. Wide Band-Gap Semiconductor Radiation Detectors: Science Fiction, Horror Story, or Headlines (460th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    James, Ralph

    2010-01-01

    With radiation constantly occurring from natural sources all around us -- from food, building materials, and rays from the sun, to name a few -- detecting radiotracers for medical procedures and other radiation to keep people safe is not easy. In order to make better use of radiation to diagnose or treat certain health conditions, or to track radiological materials being transported, stored, and used, the quest is on to develop improved radiation detectors. James gives a brief introduction on radiation detection and explain how it is used in applications ranging from medical to homeland security. He then discusses how new materials and better ways to analyze them here at the National Synchrotron Light Source (NSLS) and the future NSLS-II will lead to a new class of radiation detectors that will provide unprecedented advances in medical and industrial imaging, basic science, and the nonproliferation of nuclear materials.

  9. Monopole track characteristics in plastic detectors

    Science.gov (United States)

    Ahlen, S. P.

    1975-01-01

    Total and restricted energy loss rates were calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted energy loss model is used to estimate the appearance of a monopole track in plastic detectors. These results should be useful for the design and analysis of monopole experiments.

  10. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Lazanu, I.; Lazanu, S.

    2004-01-01

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  11. Tracking in full Monte Carlo detector simulations of 500 GeV e+e- collisions

    International Nuclear Information System (INIS)

    Ronan, M.T.

    2000-01-01

    In full Monte Carlo simulation models of future Linear Collider detectors, charged tracks are reconstructed from 3D space points in central tracking detectors. The track reconstruction software is being developed for detailed physics studies that take realistic detector resolution and background modeling into account. At this stage of the analysis, reference tracking efficiency and resolutions for ideal detector conditions are presented. High performance detectors are being designed to carry out precision studies of e + e - annihilation events in the energy range of 500 GeV to 1.5 TeV. Physics processes under study include Higgs mass and branching ratio measurements, measurement of possible manifestations of Supersymmetry (SUSY), precision Electro-Weak (EW) studies and searches for new phenomena beyond their current expectations. The relatively-low background machine environment at future Linear Colliders will allow precise measurements if proper consideration is given to the effects of the backgrounds on these studies. In current North American design studies, full Monte Carlo detector simulation and analysis is being used to allow detector optimization taking into account realistic models of machine backgrounds. In this paper the design of tracking software that is being developed for full detector reconstruction is discussed. In this study, charged tracks are found from simulated space point hits allowing for the straight-forward addition of background hits and for the accounting of missing information. The status of the software development effort is quantified by some reference performance measures, which will be modified by future work to include background effects

  12. Experimental investigation of the suitability of the track structure theory in describing the relative effectiveness of high-let irradiation of physical radiation detectors

    International Nuclear Information System (INIS)

    Hansen, J.W.

    1984-11-01

    The radiation effectiveness of heavy charged particles relative to radiations of fast electrons, x-rays, and gamma rays has been studied experimentally as well as theoretically for detectors of a thin nylon-based radiation-sensitive film and for the amino acid alanine. Experimental data have been compared with calculated data derived from a theoretical model describing the track structure of heavy charged particles. The experimental work comprises dose-response characteristics from 60 Co γ-rays, 4- and 16-MV x-rays, 6-,10-, and 20-MeV electrons, and 3-, 6-, and 16-MeV protons, 10- and 20-MeV α-particles, 21-MeV 7 Li ions, 42-MeV 14 N ions, 64-MeV 16 O ions, and 80-MeV 32 S ions. The theoretical work presented here concerns an investigation and modification of parameters involved in the calculations, based on results obtained through the present experiments and published results from other investigators. This report summarizes results already published or accepted for publication, attaches an appendix, and includes results not previously presented. (author)

  13. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  14. Results obtained with the passive radiation detectors in the ICCHIBAN-4 experiment

    International Nuclear Information System (INIS)

    Bilski, P.; Horwacik, T.

    2005-05-01

    In frame of the InterComparison of Cosmic rays with Heavy Ions Beams at NIRS (ICCHIBAN) organized at the HIMAC accelerator in Chiba several types of the thermoluminescent detectors (TLD), as well as CR-39 track detectors, were exposed. Four different types of TLDs were used: MTS-7 ( 7 LiF:Mg,Ti), MTS-6 ( 6 LiF:Mg,Ti), MCP-7 ( 7 LiF:Mg,Cu,P) and MTT-7 ( 7 LiF:Mg,Ti with changed activator composition. All TLDs were manufactured at the Institute of Nuclear Physics (INP) in Cracow. The detectors were irradiated with various doses of He, C, Ne and Fe ions. Part of exposures were done in unknown conditions, to test measuring capabilities of the detectors. For analyses of these results, the method of obtaining information on ionisation density of an unknown radiation field, which is based on ratios of responses of different LiF detectors, was successfully used. (author)

  15. Seismic restraint means for radiation detector

    International Nuclear Information System (INIS)

    Underwood, R.H.; Todt, W.H.

    1983-01-01

    Seismic restraint means are provided for mounting an elongated, generally cylindrical nuclear radiation detector within a tubular thimble in a nuclear reactor monitor system. The restraint means permits longitudinal movement of the radiation detector into and out of the thimble. Each restraint means comprises a split clamp ring and a plurality of symmetrically spaced support arms pivotally mounted on the clamp ring. Each support arm has spring bias means and thimble contact means eg insulating rollers whereby the contact means engage the thimble with a constant predetermined force which minimizes seismic vibration action on the radiation detector. (author)

  16. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    International Nuclear Information System (INIS)

    Zhang, L.; Wang, M.; Fu, M.; Zhang, Y.; Yan, W.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm 2 .

  17. Dosimetric characteristics of radiation fields on board Czechoslovak Airlines' aircraft as measured with different active and passive detectors

    International Nuclear Information System (INIS)

    Spurney, F.; Obraz, O.; Pernicka, F.; Votockova, I.; Turek, K.; Vojtisek, O.; Starostova, V.

    1993-01-01

    Dosimetric characteristics on board Czechoslovak Airlines' aircraft (TU 154M; A310-300) were studied with different active and passive detectors (ionisation chamber RSS 112; scintillator based rate meter; GM counter based rate meter; neutron remmeter based on neutron moderation; thermoluminescence detectors, CR 39 track detectors and bubble-damage neutron detectors). Results obtained are analysed and discussed. It is estimated that the dose equivalent rates at altitudes of about 10 km are at least 3-4 μSv.h-1. Conclusions and recommendations for further studies and for radiation protection are given. (author)

  18. Particle identification via transition radiation and detectors

    International Nuclear Information System (INIS)

    Egorytchev, V.; Saveliev, V.; Aplin, S.J.

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high-energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions - neutrino experiments (NOMAD), and ideal condition for the use of transition radiation detectors in flying and space high-energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high-energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results

  19. Particle identification via transition radiation and detectors

    CERN Document Server

    Egorytchev, V; Aplin, S J

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high- energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions-neutrino experiments (NOMAD), and the ideal condition for the use of transition radiation detectors in flying and space high- energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high- energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results. (12 refs).

  20. A Vertex and Tracking Detector System for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

  1. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  2. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances

  3. A compact solid-state detector for small angle particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Barnaba, O.; Braghieri, A. E-mail: alessandro.braghieri@pv.infn.it; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F

    2000-09-21

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/{pi}{sup {+-}} identification and particle tracking in the region 7 deg. <{theta}<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances.

  4. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  5. Rank Detector Preprocessor for Glint Reduction in a Tracking Radar

    CSIR Research Space (South Africa)

    Guest, IW

    1993-04-01

    Full Text Available A rank detector is used to defect instantaneous received power fades in tracking radar. On detection of a fade, censorship of the angular position measurement is implemented in a Kalman tracking filter. It is shown that this technique can typically...

  6. Dilute scintillators for large-volume tracking detectors

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, R.A. (University of New Mexico, Albuquerque, NM (United States)); Dieterle, B.D. (University of New Mexico, Albuquerque, NM (United States)); Gregory, C. (University of New Mexico, Albuquerque, NM (United States)); Schaefer, F. (University of New Mexico, Albuquerque, NM (United States)); Schum, K. (University of New Mexico, Albuquerque, NM (United States)); Strossman, W. (University of California, Riverside, CA (United States)); Smith, D. (Embry-Riddle Aeronautical Univ., Prescott, AZ (United States)); Christofek, L. (Los Alamos National Lab., NM (United States)); Johnston, K. (Los Alamos National Lab., NM (United States)); Louis, W.C. (Los Alamos National Lab., NM (United States)); Schillaci, M. (Los Alamos National Lab., NM (United States)); Volta, M. (Los Alamos National Lab., NM (United States)); White, D.H. (Los Alamos National Lab., NM (United States)); Whitehouse, D. (Los Alamos National Lab., NM (United States)); Albert, M. (University of Pennsylvania, Phi

    1993-10-01

    Dilute scintillation mixtures emit isotropic light for both fast and slow particles, but retain the Cherenkov light cone from fast particles. Large volume detectors using photomultipliers to reconstruct relativistic tracks will also be sensitive to slow particles if they are filled with these mixtures. Our data show that 0.03 g/l of b-PBD in mineral oil has a 2.4:1 ratio (in the first 12 ns) of isotropic light to Cherenkov light for positron tracks. The light attenuation length is greater than 15 m for wavelength above 400 nm, and the scintillation decay time is about 2 ns for the fast component. There is also a slow isotropic light component that is larger (relative to the fast component) for protons than for electrons. This effect allows particle identification by a technique similar to pulse shape discrimination. These features will be utilized in LSND, a neutrino detector at LAMPF. (orig.)

  7. Calibration of track detectors and measurement of radon exhalation rate from solid samples

    International Nuclear Information System (INIS)

    Singh, Ajay Kumar; Jojo, P.J.; Prasad, Rajendra; Khan, A.J.; Ramachandran, T.V.

    1997-01-01

    CR-39 and LR-115 type II track detectors to be used for radon exhalation measurements have been calibrated. The configurations fitted with detectors in Can technique in the open cup mode are cylindrical plastic cup (PC) and conical plastic cup (CPC). The experiment was performed in radon exposure chamber having monodisperse aerosols of 0.2 μm size, to find the relationship between track density and the radon concentration. The calibration factors for PC and CPC type dosimeters with LR-115 type II detector were found to be 0.056 and 0.083 tracks cm -2 d -1 (Bqm -3 ) -1 respectively, while with CR-39 detector the values were 0.149 and 0.150 tracks cm -2 d -1 (Bq m -3 ) -1 . Employing the Can technique, measurements of exhalation rates from solid samples used as construction materials, are undertaken. Radon exhalation rate is found to be minimum in cement samples while in fly ash it is not enhanced as compared to coal samples. (author)

  8. Radiation effects in electronics for the CMS tracking detector

    International Nuclear Information System (INIS)

    Fulcher, Jonathan Richard

    2001-01-01

    This thesis presents a study into the CMS tracker analogue front-end amplifier readout chip (APV), which during the period of the study was fabricated in three different VLSI technologies. The early versions were fabricated in a total dose radiation hardened Harris 1.2μm process. Later it was transferred to a DMILL 0.8μm process and the latest version is in a 0.25μm technology. Part of this thesis describes a test system which was designed to thoroughly test APV chips on the silicon wafer and produce a comprehensive data set for each chip to enable confident selection of good chips. The main study is on the effects that large dose radiation environments can cause in the individual parts of the chip. With the chips fabricated in different technologies it was possible to make some comparisons of the magnitude of the effects between the Harris and the 0.25μm technologies, but most of the work was aimed towards understanding the effects within the 0.25μm technology. Single Event Upset (SEU) was the main consideration behind the experimental and simulation work. The study had two main goals: the first was to investigate how SEU would affect the operation of the CMS detector in the expected high radiation environment of the Large Hadron Collider (LHC). The second goal was to look at SEU from a more academic viewpoint, enabling a full understanding of how it is caused and what factors affect its magnitude. Simulations were performed in order to reconstruct the conditions brought about by highly ionising particles striking certain parts of the sensitive circuits, along with careful consideration of the mechanisms behind the effect such as: ionised charge collection within the semiconductor parts of the chip, how this charge deposition affects the circuit and how the effects manifest themselves within larger devices. A good set of results was collected from specially designed experiments, from which a confirmation of the theoretical effect was produced. (author)

  9. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  10. Radiation detector arrangements and methods

    International Nuclear Information System (INIS)

    Jackson, J.

    1989-01-01

    The patent describes a radiation detector arrangement. It comprises at least one detector element in the form of a temperature-sensitive resistor whose electrical resistance changes in response to radiation incident on the detector element, the resistor having a high positive temperature coefficient of electrical resistance at a transition in its electrical conductance, circuit means for applying a voltage across the resistor during operation of the detector arrangement, and temperature-regulation means for regulating the temperature of the resistor so as to operate the resistor in the transition, characterised in that the temperature-regulation means comprises the resistor and the circuit means which passes sufficient current through the resistor by resistance heating to a position in the transition at which a further increase in its temperature in response to incident radiation reduces the resistance heating by reducing the current, thereby stabilizing the temperature of the resistor at the position. The positive temperature coefficient at the position being sufficiently high that the change in the resistance heating produced by a change in the temperature of the resistor at the position is larger than a change in power of the incident radiation required to produce that same change in temperature of the resistor in the absence of any change in resistance heating

  11. The effects of radiation damage accumulation and annealing on fission-track dating of titanite

    International Nuclear Information System (INIS)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-01-01

    Fission-track dating of titanite is hindered by the fact that track etching is anisotropic in fresh titanites and becomes isotropic with increasing radiation damage. Independent age determinations with the population method are problematic due to different track counting efficiencies (Q) for ρ s in unannealed and ρ i in annealed titanite. Independent age determinations with the external detector method depend on correction factors for the track registration geometries (G = 0.5), counting efficiencies (Q) and range deficit (R = 1.38); however, Q is unaffected by annealing. It was attempted to determine GQR through calculation, direct experiment and on the basis of age standards. The direct experiment involves measurements of the ratio of the induced-track densities in titanite and a co-irradiated external detector. The track densities in the internal titanite surfaces could not be measured but the results for the external surfaces confirm that this approach leads to a significant overestimation of GQR, due to prior annealing. The GQR-values determined on the basis of age standards are consistent with that obtained by calculation assuming that Q ∼ 1, although there is no experimental confirmation for this fact apart from their isotropic etching characteristics. The fact that identical GQR-factors were obtained on standards of different age and uranium content suggests that a single GQR-value is appropriate for dating titanites within a broad range of radiation damage. In terms of the ζ-calibration this implies that a single ζ-factor is also suitable for dating different titanites. These findings suggest that other factors besides the accumulation of alpha-recoil damage, such as a phase transition, could be co-responsible for the different etching characteristics of annealed and unannealed titanites

  12. Solid state nuclear track detectors kit for the use in teaching

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.

    1988-11-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and unetched sheets: an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  13. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  14. Tracking Performance in High Multiplicity Environment for the CLIC ILD Detector

    CERN Document Server

    Killenberg, M

    2012-01-01

    We report on the tracking efficiency and the fraction of badly reconstructed tracks in the CLIC ILD detector for high multiplicity events (tt ̄@3 TeV) with and without the presence of γγ →hadrons background. They have been studied for the silicon tracking, the TPC tracking and the so called FullLDC tacking, which combines silicon and TPC measurements.

  15. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  16. Modelling of performance of the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Kazi, S.

    2000-01-01

    Full text: The ATLAS detector being built at LHC will use the SCT (semiconductor tracking) module for particle tracking in the inner core of the detector. An analytical/numerical model of the discriminator threshold dependence and the temperature dependence of the SCT module was derived. Measurements were conducted on the performance of the SCT module versus temperature and these results were compared with the predictions made by the model. The affect of radiation damage of the SCT detector was also investigated. The detector will operate for approximately 10 years so a study was carried out on the effects of the 10 years of radiation exposure to the SCT

  17. Recent developments in radiation detectors and instruments

    International Nuclear Information System (INIS)

    Das, Debashis

    2016-01-01

    Radiation detector is the key component in precise and accurate measurement of the nuclear radiations. The detectors deployed for radiation measurements in broadly classified sectors of Energy, Security, Discovery Science and Health and Environments are in general specific to their applications. The nuclear reactors as well as the fuel processing including waste management in energy sector require wide range/variety of detectors and the instruments for safe and precise generation of power. The security sector has gained importance in radiation monitoring in the present security perspective and there are many challenges in development of detector technology. The Discovery Science or the mega science projects viz CERN, Fermilab, GANIL, INO, MACE telescope, ITER etc have continuously generated new demand on detector related technologies that have been also found to be useful in other applications. Similarly, the health and environment monitoring have been also evolving with new technologies and techniques to address the requirement's arising in projects of new nuclear programs

  18. Fine grained nuclear emulsion for higher resolution tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp [Institute of Advanced Research, Nagoya University, Nagoya (Japan); Asada, T.; Katsuragawa, T.; Hakamata, K.; Yoshimoto, M.; Kuwabara, K.; Nakamura, M.; Sato, O.; Nakano, T. [Graduated School of Science, Nagoya University, Nagoya (Japan); Tawara, Y. [Division of Energy Science, EcoTopia Science Institute, Nagoya University, Nagoya (Japan); De Lellis, G. [INFN Sezione di Napoli, Napoli (Italy); Sirignano, C. [INFN Sezione di Padova, Padova (Italy); D' Ambrossio, N. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) (Italy)

    2013-08-01

    Fine grained nuclear emulsion with several 10 nm silver halide crystals can detect submicron tracks. This detector is expected to be worked as dark matter detector with directional sensitive. Now, nuclear emulsion became possible to be produced at Nagoya University, and extreme fine grained nuclear emulsion with 20 nm diameter was produced. Using this emulsion and new reading out technique with expansion technique, for optical selection and X-ray microscopy, recoiled tracks induced by dark matter can be detected automatically. Then, readout efficiency is larger than 80% at 120 nm, and angular resolution for final confirmation with X-ray microscopy is 20°. In addition, we started to construct the R and D underground facility in Gran Sasso.

  19. Development of the dyed-track method for Kodak CN-85 detector. No. E/3

    International Nuclear Information System (INIS)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Zs.; Monnin, M.; Lferde, M.

    1983-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, coloration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In the authors' previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work the influence of track processing parameters on the dyed-track formation was studied in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particles irradiation. For sensitization a treatment with 15% HCL at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be best. For understanding the track dyeing phenomenon the coloration behaviour of electron-irradiated CN-85 detectors was studied. (author)

  20. High energy charged particle registration in CR-39 polycarbonated detector

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El Enany, N.; El Fiki, S.; Eissa, H.M.; El-Adl, E.H.; El-Feky, M.A.

    1991-01-01

    Track etch rate characteristics of CR-39 plastic detector exposed to 28 Si ions of 670 MeV energy have been investigated. Experimental results were obtained in terms of frequency distribution of the track diameter, track density and bulk etching rate. A dependence of the mean track diameter on energy was found. The application of the radiation effect of heavy ions on CR-39 in the field of radiation detection and dosimetry are discussed. Results indicated that it is possible to produce etchable tracks of 28 Si in this energy range in CR-39. We also report the etching characteristics of these tracks in the CR-39 detector. (orig.) [de

  1. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  2. Gamma-ray tracking - A new detector concept for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Gast, W.

    2001-01-01

    In the framework of an European collaboration the nest generation of large efficiency, high resolution spectrometers for nuclear spectroscopy is under development. The new spectrometers are large volume, segmented Ge-detectors featuring 3D position sensitivity in order to allow Gamma-Ray Tracking. That is, knowing the interaction positions and the energies released at each interaction, the track each gamma-ray follows during its scattering process inside the detector volume can be reconstructed on basis of the Compton-scattering formula. The resulting high add-back efficiency an effective granularity significantly improves peak-to-total ratio, efficiency, and Doppler-broadening of the spectrometer. In this contribution the states of the project concerning detector design and development of digital signal processing techniques to achieve an optimal 3D position sensitivity is presented. (authors)

  3. Observation of anomalons in CR-39 track detectors

    International Nuclear Information System (INIS)

    Tincknell, M.L.; Price, P.B.

    1984-01-01

    The authors have observed fragments of 1.85 GeV/nucleon 40 Ar in CR-39 etched track detector and they find anomalously short mean free paths (mfp's) of secondary nuclei with 11 less than or equal to Z less than or equal to 17 in the first 2 cm after their production, at approx.3 standard deviations. This confirms previous reports of this anomalon effect in nuclear emulsion in a new detector with dissimilar potential systematic errors

  4. Evaluation study between the chemical and electrochemical etching for solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Ramos, S.; Espinosa, G.; Golzarri, J.I.

    1991-01-01

    Since there are several methods of etching in the solid state nuclear track detectors (SSNTD) it is necessary to know which gives the best results for a specific problem. The purpose of this work is to analyze and compare both the chemical etching and the electrochemical etching. The SSNTD has a preferential response to certain kinds of particles and energies, according to the material used as detector. On the other hand the efficiency is a function of the incidence angle of the radiation and some other parameters such as temperature, concentration and type of solvent used in the etching process, and the method used for the etching. Therefore, it is necessary to extend as much as possible our knowledge of such parameters in order to choose the more efficient one for a specific problem

  5. Characterization of the polymer Durolon as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Pugliesi, Fabio

    2008-01-01

    The polymer Durolon has been characterized as a solid state nuclear track detector. In these detectors a track, resulting from the damages in its molecular structure, induced by a heavy charged particle, is the testimony of the passage of the particle through the polymer. In order to characterize the Durolon the track diameter, track production rate, light transmission through the polymer and the critical angle of incidence of the particle have been studied. The main objective of such studies was to provide the necessary subsidies to understand the information registered. The damages have been induced by alpha particles from the nuclear reaction 10 B(n,α) 7 Li, by irradiating a boron screen in a thermal neutron field from an experimental facility installed in the beam-hole 08 of the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The study of the parameters have been performed by using a digital system developed in the present work. Its use has provided a higher quality and quickness regarding data acquisition and data analysis as well as the opportunity to quantify several other parameters regarding the imaging formation theory in solid state nuclear track detectors. The characteristics of the Durolon have been compared with the ones of two other detectors Makrofol-E and Makrofol-DE and have demonstrated its potentiality to use. (author)

  6. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  7. Ageing effects on polymeric track detectors: studies of etched tracks at nano size scale using atomic force microscope

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Fragoso, R.; Vazquez L, C.; Saad, A. F.; El-Namrouty, A. A.; Fujii, M.

    2012-01-01

    Among several different techniques to analyze material surface, the use of Atomic Force Microscope is one of the finest method. As we know, the sensitivity to detect energetic ions is extremely affected during the storage time and conditions of the polymeric material used as a nuclear track detector. On the basis of the surface analysis of several track detector materials, we examined the detection sensitivity of these detectors exposed to alpha particles. The preliminary results revealed that the ageing effect on its sensitivity is very strong, that need to be considered on the routine applications or research experiments. The results are consistent with the experimental data in the literature. (Author)

  8. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  9. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  10. Radiation hard silicon microstrip detectors for Tevatron experiments

    International Nuclear Information System (INIS)

    Korjenevski, Sergey

    2004-01-01

    The Silicon Microstrip Tracking detectors at the CDF and D0 experiments have now been operating for almost three years at Fermilab. These detectors were designed originally for an integrated luminosity of 2fb -1 . As the expected luminosity for Run IIb at the Tevatron collider was initially envisioned to reach 15fb -1 , radiation tolerances of both devices were revisited, culminating in proposals for new systems. With reduced expectations for total luminosity at ∼6fb -1 , the full detector-replacement projects were terminated. The CDF detector is expected nevertheless to cope efficiently with the lower anticipated dose, however, the D0 experiment is planning a smaller-scale project: a Layer-0 (L0) upgrade of the silicon tracker (D0SMT). The new device will fit between the beam line and the inner layer of the current Tracker. Built of single-sided sensors, this upgrade is expected to perform well in the harsh radiation environment, and be able to withstand an integrated luminosity of 15fb -1 . Prototypes of Run IIb sensors were irradiated using 10MeV protons at the tandem Van de Graaff at the James R. McDonald Laboratory at Kansas State University. A fit to the 10MeV proton data yields a damage parameter αp=11x10-17Acm. This is consistent with results from RD48 (αp=9.9x10-17Acm). The scaling of damage to 1MeV neutron fluence uses a hardness factor (κ) derived from the non-ionizing components of the energy loss (NEIL). NEIL predicts a hardness factor of 3.87 for 10MeV protons. We obtained an experimental value of this factor of 2.54, or 34% smaller than scaling predictions from NEIL

  11. 2011 ATLAS Detector Performance - ID and Forward detectors

    CERN Document Server

    Davies‎, E; The ATLAS collaboration; Abdel Khalek, S

    2012-01-01

    This poster describes the performance of 2 parts of ATLAS: - The Inner Detector which consists of 3 subdetectors: the Pixel detector, the SemiConductor Tracker (or SCT) and the Transition Radiation Tracker (or TRT). Here, we report on Pixel detector and SCT performance over 2011. - ALFA detector which will determine the absolute luminosity of the CERN LHC at the ATLAS Interaction Point (IP), and the total proton-proton cross section, by tracking elastically scattered protons at very small angles in the limit of the Coulomb Nuclear interference region.

  12. Photodiodes utilization as ionizing radiation detectors

    International Nuclear Information System (INIS)

    Khoury, H.J.; Melo, F.A. de

    1987-01-01

    The response of photodiodes to α and γ radiation is studied, using for α spectrometry measures and for γ radiation dosimetry. Therefore, the response of BPY-12 photodiodes as α particle detector is first studied. The results show that the response is linear with the energy of incidence radiation, one resolution 25Kev for energy of 5,4 MeV from 241 Am. For dosimetric measures, the response of SHF-206 photodiodes, when exposed at γ radiation is studied, and the results show taht the response of this detector is linear with the dose ratio, proving its practicability in γ radiation dosimetry. (C.G.C.) [pt

  13. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  14. CVD diamond detectors for ionizing radiation

    Science.gov (United States)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  15. Neutron spectrometry by diamond detector for nuclear radiation

    International Nuclear Information System (INIS)

    Kozlov, S.F.; Konorova, E.A.; Barinov, A.L.; Jarkov, V.P.

    1975-01-01

    Experiments on fast neutron spectrometry using the nuclear radiation diamond detector inside a horizontal channel of a water-cooled and water-moderated reactor are described. It is shown that the diamond detector enables neutron spectra to be measured within the energy range of 0.3 to 10 MeV against reactor gamma-radiation background and has radiation resistance higher than that of conventional semiconductor detectors. (U.S.)

  16. Operating characteristics of radiation-hardened silicon pixel detectors for the CMS experiment

    CERN Document Server

    Hyosung, Cho

    2002-01-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will have forward silicon pixel detectors as its innermost tracking device. The pixel devices will be exposed to the harsh radiation environment of the LHC. Prototype silicon pixel detectors have been designed to meet the specification of the CMS experiment. No guard ring is required on the n/sup +/ side, and guard rings on the p/sup +/ side are always kept active before and after type inversion. The whole n/sup +/ side is grounded and connected to readout chips, which greatly simplifies detector assembling and improves the stability of bump-bonded readout chips on the n/sup +/ side. Operating characteristics such as the leakage current, the full depletion voltage, and the potential distributions over guard rings were tested using standard techniques. The tests are discussed in this paper. (9 refs).

  17. Study of detectors in beta radiation fields

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1987-01-01

    Several commercial detectors used with gamma or X radiation are studied. Their sensibility and energetic dependence are analysed in exposures of beta radiation fields. A comparative evaluation with the reference detector (the extrapolation chamber) is presented. (M.A.C.) [pt

  18. The design and construction of the ZEUS central tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; Malos, J.; Saxon, D.H.; Clark, D.E.; Jamdagni, A.K.; Markou, C.; Miller, D.B.; Miller, D.G.; Toudup, L.W.; Auty, C.G.; Blair, G.A.; Brooks, C.B.; Cashmore, R.J.; Hanford, A.T.; Harnew, N.; Holmes, A.R.; Linford, W.; Martin, N.C.; McArthur, I.C.; Nash, J.; Nobbs, K.N.; Wastie, R.L.; Williams, M.T.; Wilson, F.F.; Wilson, R.D.; Hart, J.C.; Hatley, R.W.; Hiddleston, J.W.; Gibson, M.D.; McCubbin, N.A.; Middleton, A.; Morrissey, M.C.; Morrow, D.; O' Brien, P.; Payne, B.T.; Roberts, J.C.H.; Shaw, T.B.; Sinclair, C.K.; Wallis, E.W.G.; White, D.J.; Yeo, K.L.; Bullock, F.W.; Dumper, J.; Fraser, T.J.; Hayes, D.; Jones, T.W.; Strachan, D.E.; Vine, I.A. (H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom) Dept. of Physics and Astronomy, Univ. of Glasgow (United Kingdom) Blackett Lab., Physics Dept., Imperial Coll., London (United Kingdom) Dept. of Physics, Nuclear Physics Lab., Univ. of Oxford (United Kingdom) Rutherford Appleton Lab., Chilton (United Kingdom) Dept. of Physics an

    1994-01-15

    The mechanical, electrical and electronic design and construction of the ZEUS central tracking detector are described, together with the chamber monitoring and environmental control. This cylindrical drift chamber is designed for track reconstruction, electron identification and fast event triggering in a high beam-crossing rate, high magnetic field application. (orig.)

  19. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    International Nuclear Information System (INIS)

    Lindstroem, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hoenniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Roeder, Ralf

    2006-01-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of Φ eq =10 16 cm -2 . Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E C -0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90 Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of

  20. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Gunnar [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany)]. E-mail: gunnar.lindstroem@desy.de; Dolenc, Irena [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Hoenniger, Frank [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Kramberger, Gregor [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Moll, Michael [CERN, Geneva, 1211 (Switzerland); Nossarzewska, Elsbieta [ITME, Institute for Electronocs Materials Technology, Warsaw, 01919 (Poland); Pintilie, Ioana [National Institute of Materials Physics, Bucharest, 077125 (Romania); Roeder, Ralf [CiS Institute for Microsensors gGmbH, Erfurt, 99099 (Germany)

    2006-11-30

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 {mu}m had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of {phi} {sub eq}=10{sup 16} cm{sup -2}. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E {sub C}-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with {sup 90}Sr electrons (mip's) is also almost identical to what was expected

  1. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  2. Status of development in the field of Cr-39 track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1982-01-01

    The present situation concerning the manufacture and etching characteristics of the CR-39 nuclear track detector is surveyed. Especial attention is paid to the trends in research and to the outstanding questions related to the subject. The requirements and procedures in connection with the manufacture of high-quality, thick and thin detector foils are discussed. The main bulk and track etching characteristics are presented, involving the effects of various environmental parameters as well. A statistical account of the typical directions in application is given. (author)

  3. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  4. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754272

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  5. Radon measurements technique in air using a track plastic detector

    International Nuclear Information System (INIS)

    Pereira, J.F.A.; Silva Estrada, J.J. da; Binns, D.A.C.; Urban, M.

    1983-01-01

    A difusion chamber is used to measure the radon concentration in air through alpha particles tracks in Makrofol E, 300μm thick. This system was developed by Karlsruhe Nuclear Research Centre, Germany, and is already used by the Occupational Radiological Protection Department of IRD/CNEN, for premilimar measurements in Pocos de Caldas and Rio de Janeiro. In the chamber, the plastic detector is set at the lower end and a filter is placed at the upper end. In this way, a known volume is defined in the detector system. To amplify the tracks produced by the alpha particles due to radon and short-lived dadon-daughter products, an electrochemical system is employed. Some theoretical questions about the treeing produced by the electrochemical etching, the detector characteristics, as well as the adapted statistics model are also discussed. (Author) [pt

  6. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  7. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  8. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  9. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  10. Determination of Nuclear Track Parameters for LR-115 Detector by Using of MATLAB Software Technique

    International Nuclear Information System (INIS)

    AL-Jomaily, F.M.; AL-joburi, H.A.; Mheemeed, A.K.

    2013-01-01

    The nuclear track detector parameters, such as nuclear track diameter D(μm), number of track N T and area of track A T were determined by using MATLAB software technique for IR-115 detector irradiated by alpha particle from 241 Am source under 1.5, 2.5 and 3.5 MeV at etching time T B of 90, 120, 150 and 180 min.By using the image analysis of MATLAB software for nuclear track, the full width at half maximum FWHM and relative resolution R% were calculated for each energy of alpha particles.In this study, it was shown that increasing the alpha energy on the IR-115 detector leads to increased etching time T B and the dropping of R% to minimum value, and then reach a stable value before dropping at values 1.5, 2.5 MeV and unstable at 3.5 MeV. Imaging analysis by MATLAB technique which used in this study reflect good and accurate results for nuclear track detector parameters and we recommend using this technique for determination of these parameters

  11. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  12. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  13. Two lectures on track structure

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1987-01-01

    In a series of two lectures the principles of track structure theory, developed by Katz and collaborators, are reviewed. The text is intended to serve as an introduction to the theory. Applications of the model to c-hit physical detectors and to biological systems are reviewed. The model relates the signal of a detector after doses of X and gamma radiations to its signal after heavy charged particle irradiations, and is applicable to a variety of physical dosimeters: alanine, thermoluminescence and the Fricke dosimeters, to the inactivation of enzymes and viruses, and to biological systems: description of survival and neoplastic transformations in mammalian cells. Application of the model to heavy-ion cancer radiotherapy and to radiation protection is discussed as well as the controversies around the track structure approach. The model suggests new insights to fundamental research in detector theory and in radiobiology and in their applications in radiotherapy and radiation protection. 41 refs., 39 figs. (author)

  14. Properties of polymer foils used as solid-state track detectors

    International Nuclear Information System (INIS)

    Spurny, F.

    1973-05-01

    Polymer foils were studied with a view to their application as solid-state alpha track detectors. The detection efficiency was determined as was its alpha energy dependence and the quality of the surface and the natural background of the foils were evaluated. The kinetics of etching was studied in three selected type of foils. Characteristic constants for the selected foils and methods of etching were calculated. The possible applications of the foils as track detectors are discussed and the effect is dealt with of the selected foil and of the method of chemical etching on the foil applicability in nuclear sciences, especially in fast neutron dosimetry and in alpha spectrometry. (author)

  15. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  16. Studding the phenomenon of pair production of tracks on plastic detectors during radon measurements

    International Nuclear Information System (INIS)

    Shweikani, R.; Jourbi, B.

    2011-06-01

    Previous studies showed the appearance of many pairs of alpha tracks on the surface of the solid state nuclear track detectors (CR39) when exposed to radon. So the aim of this study was to judge whether this is a statistical or a physical phenomenon. Therefore, a theoretical function representing the probability of forming pairs of tracks on the detector was developed. A statistical studying was done for two sets of (1) mm thickness of CR39 detectors, the first set was exposed in the radon calibration chamber (RCC) with stable radon concentration (170 kBq/m 3 ) for different detectors positions inside and outside the exposure chamber (EC). While the second set was exposed to 241 Am source (1667 Bq) for different exposure times. The results show that the concentration of the single tracks on the detectors in case of covered EC was lower than the same situation without cover. In addition, the concentrations of the single tracks in various exposure situations inside and outside the EC were associated to the effective volumes that each detector sees. Finally, no considerable deference was found between pairs concentration in the two exposure cases (Radon chamber and 241 Am source), and both were lower than the theoretical values which calculated using the theoretical function. This means that pairs formation phenomena is a statistical phenomenon and there is no physical parameters related to radon gas or its daughter's behavior. (author)

  17. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  18. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  19. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  20. Detectors for Linear Colliders: Tracking and Vertexing (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

  1. CR-39 α track detector and its application in observing of the hot particles in environment

    International Nuclear Information System (INIS)

    Zou Benchuan

    1992-01-01

    CR-39 α track detector is a new α remitting radionuclides plastic detector. It is audio-visual, convenient and economic in the detection of α particle track and the distribution of α emitting radionuclides in environmental samples. CR-39 α track detector is used to observe the hot particles in rock and the hot particles coming from the liquid effluents discharged by spent fuel reprocessing plant in UK in marine environment and got good results

  2. Current and expected performance of tracking and vertexing with the ATLAS detector at the LHC and the HL-LHC.

    CERN Document Server

    Kastanas, Alex; The ATLAS collaboration

    2018-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) has had an extremely successful data collecting period during 2017, recording over 45 fb-1 of proton-proton collision data at sqrt(s) = 13 TeV. This was achieved, in part, by running the LHC at a high instantaneous lumi- nosity level of over 1.5 x 10+34 cm-2s-1, which corresponds to over 57 inelastic proton-proton collisions per beam crossing. This talk will highlight the tracking and vertexing performance of the tracking detector within ATLAS (Inner Detector) throughout this successful year of data taking. In order to increase its potential for discoveries, the High Luminosity Large Hadron Collider (HL-LHC) aims to increase the LHC data-set by an order of magnitude by collecting 3,000 fb-1 of recorded data. Starting, from mid-2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5 x 10+34 cm-2s-1, which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pile...

  3. Track reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Andrey; Hoehne, Claudia; Kisel, Ivan; Ososkov, Gennady

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator complex at Darmstadt is being designed for a comprehensive measurement of hadron and lepton production in heavy-ion collisions from 8-45 AGeV beam energy, producing events with large track multiplicity and high hit density. The setup consists of several detectors including as tracking detectors the silicon tracking system (STS), the muon detector (MUCH) or alternatively a set of Transition Radiation Detectors (TRD). In this contribution, the status of the track reconstruction software including track finding, fitting and propagation is presented for the MUCH and TRD detectors. The track propagation algorithm takes into account an inhomogeneous magnetic field and includes accurate calculation of multiple scattering and energy losses in the detector material. Track parameters and covariance matrices are estimated using the Kalman filter method and a Kalman filter modification by assigning weights to hits and using simulated annealing. Three different track finder algorithms based on track following have been developed which either allow for track branches, just select nearest hits or use the mentioned weighting method. The track reconstruction efficiency for central Au+Au collisions at 25 AGeV beam energy using events from the UrQMD model is at the level of 93-95% for both detectors.

  4. Feasibility studies for a wireless 60 GHz tracking detector readout

    International Nuclear Information System (INIS)

    Dittmeier, S.; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2016-01-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m"2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  5. Feasibility studies for a wireless 60 GHz tracking detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Dittmeier, S., E-mail: dittmeier@physi.uni-heidelberg.de; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2016-09-11

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m{sup 2}) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  6. Mechanism of track formation by charged particles in inorganic and organic solid-state track detectors

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.; Streubel, G.

    1979-01-01

    Knowledge of the individual phases of track formation mechanism is necessary in some applications of solid-state track detectors. The generation of latent tracks is described by energy transfer processes of the charged particles along their paths using several different models. Etchability of the latent tracks is discussed on the basis of some distinct criteria taking into account different fractions of energy release by the primary and secondary particles during track generation. If these etchability criteria for latent tracks are fulfilled, visual particle tracks can be produced by a chemical etching process. Etch pit formation depends on the etching conditions. The geometrical parameters of the etching pits are given on the basis of known etching rates. Evaluation of individual particle tracks or determination of track density yields results depending on both the properties of the particles and the etching conditions. Determination of particle energy and particle fluence is discussed as an example. (author)

  7. Energy-loss measurement with the ZEUS Central Tracking Detector

    International Nuclear Information System (INIS)

    Bartsch, D.

    2007-05-01

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  8. Energy-loss measurement with the ZEUS Central Tracking Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, D.

    2007-05-15

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  9. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.H., E-mail: pinghe.lu@redlen.com; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A.W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  10. A large area transition radiation detector to measure the energy of muons in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Mongelli, M.; Montaruli, T.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have designed and built a transition radiation detector of 36 m 2 area in order to measure the residual energy of muons penetrating in the Gran Sasso cosmic ray underground laboratory up to the TeV region. It consists of three adjacent modules, each of 2x6 m 2 area. Polystyrene square tubes, filled with a argon-carbon dioxide gas mixture, and polyethylene foam layers are used as proportional detectors and radiators respectively. We cover such a large surface with only 960 channels that provide adequate energy resolution and particle tracking for the astroparticle physics items to investigate. The detector has been calibrated using a reduced size prototype in a test beam. Results from one module exposed to cosmic rays at sea level are shown. (orig.)

  11. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  12. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  13. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  14. General gamma-radiation test of TGC detectors

    CERN Document Server

    Smakhtin, V P

    2004-01-01

    The TGC detectors are expected to provide the Muon trigger for the ATLAS detector in the forward region of the ATLAS Muon Spectrometer. The TGC detectors have to provide a trigger signal within 25 ns of the LHC accelerator bunch spacing, with an efficiency exceeding 95%, while exposed to an effective)photon and neutron background ranging from 30 to 150 Hz/cm/sup 2/. In order to test TGC detectors in high rate environment every detector was irradiated at 2500 Cu Co-60 source in Radiation Facility of Weizmann Institute of Science at nominal operating voltage and at photon rate several times above the expected background. This radiation test was succeeded in diagnostics of the hot spots inside detectors. The present publication refers to the test results of 800 TGC detectors produced in the Weizmann Institute of Science. (1 refs).

  15. Radiation damage studies for the DOe silicon detector

    International Nuclear Information System (INIS)

    Lehner, Frank

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  16. A fast neutron detector with IP by track measurement

    International Nuclear Information System (INIS)

    Miao Zhengqiang; Yang Jun; Zhang Qiang; Zhao Xiangfeng; Wang Daohua

    2004-01-01

    Imaging Plate(IP) is very sensitive to electric particles, especially to heavy ions. As we know, the recoiling protons are produced while fast neutrons scattered in light material containing hydrogen. When the recoiling proton enters in the sensitive layer of IP, a track will be recorded by IP. In this paper, a fast neutron detector based on IP and (n, p) reaction is described in detail, the detector's efficiency is studied also. (authors)

  17. Early Inner Detector Tracking Performance in the 2015 data at $\\sqrt s$ = 13 TeV

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    This note summarises the studies undertaken to recommend benchmark values and systematic uncertainties for various aspects of the ATLAS Inner Detector tracking based on $\\sqrt{s}= 13$ TeV proton-proton collisions from the Large Hadron Collider Run 2 data. The track reconstruction efficiency, fake rate, and related systematic uncertainties are presented for two different track quality selections, along with the impact parameter resolution and the alignment weak mode systematic uncertainities. These recommendations apply to physics analyses using Inner Detector tracks in Run 2 data and are important inputs for other objects based on tracks.

  18. Superconductive tunnel structures as radiation detectors

    International Nuclear Information System (INIS)

    Barone, A.; Gray, K.E.

    1985-08-01

    A brief review is given on various aspects of the potential of superconducting tunnel junctions as detectors for atomic and nuclear radiations. On the basis of recent results main advantages and drawbacks are indicated providing a preliminary comparison with the presently used semiconductor detectors. The basic ideas underlying the physics of the interaction of nuclear particles and other radiations with superconducting junctions are outlined. 9 refs., 1 tab

  19. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  20. Method and circuit for stabilizing conversion gain of radiation detectors of a radiation detection system

    International Nuclear Information System (INIS)

    Stoub, E.W.

    1986-01-01

    A method is described for calibrating the gain of an array of radiation detectors of a radiation detection system comprising the steps of: (a) measuring in parallel for each radiation detector using a predetermined calibration point the energy map status, thereby obtaining an energy response vector whose elements correspond to the individual output of each radiation detector, each predetermined calibration point being a prescribed location corresponding to one of the radiation detectors; (b) multiplying that energy response vector with a predetermined deconvolution matrix, the deconvolution matrix being the inversion of a contribution matrix containing matrix elements C/sub IJ/, each such matrix element C/sub IJ/ of the contribution matrix representing the relative contribution level of a radiation detector j of the detection system for a point radiation source placed at a location i, thereby obtaining a gain vector product for the radiation detectors; (c) adjusting the gains of the radiation detectors with respect to the gain vector product such that a unity gain vector is essentially obtained; (d) measuring again the energy map status according to step (a); and (e) if the energy map status fails to essentially produce a unity gain vector repeat steps (a) to (d) until the energy map status substantially corresponds to unity

  1. Radiation detectors as surveillance monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1981-01-01

    The International Atomic Energy Agency (IAEA) proposes to use personnel dosimetry radiation detectors as surveillance monitors for safeguards purposes. It plans to place these YES/NO monitors at barrier penetration points declared closed under IAEA safeguards to detect the passage of plutonium-bearing nuclear material, usually spent fuel. For this application, commercially available dosimeters were surveyed as well as other radiation detectors that appeared suitable and likely to be marketed in the near future. No primary advantage was found in a particular detector type because in this application backgrounds vary during long counting intervals. Secondary considerations specify that the monitor be inexpensive and easy to tamper-proof, interrogate, and maintain. On this basis radiophotoluminescent, thermoluminescent, and electronic dosimeters were selected as possible routine monitors; the latter two may prove useful for data-base acquisition

  2. The Layout and Performance of the Phase-II upgrade of the tracking detector of the ATLAS experiment

    CERN Document Server

    Ai, Xiaocong; The ATLAS collaboration

    2017-01-01

    HL-LHC will deliver about 3000 fb-1 of integrated luminosity in over 10 year. This will present an extremely challenging environment to the ATLAS experiment, well beyond that for which it was designed. In ATLAS Phase II upgrade, the Inner Detector will be replace by a new all-silicon Inner Tracker to maintain tracking performance in this high-occupancy environment and to cope with the increase of approximately a factor of ten in the integrated radiation dose. The ITk Detector layout is designed to meet the requirement for identifying charged particles with high efficiency and measuring their properties with high precision in the denser environment. The Layout and performance of the ITk is presented.

  3. Study on application of positron lifetime spectroscopy in investigation of radiation influences on nuclear track detector polymer

    International Nuclear Information System (INIS)

    Khuong Thanh Tuan; Tran Dai Nghiep; Nguyen Manh Hung; Nguyen Duc Thanh; Le Anh Tuyen

    2007-01-01

    Study on determination of micro porosity of materials using positron lifetime technique is an advanced and promoted tendency in physics and material science presently. In Vietnam, studies in this field have been carried out by some projects funded by VAEC in recent few years, with their object is determination of porosity of oil-contained rock and polymers. This project is established to study the relationship between characteristic of positron lifetime spectra and micro porosity of polymer material, which a type of nuclear track detector made from, after irradiation. The experimental result shows a linear relation of a particular characteristic of lifetime spectra - intensity of lifetime components above 1 ns - and the density of track in polymer created by irradiation. (author)

  4. ATLAS Transition Radiation Tracker (TRT): Straw tubes for tracking and particle identification at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220535; The ATLAS collaboration

    2017-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of ∼300,000 thin-walled drift tubes (“straw tubes”) that are 4 mm in diameter. The TRT system provides ∼30 space points with ∼130 micron resolution for charged tracks with |η| 0.5 GeV/c . The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in an Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher centre of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. Significant modifications of the TRT detector have been made for LHC Run 2 mainly to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Man...

  5. Gamma radiation detectors for safeguards applications

    International Nuclear Information System (INIS)

    Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M.

    2007-01-01

    The IAEA uses extensively a variety of gamma radiation detectors to verify nuclear material. These detectors are part of standardized spectrometry systems: germanium detectors for High-Resolution Gamma Spectrometry (HRGS); Cadmium Zinc Telluride (CZT) detectors for Room Temperature Gamma Spectrometry (RTGS); and NaI(Tl) detectors for Low Resolution Gamma Spectrometry (LRGS). HRGS with high-purity Germanium (HpGe) detectors cooled by liquid nitrogen is widely used in nuclear safeguards to verify the isotopic composition of plutonium or uranium in non-irradiated material. Alternative cooling systems have been evaluated and electrically cooled HpGe detectors show a potential added value, especially for unattended measurements. The spectrometric performance of CZT detectors, their robustness and simplicity are key to the successful verification of irradiated materials. Further development, such as limiting the charge trapping effects in CZT to provide improved sensitivity and energy resolution are discussed. NaI(Tl) detectors have many applications-specifically in hand-held radioisotope identification devices (RID) which are used to detect the presence of radioactive material where a lower resolution is sufficient, as they benefit from a generally higher sensitivity. The Agency is also continuously involved in the review and evaluation of new and emerging technologies in the field of radiation detection such as: Peltier-cooled CdTe detectors; semiconductor detectors operating at room temperature such as HgI 2 and GaAs; and, scintillator detectors using glass fibres or LaBr 3 . A final conclusion, proposing recommendations for future action, is made

  6. The effects of sunlight exposure on the neutron response of CN-85 track detector

    International Nuclear Information System (INIS)

    Ahmad, N.; Mirza, N.M.; Mirza, S.K.; Tufail, M.

    1996-01-01

    The effect of sunlight exposure on the neutron response of CN-85 track detectors has been studied. It has been observed that the response during the first 28 days of sunlight exposure is slightly enhanced (10%) and then deceases continuously with increase in the sunlight exposure. After 84 days of sunlight exposure the response of the exposed detector relative to an unexposed detector is only 22%. It is also observed that the response can not be maintained by wrapping the CN-85 etch track detectors in typewriter black carbon papers if they are exposed to sunlight. (author)

  7. Theoretical determination of the neutron detection efficiency of plastic track detectors. Pt. 1

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1982-01-01

    A theoretical model to determine the neutron detection efficiency of organic solid state nuclear track detectors without external radiator is described. The model involves the following calculation steps: production of heavy charged particles within the detector volume, characterization of the charged particles by appropriate physical quantities, application of suitable registration criteria, formation of etch pits. The etch pits formed are described by means of a distribution function which is doubly differential in both diameter and depth of the etch pits. The distribution function serves as the input value for the calculation of the detection efficiency. The detection efficiency is defined as the measured effect per neutron fluence. Hence it depends on the evaluation technique considered. The calculation of the distribution function is carried out for cellulose triacetate. The determination of the concrete detection efficiency using the light microscope and light transmission measurements as the evaluation technique will be described in further publications. (orig.)

  8. Track etch detectors with air gap for measurements of radon in soil

    Energy Technology Data Exchange (ETDEWEB)

    Turek, K; Bednar, J [Czech Academy of Sciences, 18086 Prague (Czech Republic). Nuclear Research Inst., Dept. of Radiation Dosimetry; Neznal, M [Radon Corp., 28922 Lysa nad Labem (Czech Republic)

    1996-12-31

    The main aim of this study was to develop a method of radon concentration measurements in soil using track etch detectors without cups. Our approach enables to minimize the detector dimensions resulting into smaller diameter of drilled holes, more rigid construction, easier handling and mailing, lower consumption of material and consequently in lower costs. The parallel arrangement of two track etch detectors in the open metallic holder seems to be promising as the complementary method to the commonly used cup-technique for radon measurement. The firmness, simple and compact construction, small size as well as low costs could be successfully utilized mainly in field measurement. The possibility of a variable sensitivity by the distance between the detectors makes the system versatile for many applications, 2 detectors with different h can practically exclude of under- or overexposure. The more precise calibrations including exposures in radon-chamber and study of an eventual influence of humidity are supposed to be done in the nearest future. (J.K) 2 tabs.

  9. Calibration factor determination for solid nuclear track detectors CR-39 type exposed to Rn-222

    International Nuclear Information System (INIS)

    Cazula, Camila Dias; Campos, Marcia Pires de; Mazzilli, Barbara Paci

    2014-01-01

    In the detection method with solid nuclear track detector, when a heavy particle rests on the detector surface, causes a breakdown in their molecular structure forming a trace. One of the typical applications of these detectors is the measurement of the concentration of Rn -222 in air, a noble radioactive gas, part of the U-238 series, emitting alpha particles and important in epidemiological studies to protect individuals from natural radiation. To determine the concentration of Rn -222 in the air in a room is necessary to know the density of lines (traces / cm 2 ) on the detector surface, the exposure time and the calibration factor. The determination of the calibration factor for CR-39 detectors was taken from the exposure of these to a known concentration of Rn-222. Therefore, the detectors were placed inside a cell of Lucas adapted and subsequently exposed to a concentration of Rn-222 15 kBq / m 3 , by means of the apparatus RN-150 Pylon Electronics Incorporation, which has a source of Ra-226 and releases known concentrations of Rn-222. Six calibration factor determinations were performed, the average value obtained was 0.0534 ±0.0021 (traces / cm 2 per Bq / m 3 day). The results are consistent with literature values for the same type of detector and showed good reproducibility

  10. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  11. Short p-type silicon microstrip detectors in 3D-stc technology

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany)], E-mail: simon.eckert@physik.uni-freiburg.de; Jakobs, K.; Kuehn, S.; Parzefall, U. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany); Dalla-Betta, G.-F.; Zoboli, A. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita degli Studi di Trento, via Sommarive 14, I-38050 Povo di Trento (Italy); Pozza, A.; Zorzi, N. [FBK-irst Trento, Microsystems Division, via Sommarive 18, I-38050 Povo di Trento (Italy)

    2008-10-21

    The luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, will constitute an extremely challenging radiation environment for tracking detectors. Significant improvements in radiation hardness are needed to cope with the increased radiation dose, requiring new tracking detectors. In the upgraded ATLAS detector the region from 20 to 50 cm distance to the beam will be covered by silicon strip detectors (SSD) with short strips. These will have to withstand a 1 MeV neutron equivalent fluence of about 1x10{sup 15}n{sub eq}/cm{sup 2}, hence extreme radiation resistance is necessary. For the short strips, we propose to use SSD realised in the radiation tolerant 3D technology, where rows of columns-etched into the silicon bulk-are joined together to form strips. To demonstrate the feasibility of 3D SSD for the sLHC, we have built prototype modules using 3D-single-type-column (stc) SSD with short strips and front-end electronics from the present ATLAS SCT. The modules were read out with the SCT Data Acquisition system and tested with an IR-laser. We report on the performance of these 3D modules, in particular the noise at 40 MHz which constitutes a measurement of the effective detector capacitance. Conclusions about options for using 3D SSD detectors for tracking at the sLHC are drawn.

  12. CR-39 plastic nuclear track detector and its application in nuclear science

    International Nuclear Information System (INIS)

    Zhai Pengji; Tang Xiaowei; Wang Long; Liang Tianjiao

    2000-01-01

    The transparent and stable plastic material CR-39 can be used as a nuclear track detector which is highly sensitive to charged particles. It can record tracks induced by protons , alphas, fission fragments and other charged particles. Among various available solid state nuclear track detectors CR-39 has the lowest deposited energy density detection-threshold. The response of CR-39 to charged particles and the response curve of υ T of different charged particles to REL are given. The CR-39 detector is widely used in studies of nuclear reactions, angular distributions and reaction cross-sections caused by neutrons and charged particles. Neutron spectra, over a wide energy range, can be measured by the combination of CR-39 and a transformation screen. The successful applications of CR-39 in alpha particle dosimetry, environmental science (especially in the measurement of radon) and in biomedicine, such as the analysis of alpha radioactivity in sections of organic tissues, are described

  13. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  14. Measurement of accelerator-based neutron distributions using nuclear track detectors

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R.

    2000-01-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n) 4 He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within ±4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons

  15. Measurement of accelerator-based neutron distributions using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R

    2000-12-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n){sup 4}He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within {+-}4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons.

  16. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  17. Degradation of silicon AC-coupled microstrip detectors induced by radiation

    Science.gov (United States)

    Bacchetta, N.; Bisello, D.; Canali, C.; Fuochi, P. G.; Gotra, Y.; Paccagnella, A.; Verzellesi, G.

    1993-12-01

    Results are presented showing the radiation response of AC-coupled FOXFET biased microstrip detectors and related test patterns to be used in the microvertex detector of the CDF experiment at Fermi National Laboratory. Radiation tolerance of detectors to gamma and proton irradiation has been tested, and the radiation-induced variations of the DC electrical parameters have been analyzed. The long-term postirradiation behavior of detector characteristics has been studied, and the relevant room-temperature annealing phenomena have been examined. The main radiation damage effects after gamma or proton irradiation of FOXFET biased microstrip detectors consist of an increase in the total leakage current, while both the detector dynamic resistance and FOXFET switching voltage decrease.

  18. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  19. A Novel Generic Framework for Track Fitting in Complex Detector Systems

    OpenAIRE

    Höppner, C.; Neubert, S.; Ketzer, B.; Paul, S.

    2009-01-01

    This paper presents a novel framework for track fitting which is usable in a wide range of experiments, independent of the specific event topology, detector setup, or magnetic field arrangement. This goal is achieved through a completely modular design. Fitting algorithms are implemented as interchangeable modules. At present, the framework contains a validated Kalman filter. Track parameterizations and the routines required to extrapolate the track parameters and their covariance matrices th...

  20. Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC

    CERN Multimedia

    Kerbikov, B; Cumalat, J P; Mandic, I; Kagan, H P; Grigoriev, E; Mikuz, M; Oh, A; Martemiyanov, A; Golubev, A; Gorisek, A; Seidel, S C; Eusebi, R

    2002-01-01

    \\\\ \\\\% RD42 \\\\ \\\\Diamond, grown in a chemical vapour deposition process, can be used as a particle detector. The RD42 collaboration investigates its application in experiments at the Large Hadron Collider for particle tracking very close to the interaction region. Diamond is known to be radiation hard, in particular to photons and electrons up to at least 100 MRad. Irradiations with pions, protons and neutrons at room temperature show that diamond can resist higher fluences than silicon devices. An irradiation with 24 GeV/c protons on diamond samples shows no degradation up to fluences of 1 x 10$^{15} \\emph{p}$/cm$^{2}$ and a decrease in signal of only 40\\% at 5 x 10$^{15} \\emph{p}$/cm$^{2}$.\\\\ \\\\The signal response to a minimum ionizing particle in the best diamond samples is 9000 electon-hole-pairs which corresponds to a charge collection distance of 250 $\\mu$m.\\\\ \\\\Diamond strip detectors with sizes from 1 x 1 cm$^{2}$ to 2 x 4 cm$^{2}$ are routinely tested in particle beams using low noise VA readout elec...

  1. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  2. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  3. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  4. Radon detection in soils by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1986-01-01

    The solid state nuclear track detectors technique was developed to be used in radon detection, by alpha particles tracks, and its application in uranium prospecting on the ground. The sensitive films to alpha particles used are the cellulose nitrate films LR 115 and CA 8015. Several simulations experiments and field measurements were carried out to verify the method possibilities. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author) [pt

  5. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  6. Refinement of a thoron insensitive alpha track detector for environmental radon monitoring

    International Nuclear Information System (INIS)

    Davey, J.F.

    1995-01-01

    Olympic Dam Operations, a Copper/Uranium mine in the north of South Australia, currently monitors environmental radon (Rn 222) concentrations at a total of 17 sites in the area surrounding the mining lease and Roxby Downs township. During 1990 a commercial alpha track radon detector service was replaced with an on-site system resulting in lower costs, greater confidence in detector calibration, and reduction in processing time. Alpha track detectors (ATD's) are placed in triplicate at each of the 17 sites. Flow-through scintillation cell continuous radon monitors are also operated at two of these sites. Comparison of results from the two different types of monitor has raised the question of a possible thoron (Rn 220) contribution in the alpha track detectors. Laboratory experiments revealed that the diffusion membranes used in the ATD's were in fact 'transparent' to thoron. A new membrane was tested which effectively excluded thoron from the detector cup without affecting the sensitivity to radon. Field comparisons of the different membranes revealed that the thoron component was significant. Since there is only a very minor Rn220 emission from the mining operation, it is important that the monitoring be specific only to Rn222, the primary source term. The use of the new membrane will result in more accurate measurements of Rn222. 4 refs., 4 tabs., 5 figs

  7. Flame detector operable in presence of proton radiation

    Science.gov (United States)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  8. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  9. Revision of the concept of registration threshold in plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.; Grabisch, K.; Scherzer, R.; Enge, W.

    1976-01-01

    Response curves (V identical Vsub(T)/Vsub(B) versus REL) of various plastic track detectors (CN, CA, PC, PET) were determined in the region of relatively low etching rate ratios V. Comparative investigations made it clear thay the registration threshold concept needs revision. It was found that for most of the commercial plastics the V(REL) curves can be well described by the relation V = 1 + αRELsup(β), where the power index is about 3 within a limit +- 10% for pure materials. With CN the situation proved to be more complex in the presence of a relatively large amount of camphor in the matrix of the detector. For the interpretation of the observed shape of the V(REL) curves, a theoretical model similar to the one that is used to describe the survival curves of irradiated biological objects, was proposed. Experiments performed for a better understanding of the nature of the radiation-damage in plastics yielded a simple relation REL = const x √D between the REL value of nuclei and the volume dose D deposited by accelerated electron beams, which produced equivalent chemical etchability in the irradiated plastics. (orig./ORU) [de

  10. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  11. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  12. Synchrotron radiation and multichannel detectors in structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokulskii, M

    1979-10-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO/sub 2/ as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels.

  13. Synchrotron radiation and multichannel detectors in structural analysis

    International Nuclear Information System (INIS)

    Mokulskij, M.

    1979-01-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO 2 as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels. (J.B.)

  14. SLHC upgrade plans for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Sicho, Petr

    2009-01-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R and D activities, such as investigations towards novel detector geometries and novel processes.

  15. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  16. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  17. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1972-01-01

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  18. Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ncbj.gov.pl [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland); Szydlowski, A.; Jaskola, M.; Korman, A.; Malinowski, K.; Kuk, M. [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Each new batch of PM-355 material should be carefully calibrated. Black-Right-Pointing-Pointer The detectors heated at a temperature higher than 100 Degree-Sign C demonstrate v nearly equal to 1. Black-Right-Pointing-Pointer The dependence of V{sub B} on the temperature is similar to the dependence of V{sub B} on the dose of electron and gamma radiation. Black-Right-Pointing-Pointer The aging effect of these materials also has a significant influence on the track diameter. - Abstract: This paper describes calibration studies of PM-355 detectors manufactured at different times in order to compare their sensitivity to the investigated ions. These studies were motivated by the application of solid-state nuclear track detectors (SSNTDs) in fusion experiments to measure energetic ions escaping from high-temperature plasmas. The CR-39 detector and its new versions such as PM-355, PM-500, PM-600 have been examined for several years at our institute. The PM-355 plastic appeared to be the best, especially for the detection of light ions. However, to use these detectors optimally, especially in spectroscopic measurements, each new batch of PM-355 material should be carefully calibrated. In high temperature plasma experiments the detectors operate under harsh conditions of high temperature, heat impact, intense X-ray, neutron and fast electron radiation. In order to evaluate the effect of these conditions on the crater formation process, some of the {alpha} particle- and proton-irradiated PM-355 detector samples were heated in an oven and then etched and scanned. Other alpha- and proton-irradiated samples were exposed to {gamma} and electron radiation of doses varying from 100 to 2000 kGy. The irradiated samples were then etched in steps and the bulk etching rate v{sub B} of the PM-355 material was determined. The craters induced by the projectiles in both heated and {gamma} and electron irradiated samples differ considerably from the

  19. Track based alignment of the Mu3e detector

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, Ulrich [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mu3e experiment searches for the lepton flavor violating decay μ{sup +} → e{sup +}e{sup -}e{sup +} with a sensitivity goal for the branching fraction of better than 10{sup -16}. This process is heavily supressed in the standard model of particle physics (BR < 10{sup -50}) which makes an observation of this decay a clear indication of new physics. For track reconstruction, four barrel shaped layers consisting of about 3000 high-voltage monolithic active pixel sensors (HV-MAPS) are used. The position, orientation and possible deformations of these sensors must be known to greater precision than the assembly tolerances. A track based alignment via the General Broken Lines fit and the Millepede-II algorithm will be used to achieve this precision in the final detector. The talk discusses a study of the required alignment precision and preparations for aligning the detector using a detailed simulation.

  20. Long-distance transmission of light in a scintillator-based radiation detector

    Science.gov (United States)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  1. Fast Track Finding in the ILC's Silicon Detector, SiD01

    International Nuclear Information System (INIS)

    Baker, David E.

    2007-01-01

    A fast track finder is presented which, unlike its more efficient, more computationally costly O(n3) time counterparts, tracks particles in O(n) time (for n being the number of hits). Developed as a tool for processing data from the ILC's proposed SiD detector, development of this fast track finder began with that proposed by Pablo Yepes in 1996 and adjusted to accommodate the changes in geometry of the SiD detector. First, space within the detector is voxellated, with hits assigned to voxels according to their r, φ, and η coordinates. A hit on the outermost layer is selected, and a 'sample space' is built from the hits in the selected hit's surrounding voxels. The hit in the sample space with the smallest distance to the first is then selected, and the sample space recalculated for this hit. This process continues until the list of hits becomes large enough, at which point the helical circle in the x, y plane is conformally mapped to a line in the x', y' plane, and hits are chosen from the sample spaces of the previous fit by selecting the hits which fit a line to the previously selected points with the smallest χ 2 . Track finding terminates when the innermost layer has been reached or no hit in the sample space fits those previously selected to an acceptable χ 2 . Again, a hit on the outermost layer is selected and the process repeats until no assignable hits remain. The algorithm proved to be very efficient on artificial diagnostic events, such as one hundred muons scattered at momenta of 1 GeV/c to 10 GeV/c. Unfortunately, when tracking simulated events corresponding to actual physics, the track finder's efficiency decreased drastically (mostly due to signal noise), though future data cleaning programs could noticeably increase its efficiency on these events

  2. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  3. Triton, deuteron and proton responses of the CR-39 track detector

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Tomoya; Matsumoto, Hiroyoshi; Oda, Keiji [Kobe Univ. of Mercantile Marine (Japan)

    1996-07-01

    In the present study, we assessed the response of the CR-39 detector to proton, deuteron and triton from their etch-pit growth curves obtained by multi-step etching technique and the difference among their track registration properties was discussed. In order to avoid incorrect evaluation due to the missing track effect, particle irradiation was performed at various incident energies. The response function, S(R), etch rate ratio, S, as a function of the residual range, R, was experimentally evaluated for all hydrogen isotopes by this method. In the next, we obtained another form of response functions of S(E), S({beta}) and S(LET{sub 200}), which were presented as functions of the particle energy, E, the particle velocity, {beta}(=v/c), and the linear energy transfer in the case where the cut-off energy is 200 eV, LET{sub 200}, respectively. These information will be useful also in understanding the fundamentals of the latent track formation mechanism in the plastic track detectors. (J.P.N.)

  4. Experimental studies of radiation damage of silicon detectors

    International Nuclear Information System (INIS)

    Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A.; Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A.; Biggeri, U.; Borchi, E.; Bruzzi, M.; Li, Z.; Kraner, H.W.

    1994-02-01

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences

  5. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    International Nuclear Information System (INIS)

    Horisberger, R.

    1990-01-01

    It is proposed to combine the technology of fully depleted microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. The resulting structure has amplifying properties and is referred to as bipaolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking. (orig.)

  6. A method for the measurement of fission rates in fast neutron fields using solid state track detectors

    International Nuclear Information System (INIS)

    Hansen, W.; Vogel, W.

    1984-04-01

    Solid state track detectors (SSTDs) are increasingly used for the registration of radiation in different fields of nuclear physics. Because of their small sizes and masses and the absence of any electronics during exposure SSTDs do not cause distortions in the system to be investigated and are useful for measurements at such places being difficult of access. The elaboration of a method is described for fission rate measurements in fast neutron fields applying SSTDs and different fissionable isotopes which were electrodeposited on stainless steel backings. Experiences of the electrodeposition and results of quality checks are presented. The evaluation of the etched tracks is performed with spark counter technique. The dependence of the counting result on essential influence parameters is discussed. (author)

  7. Characterization of CR 39 nuclear track detector for use as a radon/thoron dosemeter

    International Nuclear Information System (INIS)

    Kandaiya, S.

    1988-02-01

    For the estimation of radon, thoron and their short-lived daughter products in air radon diffusion chambers with passive α-track etch detectors have been used. The report describes the properties of CR 39 track etch detectors in particular with respect to the spectrometric detection of α-particles in the energy range up to 8.77 MeV using chemical and a combination of chemical-electrochemical etching technique. In order to optimize the etching conditions for an α-energy discrimination in the energy range up to 8.77 MeV, the ECE track size diameter and the track density have been investigated as a function of the chemical pre-etching time using three electrical field strengths. In a mixed α-spectrum the contributions of various α-particles with energies between 4.6 to 8.77 MeV have been determined experimentally in CR 39 and compared with the spectral measurement using a surface barrier detector and the same irradiation geometry. Beside CR 39 detectors etched chemically and electrochemically, in addition surface barrier detectors and a Monte Carlo calculation have been used to evaluate the α-energy spectrum for thoron and its daughter products emitted by α-decays in the air volume and the plate-out of daughters at the inner surface on the diffusion chamber. (orig./HP) [de

  8. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  9. Critical angles for fission fragment registrations in some solid state track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others

    1980-03-01

    In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.

  10. CMS detector tracking performance in Run-II

    CERN Document Server

    Brondolin, Erica

    2017-01-01

    Since the start of Run-II in June 2015, LHC has delivered pp collisions at a center of mass energy of 13TeV and with a bunch time separation of 25 ns. On avarage, more than 25 inelastic collisions are superimposed on the event of interest. Under these new conditions, the CMS collaboration has re-calibrated and verified the performance of the whole detector. In particular, the CMS tracking performance has been measured both directly and indirectly. Direct measurements are, among others, the beam spot determination, the vertex resolution and the muon reconstruction efficiency with the tag and probe technique. An indirect assessment can be given by the pion reconstruction efficiency and the low-mass resonance parameters as a function of different single track kinematics.

  11. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  12. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  13. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  14. Analysis of changes in environmental radiation, and three types of environmental radiation detector performance comparisons

    International Nuclear Information System (INIS)

    Park, J.H; Seo, J.H; Park, S.M; Yu, B.N; Park, J.H; Joo, K.S

    2013-06-01

    High-pressure ion chamber (GE Reuter-Stokes, HPIC), accuracy is high but the high price and do not have the ability nuclide analysis is a disadvantage. NaI(Tl) and PMT scintillation detector of radioactive materials can be divided. Environmental radiation measurements using a semiconductor with SiPM detector PMT to replace the value of the results were compared. SiPM detector using radiation environment were measured in the field to verify the accuracy and energy resolution. SiPMs performance as environmental radiation measurement equipment and radioactive material distinction as a personal dosimeter based technology, using the above results were prepared. The interest on the environmental radiation due to the Fukushima power plant crisis in Japan has been growing concern about the radiation environment of the relatively close proximity Korea is a very heightened state. Could be confirmed in the radiation environment of nuclear power plants around the analysis and performance of the next generation of environmental radiation meter. Fukushima power plants accident after 2 years, the equipment installed by this analysis meets the performance as a radiation detector could be confirmed as follows. CANA Inc. developed by radionuclides classification of using man-made and natural radionuclides and man-made radionuclides separated, ensure the value of the results were analyzed. Could be and alternative to the conventional detector energy resolution ( 137 CS<15%) and linearity (<15%) to satisfy the performance requirements of the measurement result of environmental radiation detector is considered. SiPM radiation environment changes and HPIC and NaI(TI) scintillation detector installed in Korea of the Fukushima power plant after the accident, radiation environment using a small alternative was to verify the accuracy of the measuring equipment. A big difference in performance as invisible by comparison with the large detector Assay miniaturization rough as a personal

  15. Track formation. Principles and applications

    International Nuclear Information System (INIS)

    Monnin, M.

    1978-01-01

    The principles and technical aspects of track formation in insulating solids are first described. The characteristics of dialectic track detection are discussed from the technical point of view: the nature of the detectors, the chemical treatment, the sensitivity and the environmental conditions of use. The applications are reviewed. The principle of each type of applied research is described and then the applications are listed. When used as a detector, nuclear tracks can provide valuable information in a number of fields: element content determination and wrapping, imaging, radiation dosimetry, environmental studies, technological uses and miscellaneous other applications. The track-formation process can also be used for making well-defined holes; this method allows other applications which are also described. Finally, some possible future applications are mentioned. (author)

  16. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Ricabarra, M.D. Bovisio de; Waisman, Dina.

    1979-08-01

    Distribution of fissions in a UO 2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO 2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO 2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author) [es

  17. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  18. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  19. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  20. Radiation damage studies for the D0 silicon detector

    International Nuclear Information System (INIS)

    Lehner, F.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  1. Track detectors in particle accelerator environment: an overview on existing and new methods

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Sarkar, P.K.

    2011-01-01

    The advent of high energy, high intensity particle accelerators, with increasing applications in various fields has lead to the involvement of more users and operators. The complex (secondary) radiation field in an accelerator environment, generated by the primary beam hitting a target, is highly directional, dynamic, pulsed and mixed in nature, which poses a unique challenge for the radiological safety aspects, specially the neutrons contributing to a significant dose even beyond the shields. Solid polymeric track detectors (SPTDs), due to their insensitivity to low LET radiations and integrating nature of signal registration, are found to be effective and convenient for neutron measurements. This paper reviews some of the existing and frequently used methods of neutron spectrometry and dosimetry using SPTDs and explores new approaches as well. The paper elaborates on the extended energy response and rapid etching techniques of SPTDs along with some new results. An overview on the recently introduced microwave-induced chemical etching (MICE) technique is also presented. (author)

  2. Design, construction, and operation of SciFi tracking detector for K2K experiment

    International Nuclear Information System (INIS)

    Suzuki, A.; Park, H.; Aoki, S.; Echigo, S.; Fujii, K.; Hara, T.; Iwashita, T.; Kitamura, M.; Kohama, M.; Kume, G.; Onchi, M.; Otaki, T.; Sato, K.; Takatsuki, M.; Takenaka, K.; Tanaka, Y.; Tashiro, K.; Inagaki, T.; Kato, I.; Mukai, S.; Nakaya, T.; Nishikawa, K.; Sasao, N.; Shima, A.; Yokoyama, H.; Chikamatsu, T.; Hayato, Y.; Ishida, T.; Ishii, T.; Ishino, H.; Jeon, E.J.; Kobayashi, T.; Lee, S.B.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Tumakov, V.; Fukuda, S.; Fukuda, Y.; Ishizuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Okada, A.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, H.; Takeuchi, Y.; Totsuka, Y.; Toshito, T.; Yamada, S.; Miyano, K.; Nakamura, M.; Tamura, N.; Nakano, I.; Yoshida, M.; Kadowaki, T.; Kishi, S.; Yokoyama, H.; Maruyama, T.; Etoh, M.; Nishijima, K.; Bhang, H.C.; Khang, B.H.; Kim, B.J.; Kim, H.I.; Kim, J.H.; Kim, S.B.; So, H.; Yoo, J.H.; Choi, J.H.; Jang, H.I.; Jang, J.S.; Kim, J.Y.; Lim, I.T.; Pac, M.Y.; Kearns, E.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Casper, D.; Gajewski, W.; Kropp, W.; Mine, S.; Sobel, H.; Vagins, M.; Matsuno, S.; Hill, J.; Jung, C.K.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Yanagisawa, C.; Berns, H.; Boyd, S.; Wilkes, J.; Kielczewska, D.; Golebiewska, U.

    2000-01-01

    We describe the construction and performance of a scintillating fiber detector used in the near detector for the K2K (KEK to Kamioka, KEK E362) long baseline neutrino oscillation experiment. The detector uses 3.7 m long and 0.692 mm diameter scintillating fiber coupled to image-intensifier tubes (IIT), and a CCD camera readout system. Fiber sheet production and detector construction began in 1997, and the detector was commissioned in March 1999. Results from the first K2K runs confirm good initial performance: position resolution is estimated to be about 0.8 mm, and track finding efficiency is 98±2% for long tracks (i.e., those which intersect more than 5 fiber planes). The hit efficiency was estimated to be 92±2% using cosmic-ray muons, after noise reduction at the offline stage. The possibility of using the detector for particle identification is also discussed

  3. Silicon detectors for tracking and vertexing

    International Nuclear Information System (INIS)

    Nomerotski, Andrei

    2009-01-01

    This review covers recent developments in silicon detectors used for particle physics experiments for the tracking and vertexing systems. After a general introduction the main focus of the report is on new challenges for this field posed by requirements of the future generation machines. Technologies reviewed in more detail are column parallel CCDs, DEPFET, vertical integration of sensors and electronics and several others which allow fast readout and low mass design. Important system issues such as mechanical arrangements for the sensors and power distribution, which are critical for the low mass design, are also discussed.

  4. Fast track-finding trigger processor for the SLAC/LBL Mark II Detector

    International Nuclear Information System (INIS)

    Brafman, H.; Breidenbach, M.; Hettel, R.; Himel, T.; Horelick, D.

    1977-10-01

    The SLAC/LBL Mark II Magnetic Detector consists of various particle detectors arranged in cylindrical symmetry located in and around an axial magnetic field. A versatile, programmable secondary trigger processor was designed and built to find curved tracks in the detector. The system operates at a 10 MHz clock rate with a total processing time of 34 μsec and is used to ''trigger'' the data processing computer, thereby rejecting background and greatly improving the data acquisition aspects of the detector-computer combination

  5. Online Simulation of Radiation Track Structure Project

    Science.gov (United States)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  6. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  7. Studies on neutron detection with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khouri, M.C.; Vilela, E.C.; Andrade, C. de.

    1993-03-01

    The detection of thermal and fast neutrons was studied. For thermal neutrons, alpha sensitive plastic was used in order to register the products of nuclear reactions taking place in boron and /or lithium converters. Fast neutrons produce recoil tracks within the detector. In the present case, CR-39 and Makrofol E were used. Chemical and electrochemical etching processes were used for thermal and fast neutron detectors, respectively. (F.E.). 6 refs, 4 figs, 6 tabs

  8. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    International Nuclear Information System (INIS)

    Klein-Boesing, Melanie

    2009-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm 2 . The TRD layout and the detector responses

  9. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie

    2009-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm{sup 2}. The TRD layout and the detector

  10. Particlc detectors. Foundations and applications; Teilchendetektoren. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolanoski, Hermann; Wermes, Norbert

    2016-08-01

    The following topics are dealt with: Interaction of particles with matter, motion of charge carriers in electric and magnetic fields, signal generation by moving charges, non-electronic detectors, gas-filled detectors, semiconductor detectors, track reconstruction and momentum measurement, photodetectors, Cherenkov detectors, transition-radiation detectors, scintillation detectors, particle identification, calorimeters, detection of cosmic particles, signal processing and noise, trigger and data acquisition systems. (HSI)

  11. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  12. Application of nuclear track detectors for radon related measurments

    International Nuclear Information System (INIS)

    Abu-Jarad, F.A.

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author)

  13. Performance and track-based alignment of the Phase-1 upgraded CMS pixel detector

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The Compact Muon Solenoid (CMS) detector is a multi-purpose detector constructed in order to study high-energy particle collisions at the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run 1 and Run 2 of the LHC. After the pixel detector of the CMS experiment was upgraded and installed during the shutdown in the beginning of 2017, the positions and orientations of the tracker modules needed to be determined with a precision of several micrometers. The alignment also needs to be quickly recalculated each time the state of the CMS magnet is changed between 0 T and 3.8 T. The latest results of the CMS tracker performance in the 2017 run are presented, with a special focus on alignment and resolution performance using several million reconstructed tracks from cosmic rays and collision data.

  14. Performance characteristics and radiation damage results from the Fermilab E706 silicon microstrip detector system

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Orris, D; Shepard, P F; Weerasundara, P D; Choudhary, B C; Joshi, U; Kapoor, V; Shivpuri, R; Baker, W

    1989-07-01

    A charged particle spectrometer containing a 7120-channel silicon microstrip detector system, one component of Fermilab experiment E706 to study direct photon production in hadron-hadron collisions, was utilized in a run in which 6 million events were recorded. We describe the silicon system, provide early results of track and vertex reconstruction, and present data on the radiation damage to the silicon wafers resulting from the narrow high intensity beam. (orig.).

  15. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  16. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  17. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  18. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde, Puebla (Mexico); Moreno Barbosa, F. [Hospital General del Sur Hospital de la Mujer, Puebla (Mexico)

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  19. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  20. Data acquisition for the Zeus central tracking detector

    International Nuclear Information System (INIS)

    Quinton, S.; Allen, D.; Cambell, D.; Mcarthur, I.

    1990-01-01

    The Zeus experiment is being installed on the Hera electron-proton collider being built at the Desy laboratory in Hamburg. The high-beam crossover rate of the Hera machine will provide experience in data acquisition and triggering relevant to the environment of future accelerators such as the SSC. The Transputer-based data acquisition system for the Zeus central tracking detector is described

  1. The FCMM, a Fastbus Control and Memory Module for readout of the DELPHI SAT track detector

    International Nuclear Information System (INIS)

    Wikne, J.C.; Skaali, B.

    1990-02-01

    The Small Angle Tagger (SAT) in the DELPHI experiment at CERN concists of detector units placed close to the beam on both sides of the interaction point. The track detector part of the SAT is built of Si-strip detectors where position can be measured to an accurancy of 1 mm in the radial direction. A specially developed Fastbus module for reading and front end buffering of the data from the track detector is decribed in the report. The description is intended as a complete technical manual for the module. 13 refs.; 27 figs

  2. Radiation field mapping using a mechanical-electronic detector

    Energy Technology Data Exchange (ETDEWEB)

    Czayka, M., E-mail: mczayka@kent.ed [College of Technology, Kent State University-Ashtabula 3300 Lake Road West, Ashtabula, OH 44004 (United States); Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); Fisch, M. [Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); College of Technology, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States)

    2010-04-15

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  3. Alpha-particle autoradiography by solid state track detectors to spatial distribution of radioactivity in alpha-counting source

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Koizumi, Akira; Miyamoto, Katsuhiro

    1989-01-01

    A technique of autoradiography using solid state track detectors is described by which spatial distribution of radioactivity in an alpha-counting source can easily be visualized. As solid state track detectors, polymer of allyl diglycol carbonate was used. The advantage of the present technique was proved that alpha-emitters can be handled in the light place alone through the whole course of autoradiography, otherwise in the conventional autoradiography the alpha-emitters, which requires special carefulness from the point of radiation protection, must be handled in the dark place with difficulty. This technique was applied to rough examination of self-absorption of the plutonium source prepared by the following different methods; the source (A) was prepared by drying at room temperature, (B) by drying under an infrared lamp, (C) by drying in ammonia atmosphere after redissolving by the addition of a drop of distilled water which followed complete evaporation under an infrared lamp and (D) by drying under an infrared lamp after adding a drop of diluted neutral detergent. The difference in the spatial distributions of radioactivity could clearly be observed on the autoradiographs. For example, the source (C) showed the most diffuse distribution, which suggested that the self-absorption of this source was the smallest. The present autoradiographic observation was in accordance with the result of the alpha-spectrometry with a silicon surface-barrier detector. (author)

  4. Effect of radiation on the electrical properties of plastic detector CR-39

    International Nuclear Information System (INIS)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M.

    1994-01-01

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses

  5. Effect of radiation on the electrical properties of plastic detector CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M. (Physics Department Faculty of Science, Alexandria University, Alexandria (Egypt))

    1994-10-15

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses.

  6. Vacuum effect on the etch induction time and registration sensitivity of polymer track detectors

    International Nuclear Information System (INIS)

    Csige, I.; Hunyadi, I.; Somogyi, G.

    1988-01-01

    The effect of a vacuum on etch induction time and track etch rate ratio of some polymer track detectors was studied systematically with alpha particles of different energies. It was found that the etch induction time increases, and the track etch rate ratio decreases, drastically when the detectors were irradiated in a vacuum and also kept in a vacuum for a few hours before and for a few minutes after the irradiation. These times proved to be characteristic for the outgassing of oxygen from the sheets and the stabilization of latent tracks, respectively. The role of oxygen in latent track formation is discussed. We have found that the vacuum effect is most significant near the surface. Its diminution with depth depends on the time of outgassing in accordance with the time variation of the dissolved oxygen concentration profile inside the sheets. (author)

  7. Vacuum effect on the etch induction time and registration sensitivity of polymer track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Csige, I.; Hunyadi, I.; Somogyi, G. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete); Fujii, M. (Institute of Space and Astronautical Science, Sagamihara (Japan))

    1988-01-01

    The effect of a vacuum on etch induction time and track etch rate ratio of some polymer track detectors was studied systematically with alpha particles of different energies. It was found that the etch induction time increases, and the track etch rate ratio decreases, drastically when the detectors were irradiated in a vacuum and also kept in a vacuum for a few hours before and for a few minutes after the irradiation. These times proved to be characteristic for the outgassing of oxygen from the sheets and the stabilization of latent tracks, respectively. The role of oxygen in latent track formation is discussed. We have found that the vacuum effect is most significant near the surface. Its diminution with depth depends on the time of outgassing in accordance with the time variation of the dissolved oxygen concentration profile inside the sheets. (author).

  8. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  9. Study etching characteristics of a track detector CR-39 with ultraviolet laser irradiation

    International Nuclear Information System (INIS)

    Dwaikat, Nidal; Iida, Toshiyuki; Sato, Fuminobu; Kato, Yushi; Ishikawa, Ippei; Kada, Wataru; Kishi, Atsuya; Sakai, Makoto; Ihara, Yohei

    2007-01-01

    The effect of pulsed ultraviolet Indium-doped Yttrium Aluminum Garnet (UV-In:YAG) laser of λ=266 nm, pulse energy 42 mJ/pulse at repetition rate10 Hz on the etching characteristics of Japanese CR-39 was studied at various energy intensities. Fifteen detectors were divided into two sets, each of seven samples and one sample was kept as a reference.The first set (post-exposed) was first exposed to alpha radiation with close contact to 241 Am and then treated in air with laser in the energy intensity range from 40 to160 J/cm 2 , 20 J/cm 2 in step. The second set (pre-exposed) was irradiated in reverse process (laser+alpha) with the same sources as the first set and under the same condition. The laser energy intensities ranged between 20 and 140 J/cm 2 , 20 J/cm 2 in step. For post-exposed samples (alpha+laser) bulk etch rate decreases up to 60 J/cm 2 and increases thereafter, while for pre-exposed samples (laser+alpha) the bulk etch rate oscillates without showing any precise periodicity. The bulk etch rate for both sets was found to be the same at 60≤energy intensity≤80 J/cm 2 and this may indicate that the same structural changes have happened. The track etch rate was found to be equal to the bulk etch rate for both sets, so the sensitivity is constant. In both sets several changes on the detector surfaces: tracks of different sizes and shapes and high density within the laser spot were observed. Out of the laser spot, the tracks become larger and lower density, indicating cross-linking and scission have happened, simultaneously, on the same surface as a result of UV-laser irradiation

  10. Radiation damage in barium fluoride detector materials

    International Nuclear Information System (INIS)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF 2 , both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF 2 they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with 60 C0 gamma rays. Doses of 10 6 rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF 2 develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials

  11. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  12. Applications of solid-state nuclear track detectors (SSNTDs) for fast ion and fusion reaction product measurements in TEXTOR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A.; Malinowski, K.; Malinowska, A. [Association EURTOM-IPPLM Warsaw, The Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Wassenhove, G. Van [EURATOM-Belgium State Association, LPP, ERM/KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Schweer, B. [Association EURATOM-FZJ, Institutte of Plasma Physicx, Juelich (Germany)

    2011-07-01

    of Fusion- Reaction Protons', AIP Conf. Proc. Vol. 993 (2008) 247; [2] A. Szydlowski, A. Malinowska, M.J. Sadowski, M. Jaskola, A. Korman, G. Van Wassenhove, G. Bonheure, B. Schweer and the TEXTOR team, A. Galkowski, K. Malek, 'Measurement of fusion-reaction protons in TEXTOR tokamak plasma by means of solid-state nuclear track detectors of the CR-39/PM-355 type', Radiat. Meas. Vol. 43 (2008) S290-S294. (authors)

  13. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  14. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos, F.Santos Pedrosa; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Guimara, J.Barreiro; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Urban, S.Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernadez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El, R.Moursli; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muino, P.Conde; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro, P.E.Faria Salgado; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira, M.Branco; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Do Valle, A.Wemans; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J.E.Garcia; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Plante, I.Jen-La; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook, A.Cheong; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Dit Latour, B.Martin; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llacer, M.Moreno; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos, D.Santos; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R.D.St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires, F.J.Viegas; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Pastor, E.Torro; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G.Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  15. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  16. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1998-01-01

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  17. The design of intelligentized nuclear radiation monitoring detector

    International Nuclear Information System (INIS)

    Meng Yan; Fang Zongliang; Wen Qilin; Li Lirong; Hu Jiewei; Peng Jing

    2010-01-01

    This paper introduced an intelligentized nuclear radiation monitoring detector. The detector contains GM tubes, high voltage power supply and MCU circuit. The detector connect terminal via reformative serial port to provide power, accept the data and sent the command. (authors)

  18. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  19. Proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications: abstracts and souvenir

    International Nuclear Information System (INIS)

    Patel, Gaurang; Kishore, Sangeeta; Patel, Purvi

    2011-10-01

    The proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications (SSNTD-17) contains a number of research papers on different areas of solid state nuclear track detectors. It provides a common scientific platform to the scientists for sharing their knowledge and reviews the present state-of-art and advancements in the field of solid state nuclear track detectors and their applications and also some aspects of nuclear energy. Papers relevant to INIS are indexed separately

  20. Proceedings of the twentieth national conference on solid state nuclear track detectors and their applications: abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    Solid State Nuclear Track Detectors (SSNTDs) - A class of passive detectors, developed by R.L. Fleischer, P.B. Price and R.M. Walker in the early 1960s have found numerous applications in various fields of science and technology. SSNTDs have been recognized as very potential and effective tools in exploring various areas of research. The intrinsic features of SSNTDs like low cost , availability, versatility and their remarkable stability have contributed to applications in a wide range of fields opening up new vistas which were practically unthinkable and unbelievable about a decade or two ago. Apart from the direct applications of far reaching consequences in nuclear physics, other areas as diverse as bio-medical sciences, cosmic rays and space physics, environmental research, geochronology and geophysics, materials sciences, lunar science, meteorites and tektites; microanalysis, mine safety, nuclear technology, uranium prospecting and most recently nano/micro technology etc., have been greatly influenced by SSNTDs. They have a very important role to play in radiation measurement, micro technology and dosimetry and thus are potential enough in spreading awareness about the radiation environment and its impact on the general public and the academic peers. In order to disseminate the knowledge generated in this fast growing field, there is a need to bring material science and radiation community on a common platform and discuss various operational and radiation protection aspects. Papers relevant to INIS are indexed separately

  1. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    CERN Document Server

    Meesen, G; Gestel, S V; Oostveldt, P V

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances.

  2. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.; Gestel, S. van; Oostveldt, P. van

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances

  3. Monopole-track characteristics in plastic detectors

    Science.gov (United States)

    Ahlen, S. P.

    1976-01-01

    Total and restricted energy loss rates are calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted-energy-loss model is used to estimate the appearance of a monopole track in plastic detectors. The results are applied to the event observed by Price et al. and identified by them as a monopole. It is found that the observed etch rate is consistent with what one would expect for a slow magnetic monopole. These results should also be of use to other investigators for both the design and analysis of monopole experiments.

  4. Mathematical framework for fast and rigorous track fit for the ZEUS detector

    Energy Technology Data Exchange (ETDEWEB)

    Spiridonov, Alexander

    2008-12-15

    In this note we present a mathematical framework for a rigorous approach to a common track fit for trackers located in the inner region of the ZEUS detector. The approach makes use of the Kalman filter and offers a rigorous treatment of magnetic field inhomogeneity, multiple scattering and energy loss. We describe mathematical details of the implementation of the Kalman filter technique with a reduced amount of computations for a cylindrical drift chamber, barrel and forward silicon strip detectors and a forward straw drift chamber. Options with homogeneous and inhomogeneous field are discussed. The fitting of tracks in one ZEUS event takes about of 20ms on standard PC. (orig.)

  5. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  6. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  7. Radiation damage: special reference to gas filled radiation detectors

    International Nuclear Information System (INIS)

    Gaur, Sudha; Joshi, Pankaj Kumar; Rathore, Shakuntla

    2012-01-01

    Radiation damage is a term associated with ionizing radiation. In gas filled particle detectors, radiation damage to gases plays an important role in the device's ageing, especially in devices exposed to high intensity radiation, e.g. detector for the large hadrons collide. Ionization processes require energy above 10 eV, while splitting covalent bond in molecules and generating free radical require only 3-4 eV. The electrical discharges initiated by the ionization event by the particles result in plasma populated by large amount of free radical. The highly reactive free radical can recombine back to original molecules, or initiate a chain of free radical polymerization reaction with other molecules, yielding compounds with increasing molecular weight. These high molecular weight compounds then precipitate from gases phase, forming conductive or non-conductive deposits on the electrodes an insulating surfaces of the detector and distorting it's response. Gases containing hydrocarbon quenchers, e.g. argon-methane, are typically sensitive to ageing by polymerization; addition of oxygen tends to lower the ageing rates. Trace amount of silicon oils, present form out gassing of silicon elastomers and especially from traces of silicon lubricant tend to decompose and form deposits of silicon crystals on the surfaces. Gases mixture of argon (or xenon) with CO 2 and optimally also with 2-3 % of oxygen are highly tolerant to high radiation fluxes. The oxygen is added as noble gas with CO 2 has too high transparency for high energy photons; ozone formed from the oxygen is a strong absorber of ultra violet photons. Carbon tetra fluoride can be used as a component of the gas for high-rate detectors; the fluorine radical produced during the operation however limit the choice of materials for the chambers and electrodes (e.g. gold electrodes are required, as the fluorine radicals attack metals, forming fluorides). Addition of carbon tetra fluoride can however eliminate the

  8. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  9. Radiation damage to DNA: The importance of track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that biological response to radiation is not always restricted to the 'hit' cell but can sometimes be induced in 'un-hit' cells near by

  10. Track fitting and resolution with digital detectors

    International Nuclear Information System (INIS)

    Duerdoth, I.

    1982-01-01

    The analysis of data from detectors which give digitised measurements, such as MWPCs, is considered. These measurements are necessarily correlated and it is shown that the uncertainty in the combination of N measurements may fall faster than the canonical 1/√N. A new method of track fitting is described which exploits the digital aspects and which takes the correlations into account. It divides the parameter space into cells and the centroid of a cell is taken as the best estimate. The method is shown to have some advantages over the standard least-squares analysis. If the least-squares method is used for digital detectors the goodness-of-fit may not be a reliable estimate of the accuracy. The cell method is particularly suitable for implementation on microcomputers which lack floating point and divide facilities. (orig.)

  11. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  12. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  13. Measuring variation of indoor radon concentration using bare nuclear tracks detectors, scintillation counters and surface barrier detectors

    International Nuclear Information System (INIS)

    Ishak, I.; Mahat, R.H.; Amin, Y.M.

    1996-01-01

    Bare LRI 15 nuclear track detectors , scintillators counter and surface barrier detectors were used to measured the indoor radon concentration in various location within two rooms. Spatial variation of the radon concentration is caused by positioning of the door, windows, furniture, cracks in the building and also distances from floor, wall and ceiling. It is found that the change in temperature are causing radon concentration to increase at certain time of the day

  14. Application of Rossi-type detectors in radiation protection

    International Nuclear Information System (INIS)

    Menzel, H.G.; Hartmann, G.H.; Krauss, O.; Deutsches Krebsforschungszentrum, Heidelberg

    1983-01-01

    Rossi-type detectors can measure the energy dose and the pertinent quality factor simultaneously and independent of the radiation. This is possible because these detectors are able to measure the energy as well as the LET distribution of the measured radiation. The quality factor is then calculated on this basis. The principle of measurement, problems and solutions are discussed. (orig./HP) [de

  15. Counting radon tracks in Makrofol detectors with the 'image reduction and analysis facility' (IRAF) software package

    International Nuclear Information System (INIS)

    Hernandez, F.; Gonzalez-Manrique, S.; Karlsson, L.; Hernandez-Armas, J.; Aparicio, A.

    2007-01-01

    Makrofol detectors are commonly used for long-term radon ( 222 Rn) measurements in houses, schools and workplaces. The use of this type of passive detectors for the determination of radon concentrations requires the counting of the nuclear tracks produced by alpha particles on the detecting material. The 'image reduction and analysis facility' (IRAF) software package is a piece of software commonly used in astronomical applications. It allows detailed counting and mapping of sky sections where stars are grouped very closely, even forming clusters. In order to count the nuclear tracks in our Makrofol radon detectors, we have developed an inter-disciplinary application that takes advantage of the similitude that exist between counting stars in a dark sky and tracks in a track-etch detector. Thus, a low cost semi-automatic system has been set up in our laboratory which utilises a commercially available desktop scanner and the IRAF software package. A detailed description of the proposed semi-automatic method and its performance, in comparison to ocular counting, is described in detail here. In addition, the calibration factor for this procedure, 2.97+/-0.07kBqm -3 htrack -1 cm 2 , has been calculated based on the results obtained from exposing 46 detectors to certified radon concentrations. Furthermore, the results of a preliminary radon survey carried out in 62 schools in Tenerife island (Spain), using Makrofol detectors, counted with the mentioned procedure, are briefly presented. The results reported here indicate that the developed procedure permits a fast, accurate and unbiased determination of the radon tracks in a large number of detectors. The measurements carried out in the schools showed that the radon concentrations in at least 12 schools were above 200Bqm -3 and, in two of them, above 400Bqm -3 . Further studies should be performed at those schools following the European Union recommendations about radon concentrations in buildings

  16. Fast simulation of the forward tracking detector of HPLUS

    International Nuclear Information System (INIS)

    Zhang Yapeng; Fan Ruirui; Fu Fen; Yue Ke; Yuan Xiaohua; Xu Huagen; Chinese Academy of Sciences, Beijing; Yao Nan; Xu Hushan; Jin Genming; Liang Jinjie; Chen Ruofu; Sun Zhiyu; Duan Limin; Xiao Zhigang; Tsinghua Univ., Beijing

    2008-01-01

    The necessity of installing a forward tracking detector stack is discussed for the Hadron Physics Lanzhou Spectrometer(HPLUS). A local tracker is developed to solve the multi-track finding problem. The track candidates are searched iteratively via Hough Transform. The fake tracks are removed by a least square fitting process. With this tracker we have studied the feasibility of pp→pp+φ(→K + K - ), a typical physical channel proposed on HPLUS. The single track momentum resolution due to the uncertainty of the positioning in FTD is 1.3%. The multiple scattering effect contributes about 20% to the momentum resolution in the FTD coverage. The width and the signal-to-background ratio of the reconstructed φ are 1.51 MeV and 4.36, respectively, taking into account the direct Kaon channel pp→pp+K + K - as background. The geometry coverage of FTD for qb events is about 85.4%. Based on the current fast simulation and estimation, the geometrical configuration of FTD meets the physical requirement of HPLUS under the current luminosity and multiplicity conditions. The tracker is applicable in the full simulation coming next and is extendable to other tracking component of HPLUS. (authors)

  17. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  18. Measuring depths of sub-micron tracks in a CR-39 detector from replicas using Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Yu, K.N.; Ng, F.M.F.; Nikezic, D.

    2005-01-01

    One of the challenging tasks in the application of solid-state nuclear track detectors (SSNTDs) is the measurement of the depth of the tracks, in particular, the shallow ones resulting from short etching periods. In the present work, a method is proposed to prepare replicas of tracks from α particles in the CR-39 SSNTDs and to measure their heights using atomic force microscopy (AFM). After irradiation, the detectors were etched in a 6.25N aqueous solution of NaOH maintained at 70 deg. C. The etched detectors were immersed into a beaker of the replicating fluid, which was placed in a water bath under ultrasonic vibration and maintained at room temperature to facilitate the filling of the etched tracks with the replicating fluid. As an example of application, these results have been used to derive a V function for the CR-39 detectors used in the present study (for the specified etching conditions)

  19. Particularization of alpha contamination using CR-39 track detectors

    Indian Academy of Sciences (India)

    detecting devices and as a passive system to detect alpha contamination on different sur- faces. This work presents ... these plastic detectors can be cut into sizes and shapes according to the specific area that has to be ... of nuclear track materials observed under a microscope, after chemical etching for the same time and ...

  20. Development of hybrid track detector using CR39 and photographic plate

    International Nuclear Information System (INIS)

    Kuge, K.; Endo, Y.; Hayashi, K.; Iwakiri, S.; Hasegawa, A.; Yasuda, N.; Kumagai, H.

    2005-01-01

    To improve the hybrid track detector using both CR39 and silver halide photography the gold deposition development technique was applied to this. Nuclear tracks composed of gold clusters were obtained. This method has several advantages; 1. no filament formation, 2. easy control of the cluster size owing to the independence of the size of silver halide grain, 3. easy treatment of the waste solution of developer. (author)

  1. Radiation and detectors introduction to the physics of radiation and detection devices

    CERN Document Server

    Cerrito, Lucio

    2017-01-01

    This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation an...

  2. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1999-01-01

    Full text: Work carried out in 1998 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. SEMICONDUCTOR DETECTORS: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The departmental objectives are: a search for new types of detectors; producing unique detectors tailored for physics experiments; manufacturing standard detectors for radiation measuring instruments; scientific development of the staff. These objectives were accomplished in 1998 particularly by: research on unique thin silicon detectors for identification of particles in E-ΔE telescopes, modernization of technology of manufacturing Ge(Li) detectors capable of detecting broader range of gamma energies, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishment of the above the Department co-operated with groups of physicists from IPJ, PAN Institute of Physics (Warsaw), and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Ray TUBE GENERATORS: The Department conducts research on design and technology of manufacturing X-ray generators as well as on imaging and dosimetry of X-ray beams. Various models of special construction X-ray tubes and their power supplies are under construction. In 1998 work concentrated on: completing laboratory equipment for manufacturing X-ray tubes and their components, developing technology of manufacturing X-ray tubes and their components, completing a laboratory set-up with

  3. Charged particle spectroscopy with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hunyadi, I.; Somogyi, G.

    1984-01-01

    Some of earlier and recent methods for differentiation of charged particles according to their energy, based on the use of polymeric etch-track detectors (CN, CA, PC and CR-39) are outlined. The principle of three track methods suitable for nuclear spectroscopy is discussed. These are based on the analysis of the diameter, surface size and shape of etch-track 'cones' produced by charged particles in polymers, after using shorter or longer chemical etching processes. Examples are presented from the results of the last decade in ATOMKI, Debrecen, Hungary, concerning the application of nuclear track spectroscopy to different low-energy nuclear reaction studies, angular distribution and excitation function measurements. These involve the study of (d,α) reaction on sup(14)N, sup(19)F and sup(27)Al nuclei, (sup(3)He,α) reactions on sup(15)N, (p,α) reaction on sup(27)Al and the process sup(12)C(sup(12)C, sup(8)Be)sup(16)O. (author)

  4. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  5. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  6. Track length estimation applied to point detectors

    International Nuclear Information System (INIS)

    Rief, H.; Dubi, A.; Elperin, T.

    1984-01-01

    The concept of the track length estimator is applied to the uncollided point flux estimator (UCF) leading to a new algorithm of calculating fluxes at a point. It consists essentially of a line integral of the UCF, and although its variance is unbounded, the convergence rate is that of a bounded variance estimator. In certain applications, involving detector points in the vicinity of collimated beam sources, it has a lower variance than the once-more-collided point flux estimator, and its application is more straightforward

  7. 2. International workshop Solid state nuclear track detectors and their applications

    International Nuclear Information System (INIS)

    Perelygin, V.P.

    1992-01-01

    The 2. Workshop on Solid state nuclear track detectors (SSNTD) held in Dubna, 24-26 Mar 1992. Possibilities of SSNTD applications in the fields of high and low energy physics, dosimetry and radioecology were discussed

  8. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  9. LEVEL-1 DATA DRIVER CARD - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The detectors located at the muon Small Wheels will be replaced by a set of precision tracking and trigger detectors, the resistive Micromegas (MM) and the small-strip Thin Gap Chambers (sTGC). After the upgrade, the number of interactions per bunch-crossing will be increased up to 140, resulting in a dramatically large amount of produced data. The high number of electronic channels (about two million for the MM and about 300k for the sTGC) along with a harsh environment (radiation dose up to 1700Gy (inner radius) and a magnetic field up to 0:4T in the end cap region) led to the development of new radiation tolerant electronics and a scalable readout scheme able to handle the new data rates. In addition, correction mechanisms for Single Event Upsets (SEU) and communication errors must be implemented to assure the integrity of the transmitted data. The L1DDC i...

  10. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  11. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  12. Use of HgI2 as gamma radiation detector

    International Nuclear Information System (INIS)

    Perez Morales, J.M.

    1993-01-01

    The Mercuric Iodide (HgI 2 ) has become one of the most promising room temperature semiconductors for the construction of X and gamma radiation detectors. The classical methods of spectroscopy have not demonstrated to achieve optimum results with HgI 2 detectors, mainly due to its particular carrier transport properties. Several alternative spectroscopic methods developed in the last ten years are presented and commented, selecting for a complete study one of them: 'The Partial Charge Collection Method'. The transport properties of the carriers generated by the radiation in the detector is specially important for understanding the spectroscopic behaviour of the HgI 2 detectors. For a rigorous characterization of this transport, it has been studied a digital technique for the analysis of the electric pulses produced by the radiation. Theoretically, it has been developed a Monte Carlo simulation of the radiation detection and the electronic signal treatment processes with these detectors in the energy range of 60-1300 KeV. These codes are applied to the study of the The Partial Charge Collection Method and its comparison with gaussian methods. Experimentally, this digital techniques is used for the study of the transport properties of thin HgI 2 detectors. Special interest is given to the contribution of the slower carriers, the holes, obtaining some consequent of spectroscopic interest. Finally, it is presented the results obtained with the first detectors grown and mounted in CIEMAT with own technology. (author). 129 ref

  13. Electromagnetic disturbance neutralizing radiation detector

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1975-01-01

    A radiation detector of the Neher-White type is described which automatically neutralizes induced negative charges on the electrometer tube control grid which shut off the electrometer tube. The detector includes means for establishing a voltage of one polarity in response to plate current and voltage of opposite polarity in response to an absence of plate current and means for connecting the control grid to a reference potential for draining the negative charge in response to the voltage of opposite polarity. (author)

  14. Interaction of 80 MeV PI+ with different targets: Track detector studies

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, L; Chohan, A S [Government Coll., Lahore. (Pakistan) Deptt. of Physics Khan, H.A. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Nuclear Engineering Div.)

    1990-04-01

    CR-39 and mica track detectors have been used in the study of the interactions of 80 MeV PI+ with thin targets of Bi, Pb, Ho, Sb. The binary fission cross sections, the length and angular distributions of etched tracks have been obtained. The cross-section values obtained by using CR-39 are higher as compared to those obtained with mica. (author).

  15. Interaction of 80 MeV PI+ with different targets: Track detector studies

    International Nuclear Information System (INIS)

    Tabassum, L.; Chohan, A.S.

    1990-01-01

    CR-39 and mica track detectors have been used in the study of the interactions of 80 MeV PI+ with thin targets of Bi, Pb, Ho, Sb. The binary fission cross sections, the length and angular distributions of etched tracks have been obtained. The cross-section values obtained by using CR-39 are higher as compared to those obtained with mica. (author)

  16. Charged track reconstruction and b-tagging performance in ATLAS

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector is designed to provide precision tracking informa- tion at LHC luminosities with a hermetic detector covering 5 units in pseudo- rapidity. It features a large silicon tracker subdivided into a pixel and a strip system for precise tracking and primary/secondary vertex reconstruction and to provide excellent b-tagging capabilities. A Transition Radiation Tracker improves the momentum reconstruction and provides electron identification information. The subject of these proceedings is the performance of the ATLAS Inner Detector achieved after its first 2 years of operation. The excellent detector performance and more than a decade of simulation studies provided a good basis for the commissioning of the offline track and vertex reconstruction. Early studies with cosmic events and the ever increasing amount of high quality p-p collision data allowed for rapid progress in understanding of the detector. Today the ATLAS Inner Detector approaches its design values in most relevant performance c...

  17. Measurement of track opening contours of oblique incident 4He and 7Li-ions in CR-39: Relevance for calculation of track formation parameters

    International Nuclear Information System (INIS)

    Hermsdorf, D.; Reichelt, U.

    2010-01-01

    Solid State Nuclear Track Detectors (SSNTD) irradiated in realistic radiation fields exhibits after chemical etching very complex track images resulting from different species of particles and their energy spectra and randomly distributed angles of incidence or emission. Reading out such an etched detector surface with a light microscope, quite different track opening contours are observed. Beside the number of tracks, typically their major and minor axes are measured. In this work following problems arising from such experimental situations will be investigated: ·the measurement of track contour parameters for oblique incident 4 He and 7 Li-ions of different energies and angles in CR-39 detectors ·the theoretical description of the angular variation of both axes. ·the possibility to extract physical and spectroscopic information from major and minor track axes. This analysis is based on an intensive experimental program and the comprehensive study of theoretical models available for description of track revealing processes in CR-39.

  18. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  19. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  20. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips